FFmpeg  4.3
exr.c
Go to the documentation of this file.
1 /*
2  * OpenEXR (.exr) image decoder
3  * Copyright (c) 2006 Industrial Light & Magic, a division of Lucas Digital Ltd. LLC
4  * Copyright (c) 2009 Jimmy Christensen
5  *
6  * B44/B44A, Tile, UINT32 added by Jokyo Images support by CNC - French National Center for Cinema
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24 
25 /**
26  * @file
27  * OpenEXR decoder
28  * @author Jimmy Christensen
29  *
30  * For more information on the OpenEXR format, visit:
31  * http://openexr.com/
32  *
33  * exr_half2float() is credited to Aaftab Munshi, Dan Ginsburg, Dave Shreiner.
34  */
35 
36 #include <float.h>
37 #include <zlib.h>
38 
39 #include "libavutil/avassert.h"
40 #include "libavutil/common.h"
41 #include "libavutil/imgutils.h"
42 #include "libavutil/intfloat.h"
43 #include "libavutil/avstring.h"
44 #include "libavutil/opt.h"
45 #include "libavutil/color_utils.h"
46 
47 #include "avcodec.h"
48 #include "bytestream.h"
49 
50 #if HAVE_BIGENDIAN
51 #include "bswapdsp.h"
52 #endif
53 
54 #include "exrdsp.h"
55 #include "get_bits.h"
56 #include "internal.h"
57 #include "mathops.h"
58 #include "thread.h"
59 
60 enum ExrCompr {
72 };
73 
79 };
80 
86 };
87 
92 };
93 
94 typedef struct EXRChannel {
95  int xsub, ysub;
97 } EXRChannel;
98 
99 typedef struct EXRTileAttribute {
102  enum ExrTileLevelMode level_mode;
103  enum ExrTileLevelRound level_round;
105 
106 typedef struct EXRThreadData {
109 
111  int tmp_size;
112 
114  uint16_t *lut;
115 
116  int ysize, xsize;
117 
119 } EXRThreadData;
120 
121 typedef struct EXRContext {
122  AVClass *class;
126 
127 #if HAVE_BIGENDIAN
128  BswapDSPContext bbdsp;
129 #endif
130 
131  enum ExrCompr compression;
133  int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
135 
136  int w, h;
137  uint32_t xmax, xmin;
138  uint32_t ymax, ymin;
139  uint32_t xdelta, ydelta;
140 
142 
143  EXRTileAttribute tile_attr; /* header data attribute of tile */
144  int is_tile; /* 0 if scanline, 1 if tile */
145 
146  int is_luma;/* 1 if there is an Y plane */
147 
149  const uint8_t *buf;
150  int buf_size;
151 
155 
157 
158  const char *layer;
159 
160  enum AVColorTransferCharacteristic apply_trc_type;
161  float gamma;
162  union av_intfloat32 gamma_table[65536];
163 } EXRContext;
164 
165 /* -15 stored using a single precision bias of 127 */
166 #define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP 0x38000000
167 
168 /* max exponent value in single precision that will be converted
169  * to Inf or Nan when stored as a half-float */
170 #define HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP 0x47800000
171 
172 /* 255 is the max exponent biased value */
173 #define FLOAT_MAX_BIASED_EXP (0xFF << 23)
174 
175 #define HALF_FLOAT_MAX_BIASED_EXP (0x1F << 10)
176 
177 /**
178  * Convert a half float as a uint16_t into a full float.
179  *
180  * @param hf half float as uint16_t
181  *
182  * @return float value
183  */
184 static union av_intfloat32 exr_half2float(uint16_t hf)
185 {
186  unsigned int sign = (unsigned int) (hf >> 15);
187  unsigned int mantissa = (unsigned int) (hf & ((1 << 10) - 1));
188  unsigned int exp = (unsigned int) (hf & HALF_FLOAT_MAX_BIASED_EXP);
189  union av_intfloat32 f;
190 
191  if (exp == HALF_FLOAT_MAX_BIASED_EXP) {
192  // we have a half-float NaN or Inf
193  // half-float NaNs will be converted to a single precision NaN
194  // half-float Infs will be converted to a single precision Inf
195  exp = FLOAT_MAX_BIASED_EXP;
196  if (mantissa)
197  mantissa = (1 << 23) - 1; // set all bits to indicate a NaN
198  } else if (exp == 0x0) {
199  // convert half-float zero/denorm to single precision value
200  if (mantissa) {
201  mantissa <<= 1;
203  // check for leading 1 in denorm mantissa
204  while ((mantissa & (1 << 10))) {
205  // for every leading 0, decrement single precision exponent by 1
206  // and shift half-float mantissa value to the left
207  mantissa <<= 1;
208  exp -= (1 << 23);
209  }
210  // clamp the mantissa to 10 bits
211  mantissa &= ((1 << 10) - 1);
212  // shift left to generate single-precision mantissa of 23 bits
213  mantissa <<= 13;
214  }
215  } else {
216  // shift left to generate single-precision mantissa of 23 bits
217  mantissa <<= 13;
218  // generate single precision biased exponent value
219  exp = (exp << 13) + HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
220  }
221 
222  f.i = (sign << 31) | exp | mantissa;
223 
224  return f;
225 }
226 
227 static int zip_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
228  int uncompressed_size, EXRThreadData *td)
229 {
230  unsigned long dest_len = uncompressed_size;
231 
232  if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
233  dest_len != uncompressed_size)
234  return AVERROR_INVALIDDATA;
235 
236  av_assert1(uncompressed_size % 2 == 0);
237 
238  s->dsp.predictor(td->tmp, uncompressed_size);
239  s->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
240 
241  return 0;
242 }
243 
244 static int rle_uncompress(EXRContext *ctx, const uint8_t *src, int compressed_size,
245  int uncompressed_size, EXRThreadData *td)
246 {
247  uint8_t *d = td->tmp;
248  const int8_t *s = src;
249  int ssize = compressed_size;
250  int dsize = uncompressed_size;
251  uint8_t *dend = d + dsize;
252  int count;
253 
254  while (ssize > 0) {
255  count = *s++;
256 
257  if (count < 0) {
258  count = -count;
259 
260  if ((dsize -= count) < 0 ||
261  (ssize -= count + 1) < 0)
262  return AVERROR_INVALIDDATA;
263 
264  while (count--)
265  *d++ = *s++;
266  } else {
267  count++;
268 
269  if ((dsize -= count) < 0 ||
270  (ssize -= 2) < 0)
271  return AVERROR_INVALIDDATA;
272 
273  while (count--)
274  *d++ = *s;
275 
276  s++;
277  }
278  }
279 
280  if (dend != d)
281  return AVERROR_INVALIDDATA;
282 
283  av_assert1(uncompressed_size % 2 == 0);
284 
285  ctx->dsp.predictor(td->tmp, uncompressed_size);
286  ctx->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
287 
288  return 0;
289 }
290 
291 #define USHORT_RANGE (1 << 16)
292 #define BITMAP_SIZE (1 << 13)
293 
294 static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
295 {
296  int i, k = 0;
297 
298  for (i = 0; i < USHORT_RANGE; i++)
299  if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
300  lut[k++] = i;
301 
302  i = k - 1;
303 
304  memset(lut + k, 0, (USHORT_RANGE - k) * 2);
305 
306  return i;
307 }
308 
309 static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
310 {
311  int i;
312 
313  for (i = 0; i < dsize; ++i)
314  dst[i] = lut[dst[i]];
315 }
316 
317 #define HUF_ENCBITS 16 // literal (value) bit length
318 #define HUF_DECBITS 14 // decoding bit size (>= 8)
319 
320 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
321 #define HUF_DECSIZE (1 << HUF_DECBITS) // decoding table size
322 #define HUF_DECMASK (HUF_DECSIZE - 1)
323 
324 typedef struct HufDec {
325  int len;
326  int lit;
327  int *p;
328 } HufDec;
329 
330 static void huf_canonical_code_table(uint64_t *hcode)
331 {
332  uint64_t c, n[59] = { 0 };
333  int i;
334 
335  for (i = 0; i < HUF_ENCSIZE; ++i)
336  n[hcode[i]] += 1;
337 
338  c = 0;
339  for (i = 58; i > 0; --i) {
340  uint64_t nc = ((c + n[i]) >> 1);
341  n[i] = c;
342  c = nc;
343  }
344 
345  for (i = 0; i < HUF_ENCSIZE; ++i) {
346  int l = hcode[i];
347 
348  if (l > 0)
349  hcode[i] = l | (n[l]++ << 6);
350  }
351 }
352 
353 #define SHORT_ZEROCODE_RUN 59
354 #define LONG_ZEROCODE_RUN 63
355 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
356 #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
357 
359  int32_t im, int32_t iM, uint64_t *hcode)
360 {
361  GetBitContext gbit;
362  int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
363  if (ret < 0)
364  return ret;
365 
366  for (; im <= iM; im++) {
367  uint64_t l = hcode[im] = get_bits(&gbit, 6);
368 
369  if (l == LONG_ZEROCODE_RUN) {
370  int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
371 
372  if (im + zerun > iM + 1)
373  return AVERROR_INVALIDDATA;
374 
375  while (zerun--)
376  hcode[im++] = 0;
377 
