FFmpeg  4.3
tiny_ssim.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2003-2013 Loren Merritt
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110 USA
17  */
18 /*
19  * tiny_ssim.c
20  * Computes the Structural Similarity Metric between two rawYV12 video files.
21  * original algorithm:
22  * Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli,
23  * "Image quality assessment: From error visibility to structural similarity,"
24  * IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.
25  *
26  * To improve speed, this implementation uses the standard approximation of
27  * overlapped 8x8 block sums, rather than the original gaussian weights.
28  */
29 
30 #include "config.h"
31 #include <inttypes.h>
32 #include <limits.h>
33 #include <math.h>
34 #include <stdio.h>
35 #include <stdlib.h>
36 
37 #define FFSWAP(type,a,b) do{type SWAP_tmp= b; b= a; a= SWAP_tmp;}while(0)
38 #define FFMIN(a,b) ((a) > (b) ? (b) : (a))
39 
40 #define BIT_DEPTH 8
41 #define PIXEL_MAX ((1 << BIT_DEPTH)-1)
42 typedef uint8_t pixel;
43 
44 /****************************************************************************
45  * structural similarity metric
46  ****************************************************************************/
47 static void ssim_4x4x2_core( const pixel *pix1, intptr_t stride1,
48  const pixel *pix2, intptr_t stride2,
49  int sums[2][4] )
50 {
51  int x,y,z;
52 
53  for( z = 0; z < 2; z++ )
54  {
55  uint32_t s1 = 0, s2 = 0, ss = 0, s12 = 0;
56  for( y = 0; y < 4; y++ )
57  for( x = 0; x < 4; x++ )
58  {
59  int a = pix1[x+y*stride1];
60  int b = pix2[x+y*stride2];
61  s1 += a;
62  s2 += b;
63  ss += a*a;
64  ss += b*b;
65  s12 += a*b;
66  }
67  sums[z][0] = s1;
68  sums[z][1] = s2;
69  sums[z][2] = ss;
70  sums[z][3] = s12;
71  pix1 += 4;
72  pix2 += 4;
73  }
74 }
75 
76 static float ssim_end1( int s1, int s2, int ss, int s12 )
77 {
78 /* Maximum value for 10-bit is: ss*64 = (2^10-1)^2*16*4*64 = 4286582784, which will overflow in some cases.
79  * s1*s1, s2*s2, and s1*s2 also obtain this value for edge cases: ((2^10-1)*16*4)^2 = 4286582784.
80  * Maximum value for 9-bit is: ss*64 = (2^9-1)^2*16*4*64 = 1069551616, which will not overflow. */
81 #if BIT_DEPTH > 9
82  typedef float type;
83  static const float ssim_c1 = .01*.01*PIXEL_MAX*PIXEL_MAX*64;
84  static const float ssim_c2 = .03*.03*PIXEL_MAX*PIXEL_MAX*64*63;
85 #else
86  typedef int type;
87  static const int ssim_c1 = (int)(.01*.01*PIXEL_MAX*PIXEL_MAX*64 + .5);
88  static const int ssim_c2 = (int)(.03*.03*PIXEL_MAX*PIXEL_MAX*64*63 + .5);
89 #endif
90  type fs1 = s1;
91  type fs2 = s2;
92  type fss = ss;
93  type fs12 = s12;
94  type vars = fss*64 - fs1*fs1 - fs2*fs2;
95  type covar = fs12*64 - fs1*fs2;
96  return (float)(2*fs1*fs2 + ssim_c1) * (float)(2*covar + ssim_c2)
97  / ((float)(fs1*fs1 + fs2*fs2 + ssim_c1) * (float)(vars + ssim_c2));
98 }
99 
100 static float ssim_end4( int sum0[5][4], int sum1[5][4], int width )
101 {
102  float ssim = 0.0;
103  int i;
104 
105  for( i = 0; i < width; i++ )
106  ssim += ssim_end1( sum0[i][0] + sum0[i+1][0] + sum1[i][0] + sum1[i+1][0],
107  sum0[i][1] + sum0[i+1][1] + sum1[i][1] + sum1[i+1][1],
108  sum0[i][2] + sum0[i+1][2] + sum1[i][2] + sum1[i+1][2],
109  sum0[i][3] + sum0[i+1][3] + sum1[i][3] + sum1[i+1][3] );
110  return ssim;
111 }
112 
114  pixel *pix1, intptr_t stride1,
