Go to the documentation of this file.
83 {{19595, 38470, 7471, 0, 0, 0},
85 { 0, 0, 0, 19595, 38470, 7471}},
87 {{19595, 38470, 7471, 0, 0, 0},
88 { 0, 0, 0, 19595, 38470, 7471},
91 {{19595, 38470, 7471, 0, 0, 0},
92 { 0, 0, 0, 19595, 38470, 7471},
93 { 0, 0, 0, 19595, 38470, 7471}},
95 {{19595, 38470, 7471, 0, 0, 0},
96 { 0, 0, 0, 0, 65536, 0},
97 { 0, 0, 0, 0, 0, 65536}},
99 {{65536, 0, 0, 0, 0, 0},
100 { 0, 0, 0, 0, 65536, 0},
101 { 0, 0, 0, 0, 0, 65536}},
103 {{29884, 32768, 11534, -2818, -5767, -131},
104 {-2621, -2490, -1049, 24773, 48103, -1180},
105 { -983, -1376, -328, -4719, -7406, 80347}},
107 {{ 0, 0, 0, 19595, 38470, 7471},
108 {19595, 38470, 7471, 0, 0, 0},
109 { 0, 0, 0, 19595, 38470, 7471}},
111 {{ 0, 0, 0, 65536, 0, 0},
112 {19595, 38470, 7471, 0, 0, 0},
113 { 0, 0, 0, 0, 0, 65536}},
115 {{ 0, 0, 0, 65536, 0, 0},
116 { 0, 65536, 0, 0, 0, 0},
117 { 0, 0, 0, 0, 0, 65536}},
119 {{-4063,-10354, -2556, 34669, 46203, 1573},
120 {18612, 43778, 9372, -1049, -983, -4260},
121 { -983, -1769, 1376, 590, 4915, 61407}},
123 {{ 0, 0, 0, 19595, 38470, 7471},
124 { 0, 0, 0, 19595, 38470, 7471},
125 {19595, 38470, 7471, 0, 0, 0}},
127 {{ 0, 0, 0, 65536, 0, 0},
128 { 0, 0, 0, 0, 65536, 0},
129 {19595, 38470, 7471, 0, 0, 0}},
131 {{ 0, 0, 0, 65536, 0, 0},
132 { 0, 0, 0, 0, 65536, 0},
133 { 0, 0, 65536, 0, 0, 0}},
135 {{69599,-13435,19595, -1048, -8061, -1114},
136 {-1704, 59507, 4456, 393, 4063, -1114},
137 {-2490,-11338, 1442, 6160, 12124, 59703}},
157 #define OFFSET(x) offsetof(Stereo3DContext, x)
158 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
288 switch (
s->out.format) {
323 return av_clip_uint8(sum >> 16);
327 ptrdiff_t dst_linesize, ptrdiff_t l_linesize, ptrdiff_t r_linesize,
329 const int *ana_matrix_r,
const int *ana_matrix_g,
const int *ana_matrix_b)
333 for (y = 0; y <
height; y++) {
334 for (o = 0,
x = 0;
x <
width;
x++, o+= 3) {
335 dst[o ] =
ana_convert(ana_matrix_r, lsrc + o * 2, rsrc + o * 2);
336 dst[o + 1] =
ana_convert(ana_matrix_g, lsrc + o * 2, rsrc + o * 2);
337 dst[o + 2] =
ana_convert(ana_matrix_b, lsrc + o * 2, rsrc + o * 2);
347 ptrdiff_t dst_linesize, ptrdiff_t l_linesize, ptrdiff_t r_linesize,
349 const int *ana_matrix_r,
const int *ana_matrix_g,
const int *ana_matrix_b)
353 for (y = 0; y <
height; y++) {
354 for (o = 0,
x = 0;
x <
width;
x++, o+= 3) {
355 dst[o ] =
ana_convert(ana_matrix_r, lsrc + o, rsrc + o);
356 dst[o + 1] =
ana_convert(ana_matrix_g, lsrc + o, rsrc + o);
357 dst[o + 2] =
ana_convert(ana_matrix_b, lsrc + o, rsrc + o);
375 s->aspect =
inlink->sample_aspect_ratio;
377 switch (
s->in.format) {
414 switch (
s->in.format) {
419 s->in.off_right =
s->width;
425 s->in.off_left =
s->width;
464 s->out.width =
s->width;
465 s->out.height =
s->height;
471 s->out.row_right = 0;
474 switch (
s->out.format) {
492 s->ana_matrix[rgba_map[0]] = &
ana_coeff[
s->out.format][0][0];
493 s->ana_matrix[rgba_map[1]] = &
ana_coeff[
s->out.format][1][0];
494 s->ana_matrix[rgba_map[2]] = &
ana_coeff[
s->out.format][2][0];
500 s->out.width =
s->width * 2;
501 s->out.off_right =