378  im--;
379  } else if (l >= SHORT_ZEROCODE_RUN) {
380  int zerun = l - SHORT_ZEROCODE_RUN + 2;
381 
382  if (im + zerun > iM + 1)
383  return AVERROR_INVALIDDATA;
384 
385  while (zerun--)
386  hcode[im++] = 0;
387 
388  im--;
389  }
390  }
391 
392  bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
394 
395  return 0;
396 }
397 
398 static int huf_build_dec_table(const uint64_t *hcode, int im,
399  int iM, HufDec *hdecod)
400 {
401  for (; im <= iM; im++) {
402  uint64_t c = hcode[im] >> 6;
403  int i, l = hcode[im] & 63;
404 
405  if (c >> l)
406  return AVERROR_INVALIDDATA;
407 
408  if (l > HUF_DECBITS) {
409  HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
410  if (pl->len)
411  return AVERROR_INVALIDDATA;
412 
413  pl->lit++;
414 
415  pl->p = av_realloc(pl->p, pl->lit * sizeof(int));
416  if (!pl->p)
417  return AVERROR(ENOMEM);
418 
419  pl->p[pl->lit - 1] = im;
420  } else if (l) {
421  HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
422 
423  for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
424  if (pl->len || pl->p)
425  return AVERROR_INVALIDDATA;
426  pl->len = l;
427  pl->lit = im;
428  }
429  }
430  }
431 
432  return 0;
433 }
434 
435 #define get_char(c, lc, gb) \
436 { \
437  c = (c << 8) | bytestream2_get_byte(gb); \
438  lc += 8; \
439 }
440 
441 #define get_code(po, rlc, c, lc, gb, out, oe, outb) \
442 { \
443  if (po == rlc) { \
444  if (lc < 8) \
445  get_char(c, lc, gb); \
446  lc -= 8; \
447  \
448  cs = c >> lc; \
449  \
450  if (out + cs > oe || out == outb) \
451  return AVERROR_INVALIDDATA; \
452  \
453  s = out[-1]; \
454  \
455  while (cs-- > 0) \
456  *out++ = s; \
457  } else if (out < oe) { \
458  *out++ = po; \
459  } else { \
460  return AVERROR_INVALIDDATA; \
461  } \
462 }
463 
464 static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
465  GetByteContext *gb, int nbits,
466  int rlc, int no, uint16_t *out)
467 {
468  uint64_t c = 0;
469  uint16_t *outb = out;
470  uint16_t *oe = out + no;
471  const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
472  uint8_t cs;
473  uint16_t s;
474  int i, lc = 0;
475 
476  while (gb->buffer < ie) {
477  get_char(c, lc, gb);
478 
479  while (lc >= HUF_DECBITS) {
480  const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
481 
482  if (pl.len) {
483  lc -= pl.len;
484  get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
485  } else {
486  int j;
487 
488  if (!pl.p)
489  return AVERROR_INVALIDDATA;
490 
491  for (j = 0; j < pl.lit; j++) {
492  int l = hcode[pl.p[j]] & 63;
493 
494  while (lc < l && bytestream2_get_bytes_left(gb) > 0)
495  get_char(c, lc, gb);
496 
497  if (lc >= l) {
498  if ((hcode[pl.p[j]] >> 6) ==
499  ((c >> (lc - l)) & ((1LL << l) - 1))) {
500  lc -= l;
501  get_code(pl.p[j], rlc, c, lc, gb, out, oe, outb);
502  break;
503  }
504  }
505  }
506 
507  if (j == pl.lit)
508  return AVERROR_INVALIDDATA;
509  }
510  }
511  }
512 
513  i = (8 - nbits) & 7;
514  c >>= i;
515  lc -= i;
516 
517  while (lc > 0) {
518  const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
519 
520  if (pl.len && lc >= pl.len) {
521  lc -= pl.len;
522  get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
523  } else {
524  return AVERROR_INVALIDDATA;
525  }
526  }
527 
528  if (out - outb != no)
529  return AVERROR_INVALIDDATA;
530  return 0;
531 }
532 
534  uint16_t *dst, int dst_size)
535 {
536  int32_t src_size, im, iM;
537  uint32_t nBits;
538  uint64_t *freq;
539  HufDec *hdec;
540  int ret, i;
541 
542  src_size = bytestream2_get_le32(gb);
543  im = bytestream2_get_le32(gb);
544  iM = bytestream2_get_le32(gb);
545  bytestream2_skip(gb, 4);
546  nBits = bytestream2_get_le32(gb);
547  if (im < 0 || im >= HUF_ENCSIZE ||
548  iM < 0 || iM >= HUF_ENCSIZE ||
549  src_size < 0)
550  return AVERROR_INVALIDDATA;
551 
552  bytestream2_skip(gb, 4);
553 
554  freq = av_mallocz_array(HUF_ENCSIZE, sizeof(*freq));
555  hdec = av_mallocz_array(HUF_DECSIZE, sizeof(*hdec));
556  if (!freq || !hdec) {
557  ret = AVERROR(ENOMEM);
558  goto fail;
559  }
560 
561  if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
562  goto fail;
563 
564  if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
565  ret = AVERROR_INVALIDDATA;
566  goto fail;
567  }
568 
569  if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
570  goto fail;
571  ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
572 
573 fail:
574  for (i = 0; i < HUF_DECSIZE; i++)
575  if (hdec)
576  av_freep(&hdec[i].p);
577 
578  av_free(freq);
579  av_free(hdec);
580 
581  return ret;
582 }
583 
584 static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
585 {
586  int16_t ls = l;
587  int16_t hs = h;
588  int hi = hs;
589  int ai = ls + (hi & 1) + (hi >> 1);
590  int16_t as = ai;
591  int16_t bs = ai - hi;
592 
593  *a = as;
594  *b = bs;
595 }
596 
597 #define NBITS 16
598 #define A_OFFSET (1 << (NBITS - 1))
599 #define MOD_MASK ((1 << NBITS) - 1)
600 
601 static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
602 {
603  int m = l;
604  int d = h;
605  int bb = (m - (d >> 1)) & MOD_MASK;
606  int aa = (d + bb - A_OFFSET) & MOD_MASK;
607  *b = bb;
608  *a = aa;
609 }
610 
611 static void wav_decode(uint16_t *in, int nx, int ox,
612  int ny, int oy, uint16_t mx)
613 {
614  int w14 = (mx < (1 << 14));
615  int n = (nx > ny) ? ny : nx;
616  int p = 1;
617  int p2;
618 
619  while (p <= n)
620  p <<= 1;
621 
622  p >>= 1;
623  p2 = p;
624  p >>= 1;
625 
626  while (p >= 1) {
627  uint16_t *py = in;
628  uint16_t *ey = in + oy * (ny - p2);
629  uint16_t i00, i01, i10, i11;
630  int oy1 = oy * p;
631  int oy2 = oy * p2;
632  int ox1 = ox * p;
633  int ox2 = ox * p2;
634 
635  for (; py <= ey; py += oy2) {
636  uint16_t *px = py;
637  uint16_t *ex = py + ox * (nx - p2);
638 
639  for (; px <= ex; px += ox2) {
640  uint16_t *p01 = px + ox1;
641  uint16_t *p10 = px + oy1;
642  uint16_t *p11 = p10 + ox1;
643 
644  if (w14) {
645  wdec14(*px, *p10, &i00, &i10);
646  wdec14(*p01, *p11, &i01, &i11);
647  wdec14(i00, i01, px, p01);
648  wdec14(i10, i11, p10, p11);
649  } else {
650  wdec16(*px, *p10, &i00, &i10);
651  wdec16(*p01, *p11, &i01, &i11);
652  wdec16(i00, i01, px, p01);
653  wdec16(i10, i11, p10, p11);
654  }
655  }
656 
657  if (nx & p) {
658  uint16_t *p10 = px + oy1;
659 
660  if (w14)
661  wdec14(*px, *p10, &i00, p10);
662  else
663  wdec16(*px, *p10, &i00, p10);
664 
665  *px = i00;
666  }
667  }
668 
669  if (ny & p) {
670  uint16_t *px = py;
671  uint16_t *ex = py + ox * (nx - p2);
672 
673  for (; px <= ex; px += ox2) {
674  uint16_t *p01 = px + ox1;
675 
676  if (w14)
677  wdec14(*px, *p01, &i00, p01);
678  else
679  wdec16(*px, *p01, &i00, p01);
680 
681  *px = i00;
682  }
683  }
684 
685  p2 = p;
686  p >>= 1;
687  }
688 }
689 
690 static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
691  int dsize, EXRThreadData *td)
692 {
693  GetByteContext gb;
694  uint16_t maxval, min_non_zero, max_non_zero;
695  uint16_t *ptr;
696  uint16_t *tmp = (uint16_t *)td->tmp;
697  uint16_t *out;
698  uint16_t *in;
699  int ret, i, j;
700  int pixel_half_size;/* 1 for half, 2 for float and uint32 */
702  int tmp_offset;
703 
704  if (!td->bitmap)
706  if (!td->lut)
707  td->lut = av_malloc(1 << 17);
708  if (!td->bitmap || !td->lut) {
709  av_freep(&td->bitmap);
710  av_freep(&td->lut);
711  return AVERROR(ENOMEM);
712  }
713 
714  bytestream2_init(&gb, src, ssize);
715  min_non_zero = bytestream2_get_le16(&gb);
716  max_non_zero = bytestream2_get_le16(&gb);
717 
718  if (max_non_zero >= BITMAP_SIZE)
719  return AVERROR_INVALIDDATA;
720 
721  memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
722  if (min_non_zero <= max_non_zero)
723  bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
724  max_non_zero - min_non_zero + 1);
725  memset(td->bitmap + max_non_zero + 1, 0, BITMAP_SIZE - max_non_zero - 1);
726 
727  maxval = reverse_lut(td->bitmap, td->lut);
728 
729  ret = huf_uncompress(&gb, tmp, dsize / sizeof(uint16_t));
730  if (ret)
731  return ret;
732 
733  ptr = tmp;
734  for (i = 0; i < s->nb_channels; i++) {
