FFmpeg  4.3
h264_slice.c
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG-4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #include "libavutil/avassert.h"
29 #include "libavutil/display.h"
30 #include "libavutil/imgutils.h"
31 #include "libavutil/stereo3d.h"
32 #include "internal.h"
33 #include "cabac.h"
34 #include "cabac_functions.h"
35 #include "error_resilience.h"
36 #include "avcodec.h"
37 #include "h264.h"
38 #include "h264dec.h"
39 #include "h264data.h"
40 #include "h264chroma.h"
41 #include "h264_mvpred.h"
42 #include "h264_ps.h"
43 #include "golomb.h"
44 #include "mathops.h"
45 #include "mpegutils.h"
46 #include "mpegvideo.h"
47 #include "rectangle.h"
48 #include "thread.h"
49 
50 static const uint8_t field_scan[16+1] = {
51  0 + 0 * 4, 0 + 1 * 4, 1 + 0 * 4, 0 + 2 * 4,
52  0 + 3 * 4, 1 + 1 * 4, 1 + 2 * 4, 1 + 3 * 4,
53  2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 2 + 3 * 4,
54  3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4,
55 };
56 
57 static const uint8_t field_scan8x8[64+1] = {
58  0 + 0 * 8, 0 + 1 * 8, 0 + 2 * 8, 1 + 0 * 8,
59  1 + 1 * 8, 0 + 3 * 8, 0 + 4 * 8, 1 + 2 * 8,
60  2 + 0 * 8, 1 + 3 * 8, 0 + 5 * 8, 0 + 6 * 8,
61  0 + 7 * 8, 1 + 4 * 8, 2 + 1 * 8, 3 + 0 * 8,
62  2 + 2 * 8, 1 + 5 * 8, 1 + 6 * 8, 1 + 7 * 8,
63  2 + 3 * 8, 3 + 1 * 8, 4 + 0 * 8, 3 + 2 * 8,
64  2 + 4 * 8, 2 + 5 * 8, 2 + 6 * 8, 2 + 7 * 8,
65  3 + 3 * 8, 4 + 1 * 8, 5 + 0 * 8, 4 + 2 * 8,
66  3 + 4 * 8, 3 + 5 * 8, 3 + 6 * 8, 3 + 7 * 8,
67  4 + 3 * 8, 5 + 1 * 8, 6 + 0 * 8, 5 + 2 * 8,
68  4 + 4 * 8, 4 + 5 * 8, 4 + 6 * 8, 4 + 7 * 8,
69  5 + 3 * 8, 6 + 1 * 8, 6 + 2 * 8, 5 + 4 * 8,
70  5 + 5 * 8, 5 + 6 * 8, 5 + 7 * 8, 6 + 3 * 8,
71  7 + 0 * 8, 7 + 1 * 8, 6 + 4 * 8, 6 + 5 * 8,
72  6 + 6 * 8, 6 + 7 * 8, 7 + 2 * 8, 7 + 3 * 8,
73  7 + 4 * 8, 7 + 5 * 8, 7 + 6 * 8, 7 + 7 * 8,
74 };
75 
76 static const uint8_t field_scan8x8_cavlc[64+1] = {
77  0 + 0 * 8, 1 + 1 * 8, 2 + 0 * 8, 0 + 7 * 8,
78  2 + 2 * 8, 2 + 3 * 8, 2 + 4 * 8, 3 + 3 * 8,
79  3 + 4 * 8, 4 + 3 * 8, 4 + 4 * 8, 5 + 3 * 8,
80  5 + 5 * 8, 7 + 0 * 8, 6 + 6 * 8, 7 + 4 * 8,
81  0 + 1 * 8, 0 + 3 * 8, 1 + 3 * 8, 1 + 4 * 8,
82  1 + 5 * 8, 3 + 1 * 8, 2 + 5 * 8, 4 + 1 * 8,
83  3 + 5 * 8, 5 + 1 * 8, 4 + 5 * 8, 6 + 1 * 8,
84  5 + 6 * 8, 7 + 1 * 8, 6 + 7 * 8, 7 + 5 * 8,
85  0 + 2 * 8, 0 + 4 * 8, 0 + 5 * 8, 2 + 1 * 8,
86  1 + 6 * 8, 4 + 0 * 8, 2 + 6 * 8, 5 + 0 * 8,
87  3 + 6 * 8, 6 + 0 * 8, 4 + 6 * 8, 6 + 2 * 8,
88  5 + 7 * 8, 6 + 4 * 8, 7 + 2 * 8, 7 + 6 * 8,
89  1 + 0 * 8, 1 + 2 * 8, 0 + 6 * 8, 3 + 0 * 8,
90  1 + 7 * 8, 3 + 2 * 8, 2 + 7 * 8, 4 + 2 * 8,
91  3 + 7 * 8, 5 + 2 * 8, 4 + 7 * 8, 5 + 4 * 8,
92  6 + 3 * 8, 6 + 5 * 8, 7 + 3 * 8, 7 + 7 * 8,
93 };
94 
95 // zigzag_scan8x8_cavlc[i] = zigzag_scan8x8[(i/4) + 16*(i%4)]
96 static const uint8_t zigzag_scan8x8_cavlc[64+1] = {
97  0 + 0 * 8, 1 + 1 * 8, 1 + 2 * 8, 2 + 2 * 8,
98  4 + 1 * 8, 0 + 5 * 8, 3 + 3 * 8, 7 + 0 * 8,
99  3 + 4 * 8, 1 + 7 * 8, 5 + 3 * 8, 6 + 3 * 8,
100  2 + 7 * 8, 6 + 4 * 8, 5 + 6 * 8, 7 + 5 * 8,
101  1 + 0 * 8, 2 + 0 * 8, 0 + 3 * 8, 3 + 1 * 8,
102  3 + 2 * 8, 0 + 6 * 8, 4 + 2 * 8, 6 + 1 * 8,
103  2 + 5 * 8, 2 + 6 * 8, 6 + 2 * 8, 5 + 4 * 8,
104  3 + 7 * 8, 7 + 3 * 8, 4 + 7 * 8, 7 + 6 * 8,
105  0 + 1 * 8, 3 + 0 * 8, 0 + 4 * 8, 4 + 0 * 8,
106  2 + 3 * 8, 1 + 5 * 8, 5 + 1 * 8, 5 + 2 * 8,
107  1 + 6 * 8, 3 + 5 * 8, 7 + 1 * 8, 4 + 5 * 8,
108  4 + 6 * 8, 7 + 4 * 8, 5 + 7 * 8, 6 + 7 * 8,
109  0 + 2 * 8, 2 + 1 * 8, 1 + 3 * 8, 5 + 0 * 8,
110  1 + 4 * 8, 2 + 4 * 8, 6 + 0 * 8, 4 + 3 * 8,
111  0 + 7 * 8, 4 + 4 * 8, 7 + 2 * 8, 3 + 6 * 8,
112  5 + 5 * 8, 6 + 5 * 8, 6 + 6 * 8, 7 + 7 * 8,
113 };
114 
115 static void release_unused_pictures(H264Context *h, int remove_current)
116 {
117  int i;
118 
119  /* release non reference frames */
120  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
121  if (h->DPB[i].f->buf[0] && !h->DPB[i].reference &&
122  (remove_current || &h->DPB[i] != h->cur_pic_ptr)) {
123  ff_h264_unref_picture(h, &h->DPB[i]);
124  }
125  }
126 }
127 
128 static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
129 {
130  const H264Context *h = sl->h264;
131  int alloc_size = FFALIGN(FFABS(linesize) + 32, 32);
132 
133  av_fast_malloc(&sl->bipred_scratchpad, &sl->bipred_scratchpad_allocated, 16 * 6 * alloc_size);
134  // edge emu needs blocksize + filter length - 1
135  // (= 21x21 for H.264)
136  av_fast_malloc(&sl->edge_emu_buffer, &sl->edge_emu_buffer_allocated, alloc_size * 2 * 21);
137 
139  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
141  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
142 
143  if (!sl->bipred_scratchpad || !sl->edge_emu_buffer ||
144  !sl->top_borders[0] || !sl->top_borders[1]) {
147  av_freep(&sl->top_borders[0]);
148  av_freep(&sl->top_borders[1]);
149 
152  sl->top_borders_allocated[0] = 0;
153  sl->top_borders_allocated[1] = 0;
154  return AVERROR(ENOMEM);
155  }
156 
157  return 0;
158 }
159 
161 {
162  const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1;
163  const int mb_array_size = h->mb_stride * h->mb_height;
164  const int b4_stride = h->mb_width * 4 + 1;
165  const int b4_array_size = b4_stride * h->mb_height * 4;
166 
167  h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride,
169  h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) *
170  sizeof(uint32_t), av_buffer_allocz);
171  h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) *
172  sizeof(int16_t), av_buffer_allocz);
173  h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz);
174 
175  if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool ||
176  !h->ref_index_pool) {
181  return AVERROR(ENOMEM);
182  }
183 
184  return 0;
185 }
186 
188 {
189  int i, ret = 0;
190 
191  av_assert0(!pic->f->data[0]);
192 
193  pic->tf.f = pic->f;
194  ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ?
196  if (ret < 0)
197  goto fail;
198 
199  if (h->avctx->hwaccel) {
200  const AVHWAccel *hwaccel = h->avctx->hwaccel;
202  if (hwaccel->frame_priv_data_size) {
204  if (!pic->hwaccel_priv_buf)
205  return AVERROR(ENOMEM);
207  }
208  }
209  if (CONFIG_GRAY && !h->avctx->hwaccel && h->flags & AV_CODEC_FLAG_GRAY && pic->f->data[2]) {
210  int h_chroma_shift, v_chroma_shift;
212  &h_chroma_shift, &v_chroma_shift);
213 
214  for(i=0; i<AV_CEIL_RSHIFT(pic->f->height, v_chroma_shift); i++) {
215  memset(pic->f->data[1] + pic->f->linesize[1]*i,
216  0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
217  memset(pic->f->data[2] + pic->f->linesize[2]*i,
218  0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
219  }
220  }
221 
222  if (!h->qscale_table_pool) {
223  ret = init_table_pools(h);
224  if (ret < 0)
225  goto fail;
226  }
227 
230  if (!pic->qscale_table_buf || !pic->mb_type_buf)
231  goto fail;
232 
233  pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1;
234  pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1;
235 
236  for (i = 0; i < 2; i++) {
239  if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i])
240  goto fail;
241 
242  pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
243  pic->ref_index[i] = pic->ref_index_buf[i]->data;
244  }
245 
246  pic->pps_buf = av_buffer_ref(h->ps.pps_ref);
247  if (!pic->pps_buf)
248  goto fail;
249  pic->pps = (const PPS*)pic->pps_buf->data;
250 
251  pic->mb_width = h->mb_width;
252  pic->mb_height = h->mb_height;
253  pic->mb_stride = h->mb_stride;
254 
255  return 0;
256 fail:
257  ff_h264_unref_picture(h, pic);
258  return (ret < 0) ? ret : AVERROR(ENOMEM);
259 }
260 
262 {
263  int i;
264 
265  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
266  if (!h->DPB[i].f->buf[0])
267  return i;
268  }
269  return AVERROR_INVALIDDATA;
270 }
271 
272 
273 #define IN_RANGE(a, b, size) (((void*)(a) >= (void*)(b)) && ((void*)(a) < (void*)((b) + (size))))
274 
275 #define REBASE_PICTURE(pic, new_ctx, old_ctx) \
276  (((pic) && (pic) >= (old_ctx)->DPB && \
277  (pic) < (old_ctx)->DPB + H264_MAX_PICTURE_COUNT) ? \
278  &(new_ctx)->DPB[(pic) - (old_ctx)->DPB] : NULL)
279 
280 static void copy_picture_range(H264Picture **to, H264Picture **from, int count,
281  H264Context *new_base,
282  H264Context *old_base)
283 {
284  int i;
285 
286  for (i = 0; i < count; i++) {
287  av_assert1(!from[i] ||
288  IN_RANGE(from[i], old_base, 1) ||
289  IN_RANGE(from[i], old_base->DPB, H264_MAX_PICTURE_COUNT));
290  to[i] = REBASE_PICTURE(from[i], new_base, old_base);
291  }
292 }
293 
295 
297  const AVCodecContext *src)
298 {
299  H264Context *h = dst->priv_data, *h1 = src->priv_data;
300  int inited = h->context_initialized, err = 0;
301  int need_reinit = 0;
302  int i, ret;
303 
304  if (dst == src)
305  return 0;
306 
307  // We can't fail if SPS isn't set at it breaks current skip_frame code
308  //if (!h1->ps.sps)
309  // return AVERROR_INVALIDDATA;
310 
311  if (inited &&
312  (h->width != h1->width ||
313  h->height != h1->height ||
314  h->mb_width != h1->mb_width ||
315  h->mb_height != h1->mb_height ||
316  !h->ps.sps ||
317  h->ps.sps->bit_depth_luma != h1->ps.sps->bit_depth_luma ||
318  h->ps.sps->chroma_format_idc != h1->ps.sps->chroma_format_idc ||
319  h->ps.sps->colorspace != h1->ps.sps->colorspace)) {
320  need_reinit = 1;
321  }
322 
323  /* copy block_offset since frame_start may not be called */
324  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
325 
326  // SPS/PPS
327  for (i = 0; i < FF_ARRAY_ELEMS(h->ps.sps_list); i++) {
328  av_buffer_unref(&h->ps.sps_list[i]);
329  if (h1->ps.sps_list[i]) {
330  h->ps.sps_list[i] = av_buffer_ref(h1->ps.sps_list[i]);
331  if (!h->ps.sps_list[i])
332  return AVERROR(ENOMEM);
333  }
334  }
335  for (i = 0; i < FF_ARRAY_ELEMS(h->ps.pps_list); i++) {
336  av_buffer_unref(&h->ps.pps_list[i]);
337  if (h1->ps.pps_list[i]) {
338  h->ps.pps_list[i] = av_buffer_ref(h1->ps.pps_list[i]);
339  if (!h->ps.pps_list[i])
340  return AVERROR(ENOMEM);
341  }
342  }
343 
345  h->ps.pps = NULL;
346  h->ps.sps = NULL;
347  if (h1->ps.pps_ref) {
348  h->ps.pps_ref = av_buffer_ref(h1->ps.pps_ref);
349  if (!h->ps.pps_ref)
350  return AVERROR(ENOMEM);
351  h->ps.pps = (const PPS*)h->ps.pps_ref->data;
352  h->ps.sps = h->ps.pps->sps;
353  }
354 
355  if (need_reinit || !inited) {
356  h->width = h1->width;
357  h->height = h1->height;
358  h->mb_height = h1->mb_height;
359  h->mb_width = h1->mb_width;
360  h->mb_num = h1->mb_num;
361  h->mb_stride = h1->mb_stride;
362  h->b_stride = h1->b_stride;
363  h->x264_build = h1->x264_build;
364 
365  if (h->context_initialized || h1->context_initialized) {
366  if ((err = h264_slice_header_init(h)) < 0) {
367  av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed");
368  return err;
369  }
370  }
371 
372  /* copy block_offset since frame_start may not be called */
373  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
374  }
375 
376  h->avctx->coded_height = h1->avctx->coded_height;
377  h->avctx->coded_width = h1->avctx->coded_width;
378  h->avctx->width = h1->avctx->width;
379  h->avctx->height = h1->avctx->height;
380  h->width_from_caller = h1->width_from_caller;
381  h->height_from_caller = h1->height_from_caller;
382  h->coded_picture_number = h1->coded_picture_number;
383  h->first_field = h1->first_field;
384  h->picture_structure = h1->picture_structure;
385  h->mb_aff_frame = h1->mb_aff_frame;
386  h->droppable = h1->droppable;
387 
388  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
389  ff_h264_unref_picture(h, &h->DPB[i]);
390  if (h1->DPB[i].f->buf[0] &&
391  (ret = ff_h264_ref_picture(h, &h->DPB[i], &h1->DPB[i])) < 0)
392  return ret;
393  }
394 
395  h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1);
397  if (h1->cur_pic.f->buf[0]) {
398  ret = ff_h264_ref_picture(h, &h->cur_pic, &h1->cur_pic);
399  if (ret < 0)
400  return ret;
401  }
402 
403  h->enable_er = h1->enable_er;
404  h->workaround_bugs = h1->workaround_bugs;
405  h->droppable = h1->droppable;
406 
407  // extradata/NAL handling
408  h->is_avc = h1->is_avc;
409  h->nal_length_size = h1->nal_length_size;
410 
411  memcpy(&h->poc, &h1->poc, sizeof(h->poc));
412 
413  memcpy(h->short_ref, h1->short_ref, sizeof(h->short_ref));
414  memcpy(h->long_ref, h1->long_ref, sizeof(h->long_ref));
415  memcpy(h->delayed_pic, h1->delayed_pic, sizeof(h->delayed_pic));
416  memcpy(h->last_pocs, h1->last_pocs, sizeof(h->last_pocs));
417 
418  h->next_output_pic = h1->next_output_pic;
419  h->next_outputed_poc = h1->next_outputed_poc;
420 
421  memcpy(h->mmco, h1->mmco, sizeof(h->mmco));
422  h->nb_mmco = h1->nb_mmco;
423  h->mmco_reset = h1->mmco_reset;
424  h->explicit_ref_marking = h1->explicit_ref_marking;
425  h->long_ref_count = h1->long_ref_count;
426  h->short_ref_count = h1->short_ref_count;
427 
428  copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1);
429  copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1);
430  copy_picture_range(h->delayed_pic, h1->delayed_pic,
431  MAX_DELAYED_PIC_COUNT + 2, h, h1);
432 
433  h->frame_recovered = h1->frame_recovered;
434 
436  if (h1->sei.a53_caption.buf_ref) {
437  h->sei.a53_caption.buf_ref = av_buffer_ref(h1->sei.a53_caption.buf_ref);
438  if (!h->sei.a53_caption.buf_ref)
439  return AVERROR(ENOMEM);
440  }
441 
442  if (!h->cur_pic_ptr)
443  return 0;
444 
445  if (!h->droppable) {
447  h->poc.prev_poc_msb = h->poc.poc_msb;
448  h->poc.prev_poc_lsb = h->poc.poc_lsb;
449  }
452 
453  h->recovery_frame = h1->recovery_frame;
454 
455  return err;
456 }
457 
459 {
460  H264Picture *pic;
461  int i, ret;
462  const int pixel_shift = h->pixel_shift;
463 
464  if (!ff_thread_can_start_frame(h->avctx)) {
465  av_log(h->avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n");
466  return -1;
467  }
468 
470  h->cur_pic_ptr = NULL;
471 
472  i = find_unused_picture(h);
473  if (i < 0) {
474  av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n");
475  return i;
476  }
477  pic = &h->DPB[i];
478 
479  pic->reference = h->droppable ? 0 : h->picture_structure;
482  pic->frame_num = h->poc.frame_num;
483  /*
484  * Zero key_frame here; IDR markings per slice in frame or fields are ORed
485  * in later.
