FFmpeg  4.3
vorbis.c
Go to the documentation of this file.
1 /**
2  * @file
3  * Common code for Vorbis I encoder and decoder
4  * @author Denes Balatoni ( dbalatoni programozo hu )
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * Common code for Vorbis I encoder and decoder
26  * @author Denes Balatoni ( dbalatoni programozo hu )
27  */
28 
29 #include "libavutil/common.h"
30 
31 #include "avcodec.h"
32 #include "vorbis.h"
33 
34 
35 /* Helper functions */
36 
37 // x^(1/n)
38 unsigned int ff_vorbis_nth_root(unsigned int x, unsigned int n)
39 {
40  unsigned int ret = 0, i, j;
41 
42  do {
43  ++ret;
44  for (i = 0, j = ret; i < n - 1; i++)
45  j *= ret;
46  } while (j <= x);
47 
48  return ret - 1;
49 }
50 
51 // Generate vlc codes from vorbis huffman code lengths
52 
53 // the two bits[p] > 32 checks should be redundant, all calling code should
54 // already ensure that, but since it allows overwriting the stack it seems
55 // reasonable to check redundantly.
56 int ff_vorbis_len2vlc(uint8_t *bits, uint32_t *codes, unsigned num)
57 {
58  uint32_t exit_at_level[33] = { 404 };
59  unsigned i, j, p, code;
60 
61  for (p = 0; (p < num) && (bits[p] == 0); ++p)
62  ;
63  if (p == num)
64  return 0;
65 
66  codes[p] = 0;
67  if (bits[p] > 32)
68  return AVERROR_INVALIDDATA;
69  for (i = 0; i < bits[p]; ++i)
70  exit_at_level[i+1] = 1u << i;
71 
72  ++p;
73 
74  for (i = p; (i < num) && (bits[i] == 0); ++i)
75  ;
76  if (i == num)
77  return 0;
78 
79  for (; p < num; ++p) {
80  if (bits[p] > 32)
81  return AVERROR_INVALIDDATA;
82  if (bits[p] == 0)
83  continue;
84  // find corresponding exit(node which the tree can grow further from)
85  for (i = bits[p]; i > 0; --i)
86  if (exit_at_level[i])
87  break;
88  if (!i) // overspecified tree
89  return AVERROR_INVALIDDATA;
90  code = exit_at_level[i];
91  exit_at_level[i] = 0;
92  // construct code (append 0s to end) and introduce new exits
93  for (j = i + 1 ;j <= bits[p]; ++j)
94  exit_at_level[j] = code + (1u << (j - 1));
95  codes[p] = code;
96  }
97 
98  //no exits should be left (underspecified tree - ie. unused valid vlcs - not allowed by SPEC)
99  for (p = 1; p < 33; p++)
100  if (exit_at_level[p])
101  return AVERROR_INVALIDDATA;
102 
103  return 0;
104 }
105 
108 {
109  int i;
110  list[0].sort = 0;
111  list[1].sort = 1;
112  for (i = 2; i < values; i++) {
113  int j;
114  list[i].low = 0;
115  list[i].high = 1;
116  list[i].sort = i;
117  for (j = 2; j < i; j++) {
118  int tmp = list[j].x;
119  if (tmp < list[i].x) {
120  if (tmp > list[list[i].low].x)
121  list[i].low = j;
122  } else {
123  if (tmp < list[list[i].high].x)
124  list[i].high = j;
125  }
126  }
127  }
128  for (i = 0; i < values - 1; i++) {
129  int j;
130  for (j = i + 1; j < values; j++) {
131  if (list[i].x == list[j].x) {
132  av_log(avctx, AV_LOG_ERROR,
133  "Duplicate value found in floor 1 X coordinates\n");
134  return AVERROR_INVALIDDATA;
135  }
136  if (list[list[i].sort].x > list[list[j].sort].x) {
137  int tmp = list[i].sort;
138  list[i].sort = list[j].sort;
139  list[j].sort = tmp;
140  }
141  }
142  }
143  return 0;
144 }
145 
146 static inline void render_line_unrolled(intptr_t x, int y, int x1,
147  intptr_t sy, int ady, int adx,
148  float *buf)
149 {
150  int err = -adx;
151  x -= x1 - 1;
152  buf += x1 - 1;
153  while (++x < 0) {
154  err += ady;
155  if (err >= 0) {
156  err += ady - adx;
157  y += sy;
158  buf[x++] = ff_vorbis_floor1_inverse_db_table[av_clip_uint8(y)];
159  }
160  buf[x] = ff_vorbis_floor1_inverse_db_table[av_clip_uint8(y)];
161  }
162  if (x <= 0) {
163  if (err + ady >= 0)
164  y += sy;
165  buf[x] = ff_vorbis_floor1_inverse_db_table[av_clip_uint8(y)];
166  }
167 }
168 
169 static void render_line(int x0, int y0, int x1, int y1, float *buf)
