FFmpeg  4.3
ac3dsp_mips.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2012
3  * MIPS Technologies, Inc., California.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  * notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  * notice, this list of conditions and the following disclaimer in the
12  * documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the MIPS Technologies, Inc., nor the names of its
14  * contributors may be used to endorse or promote products derived from
15  * this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE MIPS TECHNOLOGIES, INC. ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE MIPS TECHNOLOGIES, INC. BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * Authors: Branimir Vasic (bvasic@mips.com)
30  * Nedeljko Babic (nbabic@mips.com)
31  *
32  * Various AC-3 DSP Utils optimized for MIPS
33  *
34  * This file is part of FFmpeg.
35  *
36  * FFmpeg is free software; you can redistribute it and/or
37  * modify it under the terms of the GNU Lesser General Public
38  * License as published by the Free Software Foundation; either
39  * version 2.1 of the License, or (at your option) any later version.
40  *
41  * FFmpeg is distributed in the hope that it will be useful,
42  * but WITHOUT ANY WARRANTY; without even the implied warranty of
43  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
44  * Lesser General Public License for more details.
45  *
46  * You should have received a copy of the GNU Lesser General Public
47  * License along with FFmpeg; if not, write to the Free Software
48  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
49  */
50 
51 /**
52  * @file
53  * Reference: libavcodec/ac3dsp.c
54  */
55 
56 #include "config.h"
57 #include "libavcodec/ac3dsp.h"
58 #include "libavcodec/ac3.h"
59 #include "libavutil/mips/asmdefs.h"
60 
61 #if HAVE_INLINE_ASM
62 #if HAVE_MIPSDSP
63 static void ac3_bit_alloc_calc_bap_mips(int16_t *mask, int16_t *psd,
64  int start, int end,
65  int snr_offset, int floor,
66  const uint8_t *bap_tab, uint8_t *bap)
67 {
68  int band, band_end, cond;
69  int m, address1, address2;
70  int16_t *psd1, *psd_end;
71  uint8_t *bap1;
72 
73  if (snr_offset == -960) {
74  memset(bap, 0, AC3_MAX_COEFS);
75  return;
76  }
77 
78  psd1 = &psd[start];
79  bap1 = &bap[start];
80  band = ff_ac3_bin_to_band_tab[start];
81 
82  do {
83  m = (FFMAX(mask[band] - snr_offset - floor, 0) & 0x1FE0) + floor;
84  band_end = ff_ac3_band_start_tab[++band];
85  band_end = FFMIN(band_end, end);
