Go to the documentation of this file.
43 for (
i = 0;
i < 8;
i++) {
48 d1 = (
a - d + 3 +
rnd) >> 3;
49 d2 = (
a - d +
b -
c + 4 -
rnd) >> 3;
53 src[0] = av_clip_uint8(
c + d2);
67 for (
i = 0;
i < 8;
i++) {
72 d1 = (
a - d + 3 +
rnd) >> 3;
73 d2 = (
a - d +
b -
c + 4 -
rnd) >> 3;
76 src[-1] = av_clip_uint8(
b - d2);
77 src[0] = av_clip_uint8(
c + d2);
89 int rnd1 = 4, rnd2 = 3;
90 for (
i = 0;
i < 8;
i++) {
98 top[48] = ((
a * 8) - d1 + rnd1) >> 3;
99 top[56] = ((
b * 8) - d2 + rnd2) >> 3;
100 bottom[0] = ((
c * 8) + d2 + rnd1) >> 3;
101 bottom[8] = ((d * 8) + d1 + rnd2) >> 3;
115 int rnd1 =
flags & 2 ? 3 : 4;
117 for (
i = 0;
i < 8;
i++) {
125 left[6] = ((
a * 8) - d1 + rnd1) >> 3;
126 left[7] = ((
b * 8) - d2 + rnd2) >> 3;
127 right[0] = ((
c * 8) + d2 + rnd1) >> 3;
128 right[1] = ((d * 8) + d1 + rnd2) >> 3;
130 right += right_stride;
151 int a0_sign =
a0 >> 31;
153 a0 = (
a0 ^ a0_sign) - a0_sign;
161 int clip_sign =
clip >> 31;
163 clip = ((
clip ^ clip_sign) - clip_sign) >> 1;
166 int d = 5 * (
a3 -
a0);
167 int d_sign = (d >> 31);
169 d = ((d ^ d_sign) - d_sign) >> 3;
172 if (d_sign ^ clip_sign)
176 d = (d ^ d_sign) - d_sign;
202 for (
i = 0;
i <
len;
i += 4) {
249 dc = (3 *
dc + 1) >> 1;
250 dc = (3 *
dc + 16) >> 5;
252 for (
i = 0;
i < 8;
i++) {
253 dest[0] = av_clip_uint8(dest[0] +
dc);
254 dest[1] = av_clip_uint8(dest[1] +
dc);
255 dest[2] = av_clip_uint8(dest[2] +
dc);
256 dest[3] = av_clip_uint8(dest[3] +
dc);
257 dest[4] = av_clip_uint8(dest[4] +
dc);
258 dest[5] = av_clip_uint8(dest[5] +
dc);
259 dest[6] = av_clip_uint8(dest[6] +
dc);
260 dest[7] = av_clip_uint8(dest[7] +
dc);
273 for (
i = 0;
i < 8;
i++) {
289 dst[0] = (
t5 +
t1) >> 3;
290 dst[1] = (
t6 +
t2) >> 3;
291 dst[2] = (
t7 +
t3) >> 3;
292 dst[3] = (
t8 +
t4) >> 3;
293 dst[4] = (
t8 -
t4) >> 3;
294 dst[5] = (
t7 -
t3) >> 3;
295 dst[6] = (
t6 -
t2) >> 3;
296 dst[7] = (
t5 -
t1) >> 3;
304 for (
i = 0;
i < 8;
i++) {
320 dst[ 0] = (
t5 +
t1) >> 7;
321 dst[ 8] = (
t6 +
t2) >> 7;
322 dst[16] = (
t7 +
t3) >> 7;
323 dst[24] = (
t8 +
t4) >> 7;
324 dst[32] = (
t8 -
t4 + 1) >> 7;
325 dst[40] = (
t7 -
t3 + 1) >> 7;
326 dst[48] = (
t6 -
t2 + 1) >> 7;
327 dst[56] = (
t5 -
t1 + 1) >> 7;
340 dc = (3 *
dc + 1) >> 1;
341 dc = (17 *
dc + 64) >> 7;
343 for (
i = 0;
i < 4;
i++) {
344 dest[0] = av_clip_uint8(dest[0] +
dc);
345 dest[1] = av_clip_uint8(dest[1] +
dc);
346 dest[2] = av_clip_uint8(dest[2] +
dc);
347 dest[3] = av_clip_uint8(dest[3] +
dc);
348 dest[4] = av_clip_uint8(dest[4] +
dc);
349 dest[5] = av_clip_uint8(dest[5] +
dc);
350 dest[6] = av_clip_uint8(dest[6] +
dc);
351 dest[7] = av_clip_uint8(dest[7] +
dc);
365 for (
i = 0;
i < 4;
i++) {
381 dst[0] = (
t5 +
t1) >> 3;
382 dst[1] = (
t6 +