486  * See decode_nal_units().
487  */
488  pic->f->key_frame = 0;
489  pic->mmco_reset = 0;
490  pic->recovered = 0;
491  pic->invalid_gap = 0;
493 
494  pic->f->pict_type = h->slice_ctx[0].slice_type;
495 
496  pic->f->crop_left = h->crop_left;
497  pic->f->crop_right = h->crop_right;
498  pic->f->crop_top = h->crop_top;
499  pic->f->crop_bottom = h->crop_bottom;
500 
501  if ((ret = alloc_picture(h, pic)) < 0)
502  return ret;
503 
504  h->cur_pic_ptr = pic;
508  }
509 
510  if ((ret = ff_h264_ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0)
511  return ret;
512 
513  for (i = 0; i < h->nb_slice_ctx; i++) {
514  h->slice_ctx[i].linesize = h->cur_pic_ptr->f->linesize[0];
515  h->slice_ctx[i].uvlinesize = h->cur_pic_ptr->f->linesize[1];
516  }
517 
522  }
523 
524  for (i = 0; i < 16; i++) {
525  h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
526  h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
527  }
528  for (i = 0; i < 16; i++) {
529  h->block_offset[16 + i] =
530  h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
531  h->block_offset[48 + 16 + i] =
532  h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
533  }
534 
535  /* We mark the current picture as non-reference after allocating it, so
536  * that if we break out due to an error it can be released automatically
537  * in the next ff_mpv_frame_start().
538  */
539  h->cur_pic_ptr->reference = 0;
540 
541  h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX;
542 
543  h->next_output_pic = NULL;
544 
545  h->postpone_filter = 0;
546 
548 
549  if (h->sei.unregistered.x264_build >= 0)
551 
552  assert(h->cur_pic_ptr->long_ref == 0);
553 
554  return 0;
555 }
556 
558  uint8_t *src_y,
559  uint8_t *src_cb, uint8_t *src_cr,
560  int linesize, int uvlinesize,
561  int simple)
562 {
563  uint8_t *top_border;
564  int top_idx = 1;
565  const int pixel_shift = h->pixel_shift;
566  int chroma444 = CHROMA444(h);
567  int chroma422 = CHROMA422(h);
568 
569  src_y -= linesize;
570  src_cb -= uvlinesize;
571  src_cr -= uvlinesize;
572 
573  if (!simple && FRAME_MBAFF(h)) {
574  if (sl->mb_y & 1) {
575  if (!MB_MBAFF(sl)) {
576  top_border = sl->top_borders[0][sl->mb_x];
577  AV_COPY128(top_border, src_y + 15 * linesize);
578  if (pixel_shift)
579  AV_COPY128(top_border + 16, src_y + 15 * linesize + 16);
580  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
581  if (chroma444) {
582  if (pixel_shift) {
583  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
584  AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16);
585  AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize);
586  AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16);
587  } else {
588  AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize);
589  AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize);
590  }
591  } else if (chroma422) {
592  if (pixel_shift) {
593  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
594  AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize);
595  } else {
596  AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize);
597  AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize);
598  }
599  } else {
600  if (pixel_shift) {
601  AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize);
602  AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize);
603  } else {
604  AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
605  AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
606  }
607  }
608  }
609  }
610  } else if (MB_MBAFF(sl)) {
611  top_idx = 0;
612  } else
613  return;
614  }
615 
616  top_border = sl->top_borders[top_idx][sl->mb_x];
617  /* There are two lines saved, the line above the top macroblock
618  * of a pair, and the line above the bottom macroblock. */
619  AV_COPY128(top_border, src_y + 16 * linesize);
620  if (pixel_shift)
621  AV_COPY128(top_border + 16, src_y + 16 * linesize + 16);
622 
623  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
624  if (chroma444) {
625  if (pixel_shift) {
626  AV_COPY128(top_border + 32, src_cb + 16 * linesize);
627  AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16);
628  AV_COPY128(top_border + 64, src_cr + 16 * linesize);
629  AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16);
630  } else {
631  AV_COPY128(top_border + 16, src_cb + 16 * linesize);
632  AV_COPY128(top_border + 32, src_cr + 16 * linesize);
633  }
634  } else if (chroma422) {
635  if (pixel_shift) {
636  AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize);
637  AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize);
638  } else {
639  AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize);
640  AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize);
641  }
642  } else {
643  if (pixel_shift) {
644  AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize);
645  AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize);
646  } else {
647  AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize);
648  AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize);
649  }
650  }
651  }
652 }
653 
654 /**
655  * Initialize implicit_weight table.
656  * @param field 0/1 initialize the weight for interlaced MBAFF
657  * -1 initializes the rest
658  */
659 static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
660 {
661  int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
662 
663  for (i = 0; i < 2; i++) {
664  sl->pwt.luma_weight_flag[i] = 0;
665  sl->pwt.chroma_weight_flag[i] = 0;
666  }
667 
668  if (field < 0) {
669  if (h->picture_structure == PICT_FRAME) {
670  cur_poc = h->cur_pic_ptr->poc;
671  } else {
672  cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1];
673  }
674  if (sl->ref_count[0] == 1 && sl->ref_count[1] == 1 && !FRAME_MBAFF(h) &&
675  sl->ref_list[0][0].poc + (int64_t)sl->ref_list[1][0].poc == 2LL * cur_poc) {
676  sl->pwt.use_weight = 0;
677  sl->pwt.use_weight_chroma = 0;
678  return;
679  }
680  ref_start = 0;
681  ref_count0 = sl->ref_count[0];
682  ref_count1 = sl->ref_count[1];
683  } else {
684  cur_poc = h->cur_pic_ptr->field_poc[field];
685  ref_start = 16;
686  ref_count0 = 16 + 2 * sl->ref_count[0];
687  ref_count1 = 16 + 2 * sl->ref_count[1];
688  }
689 
690  sl->pwt.use_weight = 2;
691  sl->pwt.use_weight_chroma = 2;
692  sl->pwt.luma_log2_weight_denom = 5;
694 
695  for (ref0 = ref_start; ref0 < ref_count0; ref0++) {
696  int64_t poc0 = sl->ref_list[0][ref0].poc;
697  for (ref1 = ref_start; ref1 < ref_count1; ref1++) {
698  int w = 32;
699  if (!sl->ref_list[0][ref0].parent->long_ref && !sl->ref_list[1][ref1].parent->long_ref) {
700  int poc1 = sl->ref_list[1][ref1].poc;
701  int td = av_clip_int8(poc1 - poc0);
702  if (td) {
703  int tb = av_clip_int8(cur_poc - poc0);
704  int tx = (16384 + (FFABS(td) >> 1)) / td;
705  int dist_scale_factor = (tb * tx + 32) >> 8;
706  if (dist_scale_factor >= -64 && dist_scale_factor <= 128)
707  w = 64 - dist_scale_factor;
708  }
709  }
710  if (field < 0) {
711  sl->pwt.implicit_weight[ref0][ref1][0] =
712  sl->pwt.implicit_weight[ref0][ref1][1] = w;
713  } else {
714  sl->pwt.implicit_weight[ref0][ref1][field] = w;
715  }
716  }
717  }
718 }
719 
720 /**
721  * initialize scan tables
722  */
724 {
725  int i;
726  for (i = 0; i < 16; i++) {
727 #define TRANSPOSE(x) ((x) >> 2) | (((x) << 2) & 0xF)
729  h->field_scan[i] = TRANSPOSE(field_scan[i]);
730 #undef TRANSPOSE
731  }
732  for (i = 0; i < 64; i++) {
733 #define TRANSPOSE(x) ((x) >> 3) | (((x) & 7) << 3)
738 #undef TRANSPOSE
739  }
740  if (h->ps.sps->transform_bypass) { // FIXME same ugly
741  memcpy(h->zigzag_scan_q0 , ff_zigzag_scan , sizeof(h->zigzag_scan_q0 ));
742  memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 ));
744  memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 ));
745  memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
747  } else {
748  memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 ));
749  memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 ));
751  memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 ));
752  memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
754  }
755 }
756 
757 static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
758 {
759 #define HWACCEL_MAX (CONFIG_H264_DXVA2_HWACCEL + \
760  (CONFIG_H264_D3D11VA_HWACCEL * 2) + \
761  CONFIG_H264_NVDEC_HWACCEL + \
762  CONFIG_H264_VAAPI_HWACCEL + \
763  CONFIG_H264_VIDEOTOOLBOX_HWACCEL + \
764  CONFIG_H264_VDPAU_HWACCEL)
765  enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
766  const enum AVPixelFormat *choices = pix_fmts;
767  int i;
768 
769  switch (h->ps.sps->bit_depth_luma) {
770  case 9:
771  if (CHROMA444(h)) {
772  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
773  *fmt++ = AV_PIX_FMT_GBRP9;
774  } else
775  *fmt++ = AV_PIX_FMT_YUV444P9;
776  } else if (CHROMA422(h))
777  *fmt++ = AV_PIX_FMT_YUV422P9;
778  else
779  *fmt++ = AV_PIX_FMT_YUV420P9;
780  break;
781  case 10:
782  if (CHROMA444(h)) {
783  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
784  *fmt++ = AV_PIX_FMT_GBRP10;
785  } else
786  *fmt++ = AV_PIX_FMT_YUV444P10;
787  } else if (CHROMA422(h))
788  *fmt++ = AV_PIX_FMT_YUV422P10;
789  else
790  *fmt++ = AV_PIX_FMT_YUV420P10;
791  break;
792  case 12:
793  if (CHROMA444(h)) {
794  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
795  *fmt++ = AV_PIX_FMT_GBRP12;
796  } else
797  *fmt++ = AV_PIX_FMT_YUV444P12;
798  } else if (CHROMA422(h))
799  *fmt++ = AV_PIX_FMT_YUV422P12;
800  else
801  *fmt++ = AV_PIX_FMT_YUV420P12;
802  break;
803  case 14:
804  if (CHROMA444(h)) {
805  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
806  *fmt++ = AV_PIX_FMT_GBRP14;
807  } else
808  *fmt++ = AV_PIX_FMT_YUV444P14;
809  } else if (CHROMA422(h))
810  *fmt++ = AV_PIX_FMT_YUV422P14;
811  else
812  *fmt++ = AV_PIX_FMT_YUV420P14;
813  break;
814  case 8:
815 #if CONFIG_H264_VDPAU_HWACCEL
816  *fmt++ = AV_PIX_FMT_VDPAU;
817 #endif
818 #if CONFIG_H264_NVDEC_HWACCEL
819  *fmt++ = AV_PIX_FMT_CUDA;
820 #endif
821  if (CHROMA444(h)) {
822  if (h->avctx->colorspace == AVCOL_SPC_RGB)
823  *fmt++ = AV_PIX_FMT_GBRP;
824  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
825  *fmt++ = AV_PIX_FMT_YUVJ444P;
826  else
827  *fmt++ = AV_PIX_FMT_YUV444P;
828  } else if (CHROMA422(h)) {
830  *fmt++ = AV_PIX_FMT_YUVJ422P;
831  else
832  *fmt++ = AV_PIX_FMT_YUV422P;
833  } else {
834 #if CONFIG_H264_DXVA2_HWACCEL
835  *fmt++ = AV_PIX_FMT_DXVA2_VLD;
836 #endif
837 #if CONFIG_H264_D3D11VA_HWACCEL
838  *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
839  *fmt++ = AV_PIX_FMT_D3D11;
840 #endif
841 #if CONFIG_H264_VAAPI_HWACCEL
842  *fmt++ = AV_PIX_FMT_VAAPI;
843 #endif
844 #if CONFIG_H264_VIDEOTOOLBOX_HWACCEL
845  *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
846 #endif
847  if (h->avctx->codec->pix_fmts)
848  choices = h->avctx->codec->pix_fmts;
849  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
850  *fmt++ = AV_PIX_FMT_YUVJ420P;
851  else
852  *fmt++ = AV_PIX_FMT_YUV420P;
853  }
854  break;
855  default:
857  "Unsupported bit depth %d\n", h->ps.sps->bit_depth_luma);
858  return AVERROR_INVALIDDATA;
859  }
860 
861  *fmt = AV_PIX_FMT_NONE;
862 
863  for (i=0; choices[i] != AV_PIX_FMT_NONE; i++)
864  if (choices[i] == h->avctx->pix_fmt && !force_callback)
865  return choices[i];
866  return ff_thread_get_format(h->avctx, choices);
867 }
868 
869 /* export coded and cropped frame dimensions to AVCodecContext */
871 {
872  const SPS *sps = (const SPS*)h->ps.sps;
873  int cr = sps->crop_right;
874  int cl = sps->crop_left;
875  int ct = sps->crop_top;
876  int cb = sps->crop_bottom;
877  int width = h->width - (cr + cl);
878  int height = h->height - (ct + cb);
879  av_assert0(sps->crop_right + sps->crop_left < (unsigned)h->width);
880  av_assert0(sps->crop_top + sps->crop_bottom < (unsigned)h->height);
881 
882  /* handle container cropping */
883  if (h->width_from_caller > 0 && h->height_from_caller > 0 &&
884  !sps->crop_top && !sps->crop_left &&
885  FFALIGN(h->width_from_caller, 16) == FFALIGN(width, 16) &&
886  FFALIGN(h->height_from_caller, 16) == FFALIGN(height, 16) &&
887  h->width_from_caller <= width &&
888  h->height_from_caller <= height) {
890  height = h->height_from_caller;
891  cl = 0;
892  ct = 0;
893  cr = h->width - width;
894  cb = h->height - height;
895  } else {
896  h->width_from_caller = 0;
897  h->height_from_caller = 0;
898  }
899 
900  h->avctx->coded_width = h->width;
901  h->avctx->coded_height = h->height;
902  h->avctx->width = width;
903  h->avctx->height = height;
904  h->crop_right = cr;
905  h->crop_left = cl;
906  h->crop_top = ct;
907  h->crop_bottom = cb;
908 }
909 
911 {
912  const SPS *sps = h->ps.sps;
913  int i, ret;
914 
915  ff_set_sar(h->avctx, sps->sar);
917  &h->chroma_x_shift, &h->chroma_y_shift);
918 
919  if (sps->timing_info_present_flag) {
920  int64_t den = sps->time_scale;
921  if (h->x264_build < 44U)
922  den *= 2;
924  sps->num_units_in_tick * h->avctx->ticks_per_frame, den, 1 << 30);
925  }
926 
928 
929  h->first_field = 0;
930  h->prev_interlaced_frame = 1;
931 
932  init_scan_tables(h);
933  ret = ff_h264_alloc_tables(h);
934  if (ret < 0) {
935  av_log(h->avctx, AV_LOG_ERROR, "Could not allocate memory\n");
936  goto fail;
937  }
938 
939  if (sps->bit_depth_luma < 8 || sps->bit_depth_luma > 14 ||
940  sps->bit_depth_luma == 11 || sps->bit_depth_luma == 13
941  ) {
942  av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n",
943  sps->bit_depth_luma);
944  ret = AVERROR_INVALIDDATA;
945  goto fail;
946  }
947 
948  h->cur_bit_depth_luma =
951  h->pixel_shift = sps->bit_depth_luma > 8;
953  h->bit_depth_luma = sps->bit_depth_luma;
954 
956  sps->chroma_format_idc);
960  sps->chroma_format_idc);
962 
964  ret = ff_h264_slice_context_init(h, &h->slice_ctx[0]);
965  if (ret < 0) {
966  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
967  goto fail;
968  }
969  } else {
970  for (i = 0; i < h->nb_slice_ctx; i++) {
971  H264SliceContext *sl = &h->slice_ctx[i];
972 
973  sl->h264 = h;
974  sl->intra4x4_pred_mode = h->intra4x4_pred_mode + i * 8 * 2 * h->mb_stride;
975  sl->mvd_table[0] = h->mvd_table[0] + i * 8 * 2 * h->mb_stride;
976  sl->mvd_table[1] = h->mvd_table[1] + i * 8 * 2 * h->mb_stride;
977 
978  if ((ret = ff_h264_slice_context_init(h, sl)) < 0) {
979  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
980  goto fail;
981  }
982  }
983  }
984 
985  h->context_initialized = 1;
986 
987  return 0;
988 fail:
990  h->context_initialized = 0;
991  return ret;
992 }
993 
995 {
996  switch (a) {
1000  default:
1001  return a;
1002  }
1003 }
1004 
1005 static int h264_init_ps(H264Context *h, const H264SliceContext *sl, int first_slice)
1006 {
1007  const SPS *sps;
1008  int needs_reinit = 0, must_reinit, ret;
1009 
1010  if (first_slice) {
1011  av_buffer_unref(&h->ps.pps_ref);
1012  h->ps.pps = NULL;
1013  h->ps.pps_ref = av_buffer_ref(h->ps.pps_list[sl->pps_id]);
1014  if (!h->ps.pps_ref)
1015  return AVERROR(ENOMEM);
1016  h->ps.pps = (const PPS*)h->ps.pps_ref->data;
1017  }
1018 
1019  if (h->ps.sps != h->ps.pps->sps) {
1020  h->ps.sps = (const SPS*)h->ps.pps->sps;
1021 
1022  if (h->mb_width != h->ps.sps->mb_width ||
1023  h->mb_height != h->ps.sps->mb_height ||
1026  )
1027  needs_reinit = 1;
1028 
1029  if (h->bit_depth_luma != h->ps.sps->bit_depth_luma ||
1031  needs_reinit = 1;
1032  }
1033  sps = h->ps.sps;
1034 
