Go to the documentation of this file.
55 #define HAS_IFRAME_IMAGE 0x02
56 #define HAS_PALLET_INFO 0x01
58 #define COLORSPACE_BGR 0x00
59 #define COLORSPACE_15_7 0x10
60 #define HAS_DIFF_BLOCKS 0x04
61 #define ZLIB_PRIME_COMPRESS_CURRENT 0x02
62 #define ZLIB_PRIME_COMPRESS_PREVIOUS 0x01
114 #ifndef FLASHSV2_DUMB
145 for (col = 0; col <
s->cols; col++) {
146 for (row = 0; row <
s->rows; row++) {
147 b = blocks + (col + row *
s->cols);
148 b->width = (col <
s->cols - 1) ?
150 s->image_width - col *
s->block_width;
152 b->height = (row < s->rows - 1) ?
154 s->image_height - row *
s->block_height;
160 encbuf +=
b->width *
b->height * 3;
161 databuf += !databuf ? 0 :
b->width *
b->height * 6;
168 #ifndef FLASHSV2_DUMB
169 s->diff_blocks = 0.1;
173 s->raw_size =
s->comp_size =
s->uncomp_size = 10;
186 if (
s->comp < 0 ||
s->comp > 9) {
188 "Compression level should be 0-9, not %d\n",
s->comp);
193 if ((avctx->
width > 4095) || (avctx->
height > 4095)) {
195 "Input dimensions too large, input must be max 4095x4095 !\n");
200 "Input dimensions too small, input must be at least 16x16 !\n");
208 s->last_key_frame = 0;
210 s->image_width = avctx->
width;
211 s->image_height = avctx->
height;
213 s->block_width = (
s->image_width / 12) & ~15;
214 s->block_height = (
s->image_height / 12) & ~15;
221 s->rows = (
s->image_height +
s->block_height - 1) /
s->block_height;
222 s->cols = (
s->image_width +
s->block_width - 1) /
s->block_width;
224 s->frame_size =
s->image_width *
s->image_height * 3;
225 s->blocks_size =
s->rows *
s->cols *
sizeof(
Block);
235 s->blockbuffer =
NULL;
236 s->blockbuffer_size = 0;
241 #ifndef FLASHSV2_DUMB
245 s->use_custom_palette = 0;
246 s->palette_type = -1;
248 if (!
s->encbuffer || !
s->keybuffer || !
s->databuffer
249 || !
s->current_frame || !
s->key_frame || !
s->key_blocks
250 || !
s->frame_blocks) {
262 memcpy(
s->key_blocks,
s->frame_blocks,
s->blocks_size);
263 memcpy(
s->key_frame,
s->current_frame,
s->frame_size);
265 for (
i = 0;
i <
s->rows *
s->cols;
i++) {
266 s->key_blocks[
i].enc += (
s->keybuffer -
s->encbuffer);
267 s->key_blocks[
i].sl_begin = 0;
268 s->key_blocks[
i].sl_end = 0;
269 s->key_blocks[
i].data = 0;
271 memcpy(
s->keybuffer,
s->encbuffer,
s->frame_size);
292 put_bits(&pb, 4, (
s->block_width >> 4) - 1);
294 put_bits(&pb, 4, (
s->block_height >> 4) - 1);
300 buf[buf_pos++] =
s->flags;
315 unsigned block_size =
b->data_size;
323 if (buf_size < block_size + 2)
