Go to the documentation of this file.
55 return prev ?
NULL :
s->dct;
58 #define OFFSET(x) offsetof(SPPContext, x)
59 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
60 #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
83 { 0, 48, 12, 60, 3, 51, 15, 63 },
84 { 32, 16, 44, 28, 35, 19, 47, 31 },
85 { 8, 56, 4, 52, 11, 59, 7, 55 },
86 { 40, 24, 36, 20, 43, 27, 39, 23 },
87 { 2, 50, 14, 62, 1, 49, 13, 61 },
88 { 34, 18, 46, 30, 33, 17, 45, 29 },
89 { 10, 58, 6, 54, 9, 57, 5, 53 },
90 { 42, 26, 38, 22, 41, 25, 37, 21 },
96 {0,0}, {2,2}, {6,4}, {4,6},
97 {0,0}, {5,1}, {2,2}, {7,3}, {4,4}, {1,5}, {6,6}, {3,7},
99 {0,0}, {4,0}, {1,1}, {5,1}, {3,2}, {7,2}, {2,3}, {6,3},
100 {0,4}, {4,4}, {1,5}, {5,5}, {3,6}, {7,6}, {2,7}, {6,7},
102 {0,0}, {0,2}, {0,4}, {0,6}, {1,1}, {1,3}, {1,5}, {1,7},
103 {2,0}, {2,2}, {2,4}, {2,6}, {3,1}, {3,3}, {3,5}, {3,7},
104 {4,0}, {4,2}, {4,4}, {4,6}, {5,1}, {5,3}, {5,5}, {5,7},
105 {6,0}, {6,2}, {6,4}, {6,6}, {7,1}, {7,3}, {7,5}, {7,7},
107 {0,0}, {4,4}, {0,4}, {4,0}, {2,2}, {6,6}, {2,6}, {6,2},
108 {0,2}, {4,6}, {0,6}, {4,2}, {2,0}, {6,4}, {2,4}, {6,0},
109 {1,1}, {5,5}, {1,5}, {5,1}, {3,3}, {7,7}, {3,7}, {7,3},
110 {1,3}, {5,7}, {1,7}, {5,3}, {3,1}, {7,5}, {3,5}, {7,1},
111 {0,1}, {4,5}, {0,5}, {4,1}, {2,3}, {6,7}, {2,7}, {6,3},
112 {0,3}, {4,7}, {0,7}, {4,3}, {2,1}, {6,5}, {2,5}, {6,1},
113 {1,0}, {5,4}, {1,4}, {5,0}, {3,2}, {7,6}, {3,6}, {7,2},
114 {1,2}, {5,6}, {1,6}, {5,2}, {3,0}, {7,4}, {3,4}, {7,0},
118 int qp,
const uint8_t *permutation)
123 unsigned threshold1 = qp * ((1<<4) - bias) - 1;
124 unsigned threshold2 = threshold1 << 1;
126 memset(dst, 0, 64 *
sizeof(dst[0]));
127 dst[0] = (
src[0] + 4) >> 3;
129 for (
i = 1;
i < 64;
i++) {
131 if (((
unsigned)(
level + threshold1)) > threshold2) {
132 const int j = permutation[
i];
133 dst[j] = (
level + 4) >> 3;
139 int qp,
const uint8_t *permutation)
144 unsigned threshold1 = qp * ((1<<4) - bias) - 1;
145 unsigned threshold2 = threshold1 << 1;
147 memset(dst, 0, 64 *
sizeof(dst[0]));
148 dst[0] = (
src[0] + 4) >> 3;
150 for (
i = 1;
i < 64;
i++) {
152 if (((
unsigned)(
level + threshold1)) > threshold2) {
153 const int j = permutation[
i];
154 if (
level > 0) dst[j] = (
level - threshold1 + 4) >> 3;
155 else dst[j] = (
level + threshold1 + 4) >> 3;
161 int dst_linesize,
int src_linesize,
167 #define STORE(pos) do { \
168 temp = ((src[x + y*src_linesize + pos] << log2_scale) + d[pos]) >> 6; \
170 temp = ~(temp >> 31); \
171 dst[x + y*dst_linesize + pos] = temp; \
174 for (y = 0; y <
height; y++) {
191 int dst_linesize,
int src_linesize,
196 unsigned int mask = -1<<depth;
198 #define STORE16(pos) do { \
199 temp = ((src[x + y*src_linesize + pos] << log2_scale) + (d[pos]>>1)) >> 5; \
201 temp = ~(temp >> 31); \
202 dst[x + y*dst_linesize + pos] = temp; \
205 for (y = 0; y <
height; y++) {
221 static inline void add_block(uint16_t *dst,
int linesize,
const int16_t
block[64])
225 for (y = 0; y < 8; y++) {
226 dst[0 + y*linesize] +=
block[0 + y*8];
227 dst[1 + y*linesize] +=
block[1 + y*8];
228 dst[2 + y*linesize] +=
block[2 + y*8];