1035  must_reinit = (h->context_initialized &&
1036  ( 16*sps->mb_width != h->avctx->coded_width
1037  || 16*sps->mb_height != h->avctx->coded_height
1038  || h->cur_bit_depth_luma != sps->bit_depth_luma
1040  || h->mb_width != sps->mb_width
1041  || h->mb_height != sps->mb_height
1042  ));
1043  if (h->avctx->pix_fmt == AV_PIX_FMT_NONE
1045  must_reinit = 1;
1046 
1047  if (first_slice && av_cmp_q(sps->sar, h->avctx->sample_aspect_ratio))
1048  must_reinit = 1;
1049 
1050  if (!h->setup_finished) {
1051  h->avctx->profile = ff_h264_get_profile(sps);
1052  h->avctx->level = sps->level_idc;
1053  h->avctx->refs = sps->ref_frame_count;
1054 
1055  h->mb_width = sps->mb_width;
1056  h->mb_height = sps->mb_height;
1057  h->mb_num = h->mb_width * h->mb_height;
1058  h->mb_stride = h->mb_width + 1;
1059 
1060  h->b_stride = h->mb_width * 4;
1061 
1062  h->chroma_y_shift = sps->chroma_format_idc <= 1; // 400 uses yuv420p
1063 
1064  h->width = 16 * h->mb_width;
1065  h->height = 16 * h->mb_height;
1066 
1067  init_dimensions(h);
1068 
1069  if (sps->video_signal_type_present_flag) {
1070  h->avctx->color_range = sps->full_range > 0 ? AVCOL_RANGE_JPEG
1071  : AVCOL_RANGE_MPEG;
1073  if (h->avctx->colorspace != sps->colorspace)
1074  needs_reinit = 1;
1076  h->avctx->color_trc = sps->color_trc;
1077  h->avctx->colorspace = sps->colorspace;
1078  }
1079  }
1080 
1081  if (h->sei.alternative_transfer.present &&
1085  }
1086  }
1088 
1089  if (!h->context_initialized || must_reinit || needs_reinit) {
1090  int flush_changes = h->context_initialized;
1091  h->context_initialized = 0;
1092  if (sl != h->slice_ctx) {
1094  "changing width %d -> %d / height %d -> %d on "
1095  "slice %d\n",
1096  h->width, h->avctx->coded_width,
1097  h->height, h->avctx->coded_height,
1098  h->current_slice + 1);
1099  return AVERROR_INVALIDDATA;
1100  }
1101 
1102  av_assert1(first_slice);
1103 
1104  if (flush_changes)
1106 
1107  if ((ret = get_pixel_format(h, 1)) < 0)
1108  return ret;
1109  h->avctx->pix_fmt = ret;
1110 
1111  av_log(h->avctx, AV_LOG_VERBOSE, "Reinit context to %dx%d, "
1112  "pix_fmt: %s\n", h->width, h->height, av_get_pix_fmt_name(h->avctx->pix_fmt));
1113 
1114  if ((ret = h264_slice_header_init(h)) < 0) {
1116  "h264_slice_header_init() failed\n");
1117  return ret;
1118  }
1119  }
1120 
1121  return 0;
1122 }
1123 
1125 {
1126  const SPS *sps = h->ps.sps;
1127  H264Picture *cur = h->cur_pic_ptr;
1128 
1129  cur->f->interlaced_frame = 0;
1130  cur->f->repeat_pict = 0;
1131 
1132  /* Signal interlacing information externally. */
1133  /* Prioritize picture timing SEI information over used
1134  * decoding process if it exists. */
1135  if (h->sei.picture_timing.present) {
1137  h->avctx);
1138  if (ret < 0) {
1139  av_log(h->avctx, AV_LOG_ERROR, "Error processing a picture timing SEI\n");
1141  return ret;
1142  h->sei.picture_timing.present = 0;
1143  }
1144  }
1145 
1148  switch (pt->pic_struct) {
1150  break;
1153  cur->f->interlaced_frame = 1;
1154  break;
1157  if (FIELD_OR_MBAFF_PICTURE(h))
1158  cur->f->interlaced_frame = 1;
1159  else
1160  // try to flag soft telecine progressive
1162  break;
1165  /* Signal the possibility of telecined film externally
1166  * (pic_struct 5,6). From these hints, let the applications
1167  * decide if they apply deinterlacing. */
1168  cur->f->repeat_pict = 1;
1169  break;
1171  cur->f->repeat_pict = 2;
1172  break;
1174  cur->f->repeat_pict = 4;
1175  break;
1176  }
1177 
1178  if ((pt->ct_type & 3) &&
1180  cur->f->interlaced_frame = (pt->ct_type & (1 << 1)) != 0;
1181  } else {
1182  /* Derive interlacing flag from used decoding process. */
1184  }
1186 
1187  if (cur->field_poc[0] != cur->field_poc[1]) {
1188  /* Derive top_field_first from field pocs. */
1189  cur->f->top_field_first = cur->field_poc[0] < cur->field_poc[1];
1190  } else {
1192  /* Use picture timing SEI information. Even if it is a
1193  * information of a past frame, better than nothing. */
1196  cur->f->top_field_first = 1;
1197  else
1198  cur->f->top_field_first = 0;
1199  } else if (cur->f->interlaced_frame) {
1200  /* Default to top field first when pic_struct_present_flag
1201  * is not set but interlaced frame detected */
1202  cur->f->top_field_first = 1;
1203  } else {
1204  /* Most likely progressive */
1205  cur->f->top_field_first = 0;
1206  }
1207  }
1208 
1209  if (h->sei.frame_packing.present &&
1214  AVStereo3D *stereo = av_stereo3d_create_side_data(cur->f);
1215  if (stereo) {
1216  switch (fp->arrangement_type) {
1218  stereo->type = AV_STEREO3D_CHECKERBOARD;
1219  break;
1221  stereo->type = AV_STEREO3D_COLUMNS;
1222  break;
1224  stereo->type = AV_STEREO3D_LINES;
1225  break;
1227  if (fp->quincunx_sampling_flag)
1229  else
1230  stereo->type = AV_STEREO3D_SIDEBYSIDE;
1231  break;
1233  stereo->type = AV_STEREO3D_TOPBOTTOM;
1234  break;
1236  stereo->type = AV_STEREO3D_FRAMESEQUENCE;
1237  break;
1238  case H264_SEI_FPA_TYPE_2D:
1239  stereo->type = AV_STEREO3D_2D;
1240  break;
1241  }
1242 
1243  if (fp->content_interpretation_type == 2)
1244  stereo->flags = AV_STEREO3D_FLAG_INVERT;
1245 
1248  stereo->view = AV_STEREO3D_VIEW_LEFT;
1249  else
1250  stereo->view = AV_STEREO3D_VIEW_RIGHT;
1251  }
1252  }
1253  }
1254 
1255  if (h->sei.display_orientation.present &&
1260  double angle = o->anticlockwise_rotation * 360 / (double) (1 << 16);
1261  AVFrameSideData *rotation = av_frame_new_side_data(cur->f,
1263  sizeof(int32_t) * 9);
1264  if (rotation) {
1265  av_display_rotation_set((int32_t *)rotation->data, angle);
1266  av_display_matrix_flip((int32_t *)rotation->data,
1267  o->hflip, o->vflip);
1268  }
1269  }
1270 
1271  if (h->sei.afd.present) {
1273  sizeof(uint8_t));
1274 
1275  if (sd) {
1277  h->sei.afd.present = 0;
1278  }
1279  }
1280 
1281  if (h->sei.a53_caption.buf_ref) {
1282  H264SEIA53Caption *a53 = &h->sei.a53_caption;
1283 
1285  if (!sd)
1286  av_buffer_unref(&a53->buf_ref);
1287  a53->buf_ref = NULL;
1288 
1290  }
1291 
1292  if (h->sei.picture_timing.timecode_cnt > 0) {
1293  uint32_t tc = 0;
1294  uint32_t *tc_sd;
1295 
1296  AVFrameSideData *tcside = av_frame_new_side_data(cur->f,
1298  sizeof(uint32_t)*4);
1299  if (!tcside)
1300  return AVERROR(ENOMEM);
1301 
1302  tc_sd = (uint32_t*)tcside->data;
1303  tc_sd[0] = h->sei.picture_timing.timecode_cnt;
1304 
1305  for (int i = 0; i < tc_sd[0]; i++) {
1306  uint32_t frames;
1307 
1308  /* For SMPTE 12-M timecodes, frame count is a special case if > 30 FPS.
1309  See SMPTE ST 12-1:2014 Sec 12.1 for more info. */
1310  if (av_cmp_q(h->avctx->framerate, (AVRational) {30, 1}) == 1) {
1311  frames = h->sei.picture_timing.timecode[i].frame / 2;
1312  if (h->sei.picture_timing.timecode[i].frame % 2 == 1) {
1313  if (av_cmp_q(h->avctx->framerate, (AVRational) {50, 1}) == 0)
1314  tc |= (1 << 7);
1315  else
1316  tc |= (1 << 23);
1317  }
1318  } else {
1319  frames = h->sei.picture_timing.timecode[i].frame;
1320  }
1321 
1322  tc |= h->sei.picture_timing.timecode[i].dropframe << 30;
1323  tc |= (frames / 10) << 28;
1324  tc |= (frames % 10) << 24;
1325  tc |= (h->sei.picture_timing.timecode[i].seconds / 10) << 20;
1326  tc |= (h->sei.picture_timing.timecode[i].seconds % 10) << 16;
1327  tc |= (h->sei.picture_timing.timecode[i].minutes / 10) << 12;
1328  tc |= (h->sei.picture_timing.timecode[i].minutes % 10) << 8;
1329  tc |= (h->sei.picture_timing.timecode[i].hours / 10) << 4;
1330  tc |= (h->sei.picture_timing.timecode[i].hours % 10);
1331 
1332  tc_sd[i + 1] = tc;
1333  }
1335  }
1336 
1337  return 0;
1338 }
1339 
1341 {
1342  const SPS *sps = h->ps.sps;
1343  H264Picture *out = h->cur_pic_ptr;
1344  H264Picture *cur = h->cur_pic_ptr;
1345  int i, pics, out_of_order, out_idx;
1346 
1347  cur->mmco_reset = h->mmco_reset;
1348  h->mmco_reset = 0;
1349 
1350  if (sps->bitstream_restriction_flag ||
1353  }
1354 
1355  for (i = 0; 1; i++) {
1356  if(i == MAX_DELAYED_PIC_COUNT || cur->poc < h->last_pocs[i]){
1357  if(i)
1358  h->last_pocs[i-1] = cur->poc;
1359  break;
1360  } else if(i) {
1361  h->last_pocs[i-1]= h->last_pocs[i];
1362  }
1363  }
1364  out_of_order = MAX_DELAYED_PIC_COUNT - i;
1365  if( cur->f->pict_type == AV_PICTURE_TYPE_B
1366  || (h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > INT_MIN && h->last_pocs[MAX_DELAYED_PIC_COUNT-1] - (int64_t)h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > 2))
1367  out_of_order = FFMAX(out_of_order, 1);
1368  if (out_of_order == MAX_DELAYED_PIC_COUNT) {
1369  av_log(h->avctx, AV_LOG_VERBOSE, "Invalid POC %d<%d\n", cur->poc, h->last_pocs[0]);
1370  for (i = 1; i < MAX_DELAYED_PIC_COUNT; i++)
1371  h->last_pocs[i] = INT_MIN;
1372  h->last_pocs[0] = cur->poc;
1373  cur->mmco_reset = 1;
1374  } else if(h->avctx->has_b_frames < out_of_order && !sps->bitstream_restriction_flag){
1375  int loglevel = h->avctx->frame_number > 1 ? AV_LOG_WARNING : AV_LOG_VERBOSE;
1376  av_log(h->avctx, loglevel, "Increasing reorder buffer to %d\n", out_of_order);
1377  h->avctx->has_b_frames = out_of_order;
1378  }
1379 
1380  pics = 0;
1381  while (h->delayed_pic[pics])
1382  pics++;
1383 
1385 
1386  h->delayed_pic[pics++] = cur;
1387  if (cur->reference == 0)
1388  cur->reference = DELAYED_PIC_REF;
1389 
1390  out = h->delayed_pic[0];
1391  out_idx = 0;
1392  for (i = 1; h->delayed_pic[i] &&
1393  !h->delayed_pic[i]->f->key_frame &&
1394  !h->delayed_pic[i]->mmco_reset;
1395  i++)
1396  if (h->delayed_pic[i]->poc < out->poc) {
1397  out = h->delayed_pic[i];
1398  out_idx = i;
1399  }
1400  if (h->avctx->has_b_frames == 0 &&
1401  (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset))
1402  h->next_outputed_poc = INT_MIN;
1403  out_of_order = out->poc < h->next_outputed_poc;
1404 
1405  if (out_of_order || pics > h->avctx->has_b_frames) {
1406  out->reference &= ~DELAYED_PIC_REF;
1407  for (i = out_idx; h->delayed_pic[i]; i++)
1408  h->delayed_pic[i] = h->delayed_pic[i + 1];
1409  }
1410  if (!out_of_order && pics > h->avctx->has_b_frames) {
1411  h->next_output_pic = out;
1412  if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset)) {
1413  h->next_outputed_poc = INT_MIN;
1414  } else
1415  h->next_outputed_poc = out->poc;
1416 
1417  if (out->recovered) {
1418  // We have reached an recovery point and all frames after it in
1419  // display order are "recovered".
1421  }
1423 
1424  if (!out->recovered) {
1425  if (!(h->avctx->flags & AV_CODEC_FLAG_OUTPUT_CORRUPT) &&
1427  h->next_output_pic = NULL;
1428  } else {
1429  out->f->flags |= AV_FRAME_FLAG_CORRUPT;
1430  }
1431  }
1432  } else {
1433  av_log(h->avctx, AV_LOG_DEBUG, "no picture %s\n", out_of_order ? "ooo" : "");
1434  }
1435 
1436  return 0;
1437 }
1438 
1439 /* This function is called right after decoding the slice header for a first
1440  * slice in a field (or a frame). It decides whether we are decoding a new frame
1441  * or a second field in a pair and does the necessary setup.
1442  */
1444  const H2645NAL *nal, int first_slice)
1445 {
1446  int i;
1447  const SPS *sps;
1448 
1449  int last_pic_structure, last_pic_droppable, ret;
1450 
1451  ret = h264_init_ps(h, sl, first_slice);
1452  if (ret < 0)
1453  return ret;
1454 
1455  sps = h->ps.sps;
1456 
1457  if (sps && sps->bitstream_restriction_flag &&
1458  h->avctx->has_b_frames < sps->num_reorder_frames) {
1460  }
1461 
1462  last_pic_droppable = h->droppable;
1463  last_pic_structure = h->picture_structure;
1464  h->droppable = (nal->ref_idc == 0);
1466 
1467  h->poc.frame_num = sl->frame_num;
1468  h->poc.poc_lsb = sl->poc_lsb;
1470  h->poc.delta_poc[0] = sl->delta_poc[0];
1471  h->poc.delta_poc[1] = sl->delta_poc[1];
1472 
1473  /* Shorten frame num gaps so we don't have to allocate reference
1474  * frames just to throw them away */
1475  if (h->poc.frame_num != h->poc.prev_frame_num) {
1476  int unwrap_prev_frame_num = h->poc.prev_frame_num;
1477  int max_frame_num = 1 << sps->log2_max_frame_num;
1478 
1479  if (unwrap_prev_frame_num > h->poc.frame_num)
1480  unwrap_prev_frame_num -= max_frame_num;
1481 
1482  if ((h->poc.frame_num - unwrap_prev_frame_num) > sps->ref_frame_count) {
1483  unwrap_prev_frame_num = (h->poc.frame_num - sps->ref_frame_count) - 1;
1484  if (unwrap_prev_frame_num < 0)
1485  unwrap_prev_frame_num += max_frame_num;
1486 
1487  h->poc.prev_frame_num = unwrap_prev_frame_num;
1488  }
1489  }
1490 
1491  /* See if we have a decoded first field looking for a pair...
1492  * Here, we're using that to see if we should mark previously
1493  * decode frames as "finished".
1494  * We have to do that before the "dummy" in-between frame allocation,
1495  * since that can modify h->cur_pic_ptr. */
1496  if (h->first_field) {
1497  int last_field = last_pic_structure == PICT_BOTTOM_FIELD;
1498  av_assert0(h->cur_pic_ptr);
1499  av_assert0(h->cur_pic_ptr->f->buf[0]);
1500  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1501 
1502  /* Mark old field/frame as completed */
1503  if (h->cur_pic_ptr->tf.owner[last_field] == h->avctx) {
1504  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, last_field);
1505  }
1506 
1507  /* figure out if we have a complementary field pair */
1508  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1509  /* Previous field is unmatched. Don't display it, but let it
1510  * remain for reference if marked as such. */
1511  if (last_pic_structure != PICT_FRAME) {
1513  last_pic_structure == PICT_TOP_FIELD);
1514  }
1515  } else {
1516  if (h->cur_pic_ptr->frame_num != h->poc.frame_num) {
1517  /* This and previous field were reference, but had
1518  * different frame_nums. Consider this field first in
1519  * pair. Throw away previous field except for reference
1520  * purposes. */
1521  if (last_pic_structure != PICT_FRAME) {
1523  last_pic_structure == PICT_TOP_FIELD);
1524  }
1525  } else {
1526  /* Second field in complementary pair */
1527  if (!((last_pic_structure == PICT_TOP_FIELD &&
1529  (last_pic_structure == PICT_BOTTOM_FIELD &&
1532  "Invalid field mode combination %d/%d\n",
1533  last_pic_structure, h->picture_structure);
1534  h->picture_structure = last_pic_structure;
1535  h->droppable = last_pic_droppable;
1536  return AVERROR_INVALIDDATA;
1537  } else if (last_pic_droppable != h->droppable) {
1539  "Found reference and non-reference fields in the same frame, which");
1540  h->picture_structure = last_pic_structure;
1541  h->droppable = last_pic_droppable;
1542  return AVERROR_PATCHWELCOME;
1543  }
1544  }
1545  }
1546  }
1547 
1548  while (h->poc.frame_num != h->poc.prev_frame_num && !h->first_field &&
1549  h->poc.frame_num != (h->poc.prev_frame_num + 1) % (1 << sps->log2_max_frame_num)) {
1550  H264Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
1551  av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n",
1552  h->poc.frame_num, h->poc.prev_frame_num);
1554  for(i=0; i<FF_ARRAY_ELEMS(h->last_pocs); i++)
1555  h->last_pocs[i] = INT_MIN;
1556  ret = h264_frame_start(h);
1557  if (ret < 0) {
1558  h->first_field = 0;
1559  return ret;
1560  }
1561 
1562  h->poc.prev_frame_num++;
1563  h->poc.prev_frame_num %= 1 << sps->log2_max_frame_num;
1566  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
1567  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
1568 
1569  h->explicit_ref_marking = 0;
1571  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1572  return ret;
1573  /* Error concealment: If a ref is missing, copy the previous ref
1574  * in its place.
