Go to the documentation of this file.
72 static const char *
const var_names[] = {
"X",
"Y",
"W",
"H",
"N",
NULL };
77 #define OFFSET(x) offsetof(FFTFILTContext, x)
78 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
95 static inline double lum(
void *priv,
double x,
double y,
int plane)
98 return s->rdft_vdata[plane][(
int)
x *
s->rdft_vlen[plane] + (
int)y];
101 static double weight_Y(
void *priv,
double x,
double y) {
return lum(priv,
x, y,
Y); }
102 static double weight_U(
void *priv,
double x,
double y) {
return lum(priv,
x, y,
U); }
103 static double weight_V(
void *priv,
double x,
double y) {
return lum(priv,
x, y,
V); }
109 for (
i =
w;
i <
w + (w2-
w)/2;
i++)
110 dest[
i] = dest[2*
w -
i - 1];
113 dest[
i] = dest[w2 -
i];
121 for (
i = 0;
i <
h;
i++) {
122 for (j = 0; j <
w; j++)
123 s->rdft_hdata[plane][
i *
s->rdft_hlen[plane] + j] = *(
in->data[plane] +
in->linesize[plane] *
i + j);
125 copy_rev(
s->rdft_hdata[plane] +
i *
s->rdft_hlen[plane],
w,
s->rdft_hlen[plane]);
128 for (
i = 0;
i <
h;
i++)
129 av_rdft_calc(
s->hrdft[plane],
s->rdft_hdata[plane] +
i *
s->rdft_hlen[plane]);
134 const uint16_t *
src = (
const uint16_t *)
in->data[plane];
135 int linesize =
in->linesize[plane] / 2;
139 for (j = 0; j <
w; j++)
140 s->rdft_hdata[plane][
i *
s->rdft_hlen[plane] + j] = *(
src + linesize *
i + j);
142 copy_rev(
s->rdft_hdata[plane] +
i *
s->rdft_hlen[plane],
w,
s->rdft_hlen[plane]);
145 for (
i = 0;
i <
h;
i++)
146 av_rdft_calc(
s->hrdft[plane],
s->rdft_hdata[plane] +
i *
s->rdft_hlen[plane]);
154 for (
i = 0;
i <
s->rdft_hlen[plane];
i++) {
155 for (j = 0; j <
h; j++)
156 s->rdft_vdata[plane][
i *
s->rdft_vlen[plane] + j] =
157 s->rdft_hdata[plane][j *
s->rdft_hlen[plane] +
i];
158 copy_rev(
s->rdft_vdata[plane] +
i *
s->rdft_vlen[plane],
h,
s->rdft_vlen[plane]);
161 for (
i = 0;
i <
s->rdft_hlen[plane];
i++)
162 av_rdft_calc(
s->vrdft[plane],
s->rdft_vdata[plane] +
i *
s->rdft_vlen[plane]);
169 for (
i = 0;
i <
s->rdft_hlen[plane];
i++)
170 av_rdft_calc(
s->ivrdft[plane],
s->rdft_vdata[plane] +
i *
s->rdft_vlen[plane]);
172 for (
i = 0;
i <
s->rdft_hlen[plane];
i++)
173 for (j = 0; j <
h; j++)
174 s->rdft_hdata[plane][j *
s->rdft_hlen[plane] +
i] =
175 s->rdft_vdata[plane][
i *
s->rdft_vlen[plane] + j];
183 for (
i = 0;
i <
h;
i++)
184 av_rdft_calc(
s->ihrdft[plane],
s->rdft_hdata[plane] +
i *
s->rdft_hlen[plane]);
186 for (
i = 0;
i <
h;
i++)
187 for (j = 0; j <
w; j++)
188 *(
out->data[plane] +
out->linesize[plane] *
i + j) = av_clip(
s->rdft_hdata[plane][
i
189 *
s->rdft_hlen[plane] + j] * 4 /
190 (
s->rdft_hlen[plane] *
191 s->rdft_vlen[plane]), 0, 255);
196 uint16_t *dst = (uint16_t *)
out->data[plane];
197 int linesize =
out->linesize[plane] / 2;
198 int max = (1 <<
s->depth) - 1;
201 for (
i = 0;
i <
h;
i++)
202 av_rdft_calc(
s->ihrdft[plane],
s->rdft_hdata[plane] +
i *
s->rdft_hlen[plane]);
204 for (
i = 0;
i <
h;
i++)
205 for (j = 0; j <
w; j++)
206 *(dst + linesize *
i + j) = av_clip(
s->rdft_hdata[plane][
i
207 *
s->rdft_hlen[plane] + j] * 4 /
208 (
s->rdft_hlen[plane] *
209 s->rdft_vlen[plane]), 0,
max);
217 if (!
s->dc[
U] && !
s->dc[
V]) {
221 if (!
s->dc[
U])
s->dc[
U] =
s->dc[
V];
222 if (!
s->dc[
V])
s->dc[
V] =
s->dc[
U];
225 if (!
s->weight_str[
U] && !