229 dst[3 + y*linesize] +=
block[3 + y*8];
230 dst[4 + y*linesize] +=
block[4 + y*8];
231 dst[5 + y*linesize] +=
block[5 + y*8];
232 dst[6 + y*linesize] +=
block[6 + y*8];
233 dst[7 + y*linesize] +=
block[7 + y*8];
238 int dst_linesize,
int src_linesize,
int width,
int height,
239 const uint8_t *qp_table,
int qp_stride,
int is_luma,
int depth)
245 int16_t *
block = (int16_t *)block_align;
246 int16_t *block2 = (int16_t *)(block_align + 16);
247 uint16_t *psrc16 = (uint16_t*)p->
src;
248 const int sample_bytes = (depth+7) / 8;
250 for (y = 0; y <
height; y++) {
251 int index = 8 + 8*linesize + y*linesize;
252 memcpy(p->
src +
index*sample_bytes,
src + y*src_linesize,
width*sample_bytes);
253 if (sample_bytes == 1) {
254 for (
x = 0;
x < 8;
x++) {
259 for (
x = 0;
x < 8;
x++) {
265 for (y = 0; y < 8; y++) {
266 memcpy(p->
src + ( 7-y)*linesize * sample_bytes, p->
src + ( y+8)*linesize * sample_bytes, linesize * sample_bytes);
267 memcpy(p->
src + (
height+8+y)*linesize * sample_bytes, p->
src + (
height-y+7)*linesize * sample_bytes, linesize * sample_bytes);
270 for (y = 0; y <
height + 8; y += 8) {
271 memset(p->
temp + (8 + y) * linesize, 0, 8 * linesize *
sizeof(*p->
temp));
272 for (
x = 0;
x <
width + 8;
x += 8) {
278 const int qps = 3 + is_luma;
282 for (
i = 0;
i < count;
i++) {
283 const int x1 =
x +
offset[
i + count - 1][0];
284 const int y1 = y +
offset[
i + count - 1][1];
285 const int index = x1 + y1*linesize;
294 if (sample_bytes == 1) {
296 dst_linesize, linesize,
width,
301 dst_linesize/2, linesize,
width,
339 const int bps =
desc->comp[0].depth;
347 s->hsub =
desc->log2_chroma_w;
348 s->vsub =
desc->log2_chroma_h;
353 if (!
s->temp || !
s->src)
365 const int8_t *qp_table =
NULL;
367 const int depth =
desc->comp[0].depth;
389 if (
w *
h >
s->non_b_qp_alloc_size) {
392 s->non_b_qp_alloc_size = 0;
395 s->non_b_qp_alloc_size =
w *
h;
399 memcpy(
s->non_b_qp_table, qp_table,
w *
h);
403 if (
s->log2_count && !
ctx->is_disabled) {
404 if (!
s->use_bframe_qp &&
s->non_b_qp_table)
405 qp_table =
s->non_b_qp_table;
407 if (qp_table ||
s->qp) {
423 out->width =
in->width;
424 out->height =
in->height;
427 filter(
s,
out->data[0],
in->data[0],
out->linesize[0],
in->linesize[0],
inlink->w,
inlink->h, qp_table, qp_stride, 1, depth);
430 filter(
s,
out->data[1],
in->data[1],
out->linesize[1],
in->linesize[1], cw,
ch, qp_table, qp_stride, 0, depth);
431 filter(
s,
out->data[2],
in->data[2],
out->linesize[2],
in->linesize[2], cw,
ch, qp_table, qp_stride, 0, depth);
440 in ->data[3],
in ->linesize[3],
448 char *res,
int res_len,
int flags)
452 if (!strcmp(cmd,
"level") || !strcmp(cmd,
"quality")) {
453 if (!strcmp(args,
"max"))
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
AVPixelFormat
Pixel format.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
static const AVOption spp_options[]
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
static const uint8_t ldither[8][8]
#define AV_PIX_FMT_YUV420P10
#define AV_DICT_IGNORE_SUFFIX
Return first entry in a dictionary whose first part corresponds to the search key,...