s->width;
506 s->out.width =
s->width * 2;
507 s->out.off_left =
s->width;
512 s->out.height =
s->height * 2;
513 s->out.row_right =
s->height;
516 if (
s->height != 720 &&
s->height != 1080) {
521 s->blanks =
s->height / 24;
522 s->out.height =
s->height * 2 +
s->blanks;
523 s->out.row_right =
s->height +
s->blanks;
528 s->out.height =
s->height * 2;
529 s->out.row_left =
s->height;
534 s->out.height =
s->height * 2;
535 s->out.off_rstep = 1;
540 s->out.height =
s->height * 2;
541 s->out.off_lstep = 1;
545 s->in.off_left =
s->in.off_right;
546 s->in.row_left =
s->in.row_right;
549 FFSWAP(
int,
s->in.off_lstep,
s->in.off_rstep);
553 FFSWAP(
int,
s->in.off_lstep,
s->in.off_rstep);
564 s->out.width =
s->width * 2;
572 if ((
s->in.format & 1) != (
s->out.format & 1)) {
573 FFSWAP(
int,
s->in.row_left,
s->in.row_right);
574 FFSWAP(
int,
s->in.off_lstep,
s->in.off_rstep);
575 FFSWAP(
int,
s->in.off_left,
s->in.off_right);
576 FFSWAP(
int,
s->out.row_left,
s->out.row_right);
577 FFSWAP(
int,
s->out.off_lstep,
s->out.off_rstep);
578 FFSWAP(
int,
s->out.off_left,
s->out.off_right);
582 outlink->
w =
s->out.width;
583 outlink->
h =
s->out.height;
593 s->pheight[0] =
s->pheight[3] =
s->height;
594 s->hsub =
desc->log2_chroma_w;
595 s->vsub =
desc->log2_chroma_h;
617 int start = (
height * jobnr ) / nb_jobs;
618 int end = (
height * (jobnr+1)) / nb_jobs;
619 const int **ana_matrix =
s->ana_matrix;
621 s->dsp.anaglyph(
out->data[0] +
out->linesize[0] * start,
622 ileft ->
data[0] +
s->in_off_left [0] + ileft->
linesize[0] * start *
s->in.row_step,
623 iright->
data[0] +
s->in_off_right[0] + iright->
linesize[0] * start *
s->in.row_step,
627 s->out.width,
end - start,
628 ana_matrix[0], ana_matrix[1], ana_matrix[2]);
637 for (y = 0; y <
s->pheight[p]; y++) {
639 uint8_t *dst =
out->data[p] + out_off[p] + y *
out->linesize[p] *
s->out.row_step;
641 switch (
s->pixstep[p]) {
643 for (
x = 0;
x <
s->linesize[p];
x++)
647 for (
x = 0;
x <
s->linesize[p];
x+=2)
651 for (
x = 0;
x <
s->linesize[p];
x+=3)
655 for (
x = 0;
x <
s->linesize[p];
x+=4)
659 for (
x = 0;
x <
s->linesize[p];
x+=6)
663 for (
x = 0;
x <
s->linesize[p];
x+=8)
676 int out_off_left[4], out_off_right[4];
679 if (
s->in.format ==
s->out.format)
682 switch (
s->out.format) {
692 switch (
s->in.format) {
705 ileft = iright = inpicref;
722 if (!oright || !oleft) {
729 }
else if ((
s->out.format ==
MONO_L ||
788 for (
i = 0;
i < 4;
i++) {
789 int hsub =
i == 1 ||
i == 2 ?
s->hsub : 0;
790 int vsub =
i == 1 ||
i == 2 ?
s->vsub : 0;
797 switch (
s->out.format) {
800 switch (
s->in.format) {
803 for (
i = 0;
i <
s->nb_planes;
i++) {
804 oleft->linesize[
i] *= 2;
805 oright->linesize[
i] *= 2;
815 oleft->width = outlink->
w;
816 oright->width = outlink->
w;
817 oleft->height = outlink->
h;
818 oright->height = outlink->
h;
820 for (
i = 0;
i <
s->nb_planes;
i++) {
821 oleft->data[
i] +=
s->in_off_left[
i];
822 oright->data[
i] +=
s->in_off_right[
i];
831 for (
i = 0;
i <
s->nb_planes;
i++) {
832 int j,
h =
s->height >> ((
i == 1 ||
i == 2) ?