86  psd_end = psd + band_end - 1;
87 
88  __asm__ volatile (
89  "slt %[cond], %[psd1], %[psd_end] \n\t"
90  "beqz %[cond], 1f \n\t"
91  "2: \n\t"
92  "lh %[address1], 0(%[psd1]) \n\t"
93  "lh %[address2], 2(%[psd1]) \n\t"
94  PTR_ADDIU " %[psd1], %[psd1], 4 \n\t"
95  "subu %[address1], %[address1], %[m] \n\t"
96  "sra %[address1], %[address1], 5 \n\t"
97  "addiu %[address1], %[address1], -32 \n\t"
98  "shll_s.w %[address1], %[address1], 26 \n\t"
99  "subu %[address2], %[address2], %[m] \n\t"
100  "sra %[address2], %[address2], 5 \n\t"
101  "sra %[address1], %[address1], 26 \n\t"
102  "addiu %[address1], %[address1], 32 \n\t"
103  "lbux %[address1], %[address1](%[bap_tab]) \n\t"
104  "addiu %[address2], %[address2], -32 \n\t"
105  "shll_s.w %[address2], %[address2], 26 \n\t"
106  "sb %[address1], 0(%[bap1]) \n\t"
107  "slt %[cond], %[psd1], %[psd_end] \n\t"
108  "sra %[address2], %[address2], 26 \n\t"
109  "addiu %[address2], %[address2], 32 \n\t"
110  "lbux %[address2], %[address2](%[bap_tab]) \n\t"
111  "sb %[address2], 1(%[bap1]) \n\t"
112  PTR_ADDIU " %[bap1], %[bap1], 2 \n\t"
113  "bnez %[cond], 2b \n\t"
114  PTR_ADDIU " %[psd_end], %[psd_end], 2 \n\t"
115  "slt %[cond], %[psd1], %[psd_end] \n\t"
116  "beqz %[cond], 3f \n\t"
117  "1: \n\t"
118  "lh %[address1], 0(%[psd1]) \n\t"
119  PTR_ADDIU " %[psd1], %[psd1], 2 \n\t"
120  "subu %[address1], %[address1], %[m] \n\t"
121  "sra %[address1], %[address1], 5 \n\t"
122  "addiu %[address1], %[address1], -32 \n\t"
123  "shll_s.w %[address1], %[address1], 26 \n\t"
124  "sra %[address1], %[address1], 26 \n\t"
125  "addiu %[address1], %[address1], 32 \n\t"
126  "lbux %[address1], %[address1](%[bap_tab]) \n\t"
127  "sb %[address1], 0(%[bap1]) \n\t"
128  PTR_ADDIU " %[bap1], %[bap1], 1 \n\t"
129  "3: \n\t"
130 
131  : [address1]"=&r"(address1), [address2]"=&r"(address2),
132  [cond]"=&r"(cond), [bap1]"+r"(bap1),
133  [psd1]"+r"(psd1), [psd_end]"+r"(psd_end)
134  : [m]"r"(m), [bap_tab]"r"(bap_tab)
135  : "memory"
136  );
137  } while (end > band_end);
138 }
139 
140 static void ac3_update_bap_counts_mips(uint16_t mant_cnt[16], uint8_t *bap,
141  int len)
142 {
143  void *temp0, *temp2, *temp4, *temp5, *temp6, *temp7;
144  int temp1, temp3;
145 
146  __asm__ volatile (
147  "andi %[temp3], %[len], 3 \n\t"
148  PTR_ADDU "%[temp2], %[bap], %[len] \n\t"
149  PTR_ADDU "%[temp4], %[bap], %[temp3] \n\t"
150  "beq %[temp2], %[temp4], 4f \n\t"
151  "1: \n\t"
152  "lbu %[temp0], -1(%[temp2]) \n\t"
153  "lbu %[temp5], -2(%[temp2]) \n\t"