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
static void add_block(uint16_t *dst, int linesize, const int16_t block[64])
const char * name
Filter name.
static void store_slice16_c(uint16_t *dst, const int16_t *src, int dst_linesize, int src_linesize, int width, int height, int log2_scale, const uint8_t dither[8][8], int depth)
A link between two filters.
void(* fdct)(int16_t *block)
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
void av_image_copy_plane(uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize, int bytewidth, int height)
Copy image plane from src to dst.
int8_t * av_frame_get_qp_table(AVFrame *f, int *stride, int *type)
static int query_formats(AVFilterContext *ctx)
void(* requantize)(int16_t dst[64], const int16_t src[64], int qp, const uint8_t *permutation)
#define AV_PIX_FMT_GBRP10
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo x
#define AV_PIX_FMT_YUV422P9
static const AVClass * child_class_next(const AVClass *prev)
int av_opt_set(void *obj, const char *name, const char *val, int search_flags)
uint8_t idct_permutation[64]
IDCT input permutation.
A filter pad used for either input or output.
#define AV_PIX_FMT_YUV444P10
static const AVClass spp_class
static const uint16_t mask[17]
AVDictionaryEntry * av_dict_get(const AVDictionary *m, const char *key, const AVDictionaryEntry *prev, int flags)
Get a dictionary entry with matching key.
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
static av_cold void uninit(AVFilterContext *ctx)
#define AV_CEIL_RSHIFT(a, b)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static const AVFilterPad outputs[]
static enum AVPixelFormat pix_fmts[]
#define AV_PIX_FMT_YUV420P9
static const uint8_t offset[127][2]
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(UINT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch ch
#define LIBAVUTIL_VERSION_INT
Describe the class of an AVClass context structure.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
const char * av_default_item_name(void *ptr)
Return the context name.
static void hardthresh_c(int16_t dst[64], const int16_t src[64], int qp, const uint8_t *permutation)
int avcodec_dct_init(AVDCT *dsp)
#define AV_PIX_FMT_YUV422P10
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
void(* idct)(int16_t *block)
void(* store_slice)(uint8_t *dst, const int16_t *src, int dst_stride, int src_stride, int width, int height, int log2_scale, const uint8_t dither[8][8])
int av_opt_set_int(void *obj, const char *name, int64_t val, int search_flags)
@ AV_CLASS_CATEGORY_FILTER
AVDCT * avcodec_dct_alloc(void)
Allocates a AVDCT context.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
void *(* child_next)(void *obj, void *prev)
Return next AVOptions-enabled child or NULL.
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
static int ff_norm_qscale(int qscale, int type)
Normalize the qscale factor FIXME the H264 qscale is a log based scale, mpeg1/2 is not,...
int av_reallocp_array(void *ptr, size_t nmemb, size_t size)
Allocate, reallocate, or free an array through a pointer to a pointer.
void av_dict_free(AVDictionary **pm)
Free all the memory allocated for an AVDictionary struct and all keys and values.
void(* get_pixels_unaligned)(int16_t *block, const uint8_t *pixels, ptrdiff_t line_size)
#define DECLARE_ALIGNED(n, t, v)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
#define i(width, name, range_min, range_max)
static int config_input(AVFilterLink *inlink)
#define av_malloc_array(a, b)
const AVClass * avcodec_dct_get_class(void)
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
const char * name
Pad name.
#define AV_PIX_FMT_YUV444P9
static av_cold int init_dict(AVFilterContext *ctx, AVDictionary **opts)
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo ug o o w
static const AVFilterPad spp_inputs[]
static void store_slice_c(uint8_t *dst, const int16_t *src, int dst_linesize, int src_linesize, int width, int height, int log2_scale, const uint8_t dither[8][8])
static void filter(SPPContext *p, uint8_t *dst, uint8_t *src, int dst_linesize, int src_linesize, int width, int height, const uint8_t *qp_table, int qp_stride, int is_luma, int depth)
static const AVFilterPad spp_outputs[]
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
#define flags(name, subs,...)
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
The exact code depends on how similar the blocks are and how related they are to the block
static void * child_next(void *obj, void *prev)
av_cold void ff_spp_init_x86(SPPContext *s)
static void softthresh_c(int16_t dst[64], const int16_t src[64], int qp, const uint8_t *permutation)
static const uint8_t dither[8][8]