s->vsub : 0);
833 int b = (
s->blanks) >> ((
i == 1 ||
i == 2) ?
s->vsub : 0);
835 for (j =
h; j <
h +
b; j++)
836 memset(oleft->data[
i] + j *
s->linesize[
i], 0,
s->linesize[
i]);
851 for (
i = 0;
i <
s->nb_planes;
i++) {
852 int d = (
s->in.format & 1) != (
s->out.format & 1);
858 for (
i = 0;
i <
s->nb_planes;
i++) {
860 oleft->linesize[
i] *
s->out.row_step,
861 ileft->data[
i] +
s->in_off_left[
i],
862 ileft->linesize[
i] *
s->in.row_step,
863 s->linesize[
i],
s->pheight[
i]);
865 oright->linesize[
i] *
s->out.row_step,
866 iright->data[
i] +
s->in_off_right[
i],
867 iright->linesize[
i] *
s->in.row_step,
868 s->linesize[
i],
s->pheight[
i]);
875 switch (
s->in.format) {
878 for (
i = 0;
i <
s->nb_planes;
i++) {
879 out->linesize[
i] *= 2;
889 out->width = outlink->
w;
890 out->height = outlink->
h;
892 for (
i = 0;
i <
s->nb_planes;
i++) {
893 out->data[
i] +=
s->in_off_left[
i];
898 for (
i = 0;
i <
s->nb_planes;
i++) {
899 const int d = (
s->in.format & 1) != (
s->out.format & 1);
905 for (
i = 0;
i <
s->nb_planes;
i++) {
907 iright->data[
i] +
s->in_off_left[
i],
908 iright->linesize[
i] *
s->in.row_step,
909 s->linesize[
i],
s->pheight[
i]);
930 const int d = (
s->in.format & 1);
933 ileft ->data[0] +
s->in_off_left [0] + d * 3,
934 iright->data[0] +
s->in_off_right[0] + (!d) * 3,
936 ileft->linesize[0] *
s->in.row_step,
937 iright->linesize[0] *
s->in.row_step,
938 s->out.width,
s->out.height,
939 s->ana_matrix[0],
s->ana_matrix[1],
s->ana_matrix[2]);
943 td.ileft = ileft;
td.iright = iright;
td.out =
out;
951 for (
i = 0;
i <
s->nb_planes;
i++) {
954 for (y = 0; y <
s->pheight[
i]; y++) {
959 uint8_t *
left = ileft->data[
i] + ileft->linesize[
i] * y +
s->in_off_left[
i] + d1 *
s->pixstep[
i];
960 uint8_t *right = iright->data[
i] + iright->linesize[
i] * y +
s->in_off_right[
i] + d2 *
s->pixstep[
i];
965 switch (
s->pixstep[
i]) {
967 for (
x = 0,
b = 0, p = 0;
x <
s->linesize[
i] * 2;
x+=2, p++,
b+=2) {
968 dst[
x ] = (
b&1) == (y&1) ?
left[p*m] : right[p*m];
969 dst[
x+1] = (
b&1) != (y&1) ?
left[p*m] : right[p*m];
973 for (
x = 0,
b = 0, p = 0;
x <
s->linesize[
i] * 2;
x+=4, p+=2,
b+=2) {
979 for (
x = 0,
b = 0, p = 0;
x <
s->linesize[
i] * 2;
x+=6, p+=3,
b+=2) {
985 for (
x = 0,
b = 0, p = 0;
x <
s->linesize[
i] * 2;
x+=8, p+=4,
b+=2) {
991 for (
x = 0,
b = 0, p = 0;
x <
s->linesize[
i] * 2;
x+=12, p+=6,
b+=2) {
997 for (
x = 0,
b = 0, p = 0;
x <
s->linesize[
i] * 2;
x+=16, p+=8,
b+=2) {
1008 for (
i = 0;
i <
s->nb_planes;
i++) {
1010 const int m = 1 + d;
1013 for (y = 0; y <
s->pheight[
i]; y++) {
1015 uint8_t *
left = ileft->data[
i] + ileft->linesize[
i] * y *
s->in.row_step +
s->in_off_left[
i] + d *
s->pixstep[
i];
1016 uint8_t *right = iright->data[
i] + iright->linesize[
i] * y *
s->in.row_step +
s->in_off_right[
i];
1022 switch (
s->pixstep[
i]) {
1024 for (
x = 0,
b = 0, p = 0;
x <
s->linesize[
i] * 2;
x+=2, p++,
b+=2) {
1025 dst[
x ] =
b&1 ?
left[p*m] : right[p*m];
1026 dst[
x+1] = !(
b&1) ?
