Go to the documentation of this file.
93 #define WEAK_HFILTER(name, type, ldiv) \
94 static void deblockh##name##_weak(uint8_t *dstp, ptrdiff_t dst_linesize, int block, \
95 int ath, int bth, int gth, int dth, int max) \
100 dst = (type *)dstp; \
101 dst_linesize /= ldiv; \
103 for (x = 0; x < block; x++) { \
104 int delta = dst[x] - dst[x - dst_linesize]; \
105 int A, B, C, D, a, b, c, d; \
107 if (FFABS(delta) >= ath || \
108 FFABS(dst[x - 1 * dst_linesize] - dst[x - 2 * dst_linesize]) >= bth || \
109 FFABS(dst[x + 0 * dst_linesize] - dst[x + 1 * dst_linesize]) >= gth) \
112 A = dst[x - 2 * dst_linesize]; \
113 B = dst[x - 1 * dst_linesize]; \
114 C = dst[x + 0 * dst_linesize]; \
115 D = dst[x + 1 * dst_linesize]; \
122 dst[x - 2 * dst_linesize] = av_clip(a, 0, max); \
123 dst[x - 1 * dst_linesize] = av_clip(b, 0, max); \
124 dst[x + 0 * dst_linesize] = av_clip(c, 0, max); \
125 dst[x + 1 * dst_linesize] = av_clip(d, 0, max); \
132 #define WEAK_VFILTER(name, type, ldiv) \
133 static void deblockv##name##_weak(uint8_t *dstp, ptrdiff_t dst_linesize, int block, \
134 int ath, int bth, int gth, int dth, int max) \
139 dst = (type *)dstp; \
140 dst_linesize /= ldiv; \
142 for (y = 0; y < block; y++) { \
143 int delta = dst[0] - dst[-1]; \
144 int A, B, C, D, a, b, c, d; \
146 if (FFABS(delta) >= ath || \
147 FFABS(dst[-1] - dst[-2]) >= bth || \
148 FFABS(dst[0] - dst[1]) >= gth) \
161 dst[-2] = av_clip(a, 0, max); \
162 dst[-1] = av_clip(b, 0, max); \
163 dst[+0] = av_clip(c, 0, max); \
164 dst[+1] = av_clip(d, 0, max); \
166 dst += dst_linesize; \
173 #define STRONG_HFILTER(name, type, ldiv) \
174 static void deblockh##name##_strong(uint8_t *dstp, ptrdiff_t dst_linesize, int block,\
175 int ath, int bth, int gth, int dth, int max) \
180 dst = (type *)dstp; \
181 dst_linesize /= ldiv; \
183 for (x = 0; x < block; x++) { \
184 int A, B, C, D, E, F, a, b, c, d, e, f; \
185 int delta = dst[x] - dst[x - dst_linesize]; \
187 if (FFABS(delta) >= ath || \
188 FFABS(dst[x - 1 * dst_linesize] - dst[x - 2 * dst_linesize]) >= bth || \
189 FFABS(dst[x + 1 * dst_linesize] - dst[x + 2 * dst_linesize]) >= gth || \
190 FFABS(dst[x + 0 * dst_linesize] - dst[x + 1 * dst_linesize]) >= dth) \
193 A = dst[x - 3 * dst_linesize]; \
194 B = dst[x - 2 * dst_linesize]; \
195 C = dst[x - 1 * dst_linesize]; \
196 D = dst[x + 0 * dst_linesize]; \
197 E = dst[x + 1 * dst_linesize]; \
198 F = dst[x + 2 * dst_linesize]; \
207 dst[x - 3 * dst_linesize] = av_clip(a, 0, max); \
208 dst[x - 2 * dst_linesize] = av_clip(b, 0, max); \
209 dst[x - 1 * dst_linesize] = av_clip(c, 0, max); \
210 dst[x + 0 * dst_linesize] = av_clip(d, 0, max); \
211 dst[x + 1 * dst_linesize] = av_clip(e, 0, max); \
212 dst[x + 2 * dst_linesize] = av_clip(f, 0, max); \
219 #define STRONG_VFILTER(name, type, ldiv) \
220 static void deblockv##name##_strong(uint8_t *dstp, ptrdiff_t dst_linesize, int block,\
221 int ath, int bth, int gth, int dth, int max) \
226 dst = (type *)dstp; \
227 dst_linesize /= ldiv; \
229 for (y = 0; y < block; y++) { \
230 int A, B, C, D, E, F, a, b, c, d, e, f; \
231 int delta = dst[0] - dst[-1]; \
233 if (FFABS(delta) >= ath || \
234 FFABS(dst[-1] - dst[-2]) >= bth || \
235 FFABS(dst[+1] - dst[+2]) >= gth || \
236 FFABS(dst[+0] - dst[+1]) >= dth) \
253 dst[-3] = av_clip(a, 0, max); \
254 dst[-2] = av_clip(b, 0, max); \
255 dst[-1] = av_clip(c, 0, max); \
256 dst[+0] = av_clip(d, 0, max); \
257 dst[+1] = av_clip(e, 0, max); \
258 dst[+2] = av_clip(f, 0, max); \
260 dst += dst_linesize; \
277 s->depth =
s->desc->comp[0].depth;
278 s->bpc = (
s->depth + 7) / 8;
279 s->max = (1 <<
s->depth) - 1;
280 s->ath =
s->alpha *
s->max;
281 s->bth =
s->beta *
s->max;
282 s->gth =
s->gamma *
s->max;
283 s->dth =
s->delta *
s->max;
285 if (
s->depth <= 8 &&
s->filter ==
WEAK) {
286 s->deblockh = deblockh8_weak;
287 s->deblockv = deblockv8_weak;
288 }
else if (
s->depth >= 8 &&
s->filter ==
WEAK) {
289 s->deblockh = deblockh16_weak;
290 s->deblockv = deblockv16_weak;
292 if (
s->depth <= 8 &&
s->filter ==
STRONG) {
293 s->deblockh = deblockh8_strong;
294 s->deblockv = deblockv8_strong;
295 }
else if (
s->depth >= 8 &&
s->filter ==
STRONG) {
296 s->deblockh = deblockh16_strong;
297 s->deblockv = deblockv16_strong;
301 s->planewidth[0] =
s->planewidth[3] =
inlink->w;
304 s->planeheight[0] =
s->planeheight[3] =
inlink->h;
314 const int block =
s->block;
329 for (plane = 0; plane <
s->nb_planes; plane++) {
330 const int width =
s->planewidth[plane];
331 const int height =
s->planeheight[plane];
337 src,
in->linesize[plane],
340 if (!((1 << plane) &
s->planes))
344 s->deblockv(dst +
x *
s->bpc,
out->linesize[plane],
348 dst +=
out->linesize[plane] *
block;
350 s->deblockh(dst,
out->linesize[plane],
352 s->ath,
s->bth,
s->gth,
s->dth,
s->max);
355 s->deblockh(dst +