1575  * FIXME: Avoiding a memcpy would be nice, but ref handling makes
1576  * many assumptions about there being no actual duplicates.
1577  * FIXME: This does not copy padding for out-of-frame motion
1578  * vectors. Given we are concealing a lost frame, this probably
1579  * is not noticeable by comparison, but it should be fixed. */
1580  if (h->short_ref_count) {
1581  int c[4] = {
1582  1<<(h->ps.sps->bit_depth_luma-1),
1583  1<<(h->ps.sps->bit_depth_chroma-1),
1584  1<<(h->ps.sps->bit_depth_chroma-1),
1585  -1
1586  };
1587 
1588  if (prev &&
1589  h->short_ref[0]->f->width == prev->f->width &&
1590  h->short_ref[0]->f->height == prev->f->height &&
1591  h->short_ref[0]->f->format == prev->f->format) {
1592  ff_thread_await_progress(&prev->tf, INT_MAX, 0);
1593  if (prev->field_picture)
1594  ff_thread_await_progress(&prev->tf, INT_MAX, 1);
1595  av_image_copy(h->short_ref[0]->f->data,
1596  h->short_ref[0]->f->linesize,
1597  (const uint8_t **)prev->f->data,
1598  prev->f->linesize,
1599  prev->f->format,
1600  prev->f->width,
1601  prev->f->height);
1602  h->short_ref[0]->poc = prev->poc + 2;
1603  } else if (!h->frame_recovered && !h->avctx->hwaccel)
1604  ff_color_frame(h->short_ref[0]->f, c);
1605  h->short_ref[0]->frame_num = h->poc.prev_frame_num;
1606  }
1607  }
1608 
1609  /* See if we have a decoded first field looking for a pair...
1610  * We're using that to see whether to continue decoding in that
1611  * frame, or to allocate a new one. */
1612  if (h->first_field) {
1613  av_assert0(h->cur_pic_ptr);
1614  av_assert0(h->cur_pic_ptr->f->buf[0]);
1615  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1616 
1617  /* figure out if we have a complementary field pair */
1618  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1619  /* Previous field is unmatched. Don't display it, but let it
1620  * remain for reference if marked as such. */
1621  h->missing_fields ++;
1622  h->cur_pic_ptr = NULL;
1623  h->first_field = FIELD_PICTURE(h);
1624  } else {
1625  h->missing_fields = 0;
1626  if (h->cur_pic_ptr->frame_num != h->poc.frame_num) {
1629  /* This and the previous field had different frame_nums.
1630  * Consider this field first in pair. Throw away previous
1631  * one except for reference purposes. */
1632  h->first_field = 1;
1633  h->cur_pic_ptr = NULL;
1634  } else if (h->cur_pic_ptr->reference & DELAYED_PIC_REF) {
1635  /* This frame was already output, we cannot draw into it
1636  * anymore.
1637  */
1638  h->first_field = 1;
1639  h->cur_pic_ptr = NULL;
1640  } else {
1641  /* Second field in complementary pair */
1642  h->first_field = 0;
1643  }
1644  }
1645  } else {
1646  /* Frame or first field in a potentially complementary pair */
1647  h->first_field = FIELD_PICTURE(h);
1648  }
1649 
1650  if (!FIELD_PICTURE(h) || h->first_field) {
1651  if (h264_frame_start(h) < 0) {
1652  h->first_field = 0;
1653  return AVERROR_INVALIDDATA;
1654  }
1655  } else {
1656  int field = h->picture_structure == PICT_BOTTOM_FIELD;
1658  h->cur_pic_ptr->tf.owner[field] = h->avctx;
1659  }
1660  /* Some macroblocks can be accessed before they're available in case
1661  * of lost slices, MBAFF or threading. */
1662  if (FIELD_PICTURE(h)) {
1663  for(i = (h->picture_structure == PICT_BOTTOM_FIELD); i<h->mb_height; i++)
1664  memset(h->slice_table + i*h->mb_stride, -1, (h->mb_stride - (i+1==h->mb_height)) * sizeof(*h->slice_table));
1665  } else {
1666  memset(h->slice_table, -1,
1667  (h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table));
1668  }
1669 
1671  h->ps.sps, &h->poc, h->picture_structure, nal->ref_idc);
1672  if (ret < 0)
1673  return ret;
1674 
1675  memcpy(h->mmco, sl->mmco, sl->nb_mmco * sizeof(*h->mmco));
1676  h->nb_mmco = sl->nb_mmco;
1678 
1679  h->picture_idr = nal->type == H264_NAL_IDR_SLICE;
1680 
1681  if (h->sei.recovery_point.recovery_frame_cnt >= 0) {
1682  const int sei_recovery_frame_cnt = h->sei.recovery_point.recovery_frame_cnt;
1683 
1684  if (h->poc.frame_num != sei_recovery_frame_cnt || sl->slice_type_nos != AV_PICTURE_TYPE_I)
1685  h->valid_recovery_point = 1;
1686 
1687  if ( h->recovery_frame < 0
1688  || av_mod_uintp2(h->recovery_frame - h->poc.frame_num, h->ps.sps->log2_max_frame_num) > sei_recovery_frame_cnt) {
1689  h->recovery_frame = av_mod_uintp2(h->poc.frame_num + sei_recovery_frame_cnt, h->ps.sps->log2_max_frame_num);
1690 
1691  if (!h->valid_recovery_point)
1692  h->recovery_frame = h->poc.frame_num;
1693  }
1694  }
1695 
1696  h->cur_pic_ptr->f->key_frame |= (nal->type == H264_NAL_IDR_SLICE);
1697 
1698  if (nal->type == H264_NAL_IDR_SLICE ||
1699  (h->recovery_frame == h->poc.frame_num && nal->ref_idc)) {
1700  h->recovery_frame = -1;
1701  h->cur_pic_ptr->recovered = 1;
1702  }
1703  // If we have an IDR, all frames after it in decoded order are
1704  // "recovered".
1705  if (nal->type == H264_NAL_IDR_SLICE)
1707 #if 1
1709 #else
1711 #endif
1712 
1713  /* Set the frame properties/side data. Only done for the second field in
1714  * field coded frames, since some SEI information is present for each field
1715  * and is merged by the SEI parsing code. */
1716  if (!FIELD_PICTURE(h) || !h->first_field || h->missing_fields > 1) {
1717  ret = h264_export_frame_props(h);
1718  if (ret < 0)
1719  return ret;
1720 
1721  ret = h264_select_output_frame(h);
1722  if (ret < 0)
1723  return ret;
1724  }
1725 
1726  return 0;
1727 }
1728 
1730  const H2645NAL *nal)
1731 {
1732  const SPS *sps;
1733  const PPS *pps;
1734  int ret;
1735  unsigned int slice_type, tmp, i;
1736  int field_pic_flag, bottom_field_flag;
1737  int first_slice = sl == h->slice_ctx && !h->current_slice;
1738  int picture_structure;
1739 
1740  if (first_slice)
1742 
1743  sl->first_mb_addr = get_ue_golomb_long(&sl->gb);
1744 
1745  slice_type = get_ue_golomb_31(&sl->gb);
1746  if (slice_type > 9) {
1748  "slice type %d too large at %d\n",
1749  slice_type, sl->first_mb_addr);
1750  return AVERROR_INVALIDDATA;
1751  }
1752  if (slice_type > 4) {
1753  slice_type -= 5;
1754  sl->slice_type_fixed = 1;
1755  } else
1756  sl->slice_type_fixed = 0;
1757 
1758  slice_type = ff_h264_golomb_to_pict_type[slice_type];
1759  sl->slice_type = slice_type;
1760  sl->slice_type_nos = slice_type & 3;
1761 
1762  if (nal->type == H264_NAL_IDR_SLICE &&
1764  av_log(h->avctx, AV_LOG_ERROR, "A non-intra slice in an IDR NAL unit.\n");
1765  return AVERROR_INVALIDDATA;
1766  }
1767 
1768  sl->pps_id = get_ue_golomb(&sl->gb);
1769  if (sl->pps_id >= MAX_PPS_COUNT) {
1770  av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", sl->pps_id);
1771  return AVERROR_INVALIDDATA;
1772  }
1773  if (!h->ps.pps_list[sl->pps_id]) {
1775  "non-existing PPS %u referenced\n",
1776  sl->pps_id);
1777  return AVERROR_INVALIDDATA;
1778  }
1779  pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data;
1780  sps = pps->sps;
1781 
1782  sl->frame_num = get_bits(&sl->gb, sps->log2_max_frame_num);
1783  if (!first_slice) {
1784  if (h->poc.frame_num != sl->frame_num) {
1785  av_log(h->avctx, AV_LOG_ERROR, "Frame num change from %d to %d\n",
1786  h->poc.frame_num, sl->frame_num);
1787  return AVERROR_INVALIDDATA;
1788  }
1789  }
1790 
1791  sl->mb_mbaff = 0;
1792 
1793  if (sps->frame_mbs_only_flag) {
1794  picture_structure = PICT_FRAME;
1795  } else {
1796  if (!sps->direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) {
1797  av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n");
1798  return -1;
1799  }
1800  field_pic_flag = get_bits1(&sl->gb);
1801  if (field_pic_flag) {
1802  bottom_field_flag = get_bits1(&sl->gb);
1803  picture_structure = PICT_TOP_FIELD + bottom_field_flag;
1804  } else {
1805  picture_structure = PICT_FRAME;
1806  }
1807  }
1808  sl->picture_structure = picture_structure;
1809  sl->mb_field_decoding_flag = picture_structure != PICT_FRAME;
1810 
1811  if (picture_structure == PICT_FRAME) {
1812  sl->curr_pic_num = sl->frame_num;
1813  sl->max_pic_num = 1 << sps->log2_max_frame_num;
1814  } else {
1815  sl->curr_pic_num = 2 * sl->frame_num + 1;
1816  sl->max_pic_num = 1 << (sps->log2_max_frame_num + 1);
1817  }
1818 
1819  if (nal->type == H264_NAL_IDR_SLICE)
1820  get_ue_golomb_long(&sl->gb); /* idr_pic_id */
1821 
1822  if (sps->poc_type == 0) {
1823  sl->poc_lsb = get_bits(&sl->gb, sps->log2_max_poc_lsb);
1824 
1825  if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME)
1826  sl->delta_poc_bottom = get_se_golomb(&sl->gb);
1827  }
1828 
1829  if (sps->poc_type == 1 && !sps->delta_pic_order_always_zero_flag) {
1830  sl->delta_poc[0] = get_se_golomb(&sl->gb);
1831 
1832  if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME)
1833  sl->delta_poc[1] = get_se_golomb(&sl->gb);
1834  }
1835 
1836  sl->redundant_pic_count = 0;
1837  if (pps->redundant_pic_cnt_present)
1838  sl->redundant_pic_count = get_ue_golomb(&sl->gb);
1839 
1840  if (sl->slice_type_nos == AV_PICTURE_TYPE_B)
1841  sl->direct_spatial_mv_pred = get_bits1(&sl->gb);
1842 
1844  &sl->gb, pps, sl->slice_type_nos,
1845  picture_structure, h->avctx);
1846  if (ret < 0)
1847  return ret;
1848 
1849  if (sl->slice_type_nos != AV_PICTURE_TYPE_I) {
1851  if (ret < 0) {
1852  sl->ref_count[1] = sl->ref_count[0] = 0;
1853  return ret;
1854  }
1855  }
1856 
1857  sl->pwt.use_weight = 0;
1858  for (i = 0; i < 2; i++) {
1859  sl->pwt.luma_weight_flag[i] = 0;
1860  sl->pwt.chroma_weight_flag[i] = 0;
1861  }
1862  if ((pps->weighted_pred && sl->slice_type_nos == AV_PICTURE_TYPE_P) ||
1863  (pps->weighted_bipred_idc == 1 &&
1865  ret = ff_h264_pred_weight_table(&sl->gb, sps, sl->ref_count,
1866  sl->slice_type_nos, &sl->pwt,
1867  picture_structure, h->avctx);
1868  if (ret < 0)
1869  return ret;
1870  }
1871 
1872  sl->explicit_ref_marking = 0;
1873  if (nal->ref_idc) {
1874  ret = ff_h264_decode_ref_pic_marking(sl, &sl->gb, nal, h->avctx);
1875  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1876  return AVERROR_INVALIDDATA;
1877  }
1878 
1879  if (sl->slice_type_nos != AV_PICTURE_TYPE_I && pps->cabac) {
1880  tmp = get_ue_golomb_31(&sl->gb);
1881  if (tmp > 2) {
1882  av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc %u overflow\n", tmp);
1883  return AVERROR_INVALIDDATA;
1884  }
1885  sl->cabac_init_idc = tmp;
1886  }
1887 
1888  sl->last_qscale_diff = 0;
1889  tmp = pps->init_qp + (unsigned)get_se_golomb(&sl->gb);
1890  if (tmp > 51 + 6 * (sps->bit_depth_luma - 8)) {
1891  av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
1892  return AVERROR_INVALIDDATA;
1893  }
1894  sl->qscale = tmp;
1895  sl->chroma_qp[0] = get_chroma_qp(pps, 0, sl->qscale);
1896  sl->chroma_qp[1] = get_chroma_qp(pps, 1, sl->qscale);
1897  // FIXME qscale / qp ... stuff
1898  if (sl->slice_type == AV_PICTURE_TYPE_SP)
1899  get_bits1(&sl->gb); /* sp_for_switch_flag */
1900  if (sl->slice_type == AV_PICTURE_TYPE_SP ||
1902  get_se_golomb(&sl->gb); /* slice_qs_delta */
1903 
1904  sl->deblocking_filter = 1;
1905  sl->slice_alpha_c0_offset = 0;
1906  sl->slice_beta_offset = 0;
1908  tmp = get_ue_golomb_31(&sl->gb);
1909  if (tmp > 2) {
1911  "deblocking_filter_idc %u out of range\n", tmp);
1912  return AVERROR_INVALIDDATA;
1913  }
1914  sl->deblocking_filter = tmp;
1915  if (sl->deblocking_filter < 2)
1916  sl->deblocking_filter ^= 1; // 1<->0
1917 
1918  if (sl->deblocking_filter) {
1919  int slice_alpha_c0_offset_div2 = get_se_golomb(&sl->gb);
1920  int slice_beta_offset_div2 = get_se_golomb(&sl->gb);
1921  if (slice_alpha_c0_offset_div2 > 6 ||
1922  slice_alpha_c0_offset_div2 < -6 ||
1923  slice_beta_offset_div2 > 6 ||
1924  slice_beta_offset_div2 < -6) {
1926  "deblocking filter parameters %d %d out of range\n",
1927  slice_alpha_c0_offset_div2, slice_beta_offset_div2);
1928  return AVERROR_INVALIDDATA;
1929  }
1930  sl->slice_alpha_c0_offset = slice_alpha_c0_offset_div2 * 2;
1931  sl->slice_beta_offset = slice_beta_offset_div2 * 2;
1932  }
1933  }
1934 
1935  return 0;
1936 }
1937 
1938 /* do all the per-slice initialization needed before we can start decoding the
1939  * actual MBs */
1941  const H2645NAL *nal)
1942 {
1943  int i, j, ret = 0;
1944 
1945  if (h->picture_idr && nal->type != H264_NAL_IDR_SLICE) {
1946  av_log(h->avctx, AV_LOG_ERROR, "Invalid mix of IDR and non-IDR slices\n");
1947  return AVERROR_INVALIDDATA;
1948  }
1949 
1950  av_assert1(h->mb_num == h->mb_width * h->mb_height);
1951  if (sl->first_mb_addr << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num ||
1952  sl->first_mb_addr >= h->mb_num) {
1953  av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
1954  return AVERROR_INVALIDDATA;
1955  }
1956  sl->resync_mb_x = sl->mb_x = sl->first_mb_addr % h->mb_width;
1957  sl->resync_mb_y = sl->mb_y = (sl->first_mb_addr / h->mb_width) <<
1960  sl->resync_mb_y = sl->mb_y = sl->mb_y + 1;
1961  av_assert1(sl->mb_y < h->mb_height);
1962 
1963  ret = ff_h264_build_ref_list(h, sl);
1964  if (ret < 0)
1965  return ret;
1966 
1967  if (h->ps.pps->weighted_bipred_idc == 2 &&
1969  implicit_weight_table(h, sl, -1);
1970  if (FRAME_MBAFF(h)) {
1971  implicit_weight_table(h, sl, 0);
1972  implicit_weight_table(h, sl, 1);
1973  }
1974  }
1975 
1978  if (!h->setup_finished)
1980 
1981  if (h->avctx->skip_loop_filter >= AVDISCARD_ALL ||
1989  nal->ref_idc == 0))
1990  sl->deblocking_filter = 0;
1991 
1992  if (sl->deblocking_filter == 1 && h->nb_slice_ctx > 1) {
1993  if (h->avctx->flags2 & AV_CODEC_FLAG2_FAST) {
1994  /* Cheat slightly for speed:
1995  * Do not bother to deblock across slices. */
1996  sl->deblocking_filter = 2;
1997  } else {
1998  h->postpone_filter = 1;
1999  }
2000  }
2001  sl->qp_thresh = 15 -
2003  FFMAX3(0,
2004  h->ps.pps->chroma_qp_index_offset[0],
2005  h->ps.pps->chroma_qp_index_offset[1]) +
2006  6 * (h->ps.sps->bit_depth_luma - 8);
2007 
2008  sl->slice_num = ++h->current_slice;
2009 
2010  if (sl->slice_num)
2011  h->slice_row[(sl->slice_num-1)&(MAX_SLICES-1)]= sl->resync_mb_y;
2012  if ( h->slice_row[sl->slice_num&(MAX_SLICES-1)] + 3 >= sl->resync_mb_y
2013  && h->slice_row[sl->slice_num&(MAX_SLICES-1)] <= sl->resync_mb_y
2014  && sl->slice_num >= MAX_SLICES) {
2015  //in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case
2016  av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", sl->slice_num, MAX_SLICES);
2017  }
2018 
2019  for (j = 0; j < 2; j++) {
2020  int id_list[16];
2021  int *ref2frm = h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][j];
2022  for (i = 0; i < 16; i++) {
2023  id_list[i] = 60;
2024  if (j < sl->list_count && i < sl->ref_count[j] &&
2025  sl->ref_list[j][i].parent->f->buf[0]) {
2026  int k;
2027  AVBuffer *buf = sl->ref_list[j][i].parent->f->buf[0]->buffer;
2028  for (k = 0; k < h->short_ref_count; k++)
2029  if (h->short_ref[k]->f->buf[0]->buffer == buf) {
2030  id_list[i] = k;
2031  break;
2032  }
2033  for (k = 0; k < h->long_ref_count; k++)
2034  if (h->long_ref[k] && h->long_ref[k]->f->buf[0]->buffer == buf) {
2035  id_list[i] = h->short_ref_count + k;
2036  break;
2037  }
2038  }
2039  }
2040 
2041  ref2frm[0] =
2042  ref2frm[1] = -1;
2043  for (i = 0; i < 16; i++)
2044  ref2frm[i + 2] = 4 * id_list[i] + (sl->ref_list[j][i].reference & 3);
2045  ref2frm[18 + 0] =
2046  ref2frm[18 + 1] = -1;
2047  for (i = 16; i < 48; i++)
2048  ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] +
2049  (sl->ref_list[j][i].reference & 3);
2050  }
2051 
2052  if (h->avctx->debug & FF_DEBUG_PICT_INFO) {
2054  "slice:%d %s mb:%d %c%s%s frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
2055  sl->slice_num,
2056  (h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"),