left[p*m] : right[p*m];
1030 for (
x = 0,
b = 0, p = 0;
x <
s->linesize[
i] * 2;
x+=4, p+=2,
b+=2) {
1036 for (
x = 0,
b = 0, p = 0;
x <
s->linesize[
i] * 2;
x+=6, p+=3,
b+=2) {
1042 for (
x = 0,
b = 0, p = 0;
x <
s->linesize[
i] * 2;
x+=8, p+=4,
b+=2) {
1048 for (
x = 0,
b = 0, p = 0;
x <
s->linesize[
i] * 2;
x+=12, p+=6,
b+=2) {
1054 for (
x = 0,
b = 0, p = 0;
x <
s->linesize[
i] * 2;
x+=16, p+=8,
b+=2) {
1067 if (oright != oleft) {
1070 oright->pts =
s->prev->pts * 2;
1073 oleft->pts =
s->prev->pts + inpicref->
pts;
1078 out->pts =
s->prev->pts / 2;
1086 out->sample_aspect_ratio =
s->aspect;
1123 .priv_class = &stereo3d_class,
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
static int filter_frame(AVFilterLink *inlink, AVFrame *inpicref)
static uint8_t ana_convert(const int *coeff, const uint8_t *left, const uint8_t *right)
@ AV_PIX_FMT_YUV420P9LE
planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
AVPixelFormat
Pixel format.
@ AV_PIX_FMT_BGR48LE
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as lit...
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
@ AV_PIX_FMT_BGRA64BE
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
#define FFSWAP(type, a, b)
@ AV_PIX_FMT_GBRP16BE
planar GBR 4:4:4 48bpp, big-endian
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
@ AV_PIX_FMT_GBRP10BE
planar GBR 4:4:4 30bpp, big-endian
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
static int config_output(AVFilterLink *outlink)
@ AV_PIX_FMT_YUV422P14LE
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
static av_cold int end(AVCodecContext *avctx)
This structure describes decoded (raw) audio or video data.
@ AV_PIX_FMT_YUVA444P10BE
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
@ AV_PIX_FMT_RGBA64BE
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
@ AV_PIX_FMT_YUV420P14BE
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
@ AV_PIX_FMT_YUV420P16LE
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
@ AV_PIX_FMT_GBRP14BE
planar GBR 4:4:4 42bpp, big-endian
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
@ AV_PIX_FMT_BGRA
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
const char * name
Filter name.
@ AV_PIX_FMT_YUVA444P9BE
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), big-endian
@ AV_PIX_FMT_YUV422P9BE
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
static const AVFilterPad stereo3d_inputs[]
AVFormatInternal * internal
An opaque field for libavformat internal usage.
A link between two filters.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
void av_image_copy_plane(uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize, int bytewidth, int height)
Copy image plane from src to dst.
@ AV_PIX_FMT_YUV444P16LE
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
static const int ana_coeff[][3][6]
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
@ AV_PIX_FMT_YUV420P12LE
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo x
@ AV_PIX_FMT_YUVA444P16BE
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
@ AV_PIX_FMT_YUV444P10BE
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
A filter pad used for either input or output.
@ AV_PIX_FMT_YUV420P10LE
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
@ AV_PIX_FMT_YUV444P12LE
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
@ AV_PIX_FMT_YUV422P12BE
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
@ AV_PIX_FMT_YUV444P14LE
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
int av_image_fill_linesizes(int linesizes[4], enum AVPixelFormat pix_fmt, int width)
Fill plane linesizes for an image with pixel format pix_fmt and width width.
@ AV_PIX_FMT_GBRP16LE
planar GBR 4:4:4 48bpp, little-endian
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
#define AV_CEIL_RSHIFT(a, b)
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
@ AV_PIX_FMT_GBRP12LE
planar GBR 4:4:4 36bpp, little-endian
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static const AVFilterPad outputs[]
AVRational frame_rate
Frame rate of the stream on the link, or 1/0 if unknown or variable; if left to 0/0,...
static enum AVPixelFormat pix_fmts[]
@ AV_PIX_FMT_YUVA420P16BE
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
@ AV_PIX_FMT_GBRP10LE
planar GBR 4:4:4 30bpp, little-endian
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
static enum AVPixelFormat anaglyph_pix_fmts[]
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
@ AV_PIX_FMT_YUV444P10LE
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
@ AV_PIX_FMT_YUVA422P10LE
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
@ AV_PIX_FMT_YUV444P9BE
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
@ AV_PIX_FMT_YUV422P10BE
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
@ AV_PIX_FMT_YUV422P16LE
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Describe the class of an AVClass context structure.
static enum AVPixelFormat other_pix_fmts[]
static const AVOption stereo3d_options[]
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
Rational number (pair of numerator and denominator).
