Go to the documentation of this file.
34 #define OFFSET(x) offsetof(RemoveGrainContext, x)
35 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
66 #define REMOVE_GRAIN_SORT_AXIS \
67 const int ma1 = FFMAX(a1, a8); \
68 const int mi1 = FFMIN(a1, a8); \
69 const int ma2 = FFMAX(a2, a7); \
70 const int mi2 = FFMIN(a2, a7); \
71 const int ma3 = FFMAX(a3, a6); \
72 const int mi3 = FFMIN(a3, a6); \
73 const int ma4 = FFMAX(a4, a5); \
74 const int mi4 = FFMIN(a4, a5);
81 return av_clip(
c,
mi,
ma);
84 static int cmp_int(
const void *p1,
const void *p2)
86 int left = *(
const int *)p1;
87 int right = *(
const int *)p2;
97 return av_clip(
c,
a[2 - 1 ],
a[7 - 1]);
106 return av_clip(
c,
a[3 - 1 ],
a[6 - 1]);
115 return av_clip(
c,
a[4 - 1 ],
a[5 - 1]);
122 const int c1 =
FFABS(
c - av_clip(
c, mi1, ma1));
123 const int c2 =
FFABS(
c - av_clip(
c, mi2, ma2));
124 const int c3 =
FFABS(
c - av_clip(
c, mi3, ma3));
125 const int c4 =
FFABS(
c - av_clip(
c, mi4, ma4));
131 return av_clip(
c, mi4, ma4);
132 }
else if (mindiff ==
c2) {
133 return av_clip(
c, mi2, ma2);
134 }
else if (mindiff == c3) {
135 return av_clip(
c, mi3, ma3);
138 return av_clip(
c, mi1, ma1);
145 const int d1 = ma1 - mi1;
146 const int d2 = ma2 - mi2;
147 const int d3 = ma3 - mi3;
148 const int d4 = ma4 - mi4;
150 const int cli1 = av_clip(
c, mi1, ma1);
151 const int cli2 = av_clip(
c, mi2, ma2);
152 const int cli3 = av_clip(
c, mi3, ma3);
153 const int cli4 = av_clip(
c, mi4, ma4);
155 const int c1 = av_clip_uint16((
FFABS(
c - cli1) << 1) + d1);
156 const int c2 = av_clip_uint16((
FFABS(
c - cli2) << 1) + d2);
157 const int c3 = av_clip_uint16((
FFABS(
c - cli3) << 1) + d3);
158 const int c4 = av_clip_uint16((
FFABS(
c - cli4) << 1) + d4);
164 }
else if (mindiff ==
c2) {
166 }
else if (mindiff == c3) {
177 const int d1 = ma1 - mi1;
178 const int d2 = ma2 - mi2;
179 const int d3 = ma3 - mi3;
180 const int d4 = ma4 - mi4;
182 const int cli1 = av_clip(
c, mi1, ma1);
183 const int cli2 = av_clip(
c, mi2, ma2);
184 const int cli3 = av_clip(
c, mi3, ma3);
185 const int cli4 = av_clip(
c, mi4, ma4);
187 const int c1 =
FFABS(
c - cli1) + d1;
188 const int c2 =
FFABS(
c - cli2) + d2;
189 const int c3 =
FFABS(
c - cli3) + d3;
190 const int c4 =
FFABS(
c - cli4) + d4;
196 }
else if (mindiff ==
c2) {
198 }
else if (mindiff == c3) {
209 const int d1 = ma1 - mi1;
210 const int d2 = ma2 - mi2;
211 const int d3 = ma3 - mi3;
212 const int d4 = ma4 - mi4;
214 const int cli1 = av_clip(
c, mi1, ma1);
215 const int cli2 = av_clip(
c, mi2, ma2);
216 const int cli3 = av_clip(
c, mi3, ma3);
217 const int cli4 = av_clip(
c, mi4, ma4);
219 const int c1 = av_clip_uint16(
FFABS(
c - cli1) + (d1 << 1));
220 const int c2 = av_clip_uint16(
FFABS(
c - cli2) + (d2 << 1));
221 const int c3 = av_clip_uint16(
FFABS(
c - cli3) + (d3 << 1));
222 const int c4 = av_clip_uint16(
FFABS(
c - cli4) + (d4 << 1));
228 }
else if (mindiff ==
c2) {
230 }
else if (mindiff == c3) {
241 const int d1 = ma1 - mi1;
242 const int d2 = ma2 - mi2;
243 const int d3 = ma3 - mi3;
244 const int d4 = ma4 - mi4;
249 return av_clip(
c, mi4, ma4);
250 }
else if (mindiff == d2) {
251 return av_clip(
c, mi2, ma2);
252 }
else if (mindiff == d3) {
253 return av_clip(
c, mi3, ma3);
256 return av_clip(
c, mi1, ma1);
266 const int d6 =
FFABS(
c - a6);
267 const int d7 =
FFABS(
c - a7);
268 const int d8 =
FFABS(
c - a8);
273 if (mindiff == d7)
return a7;
274 if (mindiff == d8)
return a8;
275 if (mindiff == d6)
return a6;
276 if (mindiff == d2)
return a2;
277 if (mindiff == d3)
return a3;
278 if (mindiff == d1)
return a1;
279 if (mindiff == d5)
return a5;
286 const int sum = 4 *
c + 2 * (
a2 +
a4 +
a5 + a7) +
a1 +
a3 + a6 + a8;
287 const int val = (sum + 8) >> 4;
301 return (
a2 + a7 + 1) >> 1;