115  pixel *pix2, intptr_t stride2,
116  int width, int height, void *buf, int *cnt )
117 {
118  int z = 0;
119  int x, y;
120  float ssim = 0.0;
121  int (*sum0)[4] = buf;
122  int (*sum1)[4] = sum0 + (width >> 2) + 3;
123  width >>= 2;
124  height >>= 2;
125  for( y = 1; y < height; y++ )
126  {
127  for( ; z <= y; z++ )
128  {
129  FFSWAP( void*, sum0, sum1 );
130  for( x = 0; x < width; x+=2 )
131  ssim_4x4x2_core( &pix1[4*(x+z*stride1)], stride1, &pix2[4*(x+z*stride2)], stride2, &sum0[x] );
132  }
133  for( x = 0; x < width-1; x += 4 )
134  ssim += ssim_end4( sum0+x, sum1+x, FFMIN(4,width-x-1) );
135  }
136 // *cnt = (height-1) * (width-1);
137  return ssim / ((height-1) * (width-1));
138 }
139 
140 
141 uint64_t ssd_plane( const uint8_t *pix1, const uint8_t *pix2, int size )
142 {
143  uint64_t ssd = 0;
144  int i;
145  for( i=0; i<size; i++ )
146  {
147  int d = pix1[i] - pix2[i];
148  ssd += d*d;
149  }
150  return ssd;
151 }
152 
153 static double ssd_to_psnr( uint64_t ssd, uint64_t denom )
154 {
155  return -10*log((double)ssd/(denom*255*255))/log(10);
156 }
157 
158 static double ssim_db( double ssim, double weight )
159 {
160  return 10*(log(weight)/log(10)-log(weight-ssim)/log(10));
161 }
162 
163 static void print_results(uint64_t ssd[3], double ssim[3], int frames, int w, int h)
164 {
165  printf( "PSNR Y:%.3f U:%.3f V:%.3f All:%.3f | ",
166  ssd_to_psnr( ssd[0], (uint64_t)frames*w*h ),
167  ssd_to_psnr( ssd[1], (uint64_t)frames*w*h/4 ),
168  ssd_to_psnr( ssd[2], (uint64_t)frames*w*h/4 ),
169  ssd_to_psnr( ssd[0] + ssd[1] + ssd[2], (uint64_t)frames*w*h*3/2 ) );
170  printf( "SSIM Y:%.5f U:%.5f V:%.5f All:%.5f (%.5f)",
171  ssim[0] / frames,
172  ssim[1] / frames,
173  ssim[2] / frames,
174  (ssim[0]*4 + ssim[1] + ssim[2]) / (frames*6),
175  ssim_db(ssim[0] * 4 + ssim[1] + ssim[2], frames*6));
176 }
177 
178 int main(int argc, char* argv[])
179 {
180  FILE *f[2];
181  uint8_t *buf[2], *plane[2][3];
182  int *temp;
183  uint64_t ssd[3] = {0,0,0};
184  double ssim[3] = {0,0,0};
185  int frame_size, w, h;
186  int frames, seek;
187  int i;
188 
189  if( argc<4 || 2 != sscanf(argv[3], "%dx%d", &w, &h) )
190  {
191  printf("tiny_ssim <file1.yuv> <file2.yuv> <width>x<height> [<seek>]\n");
192  return -1;
193  }
194 
195  f[0] = fopen(argv[1], "rb");
196  f[1] = fopen(argv[2], "rb");
197  sscanf(argv[3], "%dx%d", &w, &h);
198 
199  if (w<=0 || h<=0 || w*(int64_t)h >= INT_MAX/3 || 2LL*w+12 >= INT_MAX / sizeof(*temp)) {
200  fprintf(stderr, "Dimensions are too large, or invalid\n");
201  return -2;
202  }
203 
204  frame_size = w*h*3LL/2;
205  for( i=0; i<2; i++ )
206  {
207  buf[i] = malloc(frame_size);
208  plane[i][0] = buf[i];
209  plane[i][1] = plane[i][0] + w*h;
210  plane[i][2] = plane[i][1] + w*h/4;
211  }
212  temp = malloc((2*w+12)*sizeof(*temp));
213  seek = argc<5 ? 0 : atoi(argv[4]);
214  fseek(f[seek<0], seek < 0 ? -seek : seek, SEEK_SET);
215 
216  for( frames=0;; frames++ )
217  {
218  uint64_t ssd_one[3];
219  double ssim_one[3];
220  if( fread(buf[0], frame_size, 1, f[0]) != 1) break;
221  if( fread(buf[1], frame_size, 1, f[1]) != 1) break;
222  for( i=0; i<3; i++ )
223  {
224  ssd_one[i] = ssd_plane ( plane[0][i], plane[1][i], w*h>>2*!!i );
225  ssim_one[i] = ssim_plane( plane[0][i], w>>!!i,
226  plane[1][i], w>>!!i,
227  w>>!!i, h>>!!i, temp, NULL );
228  ssd[i] += ssd_one[i];