t2) >> 3;
383 dst[2] = (
t7 +
t3) >> 3;
384 dst[3] = (
t8 +
t4) >> 3;
385 dst[4] = (
t8 -
t4) >> 3;
386 dst[5] = (
t7 -
t3) >> 3;
387 dst[6] = (
t6 -
t2) >> 3;
388 dst[7] = (
t5 -
t1) >> 3;
395 for (
i = 0;
i < 8;
i++) {
417 dc = (17 *
dc + 4) >> 3;
418 dc = (12 *
dc + 64) >> 7;
420 for (
i = 0;
i < 8;
i++) {
421 dest[0] = av_clip_uint8(dest[0] +
dc);
422 dest[1] = av_clip_uint8(dest[1] +
dc);
423 dest[2] = av_clip_uint8(dest[2] +
dc);
424 dest[3] = av_clip_uint8(dest[3] +
dc);
438 for (
i = 0;
i < 8;
i++) {
444 dst[0] = (
t1 +
t3) >> 3;
445 dst[1] = (
t2 -
t4) >> 3;
446 dst[2] = (
t2 +
t4) >> 3;
447 dst[3] = (
t1 -
t3) >> 3;
454 for (
i = 0;
i < 4;
i++) {
490 dc = (17 *
dc + 4) >> 3;
491 dc = (17 *
dc + 64) >> 7;
493 for (
i = 0;
i < 4;
i++) {
494 dest[0] = av_clip_uint8(dest[0] +
dc);
495 dest[1] = av_clip_uint8(dest[1] +
dc);
496 dest[2] = av_clip_uint8(dest[2] +
dc);
497 dest[3] = av_clip_uint8(dest[3] +
dc);
510 for (
i = 0;
i < 4;
i++) {
516 dst[0] = (
t1 +
t3) >> 3;
517 dst[1] = (
t2 -
t4) >> 3;
518 dst[2] = (
t2 +
t4) >> 3;
519 dst[3] = (
t1 -
t3) >> 3;
526 for (
i = 0;
i < 4;
i++) {
545 #define VC1_MSPEL_FILTER_16B(DIR, TYPE) \
546 static av_always_inline int vc1_mspel_ ## DIR ## _filter_16bits(const TYPE *src, \
554 return -4 * src[-stride] + 53 * src[0] + \
555 18 * src[stride] - 3 * src[stride * 2]; \
557 return -1 * src[-stride] + 9 * src[0] + \
558 9 * src[stride] - 1 * src[stride * 2]; \
560 return -3 * src[-stride] + 18 * src[0] + \
561 53 * src[stride] - 4 * src[stride * 2]; \
590 #define VC1_MSPEL_MC(OP, OP4, OPNAME) \
591 static av_always_inline void OPNAME ## vc1_mspel_mc(uint8_t *dst, \
592 const uint8_t *src, \
604 static const int shift_value[] = { 0, 5, 1, 5 }; \
605 int shift = (shift_value[hmode] + shift_value[vmode]) >> 1; \
606 int16_t tmp[11 * 8], *tptr = tmp; \
608 r = (1 << (shift - 1)) + rnd - 1; \
611 for (j = 0; j < 8; j++) { \
612 for (i = 0; i < 11; i++) \
613 tptr[i] = (vc1_mspel_ver_filter_16bits(src + i, stride, vmode) + r) >> shift; \
620 for (j = 0; j < 8; j++) { \
621 for (i = 0; i < 8; i++) \
622 OP(dst[i], (vc1_mspel_hor_filter_16bits(tptr + i, 1, hmode) + r) >> 7); \
631 for (j = 0; j < 8; j++) { \
632 for (i = 0; i < 8; i++) \
633 OP(dst[i], vc1_mspel_filter(src + i, stride, vmode, r)); \
642 for (j = 0; j < 8; j++) { \
643 for (i = 0; i < 8; i++) \
644 OP(dst[i], vc1_mspel_filter(src + i, 1, hmode, rnd)); \
649 static av_always_inline void OPNAME ## vc1_mspel_mc_16(uint8_t *dst, \
650 const uint8_t *src, \
662 static const int shift_value[] = { 0, 5, 1, 5 }; \
663 int shift = (shift_value[hmode] + shift_value[vmode]) >> 1; \
664 int16_t tmp[19 * 16], *tptr = tmp; \
666 r = (1 << (shift - 1)) + rnd - 1; \
