Go to the documentation of this file.
45 int nb_tiles = bytestream2_get_le16(gb);
47 int pixels_overwritten = 0;
49 if ((avctx->
width / 4 + 1) * (avctx->
height / 4 + 1) < nb_tiles)
52 for (
int i = 0;
i < nb_tiles;
i++) {
53 int y = bytestream2_get_byte(gb);
54 int x = bytestream2_get_byte(gb);
55 uint16_t
mask = bytestream2_get_le16(gb);
56 int start_y = y * 4, start_x =
x * 4;
57 int end_y = start_y + 4, end_x = start_x + 4;
59 for (
int j = start_y; j < end_y; j++) {
60 for (
int k = start_x; k < end_x; k++) {
67 pixels_overwritten ++;
73 return pixels_overwritten;
81 const int step_h = tile_height / 4;
82 const int step_w = tile_width / 4;
83 int nb_tiles = bytestream2_get_le16(gb);
85 int pixels_overwritten = 0;
87 if ((avctx->
width / tile_width + 1) * (avctx->
height / tile_height + 1) < nb_tiles)
90 for (
int i = 0;
i < nb_tiles;
i++) {
91 int y = bytestream2_get_byte(gb);
92 int x = bytestream2_get_byte(gb);
93 uint16_t
mask = bytestream2_get_le16(gb);
94 int start_y = y * tile_height, start_x =
x * tile_width;
95 int end_y = start_y + tile_height, end_x = start_x + tile_width;
97 if (start_x >= avctx->
width || start_y >= avctx->
height)
100 for (
int j = start_y; j < end_y; j += step_h) {
101 for (
int k = start_x; k < end_x; k += step_w) {
102 if (
mask & 0x8000U) {
103 for (
int m = 0; m < step_h; m++) {
104 for (
int n = 0; n < step_w; n++) {
105 if (j + m >= avctx->
height || k + n >= avctx->
width)
116 return pixels_overwritten;
124 int ret, nb_segments;
127 if (avpkt->
size < 10)
132 nb_segments = bytestream2_get_le16(&
s->gb);
133 if (nb_segments == 0)
142 if (
s->prev_frame->data[0]) {
148 for (
int i = 0;
i < nb_segments;
i++) {
155 fill = bytestream2_get_byte(&
s->gb) << 16;
157 fill |= bytestream2_get_byte(&
s->gb) << 8;
159 fill |= bytestream2_get_byte(&
s->gb) << 0;
161 resolution_flag = bytestream2_get_byte(&
s->gb);
163 if (resolution_flag & 0x10)
165 if (resolution_flag & 0x08)
167 if (resolution_flag & 0x04)
169 if (resolution_flag & 0x02)
171 if (resolution_flag & 0x01)
180 frame->key_frame = prev_pixels <= 0;
static int fill_tileX(AVCodecContext *avctx, int tile_width, int tile_height, int color, AVFrame *frame)
static av_cold int init(AVCodecContext *avctx)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
static av_cold int decode_init(AVCodecContext *avctx)
static av_cold int decode_close(AVCodecContext *avctx)
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo x
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
static const uint16_t mask[17]
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
static void flush(AVCodecContext *avctx)
@ AV_PICTURE_TYPE_I
Intra.
static av_always_inline int bytestream2_get_bytes_left(GetByteContext *g)
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
int av_frame_copy(AVFrame *dst, const AVFrame *src)
Copy the frame data from src to dst.
#define i(width, name, range_min, range_max)
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
const char * name
Name of the codec implementation.
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
main external API structure.
@ AV_PICTURE_TYPE_P
Predicted.
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
static int fill_tile4(AVCodecContext *avctx, int color, AVFrame *frame)
This structure stores compressed data.
int width
picture width / height.
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static void decode_flush(AVCodecContext *avctx)