735  channel = &s->channels[i];
736 
737  if (channel->pixel_type == EXR_HALF)
738  pixel_half_size = 1;
739  else
740  pixel_half_size = 2;
741 
742  for (j = 0; j < pixel_half_size; j++)
743  wav_decode(ptr + j, td->xsize, pixel_half_size, td->ysize,
744  td->xsize * pixel_half_size, maxval);
745  ptr += td->xsize * td->ysize * pixel_half_size;
746  }
747 
748  apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
749 
750  out = (uint16_t *)td->uncompressed_data;
751  for (i = 0; i < td->ysize; i++) {
752  tmp_offset = 0;
753  for (j = 0; j < s->nb_channels; j++) {
754  channel = &s->channels[j];
755  if (channel->pixel_type == EXR_HALF)
756  pixel_half_size = 1;
757  else
758  pixel_half_size = 2;
759 
760  in = tmp + tmp_offset * td->xsize * td->ysize + i * td->xsize * pixel_half_size;
761  tmp_offset += pixel_half_size;
762 
763 #if HAVE_BIGENDIAN
764  s->bbdsp.bswap16_buf(out, in, td->xsize * pixel_half_size);
765 #else
766  memcpy(out, in, td->xsize * 2 * pixel_half_size);
767 #endif
768  out += td->xsize * pixel_half_size;
769  }
770  }
771 
772  return 0;
773 }
774 
776  int compressed_size, int uncompressed_size,
777  EXRThreadData *td)
778 {
779  unsigned long dest_len, expected_len = 0;
780  const uint8_t *in = td->tmp;
781  uint8_t *out;
782  int c, i, j;
783 
784  for (i = 0; i < s->nb_channels; i++) {
785  if (s->channels[i].pixel_type == EXR_FLOAT) {
786  expected_len += (td->xsize * td->ysize * 3);/* PRX 24 store float in 24 bit instead of 32 */
787  } else if (s->channels[i].pixel_type == EXR_HALF) {
788  expected_len += (td->xsize * td->ysize * 2);
789  } else {//UINT 32
790  expected_len += (td->xsize * td->ysize * 4);
791  }
792  }
793 
794  dest_len = expected_len;
795 
796  if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK) {
797  return AVERROR_INVALIDDATA;
798  } else if (dest_len != expected_len) {
799  return AVERROR_INVALIDDATA;
800  }
801 
802  out = td->uncompressed_data;
803  for (i = 0; i < td->ysize; i++)
804  for (c = 0; c < s->nb_channels; c++) {
805  EXRChannel *channel = &s->channels[c];
806  const uint8_t *ptr[4];
807  uint32_t pixel = 0;
808 
809  switch (channel->pixel_type) {
810  case EXR_FLOAT:
811  ptr[0] = in;
812  ptr[1] = ptr[0] + td->xsize;
813  ptr[2] = ptr[1] + td->xsize;
814  in = ptr[2] + td->xsize;
815 
816  for (j = 0; j < td->xsize; ++j) {
817  uint32_t diff = ((unsigned)*(ptr[0]++) << 24) |
818  (*(ptr[1]++) << 16) |
819  (*(ptr[2]++) << 8);
820  pixel += diff;
821  bytestream_put_le32(&out, pixel);
822  }
823  break;
824  case EXR_HALF:
825  ptr[0] = in;
826  ptr[1] = ptr[0] + td->xsize;
827  in = ptr[1] + td->xsize;
828  for (j = 0; j < td->xsize; j++) {
829  uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
830 
831  pixel += diff;
832  bytestream_put_le16(&out, pixel);
833  }
834  break;
835  case EXR_UINT:
836  ptr[0] = in;
837  ptr[1] = ptr[0] + s->xdelta;
838  ptr[2] = ptr[1] + s->xdelta;
839  ptr[3] = ptr[2] + s->xdelta;
840  in = ptr[3] + s->xdelta;
841 
842  for (j = 0; j < s->xdelta; ++j) {
843  uint32_t diff = ((uint32_t)*(ptr[0]++) << 24) |
844  (*(ptr[1]++) << 16) |
845  (*(ptr[2]++) << 8 ) |
846  (*(ptr[3]++));
847  pixel += diff;
848  bytestream_put_le32(&out, pixel);
849  }
850  break;
851  default:
852  return AVERROR_INVALIDDATA;
853  }
854  }
855 
856  return 0;
857 }
858 
859 static void unpack_14(const uint8_t b[14], uint16_t s[16])
860 {
861  unsigned short shift = (b[ 2] >> 2) & 15;
862  unsigned short bias = (0x20 << shift);
863  int i;
864 
865  s[ 0] = (b[0] << 8) | b[1];
866 
867  s[ 4] = s[ 0] + ((((b[ 2] << 4) | (b[ 3] >> 4)) & 0x3f) << shift) - bias;
868  s[ 8] = s[ 4] + ((((b[ 3] << 2) | (b[ 4] >> 6)) & 0x3f) << shift) - bias;
869  s[12] = s[ 8] + ((b[ 4] & 0x3f) << shift) - bias;
870 
871  s[ 1] = s[ 0] + ((b[ 5] >> 2) << shift) - bias;
872  s[ 5] = s[ 4] + ((((b[ 5] << 4) | (b[ 6] >> 4)) & 0x3f) << shift) - bias;
873  s[ 9] = s[ 8] + ((((b[ 6] << 2) | (b[ 7] >> 6)) & 0x3f) << shift) - bias;
874  s[13] = s[12] + ((b[ 7] & 0x3f) << shift) - bias;
875 
876  s[ 2] = s[ 1] + ((b[ 8] >> 2) << shift) - bias;
877  s[ 6] = s[ 5] + ((((b[ 8] << 4) | (b[ 9] >> 4)) & 0x3f) << shift) - bias;
878  s[10] = s[ 9] + ((((b[ 9] << 2) | (b[10] >> 6)) & 0x3f) << shift) - bias;
879  s[14] = s[13] + ((b[10] & 0x3f) << shift) - bias;
880 
881  s[ 3] = s[ 2] + ((b[11] >> 2) << shift) - bias;
882  s[ 7] = s[ 6] + ((((b[11] << 4) | (b[12] >> 4)) & 0x3f) << shift) - bias;
883  s[11] = s[10] + ((((b[12] << 2) | (b[13] >> 6)) & 0x3f) << shift) - bias;
884  s[15] = s[14] + ((b[13] & 0x3f) << shift) - bias;
885 
886  for (i = 0; i < 16; ++i) {
887  if (s[i] & 0x8000)
888  s[i] &= 0x7fff;
889  else
890  s[i] = ~s[i];
891  }
892 }
893 
894 static void unpack_3(const uint8_t b[3], uint16_t s[16])
895 {
896  int i;
897 
898  s[0] = (b[0] << 8) | b[1];
899 
900  if (s[0] & 0x8000)
901  s[0] &= 0x7fff;
902  else
903  s[0] = ~s[0];
904 
905  for (i = 1; i < 16; i++)
906  s[i] = s[0];
907 }
908 
909 
910 static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
911  int uncompressed_size, EXRThreadData *td) {
912  const int8_t *sr = src;
913  int stay_to_uncompress = compressed_size;
914  int nb_b44_block_w, nb_b44_block_h;
915  int index_tl_x, index_tl_y, index_out, index_tmp;
916  uint16_t tmp_buffer[16]; /* B44 use 4x4 half float pixel */
917  int c, iY, iX, y, x;
918  int target_channel_offset = 0;
919 
920  /* calc B44 block count */
921  nb_b44_block_w = td->xsize / 4;
922  if ((td->xsize % 4) != 0)
923  nb_b44_block_w++;
924 
925  nb_b44_block_h = td->ysize / 4;
926  if ((td->ysize % 4) != 0)
927  nb_b44_block_h++;
928 
929  for (c = 0; c < s->nb_channels; c++) {
930  if (s->channels[c].pixel_type == EXR_HALF) {/* B44 only compress half float data */
931  for (iY = 0; iY < nb_b44_block_h; iY++) {
932  for (iX = 0; iX < nb_b44_block_w; iX++) {/* For each B44 block */
933  if (stay_to_uncompress < 3) {
934  av_log(s, AV_LOG_ERROR, "Not enough data for B44A block: %d", stay_to_uncompress);
935  return AVERROR_INVALIDDATA;
936  }
937 
938  if (src[compressed_size - stay_to_uncompress + 2] == 0xfc) { /* B44A block */
939  unpack_3(sr, tmp_buffer);
940  sr += 3;
941  stay_to_uncompress -= 3;
942  } else {/* B44 Block */
943  if (stay_to_uncompress < 14) {
944  av_log(s, AV_LOG_ERROR, "Not enough data for B44 block: %d", stay_to_uncompress);
945  return AVERROR_INVALIDDATA;
946  }
947  unpack_14(sr, tmp_buffer);
948  sr += 14;
949  stay_to_uncompress -= 14;
950  }
951 
952  /* copy data to uncompress buffer (B44 block can exceed target resolution)*/
953  index_tl_x = iX * 4;
954  index_tl_y = iY * 4;
955 
956  for (y = index_tl_y; y < FFMIN(index_tl_y + 4, td->ysize); y++) {
957  for (x = index_tl_x; x < FFMIN(index_tl_x + 4, td->xsize); x++) {
958  index_out = target_channel_offset * td->xsize + y * td->channel_line_size + 2 * x;
959  index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x);
960  td->uncompressed_data[index_out] = tmp_buffer[index_tmp] & 0xff;
961  td->uncompressed_data[index_out + 1] = tmp_buffer[index_tmp] >> 8;
962  }
963  }
964  }
965  }
966  target_channel_offset += 2;
967  } else {/* Float or UINT 32 channel */
968  if (stay_to_uncompress < td->ysize * td->xsize * 4) {
969  av_log(s, AV_LOG_ERROR, "Not enough data for uncompress channel: %d", stay_to_uncompress);
970  return AVERROR_INVALIDDATA;
971  }
972 
973  for (y = 0; y < td->ysize; y++) {
974  index_out = target_channel_offset * td->xsize + y * td->channel_line_size;
975  memcpy(&td->uncompressed_data[index_out], sr, td->xsize * 4);
976  sr += td->xsize * 4;
977  }
978  target_channel_offset += 4;
979 
980  stay_to_uncompress -= td->ysize * td->xsize * 4;
981  }
982  }
983 
984  return 0;
985 }
986 
987 static int decode_block(AVCodecContext *avctx, void *tdata,
988  int jobnr, int threadnr)
989 {
990  EXRContext *s = avctx->priv_data;
991  AVFrame *const p = s->picture;
992  EXRThreadData *td = &s->thread_data[threadnr];
993  const uint8_t *channel_buffer[4] = { 0 };
994  const uint8_t *buf = s->buf;
995  uint64_t line_offset, uncompressed_size;
996  uint8_t *ptr;
