Go to the documentation of this file.
42 a7 =
W7 *
b[1] -
W1 *
b[7];
46 a6 =
W6 *
b[2] -
W2 *
b[6];
55 b[0] = (
a0 +
a2 +
a1 +
a5 + (1 << 7)) >> 8;
56 b[1] = (
a4 + a6 +
s1 + (1 << 7)) >> 8;
57 b[2] = (
a4 - a6 +
s2 + (1 << 7)) >> 8;
58 b[3] = (
a0 -
a2 + a7 +
a3 + (1 << 7)) >> 8;
59 b[4] = (
a0 -
a2 - a7 -
a3 + (1 << 7)) >> 8;
60 b[5] = (
a4 - a6 -
s2 + (1 << 7)) >> 8;
61 b[6] = (
a4 + a6 -
s1 + (1 << 7)) >> 8;
62 b[7] = (
a0 +
a2 -
a1 -
a5 + (1 << 7)) >> 8;
71 a1 = (
W1 *
b[8 * 1] +
W7 *
b[8 * 7] + 4) >> 3;
72 a7 = (
W7 *
b[8 * 1] -
W1 *
b[8 * 7] + 4) >> 3;
73 a5 = (
W5 *
b[8 * 5] +
W3 *
b[8 * 3] + 4) >> 3;
74 a3 = (
W3 *
b[8 * 5] -
W5 *
b[8 * 3] + 4) >> 3;
75 a2 = (
W2 *
b[8 * 2] +
W6 *
b[8 * 6] + 4) >> 3;
76 a6 = (
W6 *
b[8 * 2] -
W2 *
b[8 * 6] + 4) >> 3;
77 a0 = (
W0 *
b[8 * 0] +
W0 *
b[8 * 4] ) >> 3;
78 a4 = (
W0 *
b[8 * 0] -
W0 *
b[8 * 4] ) >> 3;
85 b[8 * 0] = (
a0 +
a2 +
a1 +
a5 + (1 << 13)) >> 14;
86 b[8 * 1] = (
a4 + a6 +
s1 + (1 << 13)) >> 14;
87 b[8 * 2] = (
a4 - a6 +
s2 + (1 << 13)) >> 14;
88 b[8 * 3] = (
a0 -
a2 + a7 +
a3 + (1 << 13)) >> 14;
90 b[8 * 4] = (
a0 -
a2 - a7 -
a3 + (1 << 13)) >> 14;
91 b[8 * 5] = (
a4 - a6 -
s2 + (1 << 13)) >> 14;
92 b[8 * 6] = (
a4 + a6 -
s1 + (1 << 13)) >> 14;
93 b[8 * 7] = (
a0 +
a2 -
a1 -
a5 + (1 << 13)) >> 14;
100 for (
i = 0;
i < 64;
i += 8)
102 for (
i = 0;
i < 8;
i++)
105 for (
i = 0;
i < 8;
i++) {
106 dest[0] = av_clip_uint8(dest[0] +
block[0]);
107 dest[1] = av_clip_uint8(dest[1] +
block[1]);
108 dest[2] = av_clip_uint8(dest[2] +
block[2]);
109 dest[3] = av_clip_uint8(dest[3] +
block[3]);
110 dest[4] = av_clip_uint8(dest[4] +
block[4]);
111 dest[5] = av_clip_uint8(dest[5] +
block[5]);
112 dest[6] = av_clip_uint8(dest[6] +
block[6]);
113 dest[7] = av_clip_uint8(dest[7] +
block[7]);
123 for (
i = 0;
i < 64;
i += 8)
125 for (
i = 0;
i < 8;
i++)
128 for (
i = 0;
i < 8;
i++) {
129 dest[0] = av_clip_uint8(
block[0]);
130 dest[1] = av_clip_uint8(
block[1]);
131 dest[2] = av_clip_uint8(
block[2]);
132 dest[3] = av_clip_uint8(
block[3]);
133 dest[4] = av_clip_uint8(
block[4]);
134 dest[5] = av_clip_uint8(
block[5]);
135 dest[6] = av_clip_uint8(
block[6]);
136 dest[7] = av_clip_uint8(
block[7]);
143 int dstStride,
int srcStride,
int h)
148 for (
i = 0;
i <
h;
i++) {
149 dst[0] =
cm[(9 * (
src[0] +
src[1]) - (
src[-1] +
src[2]) + 8) >> 4];
150 dst[1] =
cm[(9 * (
src[1] +
src[2]) - (
src[0] +
src[3]) + 8) >> 4];
151 dst[2] =
cm[(9 * (
src[2] +
src[3]) - (
src[1] +
src[4]) + 8) >> 4];
152 dst[3] =
cm[(9 * (
src[3] +
src[4]) - (
src[2] +
src[5]) + 8) >> 4];
153 dst[4] =
cm[(9 * (
src[4] +
src[5]) - (
src[3] +
src[6]) + 8) >> 4];
154 dst[5] =
cm[(9 * (
src[5] +
src[6]) - (
src[4] +
src[7]) + 8) >> 4];
155 dst[6] =
cm[(9 * (
src[6] +
src[7]) - (
src[5] +