170 {
171  int dy = y1 - y0;
172  int adx = x1 - x0;
173  int ady = FFABS(dy);
174  int sy = dy < 0 ? -1 : 1;
175  buf[x0] = ff_vorbis_floor1_inverse_db_table[av_clip_uint8(y0)];
176  if (ady*2 <= adx) { // optimized common case
177  render_line_unrolled(x0, y0, x1, sy, ady, adx, buf);
178  } else {
179  int base = dy / adx;
180  int x = x0;
181  int y = y0;
182  int err = -adx;
183  ady -= FFABS(base) * adx;
184  while (++x < x1) {
185  y += base;
186  err += ady;
187  if (err >= 0) {
188  err -= adx;
189  y += sy;
190  }
191  buf[x] = ff_vorbis_floor1_inverse_db_table[av_clip_uint8(y)];
192  }
193  }
194 }
195 
197  uint16_t *y_list, int *flag,
198  int multiplier, float *out, int samples)
199 {
200  int lx, ly, i;
201  lx = 0;
202  ly = y_list[0] * multiplier;
203  for (i = 1; i < values; i++) {
204  int pos = list[i].sort;
205  if (flag[pos]) {
206  int x1 = list[pos].x;
207  int y1 = y_list[pos] * multiplier;
208  if (lx < samples)
209  render_line(lx, ly, FFMIN(x1,samples), y1, out);
210  lx = x1;
211  ly = y1;
212  }
213  if (lx >= samples)
214  break;
215  }
216  if (lx < samples)
217  render_line(lx, ly, samples, ly, out);
218 }
render_line_unrolled
static void render_line_unrolled(intptr_t x, int y, int x1, intptr_t sy, int ady, int adx, float *buf)
Definition: vorbis.c:146
out
FILE * out
Definition: movenc.c:54
u
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:262
tmp
static uint8_t tmp[11]
Definition: aes_ctr.c:26
base
uint8_t base
Definition: vp3data.h:202
samples
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new samples
Definition: fate.txt:139
ff_vorbis_nth_root
unsigned int ff_vorbis_nth_root(unsigned int x, unsigned int n)
Definition: vorbis.c:38
ff_vorbis_floor1_render_list
void ff_vorbis_floor1_render_list(vorbis_floor1_entry *list, int values, uint16_t *y_list, int *flag, int multiplier, float *out, int samples)
Definition: vorbis.c:196
x
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo x
Definition: fate.txt:150
AV_LOG_ERROR
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
vorbis_floor1_entry
Definition: vorbis.h:32
bits
uint8_t bits
Definition: vp3data.h:202
ff_vorbis_len2vlc
int ff_vorbis_len2vlc(uint8_t *bits, uint32_t *codes, unsigned num)
Definition: vorbis.c:56
FFABS
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
list
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining list
Definition: filter_design.txt:25
ff_vorbis_ready_floor1_list
int ff_vorbis_ready_floor1_list(AVCodecContext *avctx, vorbis_floor1_entry *list, int values)
Definition: vorbis.c:106
FFMIN
#define FFMIN(a, b)
Definition: common.h:96
flag
#define flag(name)
Definition: cbs_av1.c:556
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
code
and forward the test the status of outputs and forward it to the corresponding return FFERROR_NOT_READY If the filters stores internally one or a few frame for some it can consider them to be part of the FIFO and delay acknowledging a status change accordingly Example code
Definition: filter_design.txt:178
vorbis.h
render_line
static void render_line(int x0, int y0, int x1, int y1, float *buf)
Definition: vorbis.c:169
common.h
uint8_t
uint8_t
Definition: audio_convert.c:194
avcodec.h
ret
ret
Definition: filter_design.txt:187
pos
unsigned int pos
Definition: spdifenc.c:410
ff_vorbis_floor1_inverse_db_table
const float ff_vorbis_floor1_inverse_db_table[256]
Definition: vorbis_data.c:2123
AVCodecContext
main external API structure.
Definition: avcodec.h:526
values
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return values
Definition: filter_design.txt:263
av_log
#define av_log(a,...)
Definition: tableprint_vlc.h:28
AVERROR_INVALIDDATA
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59