Go to the documentation of this file.
47 int jobnr,
int nb_jobs);
55 for (
i = 0;
i < 9; ++
i) {
56 du = (
int)
u[
i] -
ctx->chromakey_uv[0];
57 dv = (
int)v[
i] -
ctx->chromakey_uv[1];
59 diff += sqrt((du * du + dv * dv) / (255.0 * 255.0 * 2));
64 if (
ctx->blend > 0.0001) {
65 return av_clipd((
diff -
ctx->similarity) /
ctx->blend, 0.0, 1.0) * 255.0;
67 return (
diff >
ctx->similarity) ? 255 : 0;
77 for (
i = 0;
i < 9; ++
i) {
78 du = (
int)
u[
i] -
ctx->chromakey_uv[0];
79 dv = (
int)v[
i] -
ctx->chromakey_uv[1];
81 diff += sqrt((du * du + dv * dv) / (
max *
max * 2));
86 if (
ctx->blend > 0.0001) {
87 return av_clipd((
diff -
ctx->similarity) /
ctx->blend, 0.0, 1.0) *
max;
95 if (x < 0 || x >=
frame->width || y < 0 || y >=
frame->height)
107 if (x < 0 || x >=
frame->width || y < 0 || y >=
frame->height)
121 const int slice_start = (
frame->height * jobnr) / nb_jobs;
129 memset(
u,
ctx->chromakey_uv[0],
sizeof(
u));
130 memset(v,
ctx->chromakey_uv[1],
sizeof(v));
132 for (y = slice_start; y <
slice_end; ++y) {
133 for (
x = 0;
x <
frame->width; ++
x) {
134 for (yo = 0; yo < 3; ++yo) {
135 for (xo = 0; xo < 3; ++xo) {
151 const int slice_start = (
frame->height * jobnr) / nb_jobs;
159 for (
int i = 0;
i < 9;
i++) {
160 u[
i] =
ctx->chromakey_uv[0];
161 v[
i] =
ctx->chromakey_uv[1];
164 for (y = slice_start; y <
slice_end; ++y) {
165 for (
x = 0;
x <
frame->width; ++
x) {
166 uint16_t *dst = (uint16_t *)(
frame->data[3] +
frame->linesize[3] * y);
168 for (yo = 0; yo < 3; ++yo) {
169 for (xo = 0; xo < 3; ++xo) {
185 const int slice_start = ((
frame->height >>
ctx->vsub_log2) * jobnr) / nb_jobs;
186 const int slice_end = ((
frame->height >>
ctx->vsub_log2) * (jobnr + 1)) / nb_jobs;
190 for (y = slice_start; y <
slice_end; ++y) {
191 for (
x = 0;
x <
frame->width >>
ctx->hsub_log2; ++
x) {
193 int v =
frame->data[2][
frame->linesize[2] * y +
x];
197 du =
u -
ctx->chromakey_uv[0];
198 dv = v -
ctx->chromakey_uv[1];
200 diff = sqrt((du * du + dv * dv) / (255.0 * 255.0));
203 if (
ctx->blend > 0.0001) {
204 double f = 1. - av_clipd((
diff -
ctx->similarity) /
ctx->blend, 0.0, 1.0);
206 frame->data[1][
frame->linesize[1] * y +
x] = 128 + (
u - 128) *
f;
207 frame->data[2][
frame->linesize[2] * y +
x] = 128 + (v - 128) *
f;
222 const int slice_start = ((
frame->height >>
ctx->vsub_log2) * jobnr) / nb_jobs;
223 const int slice_end = ((
frame->height >>
ctx->vsub_log2) * (jobnr + 1)) / nb_jobs;
224 const int mid =
ctx->mid;
229 for (y = slice_start; y <
slice_end; ++y) {
230 for (
x = 0;
x <
frame->width >>
ctx->hsub_log2; ++
x) {
236 du =
u -
ctx->chromakey_uv[0];
237 dv = v -
ctx->chromakey_uv[1];
239 diff = sqrt((du * du + dv * dv) / (
max *
max));
242 if (
ctx->blend > 0.0001) {
243 double f = 1. - av_clipd((
diff -
ctx->similarity) /
ctx->blend, 0.0, 1.0);
269 #define FIXNUM(x) lrint((x) * (1 << 10))
270 #define RGB_TO_U(rgb) (((- FIXNUM(0.16874) * rgb[0] - FIXNUM(0.33126) * rgb[1] + FIXNUM(0.50000) * rgb[2] + (1 << 9) - 1) >> 10) + 128)
271 #define RGB_TO_V(rgb) ((( FIXNUM(0.50000) * rgb[0] - FIXNUM(0.41869) * rgb[1] - FIXNUM(0.08131) * rgb[2] + (1 << 9) - 1) >> 10) + 128)
280 ctx->depth =
desc->comp[0].depth;
281 ctx->mid = 1 << (
ctx->depth - 1);
282 ctx->max = (1 <<
ctx->depth) - 1;
294 if (!strcmp(avctx->
filter->
name,
"chromakey")) {
350 ctx->hsub_log2 =
desc->log2_chroma_w;
351 ctx->vsub_log2 =
desc->log2_chroma_h;
357 char *res,
int res_len,
int flags)
388 #define OFFSET(x) offsetof(ChromakeyContext, x)
389 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
403 .description =
NULL_IF_CONFIG_SMALL(
"Turns a certain color into transparency. Operates on YUV colors."),
405 .priv_class = &chromakey_class,
444 .