997  uint32_t data_size;
998  uint64_t line, col = 0;
999  uint64_t tile_x, tile_y, tile_level_x, tile_level_y;
1000  const uint8_t *src;
1001  int step = s->desc->flags & AV_PIX_FMT_FLAG_FLOAT ? 4 : 2 * s->desc->nb_components;
1002  int axmax = (avctx->width - (s->xmax + 1)) * step; /* nb pixel to add at the right of the datawindow */
1003  int bxmin = s->xmin * step; /* nb pixel to add at the left of the datawindow */
1004  int i, x, buf_size = s->buf_size;
1005  int c, rgb_channel_count;
1006  float one_gamma = 1.0f / s->gamma;
1008  int ret;
1009 
1010  line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
1011 
1012  if (s->is_tile) {
1013  if (buf_size < 20 || line_offset > buf_size - 20)
1014  return AVERROR_INVALIDDATA;
1015 
1016  src = buf + line_offset + 20;
1017 
1018  tile_x = AV_RL32(src - 20);
1019  tile_y = AV_RL32(src - 16);
1020  tile_level_x = AV_RL32(src - 12);
1021  tile_level_y = AV_RL32(src - 8);
1022 
1023  data_size = AV_RL32(src - 4);
1024  if (data_size <= 0 || data_size > buf_size - line_offset - 20)
1025  return AVERROR_INVALIDDATA;
1026 
1027  if (tile_level_x || tile_level_y) { /* tile level, is not the full res level */
1028  avpriv_report_missing_feature(s->avctx, "Subres tile before full res tile");
1029  return AVERROR_PATCHWELCOME;
1030  }
1031 
1032  if (s->xmin || s->ymin) {
1033  avpriv_report_missing_feature(s->avctx, "Tiles with xmin/ymin");
1034  return AVERROR_PATCHWELCOME;
1035  }
1036 
1037  line = s->tile_attr.ySize * tile_y;
1038  col = s->tile_attr.xSize * tile_x;
1039 
1040  if (line < s->ymin || line > s->ymax ||
1041  col < s->xmin || col > s->xmax)
1042  return AVERROR_INVALIDDATA;
1043 
1044  td->ysize = FFMIN(s->tile_attr.ySize, s->ydelta - tile_y * s->tile_attr.ySize);
1045  td->xsize = FFMIN(s->tile_attr.xSize, s->xdelta - tile_x * s->tile_attr.xSize);
1046 
1047  if (col) { /* not the first tile of the line */
1048  bxmin = 0; /* doesn't add pixel at the left of the datawindow */
1049  }
1050 
1051  if ((col + td->xsize) != s->xdelta)/* not the last tile of the line */
1052  axmax = 0; /* doesn't add pixel at the right of the datawindow */
1053 
1054  td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1055  uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1056  } else {
1057  if (buf_size < 8 || line_offset > buf_size - 8)
1058  return AVERROR_INVALIDDATA;
1059 
1060  src = buf + line_offset + 8;
1061  line = AV_RL32(src - 8);
1062 
1063  if (line < s->ymin || line > s->ymax)
1064  return AVERROR_INVALIDDATA;
1065 
1066  data_size = AV_RL32(src - 4);
1067  if (data_size <= 0 || data_size > buf_size - line_offset - 8)
1068  return AVERROR_INVALIDDATA;
1069 
1070  td->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); /* s->ydelta - line ?? */
1071  td->xsize = s->xdelta;
1072 
1073  td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1074  uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1075 
1076  if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
1077  line_offset > buf_size - uncompressed_size)) ||
1078  (s->compression != EXR_RAW && (data_size > uncompressed_size ||
1079  line_offset > buf_size - data_size))) {
1080  return AVERROR_INVALIDDATA;
1081  }
1082  }
1083 
1084  if (data_size < uncompressed_size || s->is_tile) { /* td->tmp is use for tile reorganization */
1085  av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
1086  if (!td->tmp)
1087  return AVERROR(ENOMEM);
1088  }
1089 
1090  if (data_size < uncompressed_size) {
1092  &td->uncompressed_size, uncompressed_size + 64);/* Force 64 padding for AVX2 reorder_pixels dst */
1093 
1094  if (!td->uncompressed_data)
1095  return AVERROR(ENOMEM);
1096 
1097  ret = AVERROR_INVALIDDATA;
1098  switch (s->compression) {
1099  case EXR_ZIP1:
1100  case EXR_ZIP16:
1101  ret = zip_uncompress(s, src, data_size, uncompressed_size, td);
1102  break;
1103  case EXR_PIZ:
1104  ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
1105  break;
1106  case EXR_PXR24:
1107  ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
1108  break;
1109  case EXR_RLE:
1110  ret = rle_uncompress(s, src, data_size, uncompressed_size, td);
1111  break;
1112  case EXR_B44:
1113  case EXR_B44A:
1114  ret = b44_uncompress(s, src, data_size, uncompressed_size, td);
1115  break;
1116  }
1117  if (ret < 0) {
1118  av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
1119  return ret;
1120  }
1121  src = td->uncompressed_data;
1122  }
1123 
1124  if (!s->is_luma) {
1125  channel_buffer[0] = src + td->xsize * s->channel_offsets[0];
1126  channel_buffer[1] = src + td->xsize * s->channel_offsets[1];
1127  channel_buffer[2] = src + td->xsize * s->channel_offsets[2];
1128  rgb_channel_count = 3;
1129  } else { /* put y data in the first channel_buffer */
1130  channel_buffer[0] = src + td->xsize * s->channel_offsets[1];
1131  rgb_channel_count = 1;
1132  }
1133  if (s->channel_offsets[3] >= 0)
1134  channel_buffer[3] = src + td->xsize * s->channel_offsets[3];
1135 
1136  if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) {
1137 
1138  /* todo: change this when a floating point pixel format with luma with alpha is implemented */
1139  int channel_count = s->channel_offsets[3] >= 0 ? 4 : rgb_channel_count;
1140  if (s->is_luma) {
1141  channel_buffer[1] = channel_buffer[0];
1142  channel_buffer[2] = channel_buffer[0];
1143  }
1144 
1145  for (c = 0; c < channel_count; c++) {
1146  int plane = s->desc->comp[c].plane;
1147  ptr = p->data[plane] + line * p->linesize[plane] + (col * 4);
1148 
1149  for (i = 0; i < td->ysize; i++, ptr += p->linesize[plane]) {
1150  const uint8_t *src;
1151  union av_intfloat32 *ptr_x;
1152 
1153  src = channel_buffer[c];
1154  ptr_x = (union av_intfloat32 *)ptr;
1155 
1156  // Zero out the start if xmin is not 0
1157  memset(ptr_x, 0, bxmin);
1158  ptr_x += s->xmin;
1159 
1160  if (s->pixel_type == EXR_FLOAT) {
1161  // 32-bit
1162  union av_intfloat32 t;
1163  if (trc_func && c < 3) {
1164  for (x = 0; x < td->xsize; x++) {
1165  t.i = bytestream_get_le32(&src);
1166  t.f = trc_func(t.f);
1167  *ptr_x++ = t;
1168  }
1169  } else {
1170  for (x = 0; x < td->xsize; x++) {
1171  t.i = bytestream_get_le32(&src);
1172  if (t.f > 0.0f && c < 3) /* avoid negative values */
1173  t.f = powf(t.f, one_gamma);
1174  *ptr_x++ = t;
1175  }
1176  }
1177  } else if (s->pixel_type == EXR_HALF) {
1178  // 16-bit
1179  if (c < 3) {
1180  for (x = 0; x < td->xsize; x++) {
1181  *ptr_x++ = s->gamma_table[bytestream_get_le16(&src)];
1182  }
1183  } else {
1184  for (x = 0; x < td->xsize; x++) {
1185  *ptr_x++ = exr_half2float(bytestream_get_le16(&src));;
1186  }
1187  }
1188  }
1189 
1190  // Zero out the end if xmax+1 is not w
1191  memset(ptr_x, 0, axmax);
1192  channel_buffer[c] += td->channel_line_size;
1193  }
1194  }
1195  } else {
1196 
1198  ptr = p->data[0] + line * p->linesize[0] + (col * s->desc->nb_components * 2);
1199 
1200  for (i = 0; i < td->ysize; i++, ptr += p->linesize[0]) {
1201 
1202  const uint8_t * a;
1203  const uint8_t *rgb[3];
1204  uint16_t *ptr_x;
1205 
1206  for (c = 0; c < rgb_channel_count; c++) {
1207  rgb[c] = channel_buffer[c];
1208  }
1209 
1210  if (channel_buffer[3])
1211  a = channel_buffer[3];
1212 
1213  ptr_x = (uint16_t *) ptr;
1214 
1215  // Zero out the start if xmin is not 0
1216  memset(ptr_x, 0, bxmin);
1217  ptr_x += s->xmin * s->desc->nb_components;
1218 
1219  for (x = 0; x < td->xsize; x++) {
1220  for (c = 0; c < rgb_channel_count; c++) {
1221  *ptr_x++ = bytestream_get_le32(&rgb[c]) >> 16;
1222  }
1223 
1224  if (channel_buffer[3])
1225  *ptr_x++ = bytestream_get_le32(&a) >> 16;
1226  }
1227 
1228  // Zero out the end if xmax+1 is not w
1229  memset(ptr_x, 0, axmax);
1230 
1231  channel_buffer[0] += td->channel_line_size;
1232  channel_buffer[1] += td->channel_line_size;
1233  channel_buffer[2] += td->channel_line_size;
1234  if (channel_buffer[3])
1235  channel_buffer[3] += td->channel_line_size;
1236  }
1237  }
1238 
1239  return 0;
1240 }
1241 
1242 /**
1243  * Check if the variable name corresponds to its data type.
