Go to the documentation of this file.
33 float sum0 = 0.0f, sum1 = 0.0f;
36 for (
i = 0;
i < n;
i += 2)
38 sum0 +=
x[
i + 0][0] *
x[
i + 0][0];
39 sum1 +=
x[
i + 0][1] *
x[
i + 0][1];
40 sum0 +=
x[
i + 1][0] *
x[
i + 1][0];
41 sum1 +=
x[
i + 1][1] *
x[
i + 1][1];
51 for (
i = 1;
i < 64;
i += 4) {
52 xi[
i + 0].i ^= 1
U << 31;
53 xi[
i + 2].i ^= 1
U << 31;
63 for (k = 1; k < 31; k += 2) {
64 zi[64 + 2 * k + 0].
i = zi[64 - k].
i ^ (1
U << 31);
65 zi[64 + 2 * k + 1].
i = zi[ k + 1].
i;
66 zi[64 + 2 * k + 2].
i = zi[63 - k].
i ^ (1
U << 31);
67 zi[64 + 2 * k + 3].
i = zi[ k + 2].
i;
70 zi[64 + 2 * 31 + 0].
i = zi[64 - 31].
i ^ (1
U << 31);
71 zi[64 + 2 * 31 + 1].
i = zi[31 + 1].
i;
79 for (k = 0; k < 32; k += 2) {
80 Wi[2 * k + 0].
i = zi[63 - k].
i ^ (1
U << 31);
81 Wi[2 * k + 1].
i = zi[ k + 0].
i;
82 Wi[2 * k + 2].
i = zi[62 - k].
i ^ (1
U << 31);
83 Wi[2 * k + 3].
i = zi[ k + 1].
i;
92 for (
i = 0;
i < 32;
i++) {
93 vi[
i].
i = si[63 - 2 *
i ].
i;
94 vi[63 -
i].
i = si[63 - 2 *
i - 1].
i ^ (1
U << 31);
103 float phi[3][2][2],
int lag)
106 float real_sum = 0.0f;
107 float imag_sum = 0.0f;
109 for (
i = 1;
i < 38;
i++) {
110 real_sum +=
x[
i][0] *
x[
i+lag][0] +
x[
i][1] *
x[
i+lag][1];
111 imag_sum +=
x[
i][0] *
x[
i+lag][1] -
x[
i][1] *
x[
i+lag][0];
113 phi[2-lag][1][0] = real_sum +
x[ 0][0] *
x[lag][0] +
x[ 0][1] *
x[lag][1];
114 phi[2-lag][1][1] = imag_sum +
x[ 0][0] *
x[lag][1] -
x[ 0][1] *
x[lag][0];
116 phi[0][0][0] = real_sum +
x[38][0] *
x[39][0] +
x[38][1] *
x[39][1];
117 phi[0][0][1] = imag_sum +
x[38][0] *
x[39][1] -
x[38][1] *
x[39][0];
120 for (
i = 1;
i < 38;
i++) {
121 real_sum +=
x[
i][0] *
x[
i][0] +
x[
i][1] *
x[
i][1];
123 phi[2][1][0] = real_sum +
x[ 0][0] *
x[ 0][0] +
x[ 0][1] *
x[ 0][1];
124 phi[1][0][0] = real_sum +
x[38][0] *
x[38][0] +
x[38][1] *
x[38][1];
137 float real_sum2 =
x[0][0] *
x[2][0] +
x[0][1] *
x[2][1];
138 float imag_sum2 =
x[0][0] *
x[2][1] -
x[0][1] *
x[2][0];
139 float real_sum1 = 0.0f, imag_sum1 = 0.0f, real_sum0 = 0.0f;
141 for (
i = 1;
i < 38;
i++) {
142 real_sum0 +=
x[
i][0] *
x[
i ][0] +
x[
i][1] *
x[
i ][1];
143 real_sum1 +=
x[
i][0] *
x[
i + 1][0] +
x[
i][1] *
x[
i + 1][1];
144 imag_sum1 +=
x[
i][0] *
x[
i + 1][1] -
x[
i][1] *
x[
i + 1][0];
145 real_sum2 +=
x[
i][0] *
x[
i + 2][0] +
x[
i][1] *
x[
i + 2][1];
146 imag_sum2 +=
x[
i][0] *
x[
i + 2][1] -
x[
i][1] *
x[
i + 2][0];
148 phi[2 - 2][1][0] = real_sum2;
149 phi[2 - 2][1][1] = imag_sum2;