669 for (j = 0; j < 16; j++) { \
670 for (i = 0; i < 19; i++) \
671 tptr[i] = (vc1_mspel_ver_filter_16bits(src + i, stride, vmode) + r) >> shift; \
678 for (j = 0; j < 16; j++) { \
679 for (i = 0; i < 16; i++) \
680 OP(dst[i], (vc1_mspel_hor_filter_16bits(tptr + i, 1, hmode) + r) >> 7); \
689 for (j = 0; j < 16; j++) { \
690 for (i = 0; i < 16; i++) \
691 OP(dst[i], vc1_mspel_filter(src + i, stride, vmode, r)); \
700 for (j = 0; j < 16; j++) { \
701 for (i = 0; i < 16; i++) \
702 OP(dst[i], vc1_mspel_filter(src + i, 1, hmode, rnd)); \
707 static void OPNAME ## pixels8x8_c(uint8_t *block, const uint8_t *pixels, ptrdiff_t line_size, int rnd){\
710 OP4(*(uint32_t*)(block ), AV_RN32(pixels ));\
711 OP4(*(uint32_t*)(block+4), AV_RN32(pixels+4));\
716 static void OPNAME ## pixels16x16_c(uint8_t *block, const uint8_t *pixels, ptrdiff_t line_size, int rnd){\
718 for(i=0; i<16; i++){\
719 OP4(*(uint32_t*)(block ), AV_RN32(pixels ));\
720 OP4(*(uint32_t*)(block+ 4), AV_RN32(pixels+ 4));\
721 OP4(*(uint32_t*)(block+ 8), AV_RN32(pixels+ 8));\
722 OP4(*(uint32_t*)(block+12), AV_RN32(pixels+12));\
728 #define op_put(a, b) (a) = av_clip_uint8(b)
729 #define op_avg(a, b) (a) = ((a) + av_clip_uint8(b) + 1) >> 1
730 #define op4_avg(a, b) (a) = rnd_avg32(a, b)
731 #define op4_put(a, b) (a) = (b)
738 #define PUT_VC1_MSPEL(a, b) \
739 static void put_vc1_mspel_mc ## a ## b ## _c(uint8_t *dst, \
740 const uint8_t *src, \
741 ptrdiff_t stride, int rnd) \
743 put_vc1_mspel_mc(dst, src, stride, a, b, rnd); \
745 static void avg_vc1_mspel_mc ## a ## b ## _c(uint8_t *dst, \
746 const uint8_t *src, \
747 ptrdiff_t stride, int rnd) \
749 avg_vc1_mspel_mc(dst, src, stride, a, b, rnd); \
751 static void put_vc1_mspel_mc ## a ## b ## _16_c(uint8_t *dst, \
752 const uint8_t *src, \
753 ptrdiff_t stride, int rnd) \
755 put_vc1_mspel_mc_16(dst, src, stride, a, b, rnd); \
757 static void avg_vc1_mspel_mc ## a ## b ## _16_c(uint8_t *dst, \
758 const uint8_t *src, \
759 ptrdiff_t stride, int rnd) \
761 avg_vc1_mspel_mc_16(dst, src, stride, a, b, rnd); \
783 #define chroma_mc(a) \
784 ((A * src[a] + B * src[a + 1] + \
785 C * src[stride + a] + D * src[stride + a + 1] + 32 - 4) >> 6)
788 ptrdiff_t
stride,
int h,
int x,
int y)
790 const int A = (8 -
x) * (8 - y);
791 const int B = (
x) * (8 - y);
792 const int C = (8 -
x) * (y);
793 const int D = (
x) * (y);
798 for (
i = 0;
i <
h;
i++) {
813 ptrdiff_t
stride,
int h,
int x,
int y)
815 const int A = (8 -
x) * (8 - y);
816 const int B = (
x) * (8 - y);
817 const int C = (8 -
x) * (y);
818 const int D = (
x) * (y);
823 for (
i = 0;
i <
h;
i++) {
833 #define avg2(a, b) (((a) + (b) + 1) >> 1)
836 ptrdiff_t
stride,
int h,
int x,
int y)
838 const int A = (8 -