2057  sl->mb_y * h->mb_width + sl->mb_x,
2059  sl->slice_type_fixed ? " fix" : "",
2060  nal->type == H264_NAL_IDR_SLICE ? " IDR" : "",
2061  h->poc.frame_num,
2062  h->cur_pic_ptr->field_poc[0],
2063  h->cur_pic_ptr->field_poc[1],
2064  sl->ref_count[0], sl->ref_count[1],
2065  sl->qscale,
2066  sl->deblocking_filter,
2068  sl->pwt.use_weight,
2069  sl->pwt.use_weight == 1 && sl->pwt.use_weight_chroma ? "c" : "",
2070  sl->slice_type == AV_PICTURE_TYPE_B ? (sl->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "");
2071  }
2072 
2073  return 0;
2074 }
2075 
2077 {
2079  int first_slice = sl == h->slice_ctx && !h->current_slice;
2080  int ret;
2081 
2082  sl->gb = nal->gb;
2083 
2084  ret = h264_slice_header_parse(h, sl, nal);
2085  if (ret < 0)
2086  return ret;
2087 
2088  // discard redundant pictures
2089  if (sl->redundant_pic_count > 0) {
2090  sl->ref_count[0] = sl->ref_count[1] = 0;
2091  return 0;
2092  }
2093 
2094  if (sl->first_mb_addr == 0 || !h->current_slice) {
2095  if (h->setup_finished) {
2096  av_log(h->avctx, AV_LOG_ERROR, "Too many fields\n");
2097  return AVERROR_INVALIDDATA;
2098  }
2099  }
2100 
2101  if (sl->first_mb_addr == 0) { // FIXME better field boundary detection
2102  if (h->current_slice) {
2103  // this slice starts a new field
2104  // first decode any pending queued slices
2105  if (h->nb_slice_ctx_queued) {
2106  H264SliceContext tmp_ctx;
2107 
2109  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
2110  return ret;
2111 
2112  memcpy(&tmp_ctx, h->slice_ctx, sizeof(tmp_ctx));
2113  memcpy(h->slice_ctx, sl, sizeof(tmp_ctx));
2114  memcpy(sl, &tmp_ctx, sizeof(tmp_ctx));
2115  sl = h->slice_ctx;
2116  }
2117 
2118  if (h->cur_pic_ptr && FIELD_PICTURE(h) && h->first_field) {
2119  ret = ff_h264_field_end(h, h->slice_ctx, 1);
2120  if (ret < 0)
2121  return ret;
2122  } else if (h->cur_pic_ptr && !FIELD_PICTURE(h) && !h->first_field && h->nal_unit_type == H264_NAL_IDR_SLICE) {
2123  av_log(h, AV_LOG_WARNING, "Broken frame packetizing\n");
2124  ret = ff_h264_field_end(h, h->slice_ctx, 1);
2125  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
2126  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
2127  h->cur_pic_ptr = NULL;
2128  if (ret < 0)
2129  return ret;
2130  } else
2131  return AVERROR_INVALIDDATA;
2132  }
2133 
2134  if (!h->first_field) {
2135  if (h->cur_pic_ptr && !h->droppable) {
2138  }
2139  h->cur_pic_ptr = NULL;
2140  }
2141  }
2142 
2143  if (!h->current_slice)
2144  av_assert0(sl == h->slice_ctx);
2145 
2146  if (h->current_slice == 0 && !h->first_field) {
2147  if (
2148  (h->avctx->skip_frame >= AVDISCARD_NONREF && !h->nal_ref_idc) ||
2152  h->avctx->skip_frame >= AVDISCARD_ALL) {
2153  return 0;
2154  }
2155  }
2156 
2157  if (!first_slice) {
2158  const PPS *pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data;
2159 
2160  if (h->ps.pps->sps_id != pps->sps_id ||
2161  h->ps.pps->transform_8x8_mode != pps->transform_8x8_mode /*||
2162  (h->setup_finished && h->ps.pps != pps)*/) {
2163  av_log(h->avctx, AV_LOG_ERROR, "PPS changed between slices\n");
2164  return AVERROR_INVALIDDATA;
2165  }
2166  if (h->ps.sps != pps->sps) {
2168  "SPS changed in the middle of the frame\n");
2169  return AVERROR_INVALIDDATA;
2170  }
2171  }
2172 
2173  if (h->current_slice == 0) {
2174  ret = h264_field_start(h, sl, nal, first_slice);
2175  if (ret < 0)
2176  return ret;
2177  } else {
2178  if (h->picture_structure != sl->picture_structure ||
2179  h->droppable != (nal->ref_idc == 0)) {
2181  "Changing field mode (%d -> %d) between slices is not allowed\n",
2183  return AVERROR_INVALIDDATA;
2184  } else if (!h->cur_pic_ptr) {
2186  "unset cur_pic_ptr on slice %d\n",
2187  h->current_slice + 1);
2188  return AVERROR_INVALIDDATA;
2189  }
2190  }
2191 
2192  ret = h264_slice_init(h, sl, nal);
2193  if (ret < 0)
2194  return ret;
2195 
2196  h->nb_slice_ctx_queued++;
2197 
2198  return 0;
2199 }
2200 
2202 {
2203  switch (sl->slice_type) {
2204  case AV_PICTURE_TYPE_P:
2205  return 0;
2206  case AV_PICTURE_TYPE_B:
2207  return 1;
2208  case AV_PICTURE_TYPE_I:
2209  return 2;
2210  case AV_PICTURE_TYPE_SP:
2211  return 3;
2212  case AV_PICTURE_TYPE_SI:
2213  return 4;
2214  default:
2215  return AVERROR_INVALIDDATA;
2216  }
2217 }
2218 
2220  H264SliceContext *sl,
2221  int mb_type, int top_xy,
2222  int left_xy[LEFT_MBS],
2223  int top_type,
2224  int left_type[LEFT_MBS],
2225  int mb_xy, int list)
2226 {
2227  int b_stride = h->b_stride;
2228  int16_t(*mv_dst)[2] = &sl->mv_cache[list][scan8[0]];
2229  int8_t *ref_cache = &sl->ref_cache[list][scan8[0]];
2230  if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) {
2231  if (USES_LIST(top_type, list)) {
2232  const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
2233  const int b8_xy = 4 * top_xy + 2;
2234  const int *ref2frm = &h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2235  AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]);
2236  ref_cache[0 - 1 * 8] =
2237  ref_cache[1 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 0]];
2238  ref_cache[2 - 1 * 8] =
2239  ref_cache[3 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 1]];
2240  } else {
2241  AV_ZERO128(mv_dst - 1 * 8);
2242  AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2243  }
2244 
2245  if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) {
2246  if (USES_LIST(left_type[LTOP], list)) {
2247  const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
2248  const int b8_xy = 4 * left_xy[LTOP] + 1;
2249  const int *ref2frm = &h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2250  AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]);
2251  AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]);
2252  AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]);
2253  AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]);
2254  ref_cache[-1 + 0] =
2255  ref_cache[-1 + 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 0]];
2256  ref_cache[-1 + 16] =
2257  ref_cache[-1 + 24] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 1]];
2258  } else {
2259  AV_ZERO32(mv_dst - 1 + 0);
2260  AV_ZERO32(mv_dst - 1 + 8);
2261  AV_ZERO32(mv_dst - 1 + 16);
2262  AV_ZERO32(mv_dst - 1 + 24);
2263  ref_cache[-1 + 0] =
2264  ref_cache[-1 + 8] =
2265  ref_cache[-1 + 16] =
2266  ref_cache[-1 + 24] = LIST_NOT_USED;
2267  }
2268  }
2269  }
2270 
2271  if (!USES_LIST(mb_type, list)) {
2272  fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4);
2273  AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2274  AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2275  AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2276  AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2277  return;
2278  }
2279 
2280  {
2281  int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy];
2282  const int *ref2frm = &h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2283  uint32_t ref01 = (pack16to32(ref2frm[ref[0]], ref2frm[ref[1]]) & 0x00FF00FF) * 0x0101;
2284  uint32_t ref23 = (pack16to32(ref2frm[ref[2]], ref2frm[ref[3]]) & 0x00FF00FF) * 0x0101;
2285  AV_WN32A(&ref_cache[0 * 8], ref01);
2286  AV_WN32A(&ref_cache[1 * 8], ref01);
2287  AV_WN32A(&ref_cache[2 * 8], ref23);
2288  AV_WN32A(&ref_cache[3 * 8], ref23);
2289  }
2290 
2291  {
2292  int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * sl->mb_x + 4 * sl->mb_y * b_stride];
2293  AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride);
2294  AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride);
2295  AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride);
2296  AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride);
2297  }
2298 }
2299 
2300 /**
2301  * @return non zero if the loop filter can be skipped
2302  */
2303 static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
2304 {
2305  const int mb_xy = sl->mb_xy;
2306  int top_xy, left_xy[LEFT_MBS];
2307  int top_type, left_type[LEFT_MBS];
2308  uint8_t *nnz;
2309  uint8_t *nnz_cache;
2310 
2311  top_xy = mb_xy - (h->mb_stride << MB_FIELD(sl));
2312 
2313  left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
2314  if (FRAME_MBAFF(h)) {
2315  const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
2316  const int curr_mb_field_flag = IS_INTERLACED(mb_type);
2317  if (sl->mb_y & 1) {
2318  if (left_mb_field_flag != curr_mb_field_flag)
2319  left_xy[LTOP] -= h->mb_stride;
2320  } else {
2321  if (curr_mb_field_flag)
2322  top_xy += h->mb_stride &
2323  (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
2324  if (left_mb_field_flag != curr_mb_field_flag)
2325  left_xy[LBOT] += h->mb_stride;
2326  }
2327  }
2328 
2329  sl->top_mb_xy = top_xy;
2330  sl->left_mb_xy[LTOP] = left_xy[LTOP];
2331  sl->left_mb_xy[LBOT] = left_xy[LBOT];
2332  {
2333  /* For sufficiently low qp, filtering wouldn't do anything.
2334  * This is a conservative estimate: could also check beta_offset
2335  * and more accurate chroma_qp. */
2336  int qp_thresh = sl->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice
2337  int qp = h->cur_pic.qscale_table[mb_xy];
2338  if (qp <= qp_thresh &&
2339  (left_xy[LTOP] < 0 ||
2340  ((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) &&
2341  (top_xy < 0 ||
2342  ((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) {
2343  if (!FRAME_MBAFF(h))
2344  return 1;
2345  if ((left_xy[LTOP] < 0 ||
2346  ((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) &&
2347  (top_xy < h->mb_stride ||
2348  ((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh))
2349  return 1;
2350  }
2351  }
2352 
2353  top_type = h->cur_pic.mb_type[top_xy];
2354  left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
2355  left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
2356  if (sl->deblocking_filter == 2) {
2357  if (h->slice_table[top_xy] != sl->slice_num)
2358  top_type = 0;
2359  if (h->slice_table[left_xy[LBOT]] != sl->slice_num)
2360  left_type[LTOP] = left_type[LBOT] = 0;
2361  } else {
2362  if (h->slice_table[top_xy] == 0xFFFF)
2363  top_type = 0;
2364  if (h->slice_table[left_xy[LBOT]] == 0xFFFF)
2365  left_type[LTOP] = left_type[LBOT] = 0;
2366  }
2367  sl->top_type = top_type;
2368  sl->left_type[LTOP] = left_type[LTOP];
2369  sl->left_type[LBOT] = left_type[LBOT];
2370 
2371  if (IS_INTRA(mb_type))
2372  return 0;
2373 
2374  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2375  top_type, left_type, mb_xy, 0);
2376  if (sl->list_count == 2)
2377  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2378  top_type, left_type, mb_xy, 1);
2379 
2380  nnz = h->non_zero_count[mb_xy];
2381  nnz_cache = sl->non_zero_count_cache;
2382  AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]);
2383  AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]);
2384  AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]);
2385  AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]);
2386  sl->cbp = h->cbp_table[mb_xy];
2387 
2388  if (top_type) {
2389  nnz = h->non_zero_count[top_xy];
2390  AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]);
2391  }
2392 
2393  if (left_type[LTOP]) {
2394  nnz = h->non_zero_count[left_xy[LTOP]];
2395  nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4];
2396  nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4];
2397  nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4];
2398  nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4];
2399  }
2400 
2401  /* CAVLC 8x8dct requires NNZ values for residual decoding that differ
2402  * from what the loop filter needs */
2403  if (!CABAC(h) && h->ps.pps->transform_8x8_mode) {
2404  if (IS_8x8DCT(top_type)) {
2405  nnz_cache[4 + 8 * 0] =
2406  nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12;
2407  nnz_cache[6 + 8 * 0] =
2408  nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12;
2409  }
2410  if (IS_8x8DCT(left_type[LTOP])) {
2411  nnz_cache[3 + 8 * 1] =
2412  nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF
2413  }
2414  if (IS_8x8DCT(left_type[LBOT])) {
2415  nnz_cache[3 + 8 * 3] =
2416  nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF
2417  }
2418 
2419  if (IS_8x8DCT(mb_type)) {
2420  nnz_cache[scan8[0]] =
2421  nnz_cache[scan8[1]] =
2422  nnz_cache[scan8[2]] =
2423  nnz_cache[scan8[3]] = (sl->cbp & 0x1000) >> 12;
2424 
2425  nnz_cache[scan8[0 + 4]] =
2426  nnz_cache[scan8[1 + 4]] =
2427  nnz_cache[scan8[2 + 4]] =
2428  nnz_cache[scan8[3 + 4]] = (sl->cbp & 0x2000) >> 12;
2429 
2430  nnz_cache[scan8[0 + 8]] =
2431  nnz_cache[scan8[1 + 8]] =
2432  nnz_cache[scan8[2 + 8]] =
2433  nnz_cache[scan8[3 + 8]] = (sl->cbp & 0x4000) >> 12;
2434 
2435  nnz_cache[scan8[0 + 12]] =
2436  nnz_cache[scan8[1 + 12]] =
2437  nnz_cache[scan8[2 + 12]] =
2438  nnz_cache[scan8[3 + 12]] = (sl->cbp & 0x8000) >> 12;
2439  }
2440  }
2441 
2442  return 0;
2443 }
2444 
2445 static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
2446 {
2447  uint8_t *dest_y, *dest_cb, *dest_cr;
2448  int linesize, uvlinesize, mb_x, mb_y;
2449  const int end_mb_y = sl->mb_y + FRAME_MBAFF(h);
2450  const int old_slice_type = sl->slice_type;
2451  const int pixel_shift = h->pixel_shift;
2452  const int block_h = 16 >> h->chroma_y_shift;
2453 
2454  if (h->postpone_filter)
2455  return;
2456 
2457  if (sl->deblocking_filter) {
2458  for (mb_x = start_x; mb_x < end_x; mb_x++)
2459  for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) {
2460  int mb_xy, mb_type;
2461  mb_xy = sl->mb_xy = mb_x + mb_y * h->mb_stride;
2462  mb_type = h->cur_pic.mb_type[mb_xy];
2463 
2464  if (FRAME_MBAFF(h))
2465  sl->mb_mbaff =
2466  sl->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
2467 
2468  sl->mb_x = mb_x;
2469  sl->mb_y = mb_y;
2470  dest_y = h->cur_pic.f->data[0] +
2471  ((mb_x << pixel_shift) + mb_y * sl->linesize) * 16;
2472  dest_cb = h->cur_pic.f->data[1] +
2473  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2474  mb_y * sl->uvlinesize * block_h;
2475  dest_cr = h->cur_pic.f->data[2] +
2476  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2477  mb_y * sl->uvlinesize * block_h;
2478  // FIXME simplify above
2479 
2480  if (MB_FIELD(sl)) {
2481  linesize = sl->mb_linesize = sl->linesize * 2;
2482  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize * 2;
2483  if (mb_y & 1) { // FIXME move out of this function?
2484  dest_y -= sl->linesize * 15;
2485  dest_cb -= sl->uvlinesize * (block_h - 1);
2486  dest_cr -= sl->uvlinesize * (block_h - 1);
2487  }
2488  } else {
2489  linesize = sl->mb_linesize = sl->linesize;
2490  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize;
2491  }
2492  backup_mb_border(h, sl, dest_y, dest_cb, dest_cr, linesize,
2493  uvlinesize, 0);
2494  if (fill_filter_caches(h, sl, mb_type))
2495  continue;
2496  sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, h->cur_pic.qscale_table[mb_xy]);
2497  sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, h->cur_pic.qscale_table[mb_xy]);
2498 
2499  if (FRAME_MBAFF(h)) {
2500  ff_h264_filter_mb(h, sl, mb_x, mb_y, dest_y, dest_cb, dest_cr,
2501  linesize, uvlinesize);
2502  } else {
2503  ff_h264_filter_mb_fast(h, sl, mb_x, mb_y, dest_y, dest_cb,
2504  dest_cr, linesize, uvlinesize);
2505  }
2506  }
2507  }
2508  sl->slice_type = old_slice_type;
2509  sl->mb_x = end_x;
2510  sl->mb_y = end_mb_y - FRAME_MBAFF(h);
2511  sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, sl->qscale);
2512  sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, sl->qscale);
2513 }
2514 
2516 {
2517  const int mb_xy = sl->mb_x + sl->mb_y * h->mb_stride;
2518  int mb_type = (h->slice_table[mb_xy - 1] == sl->slice_num) ?