326 buf[buf_pos++] = block_size >> 8;
327 buf[buf_pos++] = block_size;
332 buf[buf_pos++] =
b->flags;
335 buf[buf_pos++] = (
b->start);
336 buf[buf_pos++] = (
b->len);
341 buf[buf_pos++] = (
b->col);
342 buf[buf_pos++] = (
b->row);
345 memcpy(buf + buf_pos,
b->data,
b->data_size);
347 buf_pos +=
b->data_size;
354 int res = compress2(buf, buf_size,
b->sl_begin,
b->sl_end -
b->sl_begin,
comp);
355 return res == Z_OK ? 0 : -1;
359 int *buf_size,
int comp)
366 res = deflateInit(&
s,
comp);
370 s.next_in = prime->
enc;
372 while (
s.avail_in > 0) {
374 s.avail_out = *buf_size;
380 s.next_in =
b->sl_begin;
381 s.avail_in =
b->sl_end -
b->sl_begin;
383 s.avail_out = *buf_size;
386 *buf_size -=
s.avail_out;
387 if (res != Z_STREAM_END)
396 for (
i = 0;
i <
b->start;
i++)
397 memcpy(ptr +
i *
b->width * 3,
src +
i *
stride,
b->width * 3);
398 b->sl_begin = ptr +
i *
b->width * 3;
399 for (;
i <
b->start +
b->len;
i++)
400 memcpy(ptr +
i *
b->width * 3,
src +
i *
stride,
b->width * 3);
401 b->sl_end = ptr +
i *
b->width * 3;
402 for (;
i <
b->height;
i++)
403 memcpy(ptr +
i *
b->width * 3,
src +
i *
stride,
b->width * 3);
404 b->enc_size = ptr +
i *
b->width * 3 -
b->enc;
410 return (
src[0] >> 3) | ((
src[1] & 0xf8) << 2) | ((
src[2] & 0xf8) << 7);
415 #define ABSDIFF(a,b) (abs((int)(a)-(int)(b)))
417 unsigned int t1 = (
c1 & 0x000000ff) + ((
c1 & 0x0000ff00) >> 8) + ((
c1 & 0x00ff0000) >> 16);
418 unsigned int t2 = (
c2 & 0x000000ff) + ((
c2 & 0x0000ff00) >> 8) + ((
c2 & 0x00ff0000) >> 16);
421 ABSDIFF((
c1 & 0x0000ff00) >> 8 , (
c2 & 0x0000ff00) >> 8) +
422 ABSDIFF((
c1 & 0x00ff0000) >> 16, (
c2 & 0x00ff0000) >> 16);
427 return palette->
index[c15];
432 int i,
min = 0x7fffffff;
434 for (
i = 0;
i < 128;
i++) {
447 return (
src[0]) | (
src[1] << 8) | (
src[2] << 16);
458 if (dist + d15 >= d7) {
462 dest[0] = 0x80 | (c15 >> 8);
463 dest[1] = c15 & 0xff;
471 unsigned int bgr, c15,
index;
472 for (
r = 4;
r < 256;
r += 8) {
473 for (
g = 4;
g < 256;
g += 8) {
474 for (
b = 4;
b < 256;
b += 8) {
475 bgr =
b | (
g << 8) | (
r << 16);
476 c15 = (
b >> 3) | ((
g & 0xf8) << 2) | ((
r & 0xf8) << 7);
487 0x00000000, 0x00333333, 0x00666666, 0x00999999, 0x00CCCCCC, 0x00FFFFFF,
488 0x00330000, 0x00660000, 0x00990000, 0x00CC0000, 0x00FF0000, 0x00003300,
489 0x00006600, 0x00009900, 0x0000CC00, 0x0000FF00, 0x00000033, 0x00000066,
490 0x00000099, 0x000000CC, 0x000000FF, 0x00333300, 0x00666600, 0x00999900,
491 0x00CCCC00, 0x00FFFF00, 0x00003333, 0x00006666, 0x00009999, 0x0000CCCC,