304 return (
a3 + a6 + 1) >> 1;
307 return (
a1 + a8 + 1) >> 1;
317 const int average = (2 * (
a2 + a7) +
a1 +
a3 + a6 + a8 + 4) >> 3;
363 const int sum =
a1 +
a2 +
a3 +
a4 +
a5 + a6 + a7 + a8;
364 const int val = (sum + 4) >> 3;
371 const int sum =
a1 +
a2 +
a3 +
a4 +
c +
a5 + a6 + a7 + a8;
372 const int val = (sum + 4) / 9;
379 const int l1l = (
a1 + a8) >> 1;
380 const int l2l = (
a2 + a7) >> 1;
381 const int l3l = (
a3 + a6) >> 1;
382 const int l4l = (
a4 +
a5) >> 1;
384 const int l1h = (
a1 + a8 + 1) >> 1;
385 const int l2h = (
a2 + a7 + 1) >> 1;
386 const int l3h = (
a3 + a6 + 1) >> 1;
387 const int l4h = (
a4 +
a5 + 1) >> 1;
392 return av_clip(
c,
mi,
ma);
397 const int l1 = (
a1 + a8 + 1) >> 1;
398 const int l2 = (
a2 + a7 + 1) >> 1;
399 const int l3 = (
a3 + a6 + 1) >> 1;
400 const int l4 = (
a4 +
a5 + 1) >> 1;
405 return av_clip(
c,
mi,
ma);
412 const int linediff1 = ma1 - mi1;
413 const int linediff2 = ma2 - mi2;
414 const int linediff3 = ma3 - mi3;
415 const int linediff4 = ma4 - mi4;
417 const int u1 =
FFMIN(
c - ma1, linediff1);
418 const int u2 =
FFMIN(
c - ma2, linediff2);
419 const int u3 =
FFMIN(
c - ma3, linediff3);
420 const int u4 =
FFMIN(
c - ma4, linediff4);
423 const int d1 =
FFMIN(mi1 -
c, linediff1);
424 const int d2 =
FFMIN(mi2 -
c, linediff2);
425 const int d3 =
FFMIN(mi3 -
c, linediff3);
426 const int d4 =
FFMIN(mi4 -
c, linediff4);
436 const int linediff1 = ma1 - mi1;
437 const int linediff2 = ma2 - mi2;
438 const int linediff3 = ma3 - mi3;
439 const int linediff4 = ma4 - mi4;
441 const int tu1 =
c - ma1;
442 const int tu2 =
c - ma2;
443 const int tu3 =
c - ma3;
444 const int tu4 =
c - ma4;
446 const int u1 =
FFMIN(tu1, linediff1 - tu1);
447 const int u2 =
FFMIN(tu2, linediff2 - tu2);
448 const int u3 =
FFMIN(tu3, linediff3 - tu3);
449 const int u4 =
FFMIN(tu4, linediff4 - tu4);
452 const int td1 = mi1 -
c;
453 const int td2 = mi2 -
c;
454 const int td3 = mi3 -
c;
455 const int td4 = mi4 -
c;
457 const int d1 =
FFMIN(td1, linediff1 - td1);
458 const int d2 =
FFMIN(td2, linediff2 - td2);
459 const int d3 =
FFMIN(td3, linediff3 - td3);
460 const int d4 =
FFMIN(td4, linediff4 - td4);
475 s->planeheight[0] =
s->planeheight[3] =
inlink->h;
477 s->planewidth[0] =
s->planewidth[3] =
inlink->w;
479 for (
i = 0;
i <
s->nb_planes;
i++) {
480 switch (
s->mode[
i]) {
493 case 13:
s->skip_odd = 1;
495 case 14:
s->skip_even = 1;
497 case 15:
s->skip_odd = 1;
499 case 16:
s->skip_even = 1;
529 const int i =
td->plane;
530 const int height =
s->planeheight[
i];
531 const int om =
in->linesize[
i] - 1;
532 const int o0 =
in->linesize[
i] ;
533 const int op =
in->linesize[
i] + 1;
534 int start = (
height * jobnr ) / nb_jobs;
535 int end = (
height * (jobnr+1)) / nb_jobs;
538 start =
FFMAX(1, start);
540 for (y = start; y <
end; y++) {
545 dst =
out->data[
i] + y *
out->linesize[
i];
547 if (
s->skip_even && !(y & 1)) {
548 memcpy(dst,
src,
s->planewidth[
i]);
551 if (
s->skip_odd && y & 1) {
552 memcpy(dst,
src,
s->planewidth[
i]);
559 int w_asm = (
s->planewidth[
i] - 2) & ~15;
561 s->fl[
i](dst,
src,
in->linesize[
i], w_asm);
569 for (;
x <
s->planewidth[
i] - 1;
x++) {
571 const int a2 =
src[-o0];
572 const int a3 =
src[-om];
573 const int a4 =
src[-1 ];
574 const int c =
src[ 0 ];
575 const int a5 =
src[ 1 ];
576 const int a6 =
src[ om];
577 const int a7 =
src[ o0];
578 const int a8 =
src[
op];
607 for (
i = 0;
i <
s->nb_planes;
i++) {
611 if (
s->mode[
i] == 0) {
614 s->planewidth[
i],
s->planeheight[
i]);
618 memcpy(dst,
src,
s->planewidth[
i]);
624 src =
in->data[
i] + (
s->planeheight[
i] - 1) *
in->linesize[
i];
625 dst =
out->data[
i] + (
s->planeheight[
i] - 1) *
out->linesize[
i];
626 memcpy(dst,
src,
s->planewidth[
i]);
652 .
name =
"removegrain",