1244  *
1245  * @param s the EXRContext
1246  * @param value_name name of the variable to check
1247  * @param value_type type of the variable to check
1248  * @param minimum_length minimum length of the variable data
1249  *
1250  * @return bytes to read containing variable data
1251  * -1 if variable is not found
1252  * 0 if buffer ended prematurely
1253  */
1255  const char *value_name,
1256  const char *value_type,
1257  unsigned int minimum_length)
1258 {
1259  int var_size = -1;
1260 
1261  if (bytestream2_get_bytes_left(&s->gb) >= minimum_length &&
1262  !strcmp(s->gb.buffer, value_name)) {
1263  // found value_name, jump to value_type (null terminated strings)
1264  s->gb.buffer += strlen(value_name) + 1;
1265  if (!strcmp(s->gb.buffer, value_type)) {
1266  s->gb.buffer += strlen(value_type) + 1;
1267  var_size = bytestream2_get_le32(&s->gb);
1268  // don't go read past boundaries
1269  if (var_size > bytestream2_get_bytes_left(&s->gb))
1270  var_size = 0;
1271  } else {
1272  // value_type not found, reset the buffer
1273  s->gb.buffer -= strlen(value_name) + 1;
1275  "Unknown data type %s for header variable %s.\n",
1276  value_type, value_name);
1277  }
1278  }
1279 
1280  return var_size;
1281 }
1282 
1284 {
1285  AVDictionary *metadata = NULL;
1286  int magic_number, version, i, flags, sar = 0;
1287  int layer_match = 0;
1288  int ret;
1289  int dup_channels = 0;
1290 
1291  s->current_channel_offset = 0;
1292  s->xmin = ~0;
1293  s->xmax = ~0;
1294  s->ymin = ~0;
1295  s->ymax = ~0;
1296  s->xdelta = ~0;
1297  s->ydelta = ~0;
1298  s->channel_offsets[0] = -1;
1299  s->channel_offsets[1] = -1;
1300  s->channel_offsets[2] = -1;
1301  s->channel_offsets[3] = -1;
1302  s->pixel_type = EXR_UNKNOWN;
1303  s->compression = EXR_UNKN;
1304  s->nb_channels = 0;
1305  s->w = 0;
1306  s->h = 0;
1307  s->tile_attr.xSize = -1;
1308  s->tile_attr.ySize = -1;
1309  s->is_tile = 0;
1310  s->is_luma = 0;
1311 
1312  if (bytestream2_get_bytes_left(&s->gb) < 10) {
1313  av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
1314  return AVERROR_INVALIDDATA;
1315  }
1316 
1317  magic_number = bytestream2_get_le32(&s->gb);
1318  if (magic_number != 20000630) {
1319  /* As per documentation of OpenEXR, it is supposed to be
1320  * int 20000630 little-endian */
1321  av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
1322  return AVERROR_INVALIDDATA;
1323  }
1324 
1325  version = bytestream2_get_byte(&s->gb);
1326  if (version != 2) {
1327  avpriv_report_missing_feature(s->avctx, "Version %d", version);
1328  return AVERROR_PATCHWELCOME;
1329  }
1330 
1331  flags = bytestream2_get_le24(&s->gb);
1332 
1333  if (flags & 0x02)
1334  s->is_tile = 1;
1335  if (flags & 0x08) {
1336  avpriv_report_missing_feature(s->avctx, "deep data");
1337  return AVERROR_PATCHWELCOME;
1338  }
1339  if (flags & 0x10) {
1340  avpriv_report_missing_feature(s->avctx, "multipart");
1341  return AVERROR_PATCHWELCOME;
1342  }
1343 
1344  // Parse the header
1345  while (bytestream2_get_bytes_left(&s->gb) > 0 && *s->gb.buffer) {
1346  int var_size;
1347  if ((var_size = check_header_variable(s, "channels",
1348  "chlist", 38)) >= 0) {
1349  GetByteContext ch_gb;
1350  if (!var_size) {
1351  ret = AVERROR_INVALIDDATA;
1352  goto fail;
1353  }
1354 
1355  bytestream2_init(&ch_gb, s->gb.buffer, var_size);
1356 
1357  while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
1359  enum ExrPixelType current_pixel_type;
1360  int channel_index = -1;
1361  int xsub, ysub;
1362 
1363  if (strcmp(s->layer, "") != 0) {
1364  if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
1365  layer_match = 1;
1366  av_log(s->avctx, AV_LOG_INFO,
1367  "Channel match layer : %s.\n", ch_gb.buffer);
1368  ch_gb.buffer += strlen(s->layer);
1369  if (*ch_gb.buffer == '.')
1370  ch_gb.buffer++; /* skip dot if not given */
1371  } else {
1372  layer_match = 0;
1373  av_log(s->avctx, AV_LOG_INFO,
1374  "Channel doesn't match layer : %s.\n", ch_gb.buffer);
1375  }
1376  } else {
1377  layer_match = 1;
1378  }
1379 
1380  if (layer_match) { /* only search channel if the layer match is valid */
1381  if (!av_strcasecmp(ch_gb.buffer, "R") ||
1382  !av_strcasecmp(ch_gb.buffer, "X") ||
1383  !av_strcasecmp(ch_gb.buffer, "U")) {
1384  channel_index = 0;
1385  s->is_luma = 0;
1386  } else if (!av_strcasecmp(ch_gb.buffer, "G") ||
1387  !av_strcasecmp(ch_gb.buffer, "V")) {
1388  channel_index = 1;
1389  s->is_luma = 0;
1390  } else if (!av_strcasecmp(ch_gb.buffer, "Y")) {
1391  channel_index = 1;
1392  s->is_luma = 1;
1393  } else if (!av_strcasecmp(ch_gb.buffer, "B") ||
1394  !av_strcasecmp(ch_gb.buffer, "Z") ||
1395  !av_strcasecmp(ch_gb.buffer, "W")) {
1396  channel_index = 2;
1397  s->is_luma = 0;
1398  } else if (!av_strcasecmp(ch_gb.buffer, "A")) {
1399  channel_index = 3;
1400  } else {
1402  "Unsupported channel %.256s.\n", ch_gb.buffer);
1403  }
1404  }
1405 
1406  /* skip until you get a 0 */
1407  while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
1408  bytestream2_get_byte(&ch_gb))
1409  continue;
1410 
1411  if (bytestream2_get_bytes_left(&ch_gb) < 4) {
1412  av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
1413  ret = AVERROR_INVALIDDATA;
1414  goto fail;
1415  }
1416 
1417  current_pixel_type = bytestream2_get_le32(&ch_gb);
1418  if (current_pixel_type >= EXR_UNKNOWN) {
1419  avpriv_report_missing_feature(s->avctx, "Pixel type %d",
1420  current_pixel_type);
1421  ret = AVERROR_PATCHWELCOME;
1422  goto fail;
1423  }
1424 
1425  bytestream2_skip(&ch_gb, 4);
1426  xsub = bytestream2_get_le32(&ch_gb);
1427  ysub = bytestream2_get_le32(&ch_gb);
1428 
1429  if (xsub != 1 || ysub != 1) {
1431  "Subsampling %dx%d",
1432  xsub, ysub);
1433  ret = AVERROR_PATCHWELCOME;
1434  goto fail;
1435  }
1436 
1437  if (channel_index >= 0 && s->channel_offsets[channel_index] == -1) { /* channel has not been previously assigned */
1438  if (s->pixel_type != EXR_UNKNOWN &&
1439  s->pixel_type != current_pixel_type) {
1441  "RGB channels not of the same depth.\n");
1442  ret = AVERROR_INVALIDDATA;
1443  goto fail;
1444  }
1445  s->pixel_type = current_pixel_type;
1446  s->channel_offsets[channel_index] = s->current_channel_offset;
1447  } else if (channel_index >= 0) {
1449  "Multiple channels with index %d.\n", channel_index);
1450  if (++dup_channels > 10) {
1451  ret = AVERROR_INVALIDDATA;
1452  goto fail;
1453  }
1454  }
1455 
1456  s->channels = av_realloc(s->channels,
1457  ++s->nb_channels * sizeof(EXRChannel));
1458  if (!s->channels) {
1459  ret = AVERROR(ENOMEM);
1460  goto fail;
1461  }
1462  channel = &s->channels[s->nb_channels - 1];
1463  channel->pixel_type = current_pixel_type;
1464  channel->xsub = xsub;
1465  channel->ysub = ysub;
1466 
1467  if (current_pixel_type == EXR_HALF) {
1468  s->current_channel_offset += 2;
1469  } else {/* Float or UINT32 */
1470  s->current_channel_offset += 4;
1471  }
1472  }
1473 
1474  /* Check if all channels are set with an offset or if the channels
1475  * are causing an overflow */
1476  if (!s->is_luma) {/* if we expected to have at least 3 channels */
1477  if (FFMIN3(s->channel_offsets[0],
1478  s->channel_offsets[1],
1479  s->channel_offsets[2]) < 0) {
1480  if (s->channel_offsets[0] < 0)
1481  av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
1482  if (s->channel_offsets[1] < 0)
1483  av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
1484  if (s->channel_offsets[2] < 0)
1485  av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
1486  ret = AVERROR_INVALIDDATA;
1487  goto fail;
1488  }
1489  }
1490 
1491  // skip one last byte and update main gb
1492  s->gb.buffer = ch_gb.buffer + 1;
1493  continue;
1494  } else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
1495  31)) >= 0) {
1496  if (!var_size) {
1497  ret = AVERROR_INVALIDDATA;
1498  goto fail;
1499  }
1500 
1501  s->xmin = bytestream2_get_le32(&s->gb);
1502  s->ymin = bytestream2_get_le32(&s->gb);
1503  s->xmax = bytestream2_get_le32(&s->gb);
1504  s->ymax = bytestream2_get_le32(&s->gb);
1505  s->xdelta = (s->xmax - s->xmin) + 1;
1506  s->ydelta = (s->ymax - s->ymin) + 1;
1507 
1508  continue;
1509  } else if ((var_size = check_header_variable(s, "displayWindow",
1510  "box2i", 34)) >= 0) {
1511  if (!var_size) {
1512  ret = AVERROR_INVALIDDATA;
1513  goto fail;
1514  }
1515 
1516  bytestream2_skip(&s->gb, 8);
1517  s->w = bytestream2_get_le32(&s->gb) + 1;
1518  s->h = bytestream2_get_le32(&s->gb) + 1;
1519 
1520  continue;
1521  } else if ((var_size = check_header_variable(s, "lineOrder",
1522  "lineOrder", 25)) >= 0) {
1523  int line_order;
1524  if (!var_size) {
1525  ret = AVERROR_INVALIDDATA;
1526  goto fail;
1527  }
1528 
1529  line_order = bytestream2_get_byte(&s->gb);
1530  av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
1531  if (line_order > 2) {
1532  av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
1533  ret = AVERROR_INVALIDDATA;
1534  goto fail;
1535  }
1536 
1537  continue;
1538  } else if ((var_size = check_header_variable(s, "pixelAspectRatio",