src[8]) + 8) >> 4];
156 dst[7] =
cm[(9 * (
src[7] +
src[8]) - (
src[6] +
src[9]) + 8) >> 4];
163 int dstStride,
int srcStride,
int w)
168 for (
i = 0;
i <
w;
i++) {
169 const int src_1 =
src[-srcStride];
171 const int src1 =
src[srcStride];
172 const int src2 =
src[2 * srcStride];
173 const int src3 =
src[3 * srcStride];
174 const int src4 =
src[4 * srcStride];
175 const int src5 =
src[5 * srcStride];
176 const int src6 =
src[6 * srcStride];
177 const int src7 =
src[7 * srcStride];
178 const int src8 =
src[8 * srcStride];
179 const int src9 =
src[9 * srcStride];
180 dst[0 * dstStride] =
cm[(9 * (
src0 +
src1) - (src_1 + src2) + 8) >> 4];
181 dst[1 * dstStride] =
cm[(9 * (
src1 + src2) - (
src0 + src3) + 8) >> 4];
182 dst[2 * dstStride] =
cm[(9 * (src2 + src3) - (
src1 + src4) + 8) >> 4];
183 dst[3 * dstStride] =
cm[(9 * (src3 + src4) - (src2 + src5) + 8) >> 4];
184 dst[4 * dstStride] =
cm[(9 * (src4 + src5) - (src3 + src6) + 8) >> 4];
185 dst[5 * dstStride] =
cm[(9 * (src5 + src6) - (src4 + src7) + 8) >> 4];
186 dst[6 * dstStride] =
cm[(9 * (src6 + src7) - (src5 + src8) + 8) >> 4];
187 dst[7 * dstStride] =
cm[(9 * (src7 + src8) - (src6 + src9) + 8) >> 4];
static void wmv2_idct_col(short *b)
static void wmv2_idct_add_c(uint8_t *dest, ptrdiff_t line_size, int16_t *block)
static void put_mspel8_mc10_c(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
void ff_put_pixels8_l2_8(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int dst_stride, int src_stride1, int src_stride2, int h)
static void wmv2_mspel8_h_lowpass(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
static void put_mspel8_mc22_c(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
static void put_mspel8_mc02_c(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
av_cold void ff_wmv2dsp_init_mips(WMV2DSPContext *c)
void ff_put_pixels8x8_c(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
static void wmv2_idct_put_c(uint8_t *dest, ptrdiff_t line_size, int16_t *block)
static void put_mspel8_mc32_c(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
av_cold void ff_wmv2dsp_init(WMV2DSPContext *c)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static void put_mspel8_mc20_c(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
static void put_mspel8_mc12_c(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
static void put_mspel8_mc30_c(uint8_t *dst, const uint8_t *src, ptrdiff_t stride)
#define i(width, name, range_min, range_max)
static void wmv2_idct_row(short *b)
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo ug o o w
static void wmv2_mspel8_v_lowpass(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int w)
The exact code depends on how similar the blocks are and how related they are to the block