658 .priv_class = &removegrain_class,
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
AVPixelFormat
Pixel format.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
#define u(width, name, range_min, range_max)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
static int mode19(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
static av_cold int end(AVCodecContext *avctx)
This structure describes decoded (raw) audio or video data.
static int mode05(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
void ff_removegrain_init_x86(RemoveGrainContext *rg)
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
static int mode20(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
AVFilter ff_vf_removegrain
const char * name
Filter name.
static int mode06(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
static int mode18(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
AVFormatInternal * internal
An opaque field for libavformat internal usage.
A link between two filters.
void av_image_copy_plane(uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize, int bytewidth, int height)
Copy image plane from src to dst.
static int mode08(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
AVFILTER_DEFINE_CLASS(removegrain)
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo x
static int mode22(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
static double val(void *priv, double ch)
static int mode23(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
A filter pad used for either input or output.
static int mode21(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
static const AVFilterPad removegrain_inputs[]
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
static int query_formats(AVFilterContext *ctx)
#define AV_CEIL_RSHIFT(a, b)
static int mode04(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
static int op(uint8_t **dst, const uint8_t *dst_end, GetByteContext *gb, int pixel, int count, int *x, int width, int linesize)
Perform decode operation.
static const AVFilterPad outputs[]
static enum AVPixelFormat pix_fmts[]
static int mode07(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
static int mode1516(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
static int cmp_int(const void *p1, const void *p2)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
#define REMOVE_GRAIN_SORT_AXIS
#define FFDIFFSIGN(x, y)
Comparator.
static const AVOption removegrain_options[]
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static int mode01(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
static int mode24(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
static int config_input(AVFilterLink *inlink)
#define i(width, name, range_min, range_max)
#define AV_QSORT(p, num, type, cmp)
Quicksort This sort is fast, and fully inplace but not stable and it is possible to construct input t...
int w
agreed upon image width
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Used for passing data between threads.
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
const char * name
Pad name.
static int mode02(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
static const AVFilterPad removegrain_outputs[]
static int mode1112(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
static int mode1314(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
int h
agreed upon image height
static int mode03(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
static int mode09(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
static int mode17(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
#define flags(name, subs,...)
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
static int mode10(int c, int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8)