Go to the documentation of this file.
36 int64_t num, int64_t den, int64_t
max)
39 int sign = (num < 0) ^ (den < 0);
43 num =
FFABS(num) / gcd;
44 den =
FFABS(den) / gcd;
46 if (num <=
max && den <=
max) {
52 uint64_t
x = num / den;
53 int64_t next_den = num - den *
x;
54 int64_t a2n =
x *
a1.num +
a0.num;
55 int64_t a2d =
x *
a1.den +
a0.den;
57 if (a2n >
max || a2d >
max) {
61 if (den * (2 *
x *
a1.den +
a0.den) > num *
a1.den)
74 *dst_num = sign ? -
a1.num :
a1.num;
83 b.num * (int64_t)
c.num,
84 b.den * (int64_t)
c.den, INT_MAX);
95 b.num * (int64_t)
c.den +
96 c.num * (int64_t)
b.den,
97 b.den * (int64_t)
c.den, INT_MAX);
113 if (fabs(d) > INT_MAX + 3LL)
116 exponent =
FFMAX(exponent-1, 0);
117 den = 1LL << (61 - exponent);
121 if ((!
a.num || !
a.den) && d &&
max>0 &&
max<INT_MAX)
122 av_reduce(&
a.num, &
a.den, floor(d * den + 0.5), den, INT_MAX);
130 int64_t
a =
q1.num * (int64_t)q2.
den + q2.
num * (int64_t)
q1.den;
131 int64_t
b = 2 * (int64_t)
q1.den * q2.
den;
144 int i, nearest_q_idx = 0;
145 for (
i = 0; q_list[
i].
den;
i++)
146 if (
av_nearer_q(q, q_list[
i], q_list[nearest_q_idx]) > 0)
149 return nearest_q_idx;
166 if (!q.
num && !q.
den)
return 0xFFC00000;
167 if (!q.
num)
return 0;
168 if (!q.
den)
return 0x7F800000 | (q.
num & 0x80000000);
174 shift -= n >= (1<<24);
175 shift += n < (1<<23);
183 return sign<<31 | (150-
shift)<<23 | (n - (1<<23));
191 lcm = (
a.den / gcd) *
b.den;
static const uint8_t q1[256]
AVRational av_div_q(AVRational b, AVRational c)
Divide one rational by another.
AVRational av_sub_q(AVRational b, AVRational c)
Subtract one rational from another.
int64_t av_gcd(int64_t a, int64_t b)
Compute the greatest common divisor of two integer operands.
uint32_t av_q2intfloat(AVRational q)
Convert an AVRational to a IEEE 32-bit float expressed in fixed-point format.
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo x
@ AV_ROUND_UP
Round toward +infinity.
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Rational number (pair of numerator and denominator).
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
int64_t av_rescale_rnd(int64_t a, int64_t b, int64_t c, enum AVRounding rnd)
Rescale a 64-bit integer with specified rounding.
static AVRational av_make_q(int num, int den)
Create an AVRational.
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
int av_find_nearest_q_idx(AVRational q, const AVRational *q_list)
Find the value in a list of rationals nearest a given reference rational.
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
#define i(width, name, range_min, range_max)
AVRational av_gcd_q(AVRational a, AVRational b, int max_den, AVRational def)
Return the best rational so that a and b are multiple of it.
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
@ AV_ROUND_DOWN
Round toward -infinity.
AVRational av_d2q(double d, int max)
Convert a double precision floating point number to a rational.
int64_t av_rescale(int64_t a, int64_t b, int64_t c)
Rescale a 64-bit integer with rounding to nearest.
static int av_cmp_q(AVRational a, AVRational b)
Compare two rationals.
AVRational av_mul_q(AVRational b, AVRational c)
Multiply two rationals.
static int shift(int a, int b)
int av_nearer_q(AVRational q, AVRational q1, AVRational q2)
Find which of the two rationals is closer to another rational.
AVRational av_add_q(AVRational b, AVRational c)
Add two rationals.