154  "lbu %[temp6], -3(%[temp2]) \n\t"
155  "sll %[temp0], %[temp0], 1 \n\t"
156  PTR_ADDU "%[temp0], %[mant_cnt], %[temp0] \n\t"
157  "sll %[temp5], %[temp5], 1 \n\t"
158  PTR_ADDU "%[temp5], %[mant_cnt], %[temp5] \n\t"
159  "lhu %[temp1], 0(%[temp0]) \n\t"
160  "sll %[temp6], %[temp6], 1 \n\t"
161  PTR_ADDU "%[temp6], %[mant_cnt], %[temp6] \n\t"
162  "addiu %[temp1], %[temp1], 1 \n\t"
163  "sh %[temp1], 0(%[temp0]) \n\t"
164  "lhu %[temp1], 0(%[temp5]) \n\t"
165  "lbu %[temp7], -4(%[temp2]) \n\t"
166  PTR_ADDIU "%[temp2],%[temp2], -4 \n\t"
167  "addiu %[temp1], %[temp1], 1 \n\t"
168  "sh %[temp1], 0(%[temp5]) \n\t"
169  "lhu %[temp1], 0(%[temp6]) \n\t"
170  "sll %[temp7], %[temp7], 1 \n\t"
171  PTR_ADDU "%[temp7], %[mant_cnt], %[temp7] \n\t"
172  "addiu %[temp1], %[temp1],1 \n\t"
173  "sh %[temp1], 0(%[temp6]) \n\t"
174  "lhu %[temp1], 0(%[temp7]) \n\t"
175  "addiu %[temp1], %[temp1], 1 \n\t"
176  "sh %[temp1], 0(%[temp7]) \n\t"
177  "bne %[temp2], %[temp4], 1b \n\t"
178  "4: \n\t"
179  "beqz %[temp3], 2f \n\t"
180  "3: \n\t"
181  "addiu %[temp3], %[temp3], -1 \n\t"
182  "lbu %[temp0], -1(%[temp2]) \n\t"
183  PTR_ADDIU "%[temp2],%[temp2], -1 \n\t"
184  "sll %[temp0], %[temp0], 1 \n\t"
185  PTR_ADDU "%[temp0], %[mant_cnt], %[temp0] \n\t"
186  "lhu %[temp1], 0(%[temp0]) \n\t"
187  "addiu %[temp1], %[temp1], 1 \n\t"
188  "sh %[temp1], 0(%[temp0]) \n\t"
189  "bgtz %[temp3], 3b \n\t"
190  "2: \n\t"
191 
192  : [temp0] "=&r" (temp0), [temp1] "=&r" (temp1),
193  [temp2] "=&r" (temp2), [temp3] "=&r" (temp3),
194  [temp4] "=&r" (temp4), [temp5] "=&r" (temp5),
195  [temp6] "=&r" (temp6), [temp7] "=&r" (temp7)
196  : [len] "r" (len), [bap] "r" (bap),
197  [mant_cnt] "r" (mant_cnt)
198  : "memory"
199  );
200 }
201 #endif
202 
203 #if HAVE_MIPSFPU
204 #if !HAVE_MIPS32R6 && !HAVE_MIPS64R6
205 static void float_to_fixed24_mips(int32_t *dst, const float *src, unsigned int len)
206 {
207  const float scale = 1 << 24;
208  float src0, src1, src2, src3, src4, src5, src6, src7;
209  int temp0, temp1, temp2, temp3, temp4, temp5, temp6, temp7;
210 
211  do {
212  __asm__ volatile (
213  "lwc1 %[src0], 0(%[src]) \n\t"
214  "lwc1 %[src1], 4(%[src]) \n\t"
215  "lwc1 %[src2], 8(%[src]) \n\t"
216  "lwc1 %[src3], 12(%[src]) \n\t"
217  "lwc1 %[src4], 16(%[src]) \n\t"
218  "lwc1 %[src5], 20(%[src]) \n\t"
219  "lwc1 %[src6], 24(%[src]) \n\t"
220  "lwc1 %[src7], 28(%[src]) \n\t"
221  "mul.s %[src0], %[src0], %[scale] \n\t"
222  "mul.s %[src1], %[src1], %[scale] \n\t"
