Go to the documentation of this file.
55 #define OFFSET(x) offsetof(DrawGraphContext, x)
56 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
95 if (
s->max <=
s->min) {
100 for (
i = 0;
i < 4;
i++) {
110 s->first[0] =
s->first[1] =
s->first[2] =
s->first[3] = 1;
118 if (!
s->values[0] || !
s->values[1] ||
119 !
s->values[2] || !
s->values[3]) {
148 for (
i = 0;
i <
out->height;
i++)
149 for (j = 0; j <
out->width; j++)
167 int64_t in_pts, out_pts;
170 if (
s->slide == 4 &&
s->nb_values >=
s->values_size[0] /
sizeof(
float)) {
194 if (
s->slide != 4 ||
s->nb_values == 0) {
195 if (!
s->out ||
s->out->width != outlink->
w ||
196 s->out->height != outlink->
h) {
210 metadata =
in->metadata;
212 for (
i = 0;
i < 4;
i++) {
219 s->values[
i][
s->nb_values] =
NAN;
228 vf = av_clipf(vf,
s->min,
s->max);
231 s->values[
i][
s->nb_values] = vf;
242 if (
i == 0 && (
s->x >= outlink->
w ||
s->slide == 3)) {
243 if (
s->slide == 0 ||
s->slide == 1)
247 s->x = outlink->
w - 1;
248 for (j = 0; j < outlink->
h; j++) {
249 memmove(
out->data[0] + j *
out->linesize[0] ,
250 out->data[0] + j *
out->linesize[0] + 4,
251 (outlink->
w - 1) * 4);
253 }
else if (
s->slide == 3) {
255 for (j = 0; j < outlink->
h; j++) {
256 memmove(
out->data[0] + j *
out->linesize[0] + 4,
257 out->data[0] + j *
out->linesize[0],
258 (outlink->
w - 1) * 4);
260 }
else if (
s->slide == 0) {
266 y = (outlink->
h - 1) * (1 - ((vf -
s->min) / (
s->max -
s->min)));
270 if (
i == 0 && (
s->slide > 0))
271 for (j = 0; j < outlink->
h; j++)
275 for (j = y; j < outlink->
h; j++) {
286 if (
i == 0 && (
s->slide > 0))
287 for (j = 0; j < outlink->
h; j++)
297 if (
i == 0 && (
s->slide > 0)) {
298 for (j = 0; j < y; j++)
300 for (j = outlink->
h - 1; j > y; j--)
303 if (y <= s->prev_y[
i]) {
304 for (j = y; j <=
s->prev_y[
i]; j++)
307 for (j =
s->prev_y[
i]; j <= y; j++)
327 if (out_pts ==
s->prev_pts)
334 clone->
pts =
s->prev_pts = out_pts;
349 step = ceil(
s->nb_values / (
float)
s->w);
351 for (k = 0; k <
s->nb_values; k++) {
352 for (
i = 0;
i < 4;
i++) {
356 float vf =
s->values[
i][k];
369 y = (outlink->
h - 1) * (1 - ((vf -
s->min) / (
s->max -
s->min)));
374 for (j = y; j < outlink->
h; j++) {
393 if (y <= s->prev_y[
i]) {
394 for (j = y; j <=
s->prev_y[
i]; j++)
397 for (j =
s->prev_y[
i]; j <= y; j++)
439 for (
i = 0;
i < 4;
i++)
451 #if CONFIG_DRAWGRAPH_FILTER
478 .priv_class = &drawgraph_class,
482 .
inputs = drawgraph_inputs,
486 #endif // CONFIG_DRAWGRAPH_FILTER
488 #if CONFIG_ADRAWGRAPH_FILTER
490 #define adrawgraph_options drawgraph_options
513 .
name =
"adrawgraph",
516 .priv_class = &adrawgraph_class,
520 .
inputs = adrawgraph_inputs,
523 #endif // CONFIG_ADRAWGRAPH_FILTER
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
static int request_frame(AVFilterLink *outlink)
AVPixelFormat
Pixel format.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
#define AVERROR_EOF
End of file.
@ AV_OPT_TYPE_VIDEO_RATE
offset must point to AVRational
static int query_formats(AVFilterContext *ctx)
AVFilterFormats * in_formats
Lists of formats and channel layouts supported by the input and output filters respectively.
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
static int config_output(AVFilterLink *outlink)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
int ff_request_frame(AVFilterLink *link)
Request an input frame from the filter at the other end of the link.
const char * name
Filter name.
A link between two filters.
int av_expr_parse(AVExpr **expr, const char *s, const char *const *const_names, const char *const *func1_names, double(*const *funcs1)(void *, double), const char *const *func2_names, double(*const *funcs2)(void *, double, double), int log_offset, void *log_ctx)
Parse an expression.
void * priv
private data for use by the filter
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo x
void av_expr_free(AVExpr *e)
Free a parsed expression previously created with av_expr_parse().
static void draw_dot(int fg, int x, int y, AVFrame *out)
A filter pad used for either input or output.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
AVDictionaryEntry * av_dict_get(const AVDictionary *m, const char *key, const AVDictionaryEntry *prev, int flags)
Get a dictionary entry with matching key.
void * av_fast_realloc(void *ptr, unsigned int *size, size_t min_size)
Reallocate the given buffer if it is not large enough, otherwise do nothing.
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
static const AVFilterPad outputs[]
AVRational frame_rate
Frame rate of the stream on the link, or 1/0 if unknown or variable; if left to 0/0,...
static enum AVPixelFormat pix_fmts[]
double av_expr_eval(AVExpr *e, const double *const_values, void *opaque)
Evaluate a previously parsed expression.
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
int av_sscanf(const char *string, const char *format,...)
See libc sscanf manual for more information.
Describe the class of an AVClass context structure.
static const char *const var_names[]
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
Rational number (pair of numerator and denominator).
@ AV_OPT_TYPE_IMAGE_SIZE
offset must point to two consecutive integers
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
static void clear_image(DrawGraphContext *s, AVFrame *out, AVFilterLink *outlink)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
#define AV_NOPTS_VALUE
Undefined timestamp value.
AVFilterContext * src
source filter
AVFilter ff_avf_adrawgraph
#define AVFILTER_DEFINE_CLASS(fname)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
static av_cold int init(AVFilterContext *ctx)
#define i(width, name, range_min, range_max)
int w
agreed upon image width
static av_always_inline AVRational av_inv_q(AVRational q)
Invert a rational.
const char * name
Pad name.
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo ug o o w
int h
agreed upon image height
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return values
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link.
static const AVOption drawgraph_options[]
static av_cold void uninit(AVFilterContext *ctx)