1539  "float", 31)) >= 0) {
1540  if (!var_size) {
1541  ret = AVERROR_INVALIDDATA;
1542  goto fail;
1543  }
1544 
1545  sar = bytestream2_get_le32(&s->gb);
1546 
1547  continue;
1548  } else if ((var_size = check_header_variable(s, "compression",
1549  "compression", 29)) >= 0) {
1550  if (!var_size) {
1551  ret = AVERROR_INVALIDDATA;
1552  goto fail;
1553  }
1554 
1555  if (s->compression == EXR_UNKN)
1556  s->compression = bytestream2_get_byte(&s->gb);
1557  else
1559  "Found more than one compression attribute.\n");
1560 
1561  continue;
1562  } else if ((var_size = check_header_variable(s, "tiles",
1563  "tiledesc", 22)) >= 0) {
1564  char tileLevel;
1565 
1566  if (!s->is_tile)
1568  "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
1569 
1570  s->tile_attr.xSize = bytestream2_get_le32(&s->gb);
1571  s->tile_attr.ySize = bytestream2_get_le32(&s->gb);
1572 
1573  tileLevel = bytestream2_get_byte(&s->gb);
1574  s->tile_attr.level_mode = tileLevel & 0x0f;
1575  s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
1576 
1578  avpriv_report_missing_feature(s->avctx, "Tile level mode %d",
1579  s->tile_attr.level_mode);
1580  ret = AVERROR_PATCHWELCOME;
1581  goto fail;
1582  }
1583 
1585  avpriv_report_missing_feature(s->avctx, "Tile level round %d",
1586  s->tile_attr.level_round);
1587  ret = AVERROR_PATCHWELCOME;
1588  goto fail;
1589  }
1590 
1591  continue;
1592  } else if ((var_size = check_header_variable(s, "writer",
1593  "string", 1)) >= 0) {
1594  uint8_t key[256] = { 0 };
1595 
1596  bytestream2_get_buffer(&s->gb, key, FFMIN(sizeof(key) - 1, var_size));
1597  av_dict_set(&metadata, "writer", key, 0);
1598 
1599  continue;
1600  }
1601 
1602  // Check if there are enough bytes for a header
1603  if (bytestream2_get_bytes_left(&s->gb) <= 9) {
1604  av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
1605  ret = AVERROR_INVALIDDATA;
1606  goto fail;
1607  }
1608 
1609  // Process unknown variables
1610  for (i = 0; i < 2; i++) // value_name and value_type
1611  while (bytestream2_get_byte(&s->gb) != 0);
1612 
1613  // Skip variable length
1614  bytestream2_skip(&s->gb, bytestream2_get_le32(&s->gb));
1615  }
1616 
1617  ff_set_sar(s->avctx, av_d2q(av_int2float(sar), 255));
1618 
1619  if (s->compression == EXR_UNKN) {
1620  av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
1621  ret = AVERROR_INVALIDDATA;
1622  goto fail;
1623  }
1624 
1625  if (s->is_tile) {
1626  if (s->tile_attr.xSize < 1 || s->tile_attr.ySize < 1) {
1627  av_log(s->avctx, AV_LOG_ERROR, "Invalid tile attribute.\n");
1628  ret = AVERROR_INVALIDDATA;
1629  goto fail;
1630  }
1631  }
1632 
1633  if (bytestream2_get_bytes_left(&s->gb) <= 0) {
1634  av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
1635  ret = AVERROR_INVALIDDATA;
1636  goto fail;
1637  }
1638 
1639  frame->metadata = metadata;
1640 
1641  // aaand we are done
1642  bytestream2_skip(&s->gb, 1);
1643  return 0;
1644 fail:
1645  av_dict_free(&metadata);
1646  return ret;
1647 }
1648 
1649 static int decode_frame(AVCodecContext *avctx, void *data,
1650  int *got_frame, AVPacket *avpkt)
1651 {
1652  EXRContext *s = avctx->priv_data;
1653  ThreadFrame frame = { .f = data };
1654  AVFrame *picture = data;
1655  uint8_t *ptr;
1656 
1657  int i, y, ret;
1658  int planes;
1659  int out_line_size;
1660  int nb_blocks; /* nb scanline or nb tile */
1661  uint64_t start_offset_table;
1662  uint64_t start_next_scanline;
1663  PutByteContext offset_table_writer;
1664 
1665  bytestream2_init(&s->gb, avpkt->data, avpkt->size);
1666 
1667  if ((ret = decode_header(s, picture)) < 0)
1668  return ret;
1669 
1670  switch (s->pixel_type) {
1671  case EXR_FLOAT:
1672  case EXR_HALF:
1673  if (s->channel_offsets[3] >= 0) {
1674  if (!s->is_luma) {
1675  avctx->pix_fmt = AV_PIX_FMT_GBRAPF32;
1676  } else {
1677  /* todo: change this when a floating point pixel format with luma with alpha is implemented */
1678  avctx->pix_fmt = AV_PIX_FMT_GBRAPF32;
1679  }
1680  } else {
1681  if (!s->is_luma) {
1682  avctx->pix_fmt = AV_PIX_FMT_GBRPF32;
1683  } else {
1684  avctx->pix_fmt = AV_PIX_FMT_GRAYF32;
1685  }
1686  }
1687  break;
1688  case EXR_UINT:
1689  if (s->channel_offsets[3] >= 0) {
1690  if (!s->is_luma) {
1691  avctx->pix_fmt = AV_PIX_FMT_RGBA64;
1692  } else {
1693  avctx->pix_fmt = AV_PIX_FMT_YA16;
1694  }
1695  } else {
1696  if (!s->is_luma) {
1697  avctx->pix_fmt = AV_PIX_FMT_RGB48;
1698  } else {
1699  avctx->pix_fmt = AV_PIX_FMT_GRAY16;
1700  }
1701  }
1702  break;
1703  default:
1704  av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
1705  return AVERROR_INVALIDDATA;
1706  }
1707 
1709  avctx->color_trc = s->apply_trc_type;
1710 
1711  switch (s->compression) {
1712  case EXR_RAW:
1713  case EXR_RLE:
1714  case EXR_ZIP1:
1715  s->scan_lines_per_block = 1;
1716  break;
1717  case EXR_PXR24:
1718  case EXR_ZIP16:
1719  s->scan_lines_per_block = 16;
1720  break;
1721  case EXR_PIZ:
1722  case EXR_B44:
1723  case EXR_B44A:
1724  s->scan_lines_per_block = 32;
1725  break;
1726  default:
1727  avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
1728  return AVERROR_PATCHWELCOME;
1729  }
1730 
1731  /* Verify the xmin, xmax, ymin, ymax and xdelta before setting
1732  * the actual image size. */
1733  if (s->xmin > s->xmax ||
1734  s->ymin > s->ymax ||
1735  s->xdelta != s->xmax - s->xmin + 1 ||
1736  s->xmax >= s->w ||
1737  s->ymax >= s->h) {
1738  av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
1739  return AVERROR_INVALIDDATA;
1740  }
1741 
1742  if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
1743  return ret;
1744 
1745  s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
1746  if (!s->desc)
1747  return AVERROR_INVALIDDATA;
1748 
1749  if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) {
1750  planes = s->desc->nb_components;
1751  out_line_size = avctx->width * 4;
1752  } else {
1753  planes = 1;
1754  out_line_size = avctx->width * 2 * s->desc->nb_components;
1755  }
1756 
1757  if (s->is_tile) {
1758  nb_blocks = ((s->xdelta + s->tile_attr.xSize - 1) / s->tile_attr.xSize) *
1759  ((s->ydelta + s->tile_attr.ySize - 1) / s->tile_attr.ySize);
1760  } else { /* scanline */
1761  nb_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
1763  }
1764 
1765  if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
1766  return ret;
1767 
1768  if (bytestream2_get_bytes_left(&s->gb) < nb_blocks * 8)
1769  return AVERROR_INVALIDDATA;
1770 
1771  // check offset table and recreate it if need
1772  if (!s->is_tile && bytestream2_peek_le64(&s->gb) == 0) {
1773  av_log(s->avctx, AV_LOG_DEBUG, "recreating invalid scanline offset table\n");
1774 
1775  start_offset_table = bytestream2_tell(&s->gb);
1776  start_next_scanline = start_offset_table + nb_blocks * 8;
1777  bytestream2_init_writer(&offset_table_writer, &avpkt->data[start_offset_table], nb_blocks * 8);
1778 
1779  for (y = 0; y < nb_blocks; y++) {
1780  /* write offset of prev scanline in offset table */
1781  bytestream2_put_le64(&offset_table_writer, start_next_scanline);
1782 
1783  /* get len of next scanline */
1784  bytestream2_seek(&s->gb, start_next_scanline + 4, SEEK_SET);/* skip line number */
1785  start_next_scanline += (bytestream2_get_le32(&s->gb) + 8);
1786  }
1787  bytestream2_seek(&s->gb, start_offset_table, SEEK_SET);
1788  }
1789 
1790  // save pointer we are going to use in decode_block
1791  s->buf = avpkt->data;
1792  s->buf_size = avpkt->size;
1793 
1794  // Zero out the start if ymin is not 0
1795  for (i = 0; i < planes; i++) {
1796  ptr = picture->data[i];
1797  for (y = 0; y < s->ymin; y++) {
1798  memset(ptr, 0, out_line_size);
1799  ptr += picture->linesize[i];
1800  }
1801  }
1802 
1803  s->picture = picture;
1804 
1805  avctx->execute2(avctx, decode_block, s->thread_data, NULL, nb_blocks);
1806 
1807  // Zero out the end if ymax+1 is not h
1808  for (i = 0; i < planes; i++) {
1809  ptr = picture->data[i] + ((s->ymax+1) * picture->linesize[i]);
1810  for (y = s->ymax + 1; y < avctx->height; y++) {
1811  memset(ptr, 0, out_line_size);
1812  ptr += picture->linesize[i];
1813  }
1814  }
1815 
1816  picture->pict_type = AV_PICTURE_TYPE_I;
1817  *got_frame = 1;
1818 
1819  return avpkt->size;
1820 }
1821 
1823 {
1824  EXRContext *s = avctx->priv_data;
1825  uint32_t i;
1826  union av_intfloat32 t;
1827  float one_gamma = 1.0f / s->gamma;
1828  avpriv_trc_function trc_func = NULL;
1829 
1830  s->avctx = avctx;
1831 
1832  ff_exrdsp_init(&s->dsp);
1833 
1834 #if HAVE_BIGENDIAN
1835  ff_bswapdsp_init(&s->bbdsp);
1836 #endif
1837 
1839  if (trc_func) {
1840  for (i = 0; i < 65536; ++i) {
1841  t = exr_half2float(i);
1842  t.f = trc_func(t.f);
1843  s->gamma_table[i] = t;
1844  }
1845  } else {
1846  if (one_gamma > 0.9999f && one_gamma < 1.0001f) {
1847  for (i = 0; i < 65536; ++i) {
1848  s->gamma_table[i] = exr_half2float(i);
1849  }
1850  } else {
1851  for (i = 0; i < 65536; ++i) {
1852  t = exr_half2float(i);
1853  /* If negative value we reuse half value */
1854  if (t.f <= 0.0f) {