150 phi[2 ][1][0] = real_sum0 +
x[ 0][0] *
x[ 0][0] +
x[ 0][1] *
x[ 0][1];
151 phi[1 ][0][0] = real_sum0 +
x[38][0] *
x[38][0] +
x[38][1] *
x[38][1];
152 phi[2 - 1][1][0] = real_sum1 +
x[ 0][0] *
x[ 1][0] +
x[ 0][1] *
x[ 1][1];
153 phi[2 - 1][1][1] = imag_sum1 +
x[ 0][0] *
x[ 1][1] -
x[ 0][1] *
x[ 1][0];
154 phi[0 ][0][0] = real_sum1 +
x[38][0] *
x[39][0] +
x[38][1] *
x[39][1];
155 phi[0 ][0][1] = imag_sum1 +
x[38][0] *
x[39][1] -
x[38][1] *
x[39][0];
160 const float alpha0[2],
const float alpha1[2],
161 float bw,
int start,
int end)
166 alpha[0] = alpha1[0] * bw * bw;
167 alpha[1] = alpha1[1] * bw * bw;
168 alpha[2] = alpha0[0] * bw;
169 alpha[3] = alpha0[1] * bw;
171 for (
i = start;
i <
end;
i++) {
173 X_low[
i - 2][0] *
alpha[0] -
174 X_low[
i - 2][1] *
alpha[1] +
175 X_low[
i - 1][0] *
alpha[2] -
176 X_low[
i - 1][1] *
alpha[3] +
179 X_low[
i - 2][1] *
alpha[0] +
180 X_low[
i - 2][0] *
alpha[1] +
181 X_low[
i - 1][1] *
alpha[2] +
182 X_low[
i - 1][0] *
alpha[3] +
188 const float *g_filt,
int m_max, intptr_t ixh)
192 for (m = 0; m < m_max; m++) {
193 Y[m][0] = X_high[m][ixh][0] * g_filt[m];
194 Y[m][1] = X_high[m][ixh][1] * g_filt[m];
208 for (m = 0; m < m_max; m++) {
213 y0 += s_m[m] * phi_sign0;
214 y1 += s_m[m] * phi_sign1;
221 phi_sign1 = -phi_sign1;
static av_cold int end(AVCodecContext *avctx)
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo x
static av_always_inline void autocorrelate(const int x[40][2], SoftFloat phi[3][2][2], int lag)
static void sbr_hf_gen_c(float(*X_high)[2], const float(*X_low)[2], const float alpha0[2], const float alpha1[2], float bw, int start, int end)
#define xi(width, name, var, range_min, range_max, subs,...)
static void sbr_qmf_pre_shuffle_c(float *z)
static void sbr_qmf_deint_neg_c(float *v, const float *src)
const INTFLOAT ff_sbr_noise_table[][2]
static av_always_inline void sbr_hf_apply_noise(float(*Y)[2], const float *s_m, const float *q_filt, int noise, float phi_sign0, float phi_sign1, int m_max)
static float sbr_sum_square_c(float(*x)[2], int n)
static void sbr_autocorrelate_c(const float x[40][2], float phi[3][2][2])
#define i(width, name, range_min, range_max)
static void sbr_qmf_post_shuffle_c(float W[32][2], const float *z)
static void sbr_hf_g_filt_c(float(*Y)[2], const float(*X_high)[40][2], const float *g_filt, int m_max, intptr_t ixh)
static int noise(AVBSFContext *ctx, AVPacket *pkt)
static const int16_t alpha[]
static void sbr_neg_odd_64_c(float *x)