Go to the source code of this file.
|
| AVFILTER_DEFINE_CLASS (datascope) |
|
static int | query_formats (AVFilterContext *ctx) |
|
static void | draw_text (FFDrawContext *draw, AVFrame *frame, FFDrawColor *color, int x0, int y0, const uint8_t *text, int vertical) |
|
static void | pick_color8 (FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value) |
|
static void | pick_color16 (FFDrawContext *draw, FFDrawColor *color, AVFrame *in, int x, int y, int *value) |
|
static void | reverse_color8 (FFDrawContext *draw, FFDrawColor *color, FFDrawColor *reverse) |
|
static void | reverse_color16 (FFDrawContext *draw, FFDrawColor *color, FFDrawColor *reverse) |
|
static int | filter_color2 (AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
|
static int | filter_color (AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
|
static int | filter_mono (AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
|
static int | filter_frame (AVFilterLink *inlink, AVFrame *in) |
|
static int | config_input (AVFilterLink *inlink) |
|
static int | config_output (AVFilterLink *outlink) |
|
| AVFILTER_DEFINE_CLASS (pixscope) |
|
static int | pixscope_config_input (AVFilterLink *inlink) |
|
static int | pixscope_filter_frame (AVFilterLink *inlink, AVFrame *in) |
|
| AVFILTER_DEFINE_CLASS (oscilloscope) |
|
static void | oscilloscope_uninit (AVFilterContext *ctx) |
|
static void | draw_line (FFDrawContext *draw, int x0, int y0, int x1, int y1, AVFrame *out, FFDrawColor *color) |
|
static void | draw_trace8 (OscilloscopeContext *s, AVFrame *frame) |
|
static void | draw_trace16 (OscilloscopeContext *s, AVFrame *frame) |
|
static void | update_oscilloscope (AVFilterContext *ctx) |
|
static int | oscilloscope_config_input (AVFilterLink *inlink) |
|
static void | draw_scope (OscilloscopeContext *s, int x0, int y0, int x1, int y1, AVFrame *out, PixelValues *p, int state) |
|
static int | oscilloscope_filter_frame (AVFilterLink *inlink, AVFrame *frame) |
|
static int | oscilloscope_process_command (AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) |
|
◆ OFFSET
◆ FLAGS
◆ FLAGSR
◆ POFFSET
◆ SQR
#define SQR |
( |
|
x | ) |
((x)*(x)) |
◆ OOFFSET
◆ AVFILTER_DEFINE_CLASS() [1/3]
AVFILTER_DEFINE_CLASS |
( |
datascope |
| ) |
|
◆ query_formats()
◆ draw_text()
◆ pick_color8()
◆ pick_color16()
◆ reverse_color8()
◆ reverse_color16()
◆ filter_color2()
◆ filter_color()
◆ filter_mono()
◆ filter_frame()
◆ config_input()
◆ config_output()
◆ AVFILTER_DEFINE_CLASS() [2/3]
AVFILTER_DEFINE_CLASS |
( |
pixscope |
| ) |
|
◆ pixscope_config_input()
◆ pixscope_filter_frame()
◆ AVFILTER_DEFINE_CLASS() [3/3]
AVFILTER_DEFINE_CLASS |
( |
oscilloscope |
| ) |
|
◆ oscilloscope_uninit()
◆ draw_line()
◆ draw_trace8()
◆ draw_trace16()
◆ update_oscilloscope()
◆ oscilloscope_config_input()
◆ draw_scope()
◆ oscilloscope_filter_frame()
◆ oscilloscope_process_command()
static int oscilloscope_process_command |
( |
AVFilterContext * |
ctx, |
|
|
const char * |
cmd, |
|
|
const char * |
args, |
|
|
char * |
res, |
|
|
int |
res_len, |
|
|
int |
flags |
|
) |
| |
|
static |
◆ datascope_options
◆ inputs
Initial value:= {
{
.name = "default",
},
}
Definition at line 401 of file vf_datascope.c.
◆ outputs
Initial value:= {
{
.name = "default",
},
}
Definition at line 411 of file vf_datascope.c.
◆ ff_vf_datascope
Initial value:= {
.name = "datascope",
.priv_class = &datascope_class,
}
Definition at line 420 of file vf_datascope.c.
◆ pixscope_options
◆ pixscope_inputs
Initial value:= {
{
.name = "default",
},
}
Definition at line 678 of file vf_datascope.c.
◆ pixscope_outputs
Initial value:= {
{
.name = "default",
},
}
Definition at line 688 of file vf_datascope.c.
◆ ff_vf_pixscope
Initial value:= {
.name = "pixscope",
.priv_class = &pixscope_class,
}
Definition at line 696 of file vf_datascope.c.
◆ oscilloscope_options
◆ oscilloscope_inputs
Initial value:= {
{
.name = "default",
.needs_writable = 1,
},
}
Definition at line 1082 of file vf_datascope.c.
◆ oscilloscope_outputs
Initial value:= {
{
.name = "default",
},
}
Definition at line 1093 of file vf_datascope.c.
◆ ff_vf_oscilloscope
Initial value:= {
.name = "oscilloscope",
.priv_class = &oscilloscope_class,
}
Definition at line 1101 of file vf_datascope.c.
static const AVFilterPad pixscope_inputs[]
static const AVFilterPad pixscope_outputs[]
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo x
static void oscilloscope_uninit(AVFilterContext *ctx)
static int config_input(AVFilterLink *inlink)
static const AVFilterPad inputs[]
static const AVFilterPad oscilloscope_outputs[]
static int query_formats(AVFilterContext *ctx)
@ AV_OPT_TYPE_IMAGE_SIZE
offset must point to two consecutive integers
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
static int oscilloscope_process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
static const AVFilterPad outputs[]
static const AVFilterPad oscilloscope_inputs[]
static int pixscope_filter_frame(AVFilterLink *inlink, AVFrame *in)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo ug o o w
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
static int config_output(AVFilterLink *outlink)
static int pixscope_config_input(AVFilterLink *inlink)
#define flags(name, subs,...)
static av_cold int uninit(AVCodecContext *avctx)
static int oscilloscope_filter_frame(AVFilterLink *inlink, AVFrame *frame)
static int oscilloscope_config_input(AVFilterLink *inlink)