492 0x0000FFFF, 0x00330033, 0x00660066, 0x00990099, 0x00CC00CC, 0x00FF00FF,
493 0x00FFFF33, 0x00FFFF66, 0x00FFFF99, 0x00FFFFCC, 0x00FF33FF, 0x00FF66FF,
494 0x00FF99FF, 0x00FFCCFF, 0x0033FFFF, 0x0066FFFF, 0x0099FFFF, 0x00CCFFFF,
495 0x00CCCC33, 0x00CCCC66, 0x00CCCC99, 0x00CCCCFF, 0x00CC33CC, 0x00CC66CC,
496 0x00CC99CC, 0x00CCFFCC, 0x0033CCCC, 0x0066CCCC, 0x0099CCCC, 0x00FFCCCC,
497 0x00999933, 0x00999966, 0x009999CC, 0x009999FF, 0x00993399, 0x00996699,
498 0x0099CC99, 0x0099FF99, 0x00339999, 0x00669999, 0x00CC9999, 0x00FF9999,
499 0x00666633, 0x00666699, 0x006666CC, 0x006666FF, 0x00663366, 0x00669966,
500 0x0066CC66, 0x0066FF66, 0x00336666, 0x00996666, 0x00CC6666, 0x00FF6666,
501 0x00333366, 0x00333399, 0x003333CC, 0x003333FF, 0x00336633, 0x00339933,
502 0x0033CC33, 0x0033FF33, 0x00663333, 0x00993333, 0x00CC3333, 0x00FF3333,
503 0x00003366, 0x00336600, 0x00660033, 0x00006633, 0x00330066, 0x00663300,
504 0x00336699, 0x00669933, 0x00993366, 0x00339966, 0x00663399, 0x00996633,
505 0x006699CC, 0x0099CC66, 0x00CC6699, 0x0066CC99, 0x009966CC, 0x00CC9966,
506 0x0099CCFF, 0x00CCFF99, 0x00FF99CC, 0x0099FFCC, 0x00CC99FF, 0x00FFCC99,
507 0x00111111, 0x00222222, 0x00444444, 0x00555555, 0x00AAAAAA, 0x00BBBBBB,
508 0x00DDDDDD, 0x00EEEEEE
541 for (
i = 0;
i <
b->start;
i++)
544 for (;
i <
b->start +
b->len;
i++)
547 for (;
i <
b->height;
i++)
549 b->enc_size = ptr -
b->enc;
555 int dist,
int keyframe)
557 unsigned buf_size =
b->width *
b->height * 6;
568 b->data_size = buf_size;
578 if (buf_size < b->data_size) {
579 b->data_size = buf_size;
580 memcpy(
b->data, buf, buf_size);
593 if (memcmp(
src,
frame,
b->width * 3) != 0) {
596 #ifndef FLASHSV2_DUMB
600 if (memcmp(
src,
key,
b->width * 3) != 0) {
603 b->len = y + 1 -
b->start;
611 int sl, rsl, col,
pos, possl;
613 for (sl =
s->image_height - 1; sl >= 0; sl--) {
614 for (col = 0; col <
s->cols; col++) {
615 rsl =
s->image_height - sl - 1;
616 b =
s->frame_blocks + col + rsl /
s->block_height *
s->cols;
617 possl =
stride * sl + col *
s->block_width * 3;
618 pos =
s->image_width * rsl * 3 + col *
s->block_width * 3;
620 s->key_frame +
pos, rsl %
s->block_height, keyframe);
623 #ifndef FLASHSV2_DUMB
624 s->tot_lines +=
s->image_height *
s->cols;
634 for (row = 0; row <
s->rows; row++) {
635 for (col = 0; col <
s->cols; col++) {
636 b =
s->frame_blocks + (row *
s->cols + col);
637 prev =
s->key_blocks + (row *
s->cols + col);
642 }
else if (!