1855  s->gamma_table[i] = t;
1856  } else {
1857  t.f = powf(t.f, one_gamma);
1858  s->gamma_table[i] = t;
1859  }
1860  }
1861  }
1862  }
1863 
1864  // allocate thread data, used for non EXR_RAW compression types
1866  if (!s->thread_data)
1867  return AVERROR_INVALIDDATA;
1868 
1869  return 0;
1870 }
1871 
1873 {
1874  EXRContext *s = avctx->priv_data;
1875  int i;
1876  for (i = 0; i < avctx->thread_count; i++) {
1877  EXRThreadData *td = &s->thread_data[i];
1879  av_freep(&td->tmp);
1880  av_freep(&td->bitmap);
1881  av_freep(&td->lut);
1882  }
1883 
1884  av_freep(&s->thread_data);
1885  av_freep(&s->channels);
1886 
1887  return 0;
1888 }
1889 
1890 #define OFFSET(x) offsetof(EXRContext, x)
1891 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
1892 static const AVOption options[] = {
1893  { "layer", "Set the decoding layer", OFFSET(layer),
1894  AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
1895  { "gamma", "Set the float gamma value when decoding", OFFSET(gamma),
1896  AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
1897 
1898  // XXX: Note the abuse of the enum using AVCOL_TRC_UNSPECIFIED to subsume the existing gamma option
1899  { "apply_trc", "color transfer characteristics to apply to EXR linear input", OFFSET(apply_trc_type),
1900  AV_OPT_TYPE_INT, {.i64 = AVCOL_TRC_UNSPECIFIED }, 1, AVCOL_TRC_NB-1, VD, "apply_trc_type"},
1901  { "bt709", "BT.709", 0,
1902  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT709 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1903  { "gamma", "gamma", 0,
1904  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_UNSPECIFIED }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1905  { "gamma22", "BT.470 M", 0,
1906  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA22 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1907  { "gamma28", "BT.470 BG", 0,
1908  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA28 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1909  { "smpte170m", "SMPTE 170 M", 0,
1910  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE170M }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1911  { "smpte240m", "SMPTE 240 M", 0,
1912  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE240M }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1913  { "linear", "Linear", 0,
1914  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LINEAR }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1915  { "log", "Log", 0,
1916  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1917  { "log_sqrt", "Log square root", 0,
1918  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG_SQRT }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1919  { "iec61966_2_4", "IEC 61966-2-4", 0,
1920  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_4 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1921  { "bt1361", "BT.1361", 0,
1922  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT1361_ECG }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1923  { "iec61966_2_1", "IEC 61966-2-1", 0,
1924  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1925  { "bt2020_10bit", "BT.2020 - 10 bit", 0,
1926  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_10 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1927  { "bt2020_12bit", "BT.2020 - 12 bit", 0,
1928  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_12 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1929  { "smpte2084", "SMPTE ST 2084", 0,
1930  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST2084 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1931  { "smpte428_1", "SMPTE ST 428-1", 0,
1932  AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST428_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1933 
1934  { NULL },
1935 };
1936 
1937 static const AVClass exr_class = {
1938  .class_name = "EXR",
1939  .item_name = av_default_item_name,
1940  .option = options,
1941  .version = LIBAVUTIL_VERSION_INT,
1942 };
1943 
1945  .name = "exr",
1946  .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
1947  .type = AVMEDIA_TYPE_VIDEO,
1948  .id = AV_CODEC_ID_EXR,
1949  .priv_data_size = sizeof(EXRContext),
1950  .init = decode_init,
1951  .close = decode_end,
1952  .decode = decode_frame,
1953  .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
1955  .priv_class = &exr_class,
1956 };
ITU-R BT2020 for 12-bit system.
Definition: pixfmt.h:496
int plane
Which of the 4 planes contains the component.
Definition: pixdesc.h:35
#define NULL
Definition: coverity.c:32
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
void * av_realloc(void *ptr, size_t size)
Allocate, reallocate, or free a block of memory.
Definition: mem.c:135
version
Definition: libkvazaar.c:292
static int shift(int a, int b)
Definition: sonic.c:82
IEC 61966-2-4.
Definition: pixfmt.h:492
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2549
This structure describes decoded (raw) audio or video data.
Definition: frame.h:300
static int decode_header(EXRContext *s, AVFrame *frame)
Definition: exr.c:1283
if(ret< 0)
Definition: vf_mcdeint.c:279
AVOption.
Definition: opt.h:246
"Linear transfer characteristics"
Definition: pixfmt.h:489
Definition: exr.c:66
static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
Definition: exr.c:294
misc image utilities
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:104
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
Definition: exr.c:61
static av_always_inline float av_int2float(uint32_t i)
Reinterpret a 32-bit integer as a float.
Definition: intfloat.h:40
int channel_offsets[4]
Definition: exr.c:133
#define AV_PIX_FMT_RGBA64
Definition: pixfmt.h:387
int buf_size
Definition: exr.c:150
int * p
Definition: exr.c:327
uint32_t ymax
Definition: exr.c:138
static int rle_uncompress(EXRContext *ctx, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
Definition: exr.c:244
static int pxr24_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
Definition: exr.c:775
const char * layer
Definition: exr.c:158
int size
Definition: packet.h:356
const char * b
Definition: vf_curves.c:116
static av_always_inline void bytestream2_init_writer(PutByteContext *p, uint8_t *buf, int buf_size)
Definition: bytestream.h:143
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:235
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:736
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
Definition: bytestream.h:133
void av_fast_padded_malloc(void *ptr, unsigned int *size, size_t min_size)
Same behaviour av_fast_malloc but the buffer has additional AV_INPUT_BUFFER_PADDING_SIZE at the end w...
Definition: utils.c:70
enum ExrPixelType pixel_type
Definition: exr.c:132
const char * key
static int decode_block(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr)
Definition: exr.c:987
#define HALF_FLOAT_MAX_BIASED_EXP
Definition: exr.c:175
uint8_t * bitmap
Definition: exr.c:113
AVCodec.
Definition: codec.h:190
uint8_t * tmp
Definition: exr.c:110
int w
Definition: exr.c:136
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:71
ExrDSPContext dsp
Definition: exr.c:125
AVColorTransferCharacteristic
Color Transfer Characteristic.
Definition: pixfmt.h:480
int lit
Definition: exr.c:326
void(* predictor)(uint8_t *src, ptrdiff_t size)
Definition: exrdsp.h:27
#define VD
Definition: exr.c:1891
#define AV_RL64
Definition: intreadwrite.h:173
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
const uint8_t * buf
Definition: exr.c:149
Definition: exr.c:324
float gamma
Definition: exr.c:161
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
uint8_t
#define av_cold
Definition: attributes.h:88
#define av_malloc(s)
static void wav_decode(uint16_t *in, int nx, int ox, int ny, int oy, uint16_t mx)
Definition: exr.c:611
AVOptions.
#define f(width, name)
Definition: cbs_vp9.c:255
#define HUF_ENCSIZE
Definition: exr.c:320
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
Definition: pixdesc.h:188
#define get_code(po, rlc, c, lc, gb, out, oe, outb)
Definition: exr.c:441
Definition: exr.c:76
Multithreading support functions.
#define OFFSET(x)
Definition: exr.c:1890
also ITU-R BT470M / ITU-R BT1700 625 PAL & SECAM
Definition: pixfmt.h:485
static int huf_uncompress(GetByteContext *gb, uint16_t *dst, int dst_size)
Definition: exr.c:533
uint32_t xdelta
Definition: exr.c:139
static int huf_build_dec_table(const uint64_t *hcode, int im, int iM, HufDec *hdecod)
Definition: exr.c:398
static AVFrame * frame
#define get_char(c, lc, gb)
Definition: exr.c:435
const char data[16]
Definition: mxf.c:91
Definition: exr.c:94
#define height
Definition: exr.c:63
uint8_t * data
Definition: packet.h:355
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
const uint8_t * buffer
Definition: bytestream.h:34
#define FFMIN3(a, b, c)
Definition: common.h:97
static const AVOption options[]
Definition: exr.c:1892
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:119
AVFrame * picture
Definition: exr.c:123
bitstream reader API header.
uint32_t ymin
Definition: exr.c:138
AVDictionary * metadata
metadata.