s->weight_str[
V]) {
233 for (plane = 0; plane < 3; plane++) {
235 const char *
const func2_names[] = {
"weight_Y",
"weight_U",
"weight_V",
NULL };
255 for (
i = 0;
i <
s->rdft_hlen[plane];
i++) {
257 for (j = 0; j <
s->rdft_vlen[plane]; j++) {
259 s->weight[plane][
i *
s->rdft_vlen[plane] + j] =
272 s->depth =
desc->comp[0].depth;
274 s->planewidth[0] =
s->planewidth[3] =
inlink->w;
276 s->planeheight[0] =
s->planeheight[3] =
inlink->h;
280 for (
i = 0;
i <
desc->nb_components;
i++) {
281 int w =
s->planewidth[
i];
282 int h =
s->planeheight[
i];
310 for (plane = 0; plane < 3; plane++) {
311 if(!(
s->weight[plane] =
av_malloc_array(
s->rdft_hlen[plane],
s->rdft_vlen[plane] *
sizeof(
double))))
321 }
else if (
s->depth > 8) {
346 for (plane = 0; plane <
s->nb_planes; plane++) {
347 int w =
s->planewidth[plane];
348 int h =
s->planeheight[plane];
353 s->rdft_horizontal(
s,
in,
w,
h, plane);
357 for (
i = 0;
i <
s->rdft_hlen[plane];
i++)
358 for (j = 0; j <
s->rdft_vlen[plane]; j++)
359 s->rdft_vdata[plane][
i *
s->rdft_vlen[plane] + j] *=
360 s->weight[plane][
i *
s->rdft_vlen[plane] + j];
362 s->rdft_vdata[plane][0] +=
s->rdft_hlen[plane] *
s->rdft_vlen[plane] *
s->dc[plane];
365 s->irdft_horizontal(
s,
out,
w,
h, plane);
433 .description =
NULL_IF_CONFIG_SMALL(
"Apply arbitrary expressions to pixels in frequency domain."),
435 .priv_class = &fftfilt_class,
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
AVPixelFormat
Pixel format.
static av_cold int init(AVCodecContext *avctx)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static const AVFilterPad fftfilt_outputs[]
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
static int config_props(AVFilterLink *inlink)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
int rdft_vbits[MAX_PLANES]
#define AV_PIX_FMT_YUV420P10
const char * name
Filter name.
FFTSample * rdft_vdata[MAX_PLANES]
A link between two filters.
static const char *const func2_names[]
static av_cold void uninit(AVFilterContext *ctx)
int av_expr_parse(AVExpr **expr, const char *s, const char *const *const_names, const char *const *func1_names, double(*const *funcs1)(void *, double), const char *const *func2_names, double(*const *funcs2)(void *, double, double), int log_offset, void *log_ctx)
Parse an expression.
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
static void rdft_horizontal16(FFTFILTContext *s, AVFrame *in, int w, int h, int plane)
static void do_eval(FFTFILTContext *s, AVFilterLink *inlink, int plane)
FFTSample * rdft_hdata[MAX_PLANES]
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo x
#define AV_PIX_FMT_YUV422P9
void av_expr_free(AVExpr *e)
Free a parsed expression previously created with av_expr_parse().
static void irdft_horizontal8(FFTFILTContext *s, AVFrame *out, int w, int h, int plane)
A filter pad used for either input or output.
int planewidth[MAX_PLANES]
#define AV_PIX_FMT_YUV444P10
#define AV_PIX_FMT_YUV422P16
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
#define AV_PIX_FMT_YUV444P16
#define AV_CEIL_RSHIFT(a, b)
RDFTContext * ihrdft[MAX_PLANES]
size_t rdft_vlen[MAX_PLANES]
static const AVFilterPad outputs[]
#define AV_PIX_FMT_YUV420P9
#define AV_PIX_FMT_YUV420P16
RDFTContext * vrdft[MAX_PLANES]
double av_expr_eval(AVExpr *e, const double *const_values, void *opaque)
Evaluate a previously parsed expression.
void(* irdft_horizontal)(struct FFTFILTContext *s, AVFrame *out, int w, int h, int plane)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
void av_rdft_calc(RDFTContext *s, FFTSample *data)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Describe the class of an AVClass context structure.
int planeheight[MAX_PLANES]
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
size_t rdft_hlen[MAX_PLANES]
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
#define AV_PIX_FMT_YUV422P10
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
static av_cold int initialize(AVFilterContext *ctx)
static const AVOption fftfilt_options[]
static void rdft_vertical(FFTFILTContext *s, int h, int plane)
char * weight_str[MAX_PLANES]
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
RDFTContext * av_rdft_init(int nbits, enum RDFTransformType trans)
Set up a real FFT.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
void(* rdft_horizontal)(struct FFTFILTContext *s, AVFrame *in, int w, int h, int plane)
#define AV_PIX_FMT_YUV422P12
#define AV_PIX_FMT_YUV444P12
RDFTContext * hrdft[MAX_PLANES]
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
#define i(width, name, range_min, range_max)
int rdft_hbits[MAX_PLANES]
#define av_malloc_array(a, b)
AVFILTER_DEFINE_CLASS(fftfilt)
const char * name
Pad name.
static const char *const var_names[]
AVExpr * weight_expr[MAX_PLANES]
#define AV_PIX_FMT_YUV444P9
static double weight_U(void *priv, double x, double y)
double * weight[MAX_PLANES]
static const AVFilterPad fftfilt_inputs[]
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo ug o o w
#define AV_PIX_FMT_YUV420P12
#define AV_PIX_FMT_YUV422P14
static void irdft_vertical(FFTFILTContext *s, int h, int plane)
typedef void(RENAME(mix_any_func_type))
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return values
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
static double weight_V(void *priv, double x, double y)
char * av_strdup(const char *s)
Duplicate a string.
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
static void copy_rev(FFTSample *dest, int w, int w2)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static double lum(void *priv, double x, double y, int plane)
RDFTContext * ivrdft[MAX_PLANES]
static int query_formats(AVFilterContext *ctx)
double(* func2[])(void *, double, double)
#define flags(name, subs,...)
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
void av_rdft_end(RDFTContext *s)
static double weight_Y(void *priv, double x, double y)
#define AV_PIX_FMT_YUV444P14
#define AV_PIX_FMT_YUV420P14
static void rdft_horizontal8(FFTFILTContext *s, AVFrame *in, int w, int h, int plane)
static void irdft_horizontal16(FFTFILTContext *s, AVFrame *out, int w, int h, int plane)