229  ssim[i] += ssim_one[i];
230  }
231 
232  printf("Frame %d | ", frames);
233  print_results(ssd_one, ssim_one, 1, w, h);
234  printf(" \r");
235  fflush(stdout);
236  }
237 
238  if( !frames ) return 0;
239 
240  printf("Total %d frames | ", frames);
241  print_results(ssd, ssim, frames, w, h);
242  printf("\n");
243 
244  return 0;
245 }
FFMIN
#define FFMIN(a, b)
Definition: tiny_ssim.c:38
print_results
static void print_results(uint64_t ssd[3], double ssim[3], int frames, int w, int h)
Definition: tiny_ssim.c:163
ssim_plane
float ssim_plane(pixel *pix1, intptr_t stride1, pixel *pix2, intptr_t stride2, int width, int height, void *buf, int *cnt)
Definition: tiny_ssim.c:113
b
#define b
Definition: input.c:41
FFSWAP
#define FFSWAP(type, a, b)
Definition: tiny_ssim.c:37
frames
if it could not because there are no more frames
Definition: filter_design.txt:266
x
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo x
Definition: fate.txt:150
type
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
Definition: writing_filters.txt:86
ss
#define ss(width, name, subs,...)
Definition: cbs_vp9.c:261
PIXEL_MAX
#define PIXEL_MAX
Definition: tiny_ssim.c:41
width
#define width
main
int main(int argc, char *argv[])
Definition: tiny_ssim.c:178
frame_size
int frame_size
Definition: mxfenc.c:2139
s1
#define s1
Definition: regdef.h:38
limits.h
f
#define f(width, name)
Definition: cbs_vp9.c:255
NULL
#define NULL
Definition: coverity.c:32
pixel
uint8_t pixel
Definition: tiny_ssim.c:42
vars
static const uint8_t vars[2][12]
Definition: camellia.c:179
ssim_db
static double ssim_db(double ssim, double weight)
Definition: tiny_ssim.c:158
weight
static int weight(int i, int blen, int offset)
Definition: diracdec.c:1560
s2
#define s2
Definition: regdef.h:39
size
int size
Definition: twinvq_data.h:11134
printf
printf("static const uint8_t my_array[100] = {\n")
height
#define height
a
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
Definition: undefined.txt:41
ssd_plane
uint64_t ssd_plane(const uint8_t *pix1, const uint8_t *pix2, int size)
Definition: tiny_ssim.c:141
ssd_to_psnr
static double ssd_to_psnr(uint64_t ssd, uint64_t denom)
Definition: tiny_ssim.c:153
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
uint8_t
uint8_t
Definition: audio_convert.c:194
ssim_end4
static float ssim_end4(int sum0[5][4], int sum1[5][4], int width)
Definition: tiny_ssim.c:100
w
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new please make sure they are as small as space on each network bandwidth and so on benefit from smaller test cases Also keep in mind older checkouts use existing sample that means in practice generally do not remove or overwrite files as it likely would break older checkouts or releases Also all needed samples for a commit should be ideally before the push If you need an account for frequently uploading samples or you wish to help others by doing that send a mail to ffmpeg devel rsync vauL Duo ug o o w
Definition: fate.txt:150
ssim_4x4x2_core
static void ssim_4x4x2_core(const pixel *pix1, intptr_t stride1, const pixel *pix2, intptr_t stride2, int sums[2][4])
Definition: tiny_ssim.c:47
config.h
temp
else temp
Definition: vf_mcdeint.c:256
h
h
Definition: vp9dsp_template.c:2038
int
int
Definition: ffmpeg_filter.c:192
ssim_end1
static float ssim_end1(int s1, int s2, int ss, int s12)
Definition: tiny_ssim.c:76