Definition: frame.h:586
GetByteContext gb
Definition: exr.c:148
uint32_t ydelta
Definition: exr.c:139
#define av_log(a,...)
uint8_t * uncompressed_data
Definition: exr.c:107
Definition: exr.c:68
#define A_OFFSET
Definition: exr.c:598
static int huf_decode(const uint64_t *hcode, const HufDec *hdecod, GetByteContext *gb, int nbits, int rlc, int no, uint16_t *out)
Definition: exr.c:464
static av_always_inline int bytestream2_get_bytes_left(GetByteContext *g)
Definition: bytestream.h:154
Definition: exr.c:70
#define src
Definition: vp8dsp.c:254
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
#define FLOAT_MAX_BIASED_EXP
Definition: exr.c:173
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define td
Definition: regdef.h:70
ITU-R BT1361 Extended Colour Gamut.
Definition: pixfmt.h:493
int h
Definition: exr.c:136
#define AVERROR(e)
Definition: error.h:43
static av_cold int decode_init(AVCodecContext *avctx)
Definition: exr.c:1822
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
Definition: bytestream.h:164
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
static av_always_inline unsigned int bytestream2_get_buffer(GetByteContext *g, uint8_t *dst, unsigned int size)
Definition: bytestream.h:263
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
AVCodecContext * avctx
Definition: exr.c:124
void av_dict_free(AVDictionary **pm)
Free all the memory allocated for an AVDictionary struct and all keys and values. ...
Definition: dict.c:203
#define AV_PIX_FMT_YA16
Definition: pixfmt.h:382
Definition: graph2dot.c:48
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:383
enum AVColorTransferCharacteristic apply_trc_type
Definition: exr.c:160
simple assert() macros that are a bit more flexible than ISO C assert().
enum ExrPixelType pixel_type
Definition: exr.c:96
int nb_channels
Definition: exr.c:153
const char * name
Name of the codec implementation.
Definition: codec.h:197
#define LONG_ZEROCODE_RUN
Definition: exr.c:354
#define fail()
Definition: checkasm.h:123
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: codec.h:106
int8_t exp
Definition: eval.c:72
AVCodec ff_exr_decoder
Definition: exr.c:1944
int current_channel_offset
Definition: exr.c:154
#define powf(x, y)
Definition: libm.h:50
EXRThreadData * thread_data
Definition: exr.c:156
uint64_t flags
Combination of AV_PIX_FMT_FLAG_...
Definition: pixdesc.h:106
Definition: exr.c:67
static void unpack_3(const uint8_t b[3], uint16_t s[16])
Definition: exr.c:894
static const struct @315 planes[]
static int zip_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
Definition: exr.c:227
int is_luma
Definition: exr.c:146
uint8_t nb_components
The number of components each pixel has, (1-4)
Definition: pixdesc.h:83
Definition: exr.c:69
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:383
#define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP
Definition: exr.c:166
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:381
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
Definition: exr.c:65
int xsub
Definition: exr.c:95
#define FFMIN(a, b)
Definition: common.h:96
int len
Definition: exr.c:325
int32_t xSize
Definition: exr.c:100
int av_strcasecmp(const char *a, const char *b)
Locale-independent case-insensitive compare.
Definition: avstring.c:213
uint32_t xmin
Definition: exr.c:137
#define HUF_DECSIZE
Definition: exr.c:321
int width
picture width / height.
Definition: avcodec.h:699
enum ExrCompr compression
Definition: exr.c:131
EXRTileAttribute tile_attr
Definition: exr.c:143
int tmp_size
Definition: exr.c:111
int32_t
AVFormatContext * ctx
Definition: movenc.c:48
static void unpack_14(const uint8_t b[14], uint16_t s[16])
Definition: exr.c:859
uint16_t * lut
Definition: exr.c:114
#define s(width, name)
Definition: cbs_vp9.c:257
uint32_t i
Definition: intfloat.h:28
avpriv_trc_function avpriv_get_trc_function_from_trc(enum AVColorTransferCharacteristic trc)
Determine the function needed to apply the given AVColorTransferCharacteristic to linear input...
Definition: color_utils.c:170
#define AV_RL32
Definition: intreadwrite.h:146
Definition: exr.c:77
EXRChannel * channels
Definition: exr.c:152
int uncompressed_size
Definition: exr.c:108
#define HUF_DECBITS
Definition: exr.c:318
int thread_count
thread count is used to decide how many independent tasks should be passed to execute() ...
Definition: avcodec.h:1785
enum ExrTileLevelMode level_mode
Definition: exr.c:102
#define SHORTEST_LONG_RUN
Definition: exr.c:355
static int check_header_variable(EXRContext *s, const char *value_name, const char *value_type, unsigned int minimum_length)
Check if the variable name corresponds to its data type.
Definition: exr.c:1254
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: codec.h:110
int ysub
Definition: exr.c:95
static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size, int uncompressed_size, EXRThreadData *td)
Definition: exr.c:910
static av_always_inline int bytestream2_tell(GetByteContext *g)
Definition: bytestream.h:188
#define HUF_DECMASK
Definition: exr.c:322
int ysize
Definition: exr.c:116
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
Definition: avcodec.h:1845
also ITU-R BT1361
Definition: pixfmt.h:482
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
also ITU-R BT601-6 525 or 625 / ITU-R BT1358 525 or 625 / ITU-R BT1700 NTSC
Definition: pixfmt.h:487
Libavcodec external API header.
ExrCompr
Definition: exr.c:60
#define AV_PIX_FMT_GRAYF32
Definition: pixfmt.h:429
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:331
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:677
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
main external API structure.
Definition: avcodec.h:526
#define BITMAP_SIZE
Definition: exr.c:292
int av_dict_set(AVDictionary **pm, const char *key, const char *value, int flags)
Set the given entry in *pm, overwriting an existing entry.
Definition: dict.c:70
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
Describe the class of an AVClass context structure.
Definition: log.h:67
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:1147
Definition: exr.c:64
int is_tile
Definition: exr.c:144
float im
Definition: fft.c:82
Not part of ABI.
Definition: pixfmt.h:502
"Logarithmic transfer characteristic (100 * Sqrt(10) : 1 range)"
Definition: pixfmt.h:491
ExrPixelType
Definition: exr.c:74
Definition: exr.c:62
static av_cold int decode_end(AVCodecContext *avctx)
Definition: exr.c:1872
uint8_t pixel
Definition: tiny_ssim.c:42
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
#define flags(name, subs,...)
Definition: cbs_av1.c:564
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:314
AVRational av_d2q(double d, int max)
Convert a double precision floating point number to a rational.
Definition: rational.c:106
#define SHORT_ZEROCODE_RUN
Definition: exr.c:353
int scan_lines_per_block
Definition: exr.c:141
static union av_intfloat32 exr_half2float(uint16_t hf)
Convert a half float as a uint16_t into a full float.
Definition: exr.c:184
#define AV_PIX_FMT_GBRPF32
Definition: pixfmt.h:426
int
uint32_t xmax
Definition: exr.c:137
#define AV_PIX_FMT_GBRAPF32
Definition: pixfmt.h:427
IEC 61966-2-1 (sRGB or sYCC)
Definition: pixfmt.h:494
common internal api header.
common internal and external API header
int channel_line_size
Definition: exr.c:118
static double c[64]
channel
Use these values when setting the channel map with ebur128_set_channel().
Definition: ebur128.h:39
also ITU-R BT470BG
Definition: pixfmt.h:486
Definition: exr.c:75
#define MOD_MASK
Definition: exr.c:599
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
void * priv_data
Definition: avcodec.h:553
static av_always_inline int diff(const uint32_t a, const uint32_t b)
#define av_free(p)
ExrTileLevelRound
Definition: exr.c:88
static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize, int dsize, EXRThreadData *td)
Definition: exr.c:690
static av_always_inline int bytestream2_seek(GetByteContext *g, int offset, int whence)
Definition: bytestream.h:208
static void huf_canonical_code_table(uint64_t *hcode)
Definition: exr.c:330
ITU-R BT2020 for 10-bit system.
Definition: pixfmt.h:495
static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
Definition: exr.c:309
FILE * out
Definition: movenc.c:54
#define av_freep(p)
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
Definition: exr.c:1649
static void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
Definition: exr.c:584
av_cold void ff_exrdsp_init(ExrDSPContext *c)
Definition: exrdsp.c:49
int xsize
Definition: exr.c:116
static void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
Definition: exr.c:601
static int huf_unpack_enc_table(GetByteContext *gb, int32_t im, int32_t iM, uint64_t *hcode)
Definition: exr.c:358
const AVPixFmtDescriptor * desc
Definition: exr.c:134
void(* reorder_pixels)(uint8_t *dst, const uint8_t *src, ptrdiff_t size)
Definition: exrdsp.h:26
This structure stores compressed data.
Definition: packet.h:332
ExrTileLevelMode
Definition: exr.c:81
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:50
for(j=16;j >0;--j)
Definition: exr.c:71
static const AVClass exr_class
Definition: exr.c:1937
#define USHORT_RANGE
Definition: exr.c:291
union av_intfloat32 gamma_table[65536]
Definition: exr.c:162
enum ExrTileLevelRound level_round
Definition: exr.c:103
void * av_mallocz_array(size_t nmemb, size_t size)
Allocate a memory block for an array with av_mallocz().
Definition: mem.c:192
"Logarithmic transfer characteristic (100:1 range)"
Definition: pixfmt.h:490
double(* avpriv_trc_function)(double)
Definition: color_utils.h:40
int32_t ySize
Definition: exr.c:101
static uint8_t tmp[11]
Definition: aes_ctr.c:26