@ AV_PIX_FMT_RGB48LE
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as lit...
static const AVFilterPad stereo3d_outputs[]
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
@ AV_PIX_FMT_RGBA64LE
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
@ AV_PIX_FMT_YUVA444P9LE
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
@ AV_PIX_FMT_YUVA420P16LE
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
@ AV_PIX_FMT_BGR0
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
@ AV_PIX_FMT_YUVA420P9LE
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
@ AV_PIX_FMT_YUV420P14LE
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
@ AV_PIX_FMT_YUV444P14BE
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
@ AV_PIX_FMT_YUV420P9BE
The following 12 formats have the disadvantage of needing 1 format for each bit depth.
const int * ana_matrix[3]
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
static void copy(const float *p1, float *p2, const int length)
@ AV_PIX_FMT_YUV420P12BE
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
@ AV_PIX_FMT_YUV422P10LE
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
@ AV_PIX_FMT_YUV422P14BE
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
int format
agreed upon media format
static int query_formats(AVFilterContext *ctx)
@ AV_PIX_FMT_GBRP9BE
planar GBR 4:4:4 27bpp, big-endian
@ AV_PIX_FMT_YUV420P10BE
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
AVFilterContext * src
source filter
AVFILTER_DEFINE_CLASS(stereo3d)
static void interleave_cols_to_any(Stereo3DContext *s, int *out_off, int p, AVFrame *in, AVFrame *out, int d)
@ AV_PIX_FMT_GBRP9LE
planar GBR 4:4:4 27bpp, little-endian
static av_cold void uninit(AVFilterContext *ctx)
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
@ AV_PIX_FMT_RGB0
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
@ AV_PIX_FMT_YUVA420P10LE
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
@ AV_PIX_FMT_ARGB
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
@ AV_PIX_FMT_BGRA64LE
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
@ AV_PIX_FMT_YUVA422P10BE
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
@ AV_PIX_FMT_YUVA422P9BE
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), big-endian
@ AV_PIX_FMT_RGB48BE
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big...
#define i(width, name, range_min, range_max)
int w
agreed upon image width
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Used for passing data between threads.
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
const char * name
Pad name.
@ AV_PIX_FMT_YUV444P16BE
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
@ AV_PIX_FMT_0BGR
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
@ AV_PIX_FMT_GBRP12BE
planar GBR 4:4:4 36bpp, big-endian
@ AV_PIX_FMT_YUV444P12BE
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
int h
agreed upon image height
void ff_stereo3d_init_x86(Stereo3DDSPContext *dsp)
@ AV_PIX_FMT_YUV444P9LE
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link.
@ AV_PIX_FMT_YUVA420P10BE
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
void av_image_fill_max_pixsteps(int max_pixsteps[4], int max_pixstep_comps[4], const AVPixFmtDescriptor *pixdesc)
Compute the max pixel step for each plane of an image with a format described by pixdesc.
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
@ AV_PIX_FMT_YUV420P16BE
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
@ AV_PIX_FMT_YUV422P16BE
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
@ AV_PIX_FMT_YUVA444P10LE
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static void anaglyph(uint8_t *dst, uint8_t *lsrc, uint8_t *rsrc, ptrdiff_t dst_linesize, ptrdiff_t l_linesize, ptrdiff_t r_linesize, int width, int height, const int *ana_matrix_r, const int *ana_matrix_g, const int *ana_matrix_b)
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
@ AV_PIX_FMT_YUVA422P16BE
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
@ AV_PIX_FMT_YUV422P9LE
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
@ AV_PIX_FMT_YUVA422P16LE
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
@ AV_PIX_FMT_GBRP14LE
planar GBR 4:4:4 42bpp, little-endian
#define flags(name, subs,...)
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
@ AV_PIX_FMT_0RGB
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
static const double coeff[2][5]
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static void anaglyph_ic(uint8_t *dst, uint8_t *lsrc, uint8_t *rsrc, ptrdiff_t dst_linesize, ptrdiff_t l_linesize, ptrdiff_t r_linesize, int width, int height, const int *ana_matrix_r, const int *ana_matrix_g, const int *ana_matrix_b)
@ AV_PIX_FMT_YUVA444P16LE
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
@ AV_PIX_FMT_YUV422P12LE
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
@ AV_PIX_FMT_YUVA420P9BE
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), big-endian
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
@ AV_PIX_FMT_BGR48BE
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big...
@ AV_PIX_FMT_YUVA422P9LE
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), little-endian