b->dirty) {
647 }
else if (
b->start != 0 ||
b->len !=
b->height) {
650 data =
s->current_frame +
s->image_width * 3 *
s->block_height * row +
s->block_width * col * 3;
652 #ifndef FLASHSV2_DUMB
655 s->comp_size +=
b->data_size;
656 s->uncomp_size +=
b->enc_size;
662 #ifndef FLASHSV2_DUMB
663 s->raw_size +=
s->image_width *
s->image_height * 3;
664 s->tot_blocks +=
s->rows *
s->cols;
672 int row, col, buf_pos = 0,
len;
674 for (row = 0; row <
s->rows; row++) {
675 for (col = 0; col <
s->cols; col++) {
676 b =
s->frame_blocks + row *
s->cols + col;
678 b->start =
b->len =
b->dirty = 0;
688 uint8_t * buf,
int buf_size,
int keyframe)
709 #ifndef FLASHSV2_DUMB
710 s->total_bits += ((double) buf_pos) * 8.0;
718 #ifndef FLASHSV2_DUMB
719 double block_ratio, line_ratio, enc_ratio, comp_ratio, data_ratio;
720 if (
s->avctx->gop_size > 0) {
721 block_ratio =
s->diff_blocks /
s->tot_blocks;
722 line_ratio =
s->diff_lines /
s->tot_lines;
723 enc_ratio =
s->uncomp_size /
s->raw_size;
724 comp_ratio =
s->comp_size /
s->uncomp_size;
725 data_ratio =
s->comp_size /
s->raw_size;
727 if ((block_ratio >= 0.5 && line_ratio / block_ratio <= 0.5) || line_ratio >= 0.95) {
737 #ifndef FLASHSV2_DUMB
738 static const double block_size_fraction = 1.0 / 300;
739 static const double use15_7_threshold = 8192;
740 static const double color15_7_factor = 100;
744 #ifndef FLASHSV2_DUMB
745 double save = (1-pow(
s->diff_lines/
s->diff_blocks/
s->block_height, 0.5)) *
s->comp_size/
s->tot_blocks;
746 double width = block_size_fraction * sqrt(0.5 * save *
s->rows *
s->cols) *
s->image_width;
748 return FFCLIP(pwidth & ~15, 256, 16);
756 #ifndef FLASHSV2_DUMB
757 double save = (1-pow(
s->diff_lines/
s->diff_blocks/
s->block_height, 0.5)) *
s->comp_size/
s->tot_blocks;
758 double height = block_size_fraction * sqrt(0.5 * save *
s->rows *
s->cols) *
s->image_height;
760 return FFCLIP(pheight & ~15, 256, 16);
768 #ifndef FLASHSV2_DUMB
769 double ideal = ((double)(
s->avctx->bit_rate *
s->avctx->time_base.den *
s->avctx->ticks_per_frame)) /
770 ((
double)
s->avctx->time_base.num) *
s->avctx->frame_number;
771 if (ideal + use15_7_threshold < s->total_bits) {
777 return s->avctx->global_quality == 0;
783 #ifndef FLASHSV2_DUMB
785 s->avctx->bit_rate *
s->avctx->time_base.den *
786 s->avctx->ticks_per_frame;
787 int dist = pow((
s->total_bits / ideal) * color15_7_factor, 3);
799 int update_palette = 0;
804 s->rows = (
s->image_height + block_height - 1) / block_height;
805 s->cols = (
s->image_width + block_width - 1) / block_width;
807 if (block_width !=
s->block_width || block_height !=
s->block_height) {
808 s->block_width = block_width;
809 s->block_height = block_height;
810 if (
s->rows *
s->cols >
s->blocks_size /
sizeof(
Block)) {
813 if (!
s->frame_blocks || !
s->key_blocks) {
817 s->blocks_size =
s->rows *
s->cols *
sizeof(
Block);
822 av_fast_malloc(&
s->blockbuffer, &
s->blockbuffer_size, block_width * block_height * 6);
823 if (!
s->blockbuffer) {
831 if ((
s->use_custom_palette &&
s->palette_type != 1) || update_palette) {
837 }
else if (!
s->use_custom_palette &&
s->palette_type != 0) {
853 const AVFrame *p,
int *got_packet)
static int optimum_use15_7(FlashSV2Context *s)
AVPixelFormat
Pixel format.
int keyint_min
minimum GOP size
static av_cold int init(AVCodecContext *avctx)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static void comp(unsigned char *dst, ptrdiff_t dst_stride, unsigned char *src, ptrdiff_t src_stride, int add)
static int optimum_dist(FlashSV2Context *s)
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
This structure describes decoded (raw) audio or video data.
static void put_bits(Jpeg2000EncoderContext *s, int val, int n)
put n times val bit
static av_cold void cleanup(FlashSV2Context *s)
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
static void recommend_keyframe(FlashSV2Context *s, int *keyframe)
static int generate_default_palette(Palette *palette)
static const unsigned int default_screen_video_v2_palette[128]
static int flashsv2_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *p, int *got_packet)
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
static int write_block(Block *b, uint8_t *buf, int buf_size)
static int optimum_block_width(FlashSV2Context *s)
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo x
static int update_palette_index(Palette *palette)
uint8_t palette_type
0=>default, 1=>custom - changed when palette regenerated.