2519  h->cur_pic.mb_type[mb_xy - 1] :
2520  (h->slice_table[mb_xy - h->mb_stride] == sl->slice_num) ?
2521  h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0;
2522  sl->mb_mbaff = sl->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
2523 }
2524 
2525 /**
2526  * Draw edges and report progress for the last MB row.
2527  */
2529 {
2530  int top = 16 * (sl->mb_y >> FIELD_PICTURE(h));
2531  int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h);
2532  int height = 16 << FRAME_MBAFF(h);
2533  int deblock_border = (16 + 4) << FRAME_MBAFF(h);
2534 
2535  if (sl->deblocking_filter) {
2536  if ((top + height) >= pic_height)
2537  height += deblock_border;
2538  top -= deblock_border;
2539  }
2540 
2541  if (top >= pic_height || (top + height) < 0)
2542  return;
2543 
2544  height = FFMIN(height, pic_height - top);
2545  if (top < 0) {
2546  height = top + height;
2547  top = 0;
2548  }
2549 
2550  ff_h264_draw_horiz_band(h, sl, top, height);
2551 
2552  if (h->droppable || sl->h264->slice_ctx[0].er.error_occurred)
2553  return;
2554 
2555  ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1,
2557 }
2558 
2560  int startx, int starty,
2561  int endx, int endy, int status)
2562 {
2563  if (!sl->h264->enable_er)
2564  return;
2565 
2567  ERContext *er = &sl->h264->slice_ctx[0].er;
2568 
2569  ff_er_add_slice(er, startx, starty, endx, endy, status);
2570  }
2571 }
2572 
2573 static int decode_slice(struct AVCodecContext *avctx, void *arg)
2574 {
2575  H264SliceContext *sl = arg;
2576  const H264Context *h = sl->h264;
2577  int lf_x_start = sl->mb_x;
2578  int orig_deblock = sl->deblocking_filter;
2579  int ret;
2580 
2581  sl->linesize = h->cur_pic_ptr->f->linesize[0];
2582  sl->uvlinesize = h->cur_pic_ptr->f->linesize[1];
2583 
2584  ret = alloc_scratch_buffers(sl, sl->linesize);
2585  if (ret < 0)
2586  return ret;
2587 
2588  sl->mb_skip_run = -1;
2589 
2590  av_assert0(h->block_offset[15] == (4 * ((scan8[15] - scan8[0]) & 7) << h->pixel_shift) + 4 * sl->linesize * ((scan8[15] - scan8[0]) >> 3));
2591 
2592  if (h->postpone_filter)
2593  sl->deblocking_filter = 0;
2594 
2595  sl->is_complex = FRAME_MBAFF(h) || h->picture_structure != PICT_FRAME ||
2596  (CONFIG_GRAY && (h->flags & AV_CODEC_FLAG_GRAY));
2597 
2599  const int start_i = av_clip(sl->resync_mb_x + sl->resync_mb_y * h->mb_width, 0, h->mb_num - 1);
2600  if (start_i) {
2601  int prev_status = h->slice_ctx[0].er.error_status_table[h->slice_ctx[0].er.mb_index2xy[start_i - 1]];
2602  prev_status &= ~ VP_START;
2603  if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END))
2604  h->slice_ctx[0].er.error_occurred = 1;
2605  }
2606  }
2607 
2608  if (h->ps.pps->cabac) {
2609  /* realign */
2610  align_get_bits(&sl->gb);
2611 
2612  /* init cabac */
2613  ret = ff_init_cabac_decoder(&sl->cabac,
2614  sl->gb.buffer + get_bits_count(&sl->gb) / 8,
2615  (get_bits_left(&sl->gb) + 7) / 8);
2616  if (ret < 0)
2617  return ret;
2618 
2620 
2621  for (;;) {
2622  int ret, eos;
2623  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
2624  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
2625  sl->next_slice_idx);
2626  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2627  sl->mb_y, ER_MB_ERROR);
2628  return AVERROR_INVALIDDATA;
2629  }
2630 
2631  ret = ff_h264_decode_mb_cabac(h, sl);
2632 
2633  if (ret >= 0)
2634  ff_h264_hl_decode_mb(h, sl);
2635 
2636  // FIXME optimal? or let mb_decode decode 16x32 ?
2637  if (ret >= 0 && FRAME_MBAFF(h)) {
2638  sl->mb_y++;
2639 
2640  ret = ff_h264_decode_mb_cabac(h, sl);
2641 
2642  if (ret >= 0)
2643  ff_h264_hl_decode_mb(h, sl);
2644  sl->mb_y--;
2645  }
2646  eos = get_cabac_terminate(&sl->cabac);
2647 
2648  if ((h->workaround_bugs & FF_BUG_TRUNCATED) &&
2649  sl->cabac.bytestream > sl->cabac.bytestream_end + 2) {
2650  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2651  sl->mb_y, ER_MB_END);
2652  if (sl->mb_x >= lf_x_start)
2653  loop_filter(h, sl, lf_x_start, sl->mb_x + 1);
2654  goto finish;
2655  }
2656  if (sl->cabac.bytestream > sl->cabac.bytestream_end + 2 )
2657  av_log(h->avctx, AV_LOG_DEBUG, "bytestream overread %"PTRDIFF_SPECIFIER"\n", sl->cabac.bytestream_end - sl->cabac.bytestream);
2658  if (ret < 0 || sl->cabac.bytestream > sl->cabac.bytestream_end + 4) {
2660  "error while decoding MB %d %d, bytestream %"PTRDIFF_SPECIFIER"\n",
2661  sl->mb_x, sl->mb_y,
2662  sl->cabac.bytestream_end - sl->cabac.bytestream);
2663  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2664  sl->mb_y, ER_MB_ERROR);
2665  return AVERROR_INVALIDDATA;
2666  }
2667 
2668  if (++sl->mb_x >= h->mb_width) {
2669  loop_filter(h, sl, lf_x_start, sl->mb_x);
2670  sl->mb_x = lf_x_start = 0;
2671  decode_finish_row(h, sl);
2672  ++sl->mb_y;
2673  if (FIELD_OR_MBAFF_PICTURE(h)) {
2674  ++sl->mb_y;
2675  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2677  }
2678  }
2679 
2680  if (eos || sl->mb_y >= h->mb_height) {
2681  ff_tlog(h->avctx, "slice end %d %d\n",
2682  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2683  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2684  sl->mb_y, ER_MB_END);
2685  if (sl->mb_x > lf_x_start)
2686  loop_filter(h, sl, lf_x_start, sl->mb_x);
2687  goto finish;
2688  }
2689  }
2690  } else {
2691  for (;;) {
2692  int ret;
2693 
2694  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
2695  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
2696  sl->next_slice_idx);
2697  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2698  sl->mb_y, ER_MB_ERROR);
2699  return AVERROR_INVALIDDATA;
2700  }
2701 
2702  ret = ff_h264_decode_mb_cavlc(h, sl);
2703 
2704  if (ret >= 0)
2705  ff_h264_hl_decode_mb(h, sl);
2706 
2707  // FIXME optimal? or let mb_decode decode 16x32 ?
2708  if (ret >= 0 && FRAME_MBAFF(h)) {
2709  sl->mb_y++;
2710  ret = ff_h264_decode_mb_cavlc(h, sl);
2711 
2712  if (ret >= 0)
2713  ff_h264_hl_decode_mb(h, sl);
2714  sl->mb_y--;
2715  }
2716 
2717  if (ret < 0) {
2719  "error while decoding MB %d %d\n", sl->mb_x, sl->mb_y);
2720  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2721  sl->mb_y, ER_MB_ERROR);
2722  return ret;
2723  }
2724 
2725  if (++sl->mb_x >= h->mb_width) {
2726  loop_filter(h, sl, lf_x_start, sl->mb_x);
2727  sl->mb_x = lf_x_start = 0;
2728  decode_finish_row(h, sl);
2729  ++sl->mb_y;
2730  if (FIELD_OR_MBAFF_PICTURE(h)) {
2731  ++sl->mb_y;
2732  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2734  }
2735  if (sl->mb_y >= h->mb_height) {
2736  ff_tlog(h->avctx, "slice end %d %d\n",
2737  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2738 
2739  if ( get_bits_left(&sl->gb) == 0
2740  || get_bits_left(&sl->gb) > 0 && !(h->avctx->err_recognition & AV_EF_AGGRESSIVE)) {
2741  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2742  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2743 
2744  goto finish;
2745  } else {
2746  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2747  sl->mb_x, sl->mb_y, ER_MB_END);
2748 
2749  return AVERROR_INVALIDDATA;
2750  }
2751  }
2752  }
2753 
2754  if (get_bits_left(&sl->gb) <= 0 && sl->mb_skip_run <= 0) {
2755  ff_tlog(h->avctx, "slice end %d %d\n",
2756  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2757 
2758  if (get_bits_left(&sl->gb) == 0) {
2759  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2760  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2761  if (sl->mb_x > lf_x_start)
2762  loop_filter(h, sl, lf_x_start, sl->mb_x);
2763 
2764  goto finish;
2765  } else {
2766  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2767  sl->mb_y, ER_MB_ERROR);
2768 
2769  return AVERROR_INVALIDDATA;
2770  }
2771  }
2772  }
2773  }
2774 
2775 finish:
2776  sl->deblocking_filter = orig_deblock;
2777  return 0;
2778 }
2779 
2780 /**
2781  * Call decode_slice() for each context.
2782  *
2783  * @param h h264 master context
2784  */
2786 {
2787  AVCodecContext *const avctx = h->avctx;
2788  H264SliceContext *sl;
2789  int context_count = h->nb_slice_ctx_queued;
2790  int ret = 0;
2791  int i, j;
2792 
2793  h->slice_ctx[0].next_slice_idx = INT_MAX;
2794 
2795  if (h->avctx->hwaccel || context_count < 1)
2796  return 0;
2797 
2798  av_assert0(context_count && h->slice_ctx[context_count - 1].mb_y < h->mb_height);
2799 
2800  if (context_count == 1) {
2801 
2802  h->slice_ctx[0].next_slice_idx = h->mb_width * h->mb_height;
2803  h->postpone_filter = 0;
2804 
2805  ret = decode_slice(avctx, &h->slice_ctx[0]);
2806  h->mb_y = h->slice_ctx[0].mb_y;
2807  if (ret < 0)
2808  goto finish;
2809  } else {
2810  av_assert0(context_count > 0);
2811  for (i = 0; i < context_count; i++) {
2812  int next_slice_idx = h->mb_width * h->mb_height;
2813  int slice_idx;
2814 
2815  sl = &h->slice_ctx[i];
2817  sl->er.error_count = 0;
2818  }
2819 
2820  /* make sure none of those slices overlap */
2821  slice_idx = sl->mb_y * h->mb_width + sl->mb_x;
2822  for (j = 0; j < context_count; j++) {
2823  H264SliceContext *sl2 = &h->slice_ctx[j];
2824  int slice_idx2 = sl2->mb_y * h->mb_width + sl2->mb_x;
2825 
2826  if (i == j || slice_idx2 < slice_idx)
2827  continue;
2828  next_slice_idx = FFMIN(next_slice_idx, slice_idx2);
2829  }
2830  sl->next_slice_idx = next_slice_idx;
2831  }
2832 
2833  avctx->execute(avctx, decode_slice, h->slice_ctx,
2834  NULL, context_count, sizeof(h->slice_ctx[0]));
2835 
2836  /* pull back stuff from slices to master context */
2837  sl = &h->slice_ctx[context_count - 1];
2838  h->mb_y = sl->mb_y;
2840  for (i = 1; i < context_count; i++)
2842  }
2843 
2844  if (h->postpone_filter) {
2845  h->postpone_filter = 0;
2846 
2847  for (i = 0; i < context_count; i++) {
2848  int y_end, x_end;
2849 
2850  sl = &h->slice_ctx[i];
2851  y_end = FFMIN(sl->mb_y + 1, h->mb_height);
2852  x_end = (sl->mb_y >= h->mb_height) ? h->mb_width : sl->mb_x;
2853 
2854  for (j = sl->resync_mb_y; j < y_end; j += 1 + FIELD_OR_MBAFF_PICTURE(h)) {
2855  sl->mb_y = j;
2856  loop_filter(h, sl, j > sl->resync_mb_y ? 0 : sl->resync_mb_x,
2857  j == y_end - 1 ? x_end : h->mb_width);
2858  }
2859  }
2860  }
2861  }
2862 
2863 finish:
2864  h->nb_slice_ctx_queued = 0;
2865  return ret;
2866 }
int chroma_format_idc
Definition: h264_ps.h:48
#define AV_STEREO3D_FLAG_INVERT
Inverted views, Right/Bottom represents the left view.
Definition: stereo3d.h:167
int video_signal_type_present_flag
Definition: h264_ps.h:74
struct H264Context * h264
Definition: h264dec.h:184
#define AV_EF_AGGRESSIVE
consider things that a sane encoder should not do as an error
Definition: avcodec.h:1671
#define ff_tlog(ctx,...)
Definition: internal.h:86
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
#define NULL
Definition: coverity.c:32
int ff_thread_can_start_frame(AVCodecContext *avctx)
const struct AVCodec * codec
Definition: avcodec.h:535
AVRational framerate
Definition: avcodec.h:2069
discard all frames except keyframes
Definition: avcodec.h:235
static void init_dimensions(H264Context *h)
Definition: h264_slice.c:870
int nb_mmco
Definition: h264dec.h:480
int workaround_bugs
Definition: h264dec.h:373
int long_ref
1->long term reference 0->short term reference
Definition: h264dec.h:154
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
int sei_recovery_frame_cnt
Definition: h264dec.h:163
int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal)
Submit a slice for decoding.
Definition: h264_slice.c:2076
H264POCContext poc
Definition: h264dec.h:466
int mb_num
Definition: h264dec.h:443
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it...
Definition: buffer.c:125
int mb_aff_frame
Definition: h264dec.h:412
int recovery_frame_cnt
recovery_frame_cnt
Definition: h264_sei.h:139
if(ret< 0)
Definition: vf_mcdeint.c:279
int16_t mv_cache[2][5 *8][2]
Motion vector cache.
Definition: h264dec.h:305
enum AVStereo3DView view
Determines which views are packed.
Definition: stereo3d.h:190
#define AV_PIX_FMT_YUV444P14
Definition: pixfmt.h:407
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
Definition: golomb.h:239
int edge_emu_buffer_allocated
Definition: h264dec.h:293
int coded_width
Bitstream width / height, may be different from width/height e.g.
Definition: avcodec.h:714
static void decode_finish_row(const H264Context *h, H264SliceContext *sl)
Draw edges and report progress for the last MB row.
Definition: h264_slice.c:2528
int first_field
Definition: h264dec.h:414
uint8_t field_scan8x8_q0[64]
Definition: h264dec.h:437
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
misc image utilities
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
#define ER_MB_END
AVFrame * f
Definition: thread.h:35
int weighted_bipred_idc
Definition: h264_ps.h:119
int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl)
Definition: h264_refs.c:299
int left_mb_xy[LEFT_MBS]
Definition: h264dec.h:217
int chroma_qp_index_offset[2]
Definition: h264_ps.h:122
AVBufferRef * sps_list[MAX_SPS_COUNT]
Definition: h264_ps.h:144
const uint8_t * bytestream_end
Definition: cabac.h:49
static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
Get the chroma qp.
Definition: h264dec.h:687
AVBufferRef * buf[AV_NUM_DATA_POINTERS]
AVBuffer references backing the data for this frame.
Definition: frame.h:491
hardware decoding through Videotoolbox
Definition: pixfmt.h:282
H264ChromaContext h264chroma
Definition: h264dec.h:348
uint16_t * cbp_table
Definition: h264dec.h:419
int luma_weight_flag[2]
7.4.3.2 luma_weight_lX_flag
Definition: h264_parse.h:35
MMCO mmco[MAX_MMCO_COUNT]
memory management control operations buffer.
Definition: h264dec.h:479
static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
Initialize implicit_weight table.
Definition: h264_slice.c:659
#define avpriv_request_sample(...)
Sequence parameter set.
Definition: h264_ps.h:44
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: avcodec.h:1161
int mb_y
Definition: h264dec.h:440
int coded_picture_number
Definition: h264dec.h:369
int bitstream_restriction_flag
Definition: h264_ps.h:87
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
H264SEIAlternativeTransfer alternative_transfer
Definition: h264_sei.h:192
int num
Numerator.
Definition: rational.h:59
Timecode which conforms to SMPTE ST 12-1.
Definition: frame.h:168
AVBufferRef * mb_type_buf
Definition: h264dec.h:138
int repeat_pict
When decoding, this signals how much the picture must be delayed.
Definition: frame.h:442
int bipred_scratchpad_allocated
Definition: h264dec.h:292
Views are next to each other, but when upscaling apply a checkerboard pattern.
Definition: stereo3d.h:117
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output...
Definition: diracdec.c:67
Frame contains only the right view.
Definition: stereo3d.h:161
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:413
#define VP_START
< current MB is the first after a resync marker
AVBufferPool * mb_type_pool
Definition: h264dec.h:556
int ff_h264_init_poc(int pic_field_poc[2], int *pic_poc, const SPS *sps, H264POCContext *pc, int picture_structure, int nal_ref_idc)
Definition: h264_parse.c:277
int chroma_x_shift
Definition: h264dec.h:366
const uint8_t * buffer
Definition: get_bits.h:62
Picture parameter set.
Definition: h264_ps.h:111
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel...
Definition: avcodec.h:905
int16_t(*[2] motion_val)[2]
Definition: h264dec.h:136
int flags
Definition: h264dec.h:372
void ff_h264_flush_change(H264Context *h)
Definition: h264dec.c:464
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:736
int frame_mbs_only_flag
Definition: h264_ps.h:62
int mb_height
Definition: h264dec.h:441
H264Picture * delayed_pic[MAX_DELAYED_PIC_COUNT+2]
Definition: h264dec.h:471
#define tc
Definition: regdef.h:69
int is_avc
Used to parse AVC variant of H.264.
Definition: h264dec.h:456
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
Definition: h264pred.c:411
AVBufferPool * ref_index_pool
Definition: h264dec.h:558
int height_from_caller
Definition: h264dec.h:549
uint8_t zigzag_scan8x8_cavlc[64]
Definition: h264dec.h:429
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:401
av_cold void ff_h264chroma_init(H264ChromaContext *c, int bit_depth)
Definition: h264chroma.c:41
ERPicture last_pic
H264SEIDisplayOrientation display_orientation
Definition: h264_sei.h:190
mpegvideo header.
int current_frame_is_frame0_flag
Definition: h264_sei.h:155
int next_slice_idx
Definition: h264dec.h:242
static const uint8_t zigzag_scan8x8_cavlc[64+1]
Definition: h264_slice.c:96
H264Context.
