Go to the documentation of this file.
76 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
100 0.700000, 0.490000, 0.343000, 0.240100, 0.168070,
101 0.117649, 0.082354, 0.057648, 0.040354, 0.028248
105 0.750000, 0.562500, 0.421875, 0.316406, 0.237305,
106 0.177979, 0.133484, 0.100113, 0.075085, 0.056314
110 0.550000, 0.302500, 0.166375, 0.091506, 0.050328,
111 0.027681, 0.015224, 0.008373, 0.004605, 0.002533
115 0.898529 , 0.865051 , 0.769257 , 0.624054 , 0.448639 , 0.265289 ,
116 0.0959167 , -0.0412598 , -0.134338 , -0.178986 , -0.178528 , -0.142609 ,
117 -0.0849304 , -0.0205078 , 0.0369568 , 0.0773926 , 0.0955200 , 0.0912781 ,
118 0.0689392 , 0.0357056 , 0.0 , -0.0305481 , -0.0504150 , -0.0570068 ,
119 -0.0508423 , -0.0350037 , -0.0141602 , 0.00665283, 0.0230713 , 0.0323486 ,
120 0.0335388 , 0.0275879 , 0.0167847 , 0.00411987, -0.00747681, -0.0156860 ,
121 -0.0193481 , -0.0183716 , -0.0137634 , -0.00704956, 0.0 , 0.00582886 ,
122 0.00939941, 0.0103760 , 0.00903320, 0.00604248, 0.00238037, -0.00109863 ,
123 -0.00366211, -0.00497437, -0.00503540, -0.00402832, -0.00241089, -0.000579834,
124 0.00103760, 0.00222778, 0.00277710, 0.00271606, 0.00213623, 0.00115967 ,
140 for(
i=0;
i<pulse_count;
i++)
143 (pulse_signs & 1) ? 8191 : -8192;
145 pulse_indexes >>=
bits;
149 fc_v[
tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192;
155 int half_pulse_count,
int bits)
161 fixed_sparse->
n = 2 * half_pulse_count;
162 for (
i = 0;
i < half_pulse_count;
i++) {
165 const float sign = (fixed_index[2*
i+1] & (1 <<
bits)) ? -1.0 : 1.0;
166 fixed_sparse->
x[2*
i+1] = pos1;
167 fixed_sparse->
x[2*
i ] = pos2;
168 fixed_sparse->
y[2*
i+1] = sign;
169 fixed_sparse->
y[2*
i ] = pos2 < pos1 ? -sign : sign;
177 int16_t weight_coeff_a,
178 int16_t weight_coeff_b,
186 for(
i=0;
i<length;
i++)
187 out[
i] = av_clip_int16((
188 in_a[
i] * weight_coeff_a +
189 in_b[
i] * weight_coeff_b +
194 float weight_coeff_a,
float weight_coeff_b,
int length)
198 for(
i=0;
i<length;
i++)
199 out[
i] = weight_coeff_a * in_a[
i]
200 + weight_coeff_b * in_b[
i];
208 float gain_scale_factor = 1.0;
209 float mem = *gain_mem;
211 if (postfilter_energ)
212 gain_scale_factor = sqrt(speech_energ / postfilter_energ);
214 gain_scale_factor *= 1.0 -
alpha;
217 mem =
alpha * mem + gain_scale_factor;
225 float sum_of_squares,
const int n)
230 scalefactor = sqrt(sum_of_squares / scalefactor);
231 for (
i = 0;
i < n;
i++)
239 for (
i=0;
i <
in->n;
i++) {
240 int x =
in->x[
i], repeats = !((
in->no_repeat_mask >>
i) & 1);
241 float y =
in->y[
i] * scale;
243 if (
in->pitch_lag > 0)
249 }
while (
x <
size && repeats);
257 for (
i=0;
i <
in->n;
i++) {
258 int x =
in->x[
i], repeats = !((
in->no_repeat_mask >>
i) & 1);
260 if (
in->pitch_lag > 0)
264 }
while (
x <
size && repeats);
static const uint8_t gray_decode[8]
3-bit Gray code to binary lookup table
void ff_acelp_fc_pulse_per_track(int16_t *fc_v, const uint8_t *tab1, const uint8_t *tab2, int pulse_indexes, int pulse_signs, int pulse_count, int bits)
Decode fixed-codebook vector (3.8 and D.5.8 of G.729, 5.7.1 of AMR).
const float ff_b60_sinc[61]
b60 hamming windowed sinc function coefficients
const float ff_pow_0_55[10]
Table of pow(0.55,n)
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo x
void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
Clear array values set by set_fixed_vector.
void ff_adaptive_gain_control(float *out, const float *in, float speech_energ, int size, float alpha, float *gain_mem)
Adaptive gain control (as used in AMR postfiltering)
static const uint16_t mask[17]
Sparse representation for the algebraic codebook (fixed) vector.
#define av_assert0(cond)
assert() equivalent, that is always enabled.
const uint8_t ff_fc_2pulses_9bits_track2_gray[32]
void ff_decode_10_pulses_35bits(const int16_t *fixed_index, AMRFixed *fixed_sparse, const uint8_t *gray_decode, int half_pulse_count, int bits)
Decode the algebraic codebook index to pulse positions and signs and construct the algebraic codebook...
const uint8_t ff_fc_4pulses_8bits_tracks_13[16]
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
void ff_acelp_vectors_init(ACELPVContext *c)
Initialize ACELPVContext.
const float ff_pow_0_7[10]
Table of pow(0.7,n)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
#define i(width, name, range_min, range_max)
const float ff_pow_0_75[10]
Table of pow(0.75,n)
void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b, float weight_coeff_a, float weight_coeff_b, int length)
float implementation of weighted sum of two vectors.
const uint8_t ff_fc_2pulses_9bits_track1_gray[16]
void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
Add fixed vector to an array from a sparse representation.
float avpriv_scalarproduct_float_c(const float *v1, const float *v2, int len)
Return the scalar product of two vectors.
void ff_acelp_weighted_vector_sum(int16_t *out, const int16_t *in_a, const int16_t *in_b, int16_t weight_coeff_a, int16_t weight_coeff_b, int16_t rounder, int shift, int length)
weighted sum of two vectors with rounding.
static int shift(int a, int b)
static const int16_t alpha[]
void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in, float sum_of_squares, const int n)
Set the sum of squares of a signal by scaling.
const uint8_t ff_fc_4pulses_8bits_track_4[32]
void ff_acelp_vectors_init_mips(ACELPVContext *c)
const uint8_t ff_fc_2pulses_9bits_track1[16]