223  "mul.s %[src2], %[src2], %[scale] \n\t"
224  "mul.s %[src3], %[src3], %[scale] \n\t"
225  "mul.s %[src4], %[src4], %[scale] \n\t"
226  "mul.s %[src5], %[src5], %[scale] \n\t"
227  "mul.s %[src6], %[src6], %[scale] \n\t"
228  "mul.s %[src7], %[src7], %[scale] \n\t"
229  "cvt.w.s %[src0], %[src0] \n\t"
230  "cvt.w.s %[src1], %[src1] \n\t"
231  "cvt.w.s %[src2], %[src2] \n\t"
232  "cvt.w.s %[src3], %[src3] \n\t"
233  "cvt.w.s %[src4], %[src4] \n\t"
234  "cvt.w.s %[src5], %[src5] \n\t"
235  "cvt.w.s %[src6], %[src6] \n\t"
236  "cvt.w.s %[src7], %[src7] \n\t"
237  "mfc1 %[temp0], %[src0] \n\t"
238  "mfc1 %[temp1], %[src1] \n\t"
239  "mfc1 %[temp2], %[src2] \n\t"
240  "mfc1 %[temp3], %[src3] \n\t"
241  "mfc1 %[temp4], %[src4] \n\t"
242  "mfc1 %[temp5], %[src5] \n\t"
243  "mfc1 %[temp6], %[src6] \n\t"
244  "mfc1 %[temp7], %[src7] \n\t"
245  "sw %[temp0], 0(%[dst]) \n\t"
246  "sw %[temp1], 4(%[dst]) \n\t"
247  "sw %[temp2], 8(%[dst]) \n\t"
248  "sw %[temp3], 12(%[dst]) \n\t"
249  "sw %[temp4], 16(%[dst]) \n\t"
250  "sw %[temp5], 20(%[dst]) \n\t"
251  "sw %[temp6], 24(%[dst]) \n\t"
252  "sw %[temp7], 28(%[dst]) \n\t"
253 
254  : [dst] "+r" (dst), [src] "+r" (src),
255  [src0] "=&f" (src0), [src1] "=&f" (src1),
256  [src2] "=&f" (src2), [src3] "=&f" (src3),
257  [src4] "=&f" (src4), [src5] "=&f" (src5),
258  [src6] "=&f" (src6), [src7] "=&f" (src7),
259  [temp0] "=r" (temp0), [temp1] "=r" (temp1),
260  [temp2] "=r" (temp2), [temp3] "=r" (temp3),
261  [temp4] "=r" (temp4), [temp5] "=r" (temp5),
262  [temp6] "=r" (temp6), [temp7] "=r" (temp7)
263  : [scale] "f" (scale)
264  : "memory"
265  );
266  src = src + 8;
267  dst = dst + 8;
268  len -= 8;
269  } while (len > 0);
270 }
271 
272 static void ac3_downmix_mips(float **samples, float (*matrix)[2],
273  int out_ch, int in_ch, int len)
274 {
275  int i, j, i1, i2, i3;
276  float v0, v1, v2, v3;
277  float v4, v5, v6, v7;
278  float samples0, samples1, samples2, samples3, matrix_j, matrix_j2;
279  float *samples_p, *samples_sw, *matrix_p, **samples_x, **samples_end;
280 
281  __asm__ volatile(
282  ".set push \n\t"
283  ".set noreorder \n\t"
284 
285  "li %[i1], 2 \n\t"
286  "sll %[len], 2 \n\t"
287  "move %[i], $zero \n\t"
288  "sll %[j], %[in_ch], " PTRLOG " \n\t"
289 
290  "bne %[out_ch], %[i1], 3f \n\t" // if (out_ch == 2)
291  " li %[i2], 1 \n\t"
292 
293  "2: \n\t" // start of the for loop (for (i = 0; i < len; i+=4))
294  "move %[matrix_p], %[matrix] \n\t"
295  "move %[samples_x], %[samples] \n\t"
296  "mtc1 $zero, %[v0] \n\t"