Definition: h264dec.h:343
discard all non intra frames
Definition: avcodec.h:234
discard all
Definition: avcodec.h:236
AVFrame * f
Definition: h264dec.h:129
const PPS * pps
Definition: h264dec.h:166
Views are next to each other.
Definition: stereo3d.h:67
size_t crop_bottom
Definition: frame.h:661
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:1757
uint32_t num_units_in_tick
Definition: h264_ps.h:83
static const uint8_t field_scan[16+1]
Definition: h264_slice.c:50
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
const struct AVHWAccel * hwaccel
Hardware accelerator in use.
Definition: avcodec.h:1690
H264Picture * long_ref[32]
Definition: h264dec.h:470
int profile
profile
Definition: avcodec.h:1859
int picture_structure
Definition: h264dec.h:413
order of coefficients is actually GBR, also IEC 61966-2-1 (sRGB)
Definition: pixfmt.h:510
#define AV_WN32A(p, v)
Definition: intreadwrite.h:538
#define AV_COPY32(d, s)
Definition: intreadwrite.h:601
void av_display_matrix_flip(int32_t matrix[9], int hflip, int vflip)
Flip the input matrix horizontally and/or vertically.
Definition: display.c:65
unsigned int ref_count[2]
num_ref_idx_l0/1_active_minus1 + 1
Definition: h264dec.h:273
#define IN_RANGE(a, b, size)
Definition: h264_slice.c:273
#define REBASE_PICTURE(pic, new_ctx, old_ctx)
Definition: h264_slice.c:275
MMCO mmco[MAX_MMCO_COUNT]
Definition: h264dec.h:328
void av_display_rotation_set(int32_t matrix[9], double angle)
Initialize a transformation matrix describing a pure counterclockwise rotation by the specified angle...
Definition: display.c:50
Frame contains only the left view.
Definition: stereo3d.h:156
int ff_h264_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
Definition: h264_slice.c:296
Switching Intra.
Definition: avutil.h:278
int setup_finished
Definition: h264dec.h:540
enum AVDiscard skip_frame
Skip decoding for selected frames.
Definition: avcodec.h:2004
int ff_h264_execute_decode_slices(H264Context *h)
Call decode_slice() for each context.
Definition: h264_slice.c:2785
H264SEIContext sei
Definition: h264dec.h:553
AVBufferRef * buf_ref
Definition: h264_sei.h:124
int ff_h264_sei_process_picture_timing(H264SEIPictureTiming *h, const SPS *sps, void *logctx)
Parse the contents of a picture timing message given an active SPS.
Definition: h264_sei.c:57
unsigned int crop_top
frame_cropping_rect_top_offset
Definition: h264_ps.h:70
#define USES_LIST(a, list)
Definition: mpegutils.h:99
void ff_color_frame(AVFrame *frame, const int color[4])
Definition: utils.c:412
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
const uint8_t * bytestream
Definition: cabac.h:48
int ref2frm[MAX_SLICES][2][64]
reference to frame number lists, used in the loop filter, the first 2 are for -2,-1 ...
Definition: h264dec.h:559
int deblocking_filter_parameters_present
deblocking_filter_parameters_present_flag
Definition: h264_ps.h:123
static double cb(void *priv, double x, double y)
Definition: vf_geq.c:215
const PPS * pps
Definition: h264_ps.h:149
4: bottom field, top field, in that order
Definition: h264_sei.h:51
static enum AVPixelFormat non_j_pixfmt(enum AVPixelFormat a)
Definition: h264_slice.c:994
uint8_t
int full_range
Definition: h264_ps.h:75
unsigned int crop_left
frame_cropping_rect_left_offset
Definition: h264_ps.h:68
int gaps_in_frame_num_allowed_flag
Definition: h264_ps.h:58
#define MB_MBAFF(h)
Definition: h264dec.h:71
int slice_alpha_c0_offset
Definition: h264dec.h:200
Stereo 3D type: this structure describes how two videos are packed within a single video surface...
Definition: stereo3d.h:176
int poc
Definition: h264dec.h:177
void ff_h264_set_erpic(ERPicture *dst, H264Picture *src)
Definition: h264_picture.c:136
int field_picture
whether or not picture was encoded in separate fields
Definition: h264dec.h:158
int bit_depth_chroma
bit_depth_chroma_minus8 + 8
Definition: h264_ps.h:101
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl)
Definition: h264_mb.c:799
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:1612
size_t crop_left
Definition: frame.h:662
enum AVColorPrimaries color_primaries
Definition: h264_ps.h:77
int poc
frame POC
Definition: h264dec.h:148
int frame_num_offset
for POC type 2
Definition: h264_parse.h:51
int chroma_weight_flag[2]
7.4.3.2 chroma_weight_lX_flag
Definition: h264_parse.h:36
Multithreading support functions.
#define ER_MB_ERROR
int cabac
entropy_coding_mode_flag
Definition: h264_ps.h:113
#define MB_FIELD(sl)
Definition: h264dec.h:72
const char * from
Definition: jacosubdec.c:65
unsigned int crop_right
frame_cropping_rect_right_offset
Definition: h264_ps.h:69
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:412
int invalid_gap
Definition: h264dec.h:162
ERPicture cur_pic
int frame_recovered
Initial frame has been completely recovered.
Definition: h264dec.h:530
Structure to hold side data for an AVFrame.
Definition: frame.h:206
int height
Definition: h264dec.h:365
#define PICT_BOTTOM_FIELD
Definition: mpegutils.h:38
#define height
#define MAX_PPS_COUNT
Definition: h264_ps.h:38
int pt
Definition: rtp.c:35
int transform_bypass
qpprime_y_zero_transform_bypass_flag
Definition: h264_ps.h:49
static void finish(void)
Definition: movenc.c:345
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
Definition: utils.c:88
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:79
#define ER_MV_END
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:119
int redundant_pic_cnt_present
redundant_pic_cnt_present_flag
Definition: h264_ps.h:125
int picture_structure
Definition: h264dec.h:246
int chroma_y_shift
Definition: h264dec.h:366
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
int interlaced_frame
The content of the picture is interlaced.
Definition: frame.h:447
Video is not stereoscopic (and metadata has to be there).
Definition: stereo3d.h:55
AVBufferRef * qscale_table_buf
Definition: h264dec.h:132
static int h264_export_frame_props(H264Context *h)
Definition: h264_slice.c:1124
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:402
H264Picture * parent
Definition: h264dec.h:180
#define FRAME_RECOVERED_SEI
Sufficient number of frames have been decoded since a SEI recovery point, so all the following frames...
Definition: h264dec.h:528
H264SEIAFD afd
Definition: h264_sei.h:184
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:308
int recovered
picture at IDR or recovery point + recovery count
Definition: h264dec.h:161
Active Format Description data consisting of a single byte as specified in ETSI TS 101 154 using AVAc...
Definition: frame.h:89
#define AV_COPY64(d, s)
Definition: intreadwrite.h:605
int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx)
Definition: h264_refs.c:423
enum AVChromaLocation chroma_sample_location
This defines the location of chroma samples.
Definition: avcodec.h:1168
#define FFALIGN(x, a)
Definition: macros.h:48
int chroma_qp[2]
Definition: h264dec.h:194
#define av_log(a,...)
int last_pocs[MAX_DELAYED_PIC_COUNT]
Definition: h264dec.h:472
const char * to
Definition: webvttdec.c:34
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:121
int width
Definition: h264dec.h:365
static int h264_frame_start(H264Context *h)
Definition: h264_slice.c:458
H.264 common definitions.
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height)
Definition: h264dec.c:103
#define U(x)
Definition: vp56_arith.h:37
#define src
Definition: vp8dsp.c:254
int timecode_cnt
Number of timecode in use.
Definition: h264_sei.h:115
#define HWACCEL_MAX
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
H.264 parameter set handling.
H264Picture DPB[H264_MAX_PICTURE_COUNT]
Definition: h264dec.h:351
enum AVColorTransferCharacteristic color_trc
Definition: h264_ps.h:78
int mb_aff
mb_adaptive_frame_field_flag
Definition: h264_ps.h:63
H264PredContext hpc
Definition: h264dec.h:392
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
int chroma_log2_weight_denom
Definition: h264_parse.h:34
int width
Definition: frame.h:358
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int has_b_frames
Size of the frame reordering buffer in the decoder.
Definition: avcodec.h:816
#define td
Definition: regdef.h:70
int flags
Additional information about the frame packing.
Definition: stereo3d.h:185
static int get_ue_golomb(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to 8190.
Definition: golomb.h:55
static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
Definition: h264_slice.c:128
int poc_type
pic_order_cnt_type
Definition: h264_ps.h:51
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
int context_initialized
Definition: h264dec.h:371
#define PTRDIFF_SPECIFIER
Definition: internal.h:261
ERContext er
Definition: h264dec.h:186
int nal_unit_type
Definition: h264dec.h:449
int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb, const H2645NAL *nal, void *logctx)
Definition: h264_refs.c:834
int ff_h264_get_profile(const SPS *sps)
Compute profile from profile_idc and constraint_set?_flags.
Definition: h264_parse.c:529
int num_reorder_frames
Definition: h264_ps.h:88
discard all bidirectional frames
Definition: avcodec.h:233
#define AVERROR(e)
Definition: error.h:43
H264_SEI_FpaType arrangement_type
Definition: h264_sei.h:151
void * hwaccel_picture_private
hardware accelerator private data
Definition: h264dec.h:142
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2577
Display matrix.
Views are packed per line, as if interlaced.
Definition: stereo3d.h:129
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:1804
static const uint8_t field_scan8x8[64+1]
Definition: h264_slice.c:57
const uint8_t ff_zigzag_scan[16+1]
Definition: mathtables.c:109
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
ATSC A53 Part 4 Closed Captions.
Definition: frame.h:58
#define FIELD_PICTURE(h)
Definition: h264dec.h:74
int picture_idr
Definition: h264dec.h:384
const char * arg
Definition: jacosubdec.c:66
int deblocking_filter
disable_deblocking_filter_idc with 1 <-> 0
Definition: h264dec.h:199
uint8_t(*[2] mvd_table)[2]
Definition: h264dec.h:423
int prev_interlaced_frame
Complement sei_pic_struct SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced...
Definition: h264dec.h:504
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:606
static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
Definition: h264_slice.c:2303
ThreadFrame tf
Definition: h264dec.h:130
simple assert() macros that are a bit more flexible than ISO C assert().
uint8_t(*[2] top_borders)[(16 *3) *2]
Definition: h264dec.h:291
int weighted_pred
weighted_pred_flag
Definition: h264_ps.h:118
#define PICT_TOP_FIELD
Definition: mpegutils.h:37
H264QpelContext h264qpel
Definition: h264dec.h:349
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:400
int direct_spatial_mv_pred
Definition: h264dec.h:257
H264SEIUnregistered unregistered
Definition: h264_sei.h:186
int frame_num
frame_num (raw frame_num from slice header)
Definition: h264dec.h:149
const uint8_t ff_h264_golomb_to_pict_type[5]
Definition: h264data.c:37
#define MAX_SLICES
Definition: dxva2_hevc.c:29
int valid_recovery_point
Are the SEI recovery points looking valid.
Definition: h264dec.h:509
int ff_h264_get_slice_type(const H264SliceContext *sl)
Reconstruct bitstream slice_type.
Definition: h264_slice.c:2201
#define FFMAX(a, b)
Definition: common.h:94
#define fail()
Definition: checkasm.h:123
uint8_t active_format_description
Definition: h264_sei.h:120
int delta_pic_order_always_zero_flag
Definition: h264_ps.h:53
void av_image_copy(uint8_t *dst_data[4], int dst_linesizes[4], const uint8_t *src_data[4], const int src_linesizes[4], enum AVPixelFormat pix_fmt, int width, int height)
Copy image in src_data to dst_data.
Definition: imgutils.c:387
int * mb_index2xy
int slice_type_nos
S free slice type (SI/SP are remapped to I/P)
Definition: h264dec.h:190
uint8_t zigzag_scan8x8[64]
Definition: h264dec.h:428
AVBufferRef * hwaccel_priv_buf
Definition: h264dec.h:141
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
AVStereo3D * av_stereo3d_create_side_data(AVFrame *frame)
Allocate a complete AVFrameSideData and add it to the frame.
Definition: stereo3d.c:33
int crop_bottom
Definition: h264dec.h:389
uint8_t * error_status_table
size_t crop_top
Definition: frame.h:660
Views are alternated temporally.
Definition: stereo3d.h:92
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:504
int ff_h264_parse_ref_count(int *plist_count, int ref_count[2], GetBitContext *gb, const PPS *pps, int slice_type_nos, int picture_structure, void *logctx)
Definition: h264_parse.c:219
int nal_length_size
Number of bytes used for nal length (1, 2 or 4)
Definition: h264dec.h:457
useful rectangle filling function
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:395
int refs
number of reference frames
Definition: avcodec.h:1114
int prev_poc_msb
poc_msb of the last reference pic for POC type 0
Definition: h264_parse.h:49
AVBufferRef * motion_val_buf[2]
Definition: h264dec.h:135
int ref_frame_count
num_ref_frames
Definition: h264_ps.h:57
enum AVPixelFormat * pix_fmts
array of supported pixel formats, or NULL if unknown, array is terminated by -1
Definition: codec.h:211
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:383
int flags
Frame flags, a combination of AV_FRAME_FLAGS.
Definition: frame.h:537
H264_SEI_PicStructType pic_struct
Definition: h264_sei.h:88
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:1655
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
int x264_build
Definition: h264dec.h:374
int ct_type
Bit set of clock types for fields/frames in picture timing SEI message.
Definition: h264_sei.h:95
void av_fast_mallocz(void *ptr, unsigned int *size, size_t min_size)
Allocate and clear a buffer, reusing the given one if large enough.
Definition: mem.c:509
#define FFMIN(a, b)
Definition: common.h:96
uint16_t * slice_table
slice_table_base + 2*mb_stride + 1
Definition: h264dec.h:409
static void copy_picture_range(H264Picture **to, H264Picture **from, int count, H264Context *new_base, H264Context *old_base)
Definition: h264_slice.c:280
static int h264_field_start(H264Context *h, const H264SliceContext *sl, const H2645NAL *nal, int first_slice)
Definition: h264_slice.c:1443
uint8_t field_scan8x8_cavlc[64]
Definition: h264dec.h:432
#define IS_DIRECT(a)
Definition: mpegutils.h:84
CABACContext cabac
Cabac.
Definition: h264dec.h:324
int colour_description_present_flag
Definition: h264_ps.h:76
unsigned int first_mb_addr
Definition: h264dec.h:240
int reference
Definition: h264dec.h:160
static void er_add_slice(H264SliceContext *sl, int startx, int starty, int endx, int endy, int status)
Definition: h264_slice.c:2559
#define LEFT_MBS
Definition: h264dec.h:75
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:78
AVRational sar
Definition: h264_ps.h:73
#define width
AVFrameSideData * av_frame_new_side_data_from_buf(AVFrame *frame, enum AVFrameSideDataType type, AVBufferRef *buf)
Add a new side data to a frame from an existing AVBufferRef.
Definition: frame.c:695
int width
picture width / height.
Definition: avcodec.h:699
int redundant_pic_count
Definition: h264dec.h:250
int nb_slice_ctx
Definition: h264dec.h:357
uint8_t w
Definition: llviddspenc.c:38
H264PredWeightTable pwt
Definition: h264dec.h:203
int long_ref_count
number of actual long term references
Definition: h264dec.h:484
#define ER_DC_END
uint32_t * mb_type
Definition: h264dec.h:139
#define AV_FRAME_FLAG_CORRUPT
The frame data may be corrupted, e.g.
Definition: frame.h:525
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
static int h264_init_ps(H264Context *h, const H264SliceContext *sl, int first_slice)
Definition: h264_slice.c:1005
int size_in_bits
Definition: get_bits.h:68
int32_t
int ff_init_cabac_decoder(CABACContext *c, const uint8_t *buf, int buf_size)
Definition: cabac.c:176
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:1140
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
Definition: avcodec.h:1797
Context Adaptive Binary Arithmetic Coder inline functions.
int level
level
Definition: avcodec.h:1982
int init_qp
pic_init_qp_minus26 + 26
Definition: h264_ps.h:120
H.264 / AVC / MPEG-4 part10 codec.
enum AVChromaLocation chroma_location
Definition: h264_ps.h:80
int mmco_reset
Definition: h264dec.h:481
H264SliceContext * slice_ctx
Definition: h264dec.h:356
int direct_8x8_inference_flag
Definition: h264_ps.h:64
static int h264_select_output_frame(H264Context *h)
Definition: h264_slice.c:1340
#define CONFIG_GRAY
Definition: config.h:549
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:1666
int reference
Definition: h264dec.h:176
int ticks_per_frame
For some codecs, the time base is closer to the field rate than the frame rate.
Definition: avcodec.h:658
int top_borders_allocated[2]
Definition: h264dec.h:294
static void fill_rectangle(int x, int y, int w, int h)
Definition: ffplay.c:831
#define FIELD_OR_MBAFF_PICTURE(h)
Definition: h264dec.h:91
int frames
Definition: movenc.c:65
int ref_idc
H.264 only, nal_ref_idc.
Definition: h2645_parse.h:70
static void init_scan_tables(H264Context *h)
initialize scan tables
Definition: h264_slice.c:723
static int av_unused get_cabac_terminate(CABACContext *c)
int quincunx_sampling_flag
Definition: h264_sei.h:154
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:396
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:415
HW acceleration through CUDA.
Definition: pixfmt.h:235
int type
NAL unit type.
Definition: h2645_parse.h:52
#define FF_ARRAY_ELEMS(a)
the normal 2^n-1 "JPEG" YUV ranges
Definition: pixfmt.h:535
static int init_table_pools(H264Context *h)
Definition: h264_slice.c:160
uint8_t * edge_emu_buffer
Definition: h264dec.h:290
static unsigned get_ue_golomb_long(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to UINT32_MAX-1.
Definition: golomb.h:105
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int pic_order_present
pic_order_present_flag
Definition: h264_ps.h:114
uint8_t zigzag_scan_q0[16]
Definition: h264dec.h:433
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames...
