FFmpeg  4.3
vorbis.h
Go to the documentation of this file.
1 /*
2  * copyright (c) 2006 Oded Shimon <ods15@ods15.dyndns.org>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #ifndef AVCODEC_VORBIS_H
22 #define AVCODEC_VORBIS_H
23 
24 #include "avcodec.h"
25 
26 extern const float ff_vorbis_floor1_inverse_db_table[256];
27 extern const float * const ff_vorbis_vwin[8];
28 extern const uint8_t ff_vorbis_channel_layout_offsets[8][8];
30 extern const uint64_t ff_vorbis_channel_layouts[9];
31 
32 typedef struct vorbis_floor1_entry {
33  uint16_t x;
34  uint16_t sort;
35  uint16_t low;
36  uint16_t high;
38 
41 unsigned int ff_vorbis_nth_root(unsigned int x, unsigned int n); // x^(1/n)
42 int ff_vorbis_len2vlc(uint8_t *bits, uint32_t *codes, unsigned num);
44  uint16_t *y_list, int *flag,
45  int multiplier, float * out, int samples);
46 void ff_vorbis_inverse_coupling(float *mag, float *ang, intptr_t blocksize);
47 
48 #define ilog(i) av_log2(2*(i))
49 
50 #endif /* AVCODEC_VORBIS_H */
out
FILE * out
Definition: movenc.c:54
ff_vorbis_vwin
const float *const ff_vorbis_vwin[8]
Definition: vorbis_data.c:2190
ff_vorbis_nth_root
unsigned int ff_vorbis_nth_root(unsigned int x, unsigned int n)
Definition: vorbis.c:38
samples
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new samples
Definition: fate.txt:139
vorbis_floor1_entry::x
uint16_t x
Definition: vorbis.h:33
x
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo x
Definition: fate.txt:150
ff_vorbis_encoding_channel_layout_offsets
const uint8_t ff_vorbis_encoding_channel_layout_offsets[8][8]
Definition: vorbis_data.c:36
vorbis_floor1_entry::low
uint16_t low
Definition: vorbis.h:35
vorbis_floor1_entry
Definition: vorbis.h:32
ff_vorbis_inverse_coupling
void ff_vorbis_inverse_coupling(float *mag, float *ang, intptr_t blocksize)
Definition: vorbisdec.c:1578
bits
uint8_t bits
Definition: vp3data.h:202
ff_vorbis_floor1_render_list
void ff_vorbis_floor1_render_list(vorbis_floor1_entry *list, int values, uint16_t *y_list, int *flag, int multiplier, float *out, int samples)
Definition: vorbis.c:196
list
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining list
Definition: filter_design.txt:25
ff_vorbis_channel_layout_offsets
const uint8_t ff_vorbis_channel_layout_offsets[8][8]
Definition: vorbis_data.c:25
ff_vorbis_len2vlc
int ff_vorbis_len2vlc(uint8_t *bits, uint32_t *codes, unsigned num)
Definition: vorbis.c:56
vorbis_floor1_entry::high
uint16_t high
Definition: vorbis.h:36
ff_vorbis_ready_floor1_list
int ff_vorbis_ready_floor1_list(AVCodecContext *avctx, vorbis_floor1_entry *list, int values)
Definition: vorbis.c:106
flag
#define flag(name)
Definition: cbs_av1.c:556
uint8_t
uint8_t
Definition: audio_convert.c:194
avcodec.h
ff_vorbis_floor1_inverse_db_table
const float ff_vorbis_floor1_inverse_db_table[256]
Definition: vorbis_data.c:2123
AVCodecContext
main external API structure.
Definition: avcodec.h:526
values
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return values
Definition: filter_design.txt:263
ff_vorbis_channel_layouts
const uint64_t ff_vorbis_channel_layouts[9]
Definition: vorbis_data.c:47
vorbis_floor1_entry::sort
uint16_t sort
Definition: vorbis.h:34