297  "mtc1 $zero, %[v1] \n\t"
298  "mtc1 $zero, %[v2] \n\t"
299  "mtc1 $zero, %[v3] \n\t"
300  "mtc1 $zero, %[v4] \n\t"
301  "mtc1 $zero, %[v5] \n\t"
302  "mtc1 $zero, %[v6] \n\t"
303  "mtc1 $zero, %[v7] \n\t"
304  "addiu %[i1], %[i], 4 \n\t"
305  "addiu %[i2], %[i], 8 \n\t"
306  PTR_L " %[samples_p], 0(%[samples_x]) \n\t"
307  "addiu %[i3], %[i], 12 \n\t"
308  PTR_ADDU "%[samples_end],%[samples_x], %[j] \n\t"
309  "move %[samples_sw], %[samples_p] \n\t"
310 
311  "1: \n\t" // start of the inner for loop (for (j = 0; j < in_ch; j++))
312  "lwc1 %[matrix_j], 0(%[matrix_p]) \n\t"
313  "lwc1 %[matrix_j2], 4(%[matrix_p]) \n\t"
314  "lwxc1 %[samples0], %[i](%[samples_p]) \n\t"
315  "lwxc1 %[samples1], %[i1](%[samples_p]) \n\t"
316  "lwxc1 %[samples2], %[i2](%[samples_p]) \n\t"
317  "lwxc1 %[samples3], %[i3](%[samples_p]) \n\t"
318  PTR_ADDIU "%[matrix_p], 8 \n\t"
319  PTR_ADDIU "%[samples_x]," PTRSIZE " \n\t"
320  "madd.s %[v0], %[v0], %[samples0], %[matrix_j] \n\t"
321  "madd.s %[v1], %[v1], %[samples1], %[matrix_j] \n\t"
322  "madd.s %[v2], %[v2], %[samples2], %[matrix_j] \n\t"
323  "madd.s %[v3], %[v3], %[samples3], %[matrix_j] \n\t"
324  "madd.s %[v4], %[v4], %[samples0], %[matrix_j2]\n\t"
325  "madd.s %[v5], %[v5], %[samples1], %[matrix_j2]\n\t"
326  "madd.s %[v6], %[v6], %[samples2], %[matrix_j2]\n\t"
327  "madd.s %[v7], %[v7], %[samples3], %[matrix_j2]\n\t"
328  "bne %[samples_x], %[samples_end], 1b \n\t"
329  PTR_L " %[samples_p], 0(%[samples_x]) \n\t"
330 
331  PTR_L " %[samples_p], " PTRSIZE "(%[samples]) \n\t"
332  "swxc1 %[v0], %[i](%[samples_sw]) \n\t"
333  "swxc1 %[v1], %[i1](%[samples_sw]) \n\t"
334  "swxc1 %[v2], %[i2](%[samples_sw]) \n\t"
335  "swxc1 %[v3], %[i3](%[samples_sw]) \n\t"
336  "swxc1 %[v4], %[i](%[samples_p]) \n\t"
337  "addiu %[i], 16 \n\t"
338  "swxc1 %[v5], %[i1](%[samples_p]) \n\t"
339  "swxc1 %[v6], %[i2](%[samples_p]) \n\t"
340  "bne %[i], %[len], 2b \n\t"
341  " swxc1 %[v7], %[i3](%[samples_p]) \n\t"
342 
343  "3: \n\t"
344  "bne %[out_ch], %[i2], 6f \n\t" // if (out_ch == 1)
345  " nop \n\t"
346 
347  "5: \n\t" // start of the outer for loop (for (i = 0; i < len; i+=4))
348  "move %[matrix_p], %[matrix] \n\t"
349  "move %[samples_x], %[samples] \n\t"
350  "mtc1 $zero, %[v0] \n\t"
351  "mtc1 $zero, %[v1] \n\t"
352  "mtc1 $zero, %[v2] \n\t"
353  "mtc1 $zero, %[v3] \n\t"
354  "addiu %[i1], %[i], 4 \n\t"
355  "addiu %[i2], %[i], 8 \n\t"
356  PTR_L " %[samples_p], 0(%[samples_x]) \n\t"
357  "addiu %[i3], %[i], 12 \n\t"