x *
s->bpc,
out->linesize[plane],
357 s->ath,
s->bth,
s->gth,
s->dth,
s->max);
358 s->deblockv(dst +
x *
s->bpc,
out->linesize[plane],
360 s->ath,
s->bth,
s->gth,
s->dth,
s->max);
370 #define OFFSET(x) offsetof(DeblockContext, x)
371 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_FILTERING_PARAM
410 .priv_class = &deblock_class,
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
#define AV_PIX_FMT_YUVA422P16
#define AV_PIX_FMT_GBRAP16
AVPixelFormat
Pixel format.
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
The exact code depends on how similar the blocks are and how related they are to the and needs to apply these operations to the correct inlink or outlink if there are several Macros are available to factor that when no extra processing is inlink
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define AV_PIX_FMT_YUVA422P9
This structure describes decoded (raw) audio or video data.
#define AV_PIX_FMT_YUVA420P16
static const AVFilterPad outputs[]
#define AV_PIX_FMT_YUVA420P10
#define AV_PIX_FMT_YUV420P10
static const AVFilterPad inputs[]
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
filter_frame For filters that do not use the this method is called when a frame is pushed to the filter s input It can be called at any time except in a reentrant way If the input frame is enough to produce then the filter should push the output frames on the output link immediately As an exception to the previous rule if the input frame is enough to produce several output frames then the filter needs output only at least one per link The additional frames can be left buffered in the filter
const char * name
Filter name.
A link between two filters.
#define AV_PIX_FMT_YUVA422P10
void av_image_copy_plane(uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize, int bytewidth, int height)
Copy image plane from src to dst.
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
#define AV_PIX_FMT_YUVA420P9
#define AV_PIX_FMT_GBRP14
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
static const AVOption deblock_options[]
#define AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_YUVA444P16
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo x
#define AV_PIX_FMT_YUV422P9
#define AV_PIX_FMT_GRAY16
A filter pad used for either input or output.
#define AV_PIX_FMT_YUV444P10
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
static int query_formats(AVFilterContext *ctx)
#define AV_PIX_FMT_YUV422P16
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
#define AV_PIX_FMT_GBRAP10
#define AV_PIX_FMT_GBRAP12
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
#define AV_PIX_FMT_YUV444P16
#define AV_CEIL_RSHIFT(a, b)
#define AV_PIX_FMT_YUVA444P12
#define AV_PIX_FMT_YUV420P9
#define AV_PIX_FMT_YUV420P16
#define AV_PIX_FMT_GRAY14
#define STRONG_VFILTER(name, type, ldiv)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
#define AV_PIX_FMT_GRAY10
#define AV_PIX_FMT_GBRP16
Describe the class of an AVClass context structure.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
#define STRONG_HFILTER(name, type, ldiv)
static int config_output(AVFilterLink *outlink)
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
void(* deblockh)(uint8_t *dst, ptrdiff_t dst_linesize, int block, int ath, int bth, int gth, int dth, int max)
#define AV_PIX_FMT_YUV422P10
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
AVFILTER_DEFINE_CLASS(deblock)
#define AV_PIX_FMT_YUV422P12
#define WEAK_VFILTER(name, type, ldiv)
#define AV_PIX_FMT_YUV444P12
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
#define AV_PIX_FMT_YUVA444P10
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
static const struct @315 planes[]
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
int w
agreed upon image width
#define AV_PIX_FMT_GBRP12
void(* deblockv)(uint8_t *dst, ptrdiff_t dst_linesize, int block, int ath, int bth, int gth, int dth, int max)
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
const char * name
Pad name.
#define AV_PIX_FMT_YUV444P9
#define AV_PIX_FMT_YUVA444P9
#define AV_PIX_FMT_YUV420P12
#define AV_PIX_FMT_YUV422P14
typedef void(RENAME(mix_any_func_type))
int h
agreed upon image height
#define AV_PIX_FMT_YUVA422P12
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
#define WEAK_HFILTER(name, type, ldiv)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static const int16_t alpha[]
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
#define flags(name, subs,...)
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
The exact code depends on how similar the blocks are and how related they are to the block
const AVPixFmtDescriptor * desc
#define AV_PIX_FMT_YUV440P12
#define AV_PIX_FMT_YUV444P14
#define AV_PIX_FMT_GRAY12
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
#define AV_PIX_FMT_YUV420P14