Definition: frame.h:373
int bit_depth_luma
luma bit depth from sps to detect changes
Definition: h264dec.h:459
int chroma_format_idc
chroma format from sps to detect changes
Definition: h264dec.h:460
VideoDSPContext vdsp
Definition: h264dec.h:346
int timing_info_present_flag
Definition: h264_ps.h:82
int coded_picture_number
picture number in bitstream order
Definition: frame.h:414
enum AVStereo3DType type
How views are packed within the video.
Definition: stereo3d.h:180
int mb_stride
Definition: h264dec.h:442
Views are packed in a checkerboard-like structure per pixel.
Definition: stereo3d.h:104
int postpone_filter
Definition: h264dec.h:379
#define IS_INTERLACED(a)
Definition: mpegutils.h:83
AVCodecContext * avctx
Definition: h264dec.h:345
uint8_t zigzag_scan8x8_q0[64]
Definition: h264dec.h:434
#define AV_PIX_FMT_YUV420P14
Definition: pixfmt.h:405
5: top field, bottom field, top field repeated, in that order
Definition: h264_sei.h:52
Libavcodec external API header.
#define MAX_DELAYED_PIC_COUNT
Definition: h264dec.h:56
Views are on top of each other.
Definition: stereo3d.h:79
int last_qscale_diff
Definition: h264dec.h:196
This side data contains a 3x3 transformation matrix describing an affine transformation that needs to...
Definition: frame.h:84
AVBufferRef * pps_list[MAX_PPS_COUNT]
Definition: h264_ps.h:145
enum AVCodecID codec_id
Definition: avcodec.h:536
static int get_ue_golomb_31(GetBitContext *gb)
read unsigned exp golomb code, constraint to a max of 31.
Definition: golomb.h:120
int crop_left
Definition: h264dec.h:386
int delta_poc_bottom
Definition: h264_parse.h:46
ERPicture next_pic
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:331
H264Picture * short_ref[32]
Definition: h264dec.h:469
int next_outputed_poc
Definition: h264dec.h:474
int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl)
Decode a macroblock.
Definition: h264_cabac.c:1911
int explicit_ref_marking
Definition: h264dec.h:482
#define AV_CODEC_FLAG2_FAST
Allow non spec compliant speedup tricks.
Definition: avcodec.h:348
int field_poc[2]
top/bottom POC
Definition: h264dec.h:147
int debug
debug
Definition: avcodec.h:1611
int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
int recovery_frame
recovery_frame is the frame_num at which the next frame should be fully constructed.
Definition: h264dec.h:517
main external API structure.
Definition: avcodec.h:526
int qp_thresh
QP threshold to skip loopfilter.
Definition: h264dec.h:195
int explicit_ref_marking
Definition: h264dec.h:330
uint8_t * data
The data buffer.
Definition: buffer.h:89
H264SEITimeCode timecode[3]
Maximum three timecodes in a pic_timing SEI.
Definition: h264_sei.h:110
#define fp
Definition: regdef.h:44
uint8_t * data
Definition: frame.h:208
int mb_height
Definition: h264dec.h:168
static int h264_slice_header_parse(const H264Context *h, H264SliceContext *sl, const H2645NAL *nal)
Definition: h264_slice.c:1729
H264SEIA53Caption a53_caption
Definition: h264_sei.h:185
int implicit_weight[48][48][2]
Definition: h264_parse.h:40
size_t crop_right
Definition: frame.h:663
int8_t * qscale_table
Definition: h264dec.h:133
static const uint8_t scan8[16 *3+3]
Definition: h264dec.h:650
#define CABAC(h)
Definition: h264_cabac.c:28
AVBufferRef * av_buffer_allocz(int size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
Definition: buffer.c:83
AVBuffer * buffer
Definition: buffer.h:82
static const uint8_t field_scan8x8_cavlc[64+1]
Definition: h264_slice.c:76
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:498
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:397
AVCodecContext * owner[2]
Definition: thread.h:36
int coded_height
Definition: avcodec.h:714
Switching Predicted.
Definition: avutil.h:279
int prev_frame_num
frame_num of the last pic for POC type 1/2
Definition: h264_parse.h:53
#define FF_CODEC_PROPERTY_CLOSED_CAPTIONS
Definition: avcodec.h:2193
static int FUNC() pps(CodedBitstreamContext *ctx, RWContext *rw, H264RawPPS *current)
AVFrameSideData * av_frame_new_side_data(AVFrame *frame, enum AVFrameSideDataType type, int size)
Add a new side data to a frame.
Definition: frame.c:727
uint8_t non_zero_count_cache[15 *8]
non zero coeff count cache.
Definition: h264dec.h:300
void av_buffer_pool_uninit(AVBufferPool **ppool)
Mark the pool as being available for freeing.
Definition: buffer.c:276
#define FRAME_MBAFF(h)
Definition: h264dec.h:73
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:1154
Rational number (pair of numerator and denominator).
Definition: rational.h:58
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:1147
#define LBOT
Definition: h264dec.h:77
HW acceleration through VDPAU, Picture.data[3] contains a VdpVideoSurface.
Definition: pixfmt.h:197
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
Definition: h264dec.h:666
int8_t * ref_index[2]
Definition: h264dec.h:145
int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src)
Definition: h264_picture.c:66
A reference counted buffer type.
int pixel_shift
0 for 8-bit H.264, 1 for high-bit-depth H.264
Definition: h264dec.h:362
int mmco_reset
MMCO_RESET set this 1.
Definition: h264dec.h:150
int content_interpretation_type
Definition: h264_sei.h:153
H264Picture * cur_pic_ptr
Definition: h264dec.h:352
#define LIST_NOT_USED
Definition: h264dec.h:396
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
ptrdiff_t mb_uvlinesize
Definition: h264dec.h:234
static int h264_slice_header_init(H264Context *h)
Definition: h264_slice.c:910
static int FUNC() sps(CodedBitstreamContext *ctx, RWContext *rw, H264RawSPS *current)
int mb_mbaff
mb_aff_frame && mb_field_decoding_flag
Definition: h264dec.h:248
enum AVPixelFormat ff_thread_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Wrapper around get_format() for frame-multithreaded codecs.
int enable_er
Definition: h264dec.h:551
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:394
#define IS_INTER(a)
Definition: mpegutils.h:79
#define FF_COMPLIANCE_STRICT
Strictly conform to all the things in the spec no matter what consequences.
Definition: avcodec.h:1591
const SPS * sps
Definition: h264_ps.h:150
unsigned int sps_id
Definition: h264_ps.h:112
#define TRANSPOSE(x)
H264SEIPictureTiming picture_timing
Definition: h264_sei.h:183
int width_from_caller
Definition: h264dec.h:548
int log2_max_poc_lsb
log2_max_pic_order_cnt_lsb_minus4
Definition: h264_ps.h:52
H264SEIRecoveryPoint recovery_point
Definition: h264_sei.h:187
ptrdiff_t mb_linesize
may be equal to s->linesize or s->linesize * 2, for mbaff
Definition: h264dec.h:233
HW decoding through DXVA2, Picture.data[3] contains a LPDIRECT3DSURFACE9 pointer. ...
Definition: pixfmt.h:137
int16_t slice_row[MAX_SLICES]
to detect when MAX_SLICES is too low
Definition: h264dec.h:544
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:275
3: top field, bottom field, in that order
Definition: h264_sei.h:50
static int alloc_picture(H264Context *h, H264Picture *pic)
Definition: h264_slice.c:187
ptrdiff_t linesize
Definition: h264dec.h:232
int block_offset[2 *(16 *3)]
block_offset[ 0..23] for frame macroblocks block_offset[24..47] for field macroblocks ...
Definition: h264dec.h:403
uint32_t time_scale
Definition: h264_ps.h:84
#define AV_PIX_FMT_YUV422P14
Definition: pixfmt.h:406
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:414
int transform_8x8_mode
transform_8x8_mode_flag
Definition: h264_ps.h:126
ptrdiff_t uvlinesize
Definition: h264dec.h:232
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:398
static int h264_slice_init(H264Context *h, H264SliceContext *sl, const H2645NAL *nal)
Definition: h264_slice.c:1940
int pic_struct_present_flag
Definition: h264_ps.h:94
#define CHROMA444(h)
Definition: h264dec.h:99
unsigned int list_count
Definition: h264dec.h:274
uint8_t zigzag_scan[16]
Definition: h264dec.h:427
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:404
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:314
AVBufferRef * pps_buf
Definition: h264dec.h:165
int prev_poc_lsb
poc_lsb of the last reference pic for POC type 0
Definition: h264_parse.h:50
static void release_unused_pictures(H264Context *h, int remove_current)
Definition: h264_slice.c:115
int ff_h264_alloc_tables(H264Context *h)
Allocate tables.
Definition: h264dec.c:181
#define AV_ZERO128(d)
Definition: intreadwrite.h:637
Hardware surfaces for Direct3D11.
Definition: pixfmt.h:313
the normal 219*2^(n-8) "MPEG" YUV ranges
Definition: pixfmt.h:534
#define CONFIG_ERROR_RESILIENCE
Definition: config.h:575
int mb_stride
Definition: h264dec.h:169
int left_type[LEFT_MBS]
Definition: h264dec.h:222
static int av_cmp_q(AVRational a, AVRational b)
Compare two rationals.
Definition: rational.h:89
int nb_slice_ctx_queued
Definition: h264dec.h:358
discard all non reference
Definition: avcodec.h:232
int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup)
Definition: h264_picture.c:159
AVBufferPool * qscale_table_pool
Definition: h264dec.h:555
H264Picture * next_output_pic
Definition: h264dec.h:473
int mb_height
Definition: h264_ps.h:61
AVBufferPool * motion_val_pool
Definition: h264dec.h:557
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
int delta_poc_bottom
Definition: h264dec.h:334
#define IS_8x8DCT(a)
Definition: h264dec.h:104
common internal api header.
AVBufferPool * av_buffer_pool_init(int size, AVBufferRef *(*alloc)(int size))
Allocate and initialize a buffer pool.
Definition: buffer.c:239
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
#define AV_COPY128(d, s)
Definition: intreadwrite.h:609
static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
Definition: h264_slice.c:757
AVBufferRef * pps_ref
Definition: h264_ps.h:147
int log2_max_frame_num
log2_max_frame_num_minus4 + 4
Definition: h264_ps.h:50
int missing_fields
Definition: h264dec.h:534
static double c[64]
const char * av_color_transfer_name(enum AVColorTransferCharacteristic transfer)
Definition: pixdesc.c:2918
H264ParamSets ps
Definition: h264dec.h:462
H264SEIFramePacking frame_packing
Definition: h264_sei.h:189
H.264 / AVC / MPEG-4 part10 motion vector prediction.
AVBufferRef * av_buffer_ref(AVBufferRef *buf)
Create a new reference to an AVBuffer.
Definition: buffer.c:93
Bi-dir predicted.
Definition: avutil.h:276
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:80
Stereoscopic video.
Views are packed per column.
Definition: stereo3d.h:141
int cur_chroma_format_idc
Definition: h264dec.h:542
int8_t * intra4x4_pred_mode
Definition: h264dec.h:212
unsigned properties
Properties of the stream that gets decoded.
Definition: avcodec.h:2191
enum AVDiscard skip_loop_filter
Skip loop filtering for selected frames.
Definition: avcodec.h:1990
int den
Denominator.
Definition: rational.h:60
static void predict_field_decoding_flag(const H264Context *h, H264SliceContext *sl)
Definition: h264_slice.c:2515
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl)
Decode a macroblock.
Definition: h264_cavlc.c:702
GetBitContext gb
Definition: h2645_parse.h:47
int bit_depth_luma
bit_depth_luma_minus8 + 8
Definition: h264_ps.h:100
#define IS_INTRA(x, y)
int present
Definition: h264_sei.h:119
int delta_poc[2]
Definition: h264_parse.h:47
void ff_h264_free_tables(H264Context *h)
Definition: h264dec.c:138
void * priv_data
Definition: avcodec.h:553
#define LTOP
Definition: h264dec.h:76
#define PICT_FRAME
Definition: mpegutils.h:39
static av_always_inline void backup_mb_border(const H264Context *h, H264SliceContext *sl, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple)
Definition: h264_slice.c:557
uint8_t zigzag_scan8x8_cavlc_q0[64]
Definition: h264dec.h:435
int8_t ref_cache[2][5 *8]
Definition: h264dec.h:306
#define AV_CODEC_FLAG_OUTPUT_CORRUPT
Output even those frames that might be corrupted.
Definition: avcodec.h:283
unsigned int pps_id
Definition: h264dec.h:284
int top_field_first
If the content is interlaced, is top field displayed first.
Definition: frame.h:452
int frame_priv_data_size
Size of per-frame hardware accelerator private data.
Definition: avcodec.h:2520
#define CHROMA422(h)
Definition: h264dec.h:98
#define FF_BUG_TRUNCATED
Definition: avcodec.h:1574
H264Picture cur_pic
Definition: h264dec.h:353
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:378
#define AV_ZERO32(d)
Definition: intreadwrite.h:629
int mb_width
Definition: h264dec.h:441
static int find_unused_picture(H264Context *h)
Definition: h264_slice.c:261
int current_slice
current slice number, used to initialize slice_num of each thread/context
Definition: h264dec.h:494
int ff_h264_execute_ref_pic_marking(H264Context *h)
Execute the reference picture marking (memory management control operations).
Definition: h264_refs.c:610
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:693
int ff_h264_pred_weight_table(GetBitContext *gb, const SPS *sps, const int *ref_count, int slice_type_nos, H264PredWeightTable *pwt, int picture_structure, void *logctx)
Definition: h264_parse.c:27
int mb_width
pic_width_in_mbs_minus1 + 1
Definition: h264_ps.h:59
int flags2
AV_CODEC_FLAG2_*.
Definition: avcodec.h:613
uint32_t * mb2b_xy
Definition: h264dec.h:405
H264Ref ref_list[2][48]
0..15: frame refs, 16..47: mbaff field refs.
Definition: h264dec.h:275
uint8_t field_scan8x8_cavlc_q0[64]
Definition: h264dec.h:438
#define HAVE_THREADS
Definition: config.h:273
int cur_bit_depth_luma
Definition: h264dec.h:543
int crop_top
Definition: h264dec.h:388
atomic_int error_count
AVBufferRef * ref_index_buf[2]
Definition: h264dec.h:144
av_cold void ff_h264dsp_init(H264DSPContext *c, const int bit_depth, const int chroma_format_idc)
Definition: h264dsp.c:67
int frame_number
Frame counter, set by libavcodec.
Definition: avcodec.h:1217
H264DSPContext h264dsp
Definition: h264dec.h:347
void ff_er_frame_start(ERContext *s)
int height
Definition: frame.h:358
#define AV_CODEC_FLAG2_SHOW_ALL
Show all frames before the first keyframe.
Definition: avcodec.h:376
FILE * out
Definition: movenc.c:54
uint8_t(*[2] mvd_table)[2]
Definition: h264dec.h:319
uint8_t field_scan8x8[64]
Definition: h264dec.h:431
int slice_type_fixed
Definition: h264dec.h:191
static av_always_inline void fill_filter_caches_inter(const H264Context *h, H264SliceContext *sl, int mb_type, int top_xy, int left_xy[LEFT_MBS], int top_type, int left_type[LEFT_MBS], int mb_xy, int list)
Definition: h264_slice.c:2219
int mb_width
Definition: h264dec.h:168
#define av_freep(p)
const SPS * sps
Definition: h264_ps.h:140
int prev_frame_num_offset
for POC type 2
Definition: h264_parse.h:52
#define av_always_inline
Definition: attributes.h:45
HW decoding through Direct3D11 via old API, Picture.data[3] contains a ID3D11VideoDecoderOutputView p...
Definition: pixfmt.h:229
int slice_beta_offset
Definition: h264dec.h:201
int8_t * intra4x4_pred_mode
Definition: h264dec.h:391
AVBufferRef * av_buffer_pool_get(AVBufferPool *pool)
Allocate a new AVBuffer, reusing an old buffer from the pool when available.
Definition: buffer.c:337
#define ER_AC_END
static int decode_slice(struct AVCodecContext *avctx, void *arg)
Definition: h264_slice.c:2573
int delta_poc[2]
Definition: h264dec.h:335
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:62
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2465
int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl)
Init context Allocate buffers which are not shared amongst multiple threads.
Definition: h264dec.c:238
static double cr(void *priv, double x, double y)
Definition: vf_geq.c:216
uint8_t field_scan_q0[16]
Definition: h264dec.h:436
int mb_field_decoding_flag
Definition: h264dec.h:247
uint8_t(* non_zero_count)[48]
Definition: h264dec.h:394
static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
Definition: h264_slice.c:2445
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:1825
unsigned int crop_bottom
frame_cropping_rect_bottom_offset
Definition: h264_ps.h:71
exp golomb vlc stuff
uint8_t * bipred_scratchpad
Definition: h264dec.h:289
void ff_h264_unref_picture(H264Context *h, H264Picture *pic)
Definition: h264_picture.c:44
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
av_cold void ff_h264qpel_init(H264QpelContext *c, int bit_depth)
Definition: h264qpel.c:49
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:509
int droppable
Definition: h264dec.h:368
int level_idc
Definition: h264_ps.h:47
int strict_std_compliance
strictly follow the standard (MPEG-4, ...).
Definition: avcodec.h:1589
int crop_right
Definition: h264dec.h:387
void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
int nal_ref_idc
Definition: h264dec.h:448
GetBitContext gb
Definition: h264dec.h:185
uint8_t field_scan[16]
Definition: h264dec.h:430
int cabac_init_idc
Definition: h264dec.h:326
#define FRAME_RECOVERED_IDR
We have seen an IDR, so all the following frames in coded order are correctly decodable.
Definition: h264dec.h:523
for(j=16;j >0;--j)
6: bottom field, top field, bottom field repeated, in that order
Definition: h264_sei.h:53
#define FFMAX3(a, b, c)
Definition: common.h:95
int b_stride
Definition: h264dec.h:407
Predicted.
Definition: avutil.h:275
#define tb
Definition: regdef.h:68
Context Adaptive Binary Arithmetic Coder.
#define H264_MAX_PICTURE_COUNT
Definition: h264dec.h:52
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl)
Definition: h264_cabac.c:1262
int short_ref_count
number of actual short term references
Definition: h264dec.h:485
static uint8_t tmp[11]
Definition: aes_ctr.c:26
enum AVColorSpace colorspace
Definition: h264_ps.h:79