358  PTR_ADDU "%[samples_end],%[samples_x], %[j] \n\t"
359  "move %[samples_sw], %[samples_p] \n\t"
360 
361  "4: \n\t" // start of the inner for loop (for (j = 0; j < in_ch; j++))
362  "lwc1 %[matrix_j], 0(%[matrix_p]) \n\t"
363  "lwxc1 %[samples0], %[i](%[samples_p]) \n\t"
364  "lwxc1 %[samples1], %[i1](%[samples_p]) \n\t"
365  "lwxc1 %[samples2], %[i2](%[samples_p]) \n\t"
366  "lwxc1 %[samples3], %[i3](%[samples_p]) \n\t"
367  PTR_ADDIU "%[matrix_p], 8 \n\t"
368  PTR_ADDIU "%[samples_x]," PTRSIZE " \n\t"
369  "madd.s %[v0], %[v0], %[samples0], %[matrix_j] \n\t"
370  "madd.s %[v1], %[v1], %[samples1], %[matrix_j] \n\t"
371  "madd.s %[v2], %[v2], %[samples2], %[matrix_j] \n\t"
372  "madd.s %[v3], %[v3], %[samples3], %[matrix_j] \n\t"
373  "bne %[samples_x], %[samples_end], 4b \n\t"
374  PTR_L " %[samples_p], 0(%[samples_x]) \n\t"
375 
376  "swxc1 %[v0], %[i](%[samples_sw]) \n\t"
377  "addiu %[i], 16 \n\t"
378  "swxc1 %[v1], %[i1](%[samples_sw]) \n\t"
379  "swxc1 %[v2], %[i2](%[samples_sw]) \n\t"
380  "bne %[i], %[len], 5b \n\t"
381  " swxc1 %[v3], %[i3](%[samples_sw]) \n\t"
382  "6: \n\t"
383 
384  ".set pop"
385  :[samples_p]"=&r"(samples_p), [matrix_j]"=&f"(matrix_j), [matrix_j2]"=&f"(matrix_j2),
386  [samples0]"=&f"(samples0), [samples1]"=&f"(samples1),
387  [samples2]"=&f"(samples2), [samples3]"=&f"(samples3),
388  [v0]"=&f"(v0), [v1]"=&f"(v1), [v2]"=&f"(v2), [v3]"=&f"(v3),
389  [v4]"=&f"(v4), [v5]"=&f"(v5), [v6]"=&f"(v6), [v7]"=&f"(v7),
390  [samples_x]"=&r"(samples_x), [matrix_p]"=&r"(matrix_p),
391  [samples_end]"=&r"(samples_end), [samples_sw]"=&r"(samples_sw),
392  [i1]"=&r"(i1), [i2]"=&r"(i2), [i3]"=&r"(i3), [i]"=&r"(i),
393  [j]"=&r"(j), [len]"+r"(len)
394  :[samples]"r"(samples), [matrix]"r"(matrix),
395  [in_ch]"r"(in_ch), [out_ch]"r"(out_ch)
396  :"memory"
397  );
398 }
399 #endif /* !HAVE_MIPS32R6 && !HAVE_MIPS64R6 */
400 #endif /* HAVE_MIPSFPU */
401 #endif /* HAVE_INLINE_ASM */
402 
403 void ff_ac3dsp_init_mips(AC3DSPContext *c, int bit_exact) {
404 #if HAVE_INLINE_ASM
405 #if HAVE_MIPSDSP
406  c->bit_alloc_calc_bap = ac3_bit_alloc_calc_bap_mips;
407  c->update_bap_counts = ac3_update_bap_counts_mips;
408 #endif
409 #if HAVE_MIPSFPU
410 #if !HAVE_MIPS32R6 && !HAVE_MIPS64R6
411  c->float_to_fixed24 = float_to_fixed24_mips;
412  //c->downmix = ac3_downmix_mips;
413 #endif
414 #endif
415 
416 #endif
417 }
ff_ac3_bin_to_band_tab
const uint8_t ff_ac3_bin_to_band_tab[253]
Map each frequency coefficient bin to the critical band that contains it.