x) * (8 - y);
839 const int B = (
x) * (8 - y);
840 const int C = (8 -
x) * (y);
841 const int D = (
x) * (y);
846 for (
i = 0;
i <
h;
i++) {
862 ptrdiff_t
stride,
int h,
int x,
int y)
864 const int A = (8 -
x) * (8 - y);
865 const int B = (
x) * (8 - y);
866 const int C = (8 -
x) * ( y);
867 const int D = (
x) * ( y);
872 for (
i = 0;
i <
h;
i++) {
882 #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
885 int advance,
int count)
890 *dst++ =
a + ((
b -
a) * (
offset & 0xFFFF) >> 16);
903 int alpha,
int scaled,
911 a1 =
a1 + ((
b1 -
a1) * offset1 >> 16);
917 a2 =
a2 + ((
b2 -
a2) * offset2 >> 16);
929 sprite_v_template(dst, src1a, src1b,
offset, 0,
NULL,
NULL, 0, 0, 1,
width);
932 static void sprite_v_double_noscale_c(
uint8_t *dst,
const uint8_t *src1a,
936 sprite_v_template(dst, src1a,
NULL, 0, 1, src2a,
NULL, 0,
alpha, 0,
width);
939 static void sprite_v_double_onescale_c(
uint8_t *dst,
946 sprite_v_template(dst, src1a, src1b, offset1, 1, src2a,
NULL, 0,
alpha, 1,
950 static void sprite_v_double_twoscale_c(
uint8_t *dst,
960 sprite_v_template(dst, src1a, src1b, offset1, 1, src2a, src2b, offset2,
965 #define FN_ASSIGN(X, Y) \
966 dsp->put_vc1_mspel_pixels_tab[1][X+4*Y] = put_vc1_mspel_mc##X##Y##_c; \
967 dsp->put_vc1_mspel_pixels_tab[0][X+4*Y] = put_vc1_mspel_mc##X##Y##_16_c; \
968 dsp->avg_vc1_mspel_pixels_tab[1][X+4*Y] = avg_vc1_mspel_mc##X##Y##_c; \
969 dsp->avg_vc1_mspel_pixels_tab[0][X+4*Y] = avg_vc1_mspel_mc##X##Y##_16_c
1022 #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
void(* sprite_v_double_noscale)(uint8_t *dst, const uint8_t *src1a, const uint8_t *src2a, int alpha, int width)
static void vc1_v_loop_filter8_c(uint8_t *src, int stride, int pq)
#define VC1_MSPEL_MC(OP, OP4, OPNAME)
static av_always_inline int vc1_mspel_filter(const uint8_t *src, int stride, int mode, int r)
static void vc1_inv_trans_8x8_c(int16_t block[64])
static void vc1_inv_trans_4x8_dc_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
av_cold void ff_vc1dsp_init_aarch64(VC1DSPContext *dsp)
void(* vc1_h_loop_filter8)(uint8_t *src, int stride, int pq)
static void vc1_inv_trans_8x4_dc_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
void(* vc1_inv_trans_4x4)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
vc1op_pixels_func avg_vc1_mspel_pixels_tab[2][16]
h264_chroma_mc_func avg_no_rnd_vc1_chroma_pixels_tab[3]
static void vc1_v_overlap_c(uint8_t *src, int stride)
void(* vc1_h_overlap)(uint8_t *src, int stride)
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
int ff_startcode_find_candidate_c(const uint8_t *buf, int size)
static void vc1_loop_filter(uint8_t *src, int step, int stride, int len, int pq)
VC-1 in-loop deblocking filter.