AVCodec ff_flashsv2_encoder
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
static int write_all_blocks(FlashSV2Context *s, uint8_t *buf, int buf_size)
static void reset_stats(FlashSV2Context *s)
void * av_realloc_array(void *ptr, size_t nmemb, size_t size)
Allocate, reallocate, or free an array.
static enum AVPixelFormat pix_fmts[]
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static int encode_zlibprime(Block *b, Block *prime, uint8_t *buf, int *buf_size, int comp)
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
#define AV_INPUT_BUFFER_MIN_SIZE
#define ZLIB_PRIME_COMPRESS_CURRENT
uint8_t use_custom_palette
static int write_bitstream(FlashSV2Context *s, const uint8_t *src, int stride, uint8_t *buf, int buf_size, int keyframe)
static av_cold int flashsv2_encode_end(AVCodecContext *avctx)
static void deflate(uint8_t *dst, const uint8_t *p1, int width, int threshold, const uint8_t *coordinates[], int coord, int maxc)
static int encode_bgr(Block *b, const uint8_t *src, int stride)
static av_cold int flashsv2_encode_init(AVCodecContext *avctx)
static int reconfigure_at_keyframe(FlashSV2Context *s, const uint8_t *image, int stride)
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
int gop_size
the number of pictures in a group of pictures, or 0 for intra_only
static unsigned int chroma_diff(unsigned int c1, unsigned int c2)
static int write_header(FlashSV2Context *s, uint8_t *buf, int buf_size)
static int pixel_color7_slow(Palette *palette, unsigned color)
static int encode_all_blocks(FlashSV2Context *s, int keyframe)
static int generate_optimum_palette(Palette *palette, const uint8_t *image, int width, int height, int stride)
int flags
A combination of AV_PKT_FLAG values.
static int encode_block(FlashSV2Context *s, Palette *palette, Block *b, Block *prev, const uint8_t *src, int stride, int comp, int dist, int keyframe)
static int optimum_block_height(FlashSV2Context *s)
static int write_palette(FlashSV2Context *s, uint8_t *buf, int buf_size)
#define i(width, name, range_min, range_max)
static int new_key_frame(FlashSV2Context *s)
static int encode_15_7(Palette *palette, Block *b, const uint8_t *src, int stride, int dist)
const char * name
Name of the codec implementation.
static unsigned pixel_bgr(const uint8_t *src)
static int encode_zlib(Block *b, uint8_t *buf, unsigned long *buf_size, int comp)
static int compare_sl(FlashSV2Context *s, Block *b, const uint8_t *src, uint8_t *frame, uint8_t *key, int y, int keyframe)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static int pixel_color7_fast(Palette *palette, unsigned c15)
main external API structure.
static int write_pixel_15_7(Palette *palette, uint8_t *dest, const uint8_t *src, int dist)
int frame_number
Frame counter, set by libavcodec.
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
static av_always_inline int diff(const uint32_t a, const uint32_t b)
#define ZLIB_PRIME_COMPRESS_PREVIOUS
This structure stores compressed data.
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
static void init_blocks(FlashSV2Context *s, Block *blocks, uint8_t *encbuf, uint8_t *databuf)
int width
picture width / height.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
static int encode_15_7_sl(Palette *palette, uint8_t *dest, const uint8_t *src, int width, int dist)
static unsigned pixel_color15(const uint8_t *src)
static int mark_all_blocks(FlashSV2Context *s, const uint8_t *src, int stride, int keyframe)