name =
"chromahold",
447 .priv_class = &chromahold_class,
#define AV_PIX_FMT_YUVA422P16
AVPixelFormat
Pixel format.
static av_cold int config_input(AVFilterLink *inlink)
int(* do_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
#define u(width, name, range_min, range_max)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
static const AVFilterPad chromakey_outputs[]
#define AV_PIX_FMT_YUVA422P9
This structure describes decoded (raw) audio or video data.
#define AV_PIX_FMT_YUVA420P16
#define AV_PIX_FMT_YUVA420P10
static const AVFilterPad chromahold_inputs[]
#define AV_PIX_FMT_YUV420P10
const char * name
Filter name.
A link between two filters.
#define AV_PIX_FMT_YUVA422P10
static uint8_t do_chromakey_pixel(ChromakeyContext *ctx, uint8_t u[9], uint8_t v[9])
#define AV_PIX_FMT_YUVA420P9
static const AVOption chromahold_options[]
void * priv
private data for use by the filter
#define AV_PIX_FMT_YUVA444P16
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo x
#define AV_PIX_FMT_YUV422P9
A filter pad used for either input or output.
#define AV_PIX_FMT_YUV444P10
AVFILTER_DEFINE_CLASS(chromakey)
#define AV_PIX_FMT_YUV422P16
static av_always_inline void get_pixel16_uv(AVFrame *frame, int hsub_log2, int vsub_log2, int x, int y, uint16_t *u, uint16_t *v)
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
#define AV_PIX_FMT_YUV444P16
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
static const AVFilterPad outputs[]
#define AV_PIX_FMT_YUVA444P12
#define AV_PIX_FMT_YUV420P9
#define AV_PIX_FMT_YUV420P16
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a link
AVFilter ff_vf_chromahold
static const AVOption chromakey_options[]
Describe the class of an AVClass context structure.
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
#define AV_PIX_FMT_YUV422P10
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
static const AVFilterPad chromahold_outputs[]
static int filter_frame(AVFilterLink *link, AVFrame *frame)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int format
agreed upon media format
#define AV_PIX_FMT_YUV422P12
static int do_chromahold16_slice(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
uint8_t chromakey_rgba[4]
static int do_chromakey16_slice(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
static uint16_t do_chromakey_pixel16(ChromakeyContext *ctx, uint16_t u[9], uint16_t v[9])
#define AV_PIX_FMT_YUV444P12
AVFilterContext * src
source filter
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
static const AVFilterPad chromakey_inputs[]
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
#define AV_PIX_FMT_YUVA444P10
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
#define i(width, name, range_min, range_max)
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
const char * name
Pad name.
#define AV_PIX_FMT_YUV444P9
static av_always_inline void get_pixel_uv(AVFrame *frame, int hsub_log2, int vsub_log2, int x, int y, uint8_t *u, uint8_t *v)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
#define AV_PIX_FMT_YUVA444P9
#define AV_PIX_FMT_YUV420P12
#define AV_PIX_FMT_YUV422P14
static int do_chromakey_slice(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
avfilter_execute_func * execute
#define AV_PIX_FMT_YUVA422P12
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
static const int factor[16]
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static av_always_inline int diff(const uint32_t a, const uint32_t b)
static const int16_t alpha[]
static int do_chromahold_slice(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
#define flags(name, subs,...)
static av_cold int query_formats(AVFilterContext *avctx)
#define AV_PIX_FMT_YUV444P14
const AVFilter * filter
the AVFilter of which this is an instance
static av_cold int config_output(AVFilterLink *outlink)
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
#define AV_PIX_FMT_YUV420P14
AVFilterLink ** outputs
array of pointers to output links