static void vc1_h_overlap_c(uint8_t *src, int stride)
void(* vc1_inv_trans_8x8_dc)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
av_cold void ff_vc1dsp_init_mips(VC1DSPContext *dsp)
h264_chroma_mc_func put_no_rnd_vc1_chroma_pixels_tab[3]
void(* vc1_inv_trans_4x4_dc)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
av_cold void ff_vc1dsp_init_arm(VC1DSPContext *dsp)
static double b1(void *priv, double x, double y)
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo x
static void vc1_inv_trans_8x4_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
s EdgeDetect Foobar g libavfilter vf_edgedetect c libavfilter vf_foobar c edit libavfilter and add an entry for foobar following the pattern of the other filters edit libavfilter allfilters and add an entry for foobar following the pattern of the other filters configure make j< whatever > ffmpeg ffmpeg i you should get a foobar png with Lena edge detected That s your new playground is ready Some little details about what s going which in turn will define variables for the build system and the C
void(* vc1_inv_trans_8x4_dc)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
void(* sprite_v_double_twoscale)(uint8_t *dst, const uint8_t *src1a, const uint8_t *src1b, int offset1, const uint8_t *src2a, const uint8_t *src2b, int offset2, int alpha, int width)
void(* sprite_h)(uint8_t *dst, const uint8_t *src, int offset, int advance, int count)
void(* vc1_v_loop_filter16)(uint8_t *src, int stride, int pq)
static void vc1_v_loop_filter16_c(uint8_t *src, int stride, int pq)
static void put_no_rnd_vc1_chroma_mc8_c(uint8_t *dst, uint8_t *src, ptrdiff_t stride, int h, int x, int y)
void(* vc1_v_overlap)(uint8_t *src, int stride)
static void avg_no_rnd_vc1_chroma_mc4_c(uint8_t *dst, uint8_t *src, ptrdiff_t stride, int h, int x, int y)
static void avg_no_rnd_vc1_chroma_mc8_c(uint8_t *dst, uint8_t *src, ptrdiff_t stride, int h, int x, int y)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
void(* vc1_h_loop_filter4)(uint8_t *src, int stride, int pq)
static void vc1_inv_trans_8x8_dc_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
void(* vc1_inv_trans_8x4)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
static void vc1_h_loop_filter16_c(uint8_t *src, int stride, int pq)
void(* vc1_h_loop_filter16)(uint8_t *src, int stride, int pq)
void(* vc1_inv_trans_4x8_dc)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
void(* vc1_h_s_overlap)(int16_t *left, int16_t *right, int left_stride, int right_stride, int flags)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
void ff_vc1dsp_init_x86(VC1DSPContext *dsp)
#define VC1_MSPEL_FILTER_16B(DIR, TYPE)
static void vc1_v_loop_filter4_c(uint8_t *src, int stride, int pq)
void(* vc1_v_loop_filter4)(uint8_t *src, int stride, int pq)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
#define PUT_VC1_MSPEL(a, b)
static void vc1_inv_trans_4x8_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
static void vc1_inv_trans_4x4_dc_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
static double b2(void *priv, double x, double y)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
void(* sprite_v_single)(uint8_t *dst, const uint8_t *src1a, const uint8_t *src1b, int offset, int width)
void(* vc1_inv_trans_8x8)(int16_t *b)
int(* startcode_find_candidate)(const uint8_t *buf, int size)
Search buf from the start for up to size bytes.
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
void(* sprite_v_double_onescale)(uint8_t *dst, const uint8_t *src1a, const uint8_t *src1b, int offset1, const uint8_t *src2a, int alpha, int width)
#define i(width, name, range_min, range_max)
static av_always_inline int vc1_filter_line(uint8_t *src, int stride, int pq)
VC-1 in-loop deblocking filter for one line.
static void vc1_h_loop_filter8_c(uint8_t *src, int stride, int pq)
vc1op_pixels_func put_vc1_mspel_pixels_tab[2][16]
static void vc1_v_s_overlap_c(int16_t *top, int16_t *bottom)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
void(* vc1_v_loop_filter8)(uint8_t *src, int stride, int pq)
static void vc1_inv_trans_4x4_c(uint8_t *dest, ptrdiff_t stride, int16_t *block)
static void vc1_h_s_overlap_c(int16_t *left, int16_t *right, int left_stride, int right_stride, int flags)
static void put_no_rnd_vc1_chroma_mc4_c(uint8_t *dst, uint8_t *src, ptrdiff_t stride, int h, int x, int y)
av_cold void ff_vc1dsp_init_ppc(VC1DSPContext *dsp)
static const int16_t alpha[]
av_cold void ff_vc1dsp_init(VC1DSPContext *dsp)
#define flags(name, subs,...)
The exact code depends on how similar the blocks are and how related they are to the block
void(* vc1_inv_trans_4x8)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
static double clip(void *opaque, double val)
Clip value val in the minval - maxval range.
void(* vc1_v_s_overlap)(int16_t *top, int16_t *bottom)
static void vc1_h_loop_filter4_c(uint8_t *src, int stride, int pq)