Go to the documentation of this file.
54 #define OFFSET(x) offsetof(DecimateContext, x)
55 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
58 {
"max",
"set the maximum number of consecutive dropped frames (positive), or the minimum interval between dropped frames (negative)",
80 int t = (
w/16)*(
h/16)*decimate->
frac;
83 for (y = 0; y <
h-7; y += 4) {
84 for (
x = 8;
x <
w-7;
x += 4) {
85 d = decimate->
sad(cur + y*cur_linesize +
x, cur_linesize,
86 ref + y*ref_linesize +
x, ref_linesize);
87 if (d > decimate->
hi) {
91 if (d > decimate->
lo) {
122 for (plane = 0;
ref->data[plane] &&
ref->linesize[plane]; plane++) {
128 int vsub = plane == 1 || plane == 2 ? decimate->
vsub : 0;
129 int hsub = plane == 1 || plane == 2 ? decimate->
hsub : 0;
132 ref->data[plane],
ref->linesize[plane],
216 "%s pts:%s pts_time:%s drop_count:%d\n",
246 .
name =
"mpdecimate",
251 .priv_class = &mpdecimate_class,
AVPixelFormat
Pixel format.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
int(* av_pixelutils_sad_fn)(const uint8_t *src1, ptrdiff_t stride1, const uint8_t *src2, ptrdiff_t stride2)
Sum of abs(src1[x] - src2[x])
This structure describes decoded (raw) audio or video data.
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
#define AV_LOG_VERBOSE
Detailed information.
int vsub
chroma subsampling values
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
const char * name
Filter name.
A link between two filters.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
int drop_count
if positive: number of frames sequentially dropped if negative: number of sequential frames which wer...
static int config_input(AVFilterLink *inlink)
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo x
A filter pad used for either input or output.
static int filter_frame(AVFilterLink *inlink, AVFrame *cur)
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
#define AV_CEIL_RSHIFT(a, b)
static const AVFilterPad outputs[]
static enum AVPixelFormat pix_fmts[]
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
uint8_t log2_chroma_w
Amount to shift the luma width right to find the chroma width.
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
static int query_formats(AVFilterContext *ctx)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Describe the class of an AVClass context structure.
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
AVFrame * ref
reference picture
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several inputs
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
#define av_ts2timestr(ts, tb)
Convenience macro, the return value should be used only directly in function arguments but never stan...
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
AVFilter ff_vf_mpdecimate
static const AVOption mpdecimate_options[]
static av_cold int init(AVFilterContext *ctx)
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
av_pixelutils_sad_fn sad
sum of absolute difference function
int max_drop_count
if positive: maximum number of sequential frames to drop if negative: minimum number of frames betwee...
float frac
threshold of changed pixels over the total fraction
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
const char * name
Pad name.
static const AVFilterPad mpdecimate_outputs[]
int hi
lower and higher threshold number of differences values for 8x8 blocks
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo ug o o w
AVFILTER_DEFINE_CLASS(mpdecimate)
av_pixelutils_sad_fn av_pixelutils_get_sad_fn(int w_bits, int h_bits, int aligned, void *log_ctx)
Get a potentially optimized pointer to a Sum-of-absolute-differences function (see the av_pixelutils_...
static int ref[MAX_W *MAX_W]
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
static const AVFilterPad mpdecimate_inputs[]
static av_cold void uninit(AVFilterContext *ctx)
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
#define av_ts2str(ts)
Convenience macro, the return value should be used only directly in function arguments but never stan...
static int decimate_frame(AVFilterContext *ctx, AVFrame *cur, AVFrame *ref)
Tell if the frame should be decimated, for example if it is no much different with respect to the ref...
uint8_t log2_chroma_h
Amount to shift the luma height right to find the chroma height.
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
static int diff_planes(AVFilterContext *ctx, uint8_t *cur, int cur_linesize, uint8_t *ref, int ref_linesize, int w, int h)
Return 1 if the two planes are different, 0 otherwise.