Definition: ac3.c:46
end
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
AC3DSPContext
Definition: ac3dsp.h:33
AC3_MAX_COEFS
#define AC3_MAX_COEFS
Definition: ac3.h:35
samples
FFmpeg Automated Testing Environment ************************************Introduction Using FATE from your FFmpeg source directory Submitting the results to the FFmpeg result aggregation server Uploading new samples to the fate suite FATE makefile targets and variables Makefile targets Makefile variables Examples Introduction **************FATE is an extended regression suite on the client side and a means for results aggregation and presentation on the server side The first part of this document explains how you can use FATE from your FFmpeg source directory to test your ffmpeg binary The second part describes how you can run FATE to submit the results to FFmpeg’s FATE server In any way you can have a look at the publicly viewable FATE results by visiting this as it can be seen if some test on some platform broke with their recent contribution This usually happens on the platforms the developers could not test on The second part of this document describes how you can run FATE to submit your results to FFmpeg’s FATE server If you want to submit your results be sure to check that your combination of OS and compiler is not already listed on the above mentioned website In the third part you can find a comprehensive listing of FATE makefile targets and variables Using FATE from your FFmpeg source directory **********************************************If you want to run FATE on your machine you need to have the samples in place You can get the samples via the build target fate rsync Use this command from the top level source this will cause FATE to fail NOTE To use a custom wrapper to run the pass ‘ target exec’ to ‘configure’ or set the TARGET_EXEC Make variable Submitting the results to the FFmpeg result aggregation server ****************************************************************To submit your results to the server you should run fate through the shell script ‘tests fate sh’ from the FFmpeg sources This script needs to be invoked with a configuration file as its first argument tests fate sh path to fate_config A configuration file template with comments describing the individual configuration variables can be found at ‘doc fate_config sh template’ Create a configuration that suits your based on the configuration template The ‘slot’ configuration variable can be any string that is not yet but it is suggested that you name it adhering to the following pattern ‘ARCH OS COMPILER COMPILER VERSION’ The configuration file itself will be sourced in a shell therefore all shell features may be used This enables you to setup the environment as you need it for your build For your first test runs the ‘fate_recv’ variable should be empty or commented out This will run everything as normal except that it will omit the submission of the results to the server The following files should be present in $workdir as specified in the configuration it may help to try out the ‘ssh’ command with one or more ‘ v’ options You should get detailed output concerning your SSH configuration and the authentication process The only thing left is to automate the execution of the fate sh script and the synchronisation of the samples directory Uploading new samples to the fate suite *****************************************If you need a sample uploaded send a mail to samples request This is for developers who have an account on the fate suite server If you upload new samples
Definition: fate.txt:139
asmdefs.h
PTRSIZE
#define PTRSIZE
Definition: asmdefs.h:45
v0
#define v0
Definition: regdef.h:26
PTRLOG
#define PTRLOG
Definition: asmdefs.h:46
mask
static const uint16_t mask[17]
Definition: lzw.c:38
ff_ac3_band_start_tab
const uint8_t ff_ac3_band_start_tab[AC3_CRITICAL_BANDS+1]
Starting frequency coefficient bin for each critical band.
Definition: ac3.c:35
int32_t
int32_t
Definition: audio_convert.c:194
src
#define src
Definition: vp8dsp.c:254
ac3dsp.h
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
FFMAX
#define FFMAX(a, b)
Definition: common.h:94
FFMIN
#define FFMIN(a, b)
Definition: common.h:96
src0
#define src0
Definition: h264pred.c:138
src1
#define src1
Definition: h264pred.c:139
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
uint8_t
uint8_t
Definition: audio_convert.c:194
len
int len
Definition: vorbis_enc_data.h:452
PTR_ADDU
#define PTR_ADDU
Definition: asmdefs.h:47
ff_ac3dsp_init_mips
void ff_ac3dsp_init_mips(AC3DSPContext *c, int bit_exact)
Definition: ac3dsp_mips.c:403
config.h
PTR_ADDIU
#define PTR_ADDIU
Definition: asmdefs.h:48
bap_tab
static const uint8_t bap_tab[64]
Definition: dolby_e.h:632
PTR_L
#define PTR_L
Definition: asmdefs.h:51
ac3.h
cond
int(* cond)(enum AVPixelFormat pix_fmt)
Definition: pixdesc_query.c:28