FFmpeg  4.3
vp3.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2003-2004 The FFmpeg project
3  * Copyright (C) 2019 Peter Ross
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * On2 VP3/VP4 Video Decoder
25  *
26  * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
27  * For more information about the VP3 coding process, visit:
28  * http://wiki.multimedia.cx/index.php?title=On2_VP3
29  *
30  * Theora decoder by Alex Beregszaszi
31  */
32 
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 
37 #include "libavutil/imgutils.h"
38 
39 #include "avcodec.h"
40 #include "get_bits.h"
41 #include "hpeldsp.h"
42 #include "internal.h"
43 #include "mathops.h"
44 #include "thread.h"
45 #include "videodsp.h"
46 #include "vp3data.h"
47 #include "vp4data.h"
48 #include "vp3dsp.h"
49 #include "xiph.h"
50 
51 #define FRAGMENT_PIXELS 8
52 
53 // FIXME split things out into their own arrays
54 typedef struct Vp3Fragment {
55  int16_t dc;
58 } Vp3Fragment;
59 
60 #define SB_NOT_CODED 0
61 #define SB_PARTIALLY_CODED 1
62 #define SB_FULLY_CODED 2
63 
64 // This is the maximum length of a single long bit run that can be encoded
65 // for superblock coding or block qps. Theora special-cases this to read a
66 // bit instead of flipping the current bit to allow for runs longer than 4129.
67 #define MAXIMUM_LONG_BIT_RUN 4129
68 
69 #define MODE_INTER_NO_MV 0
70 #define MODE_INTRA 1
71 #define MODE_INTER_PLUS_MV 2
72 #define MODE_INTER_LAST_MV 3
73 #define MODE_INTER_PRIOR_LAST 4
74 #define MODE_USING_GOLDEN 5
75 #define MODE_GOLDEN_MV 6
76 #define MODE_INTER_FOURMV 7
77 #define CODING_MODE_COUNT 8
78 
79 /* special internal mode */
80 #define MODE_COPY 8
81 
82 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb);
83 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);
84 
85 
86 /* There are 6 preset schemes, plus a free-form scheme */
87 static const int ModeAlphabet[6][CODING_MODE_COUNT] = {
88  /* scheme 1: Last motion vector dominates */
93 
94  /* scheme 2 */
98  MODE_GOLDEN_MV, MODE_INTER_FOURMV },
99 
100  /* scheme 3 */
104  MODE_GOLDEN_MV, MODE_INTER_FOURMV },
105 
106  /* scheme 4 */
110  MODE_GOLDEN_MV, MODE_INTER_FOURMV },
111 
112  /* scheme 5: No motion vector dominates */
116  MODE_GOLDEN_MV, MODE_INTER_FOURMV },
117 
118  /* scheme 6 */
122  MODE_GOLDEN_MV, MODE_INTER_FOURMV },
123 };
124 
125 static const uint8_t hilbert_offset[16][2] = {
126  { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
127  { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 },
128  { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 },
129  { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 }
130 };
131 
132 enum {
138 };
139 
140 static const uint8_t vp4_pred_block_type_map[8] = {
149 };
150 
151 typedef struct {
152  int dc;
153  int type;
154 } VP4Predictor;
155 
156 #define MIN_DEQUANT_VAL 2
157 
158 typedef struct Vp3DecodeContext {
161  int version;
162  int width, height;
163  int chroma_x_shift, chroma_y_shift;
167  int keyframe;
168  uint8_t idct_permutation[64];
169  uint8_t idct_scantable[64];
173  DECLARE_ALIGNED(16, int16_t, block)[64];
177 
178  int qps[3];
179  int nqps;
180  int last_qps[3];
181 
191  unsigned char *superblock_coding;
192 
193  int macroblock_count; /* y macroblock count */
199  int yuv_macroblock_count; /* y+u+v macroblock count */
200 
202  int fragment_width[2];
203  int fragment_height[2];
204 
206  int fragment_start[3];
207  int data_offset[3];
211 
212  int8_t (*motion_val[2])[2];
213 
214  /* tables */
215  uint16_t coded_dc_scale_factor[2][64];
216  uint32_t coded_ac_scale_factor[64];
217  uint8_t base_matrix[384][64];
218  uint8_t qr_count[2][3];
219  uint8_t qr_size[2][3][64];
220  uint16_t qr_base[2][3][64];
221 
222  /**
223  * This is a list of all tokens in bitstream order. Reordering takes place
224  * by pulling from each level during IDCT. As a consequence, IDCT must be
225  * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
226  * otherwise. The 32 different tokens with up to 12 bits of extradata are
227  * collapsed into 3 types, packed as follows:
228  * (from the low to high bits)
229  *
230  * 2 bits: type (0,1,2)
231  * 0: EOB run, 14 bits for run length (12 needed)
232  * 1: zero run, 7 bits for run length
233  * 7 bits for the next coefficient (3 needed)
234  * 2: coefficient, 14 bits (11 needed)
235  *
236  * Coefficients are signed, so are packed in the highest bits for automatic
237  * sign extension.
238  */
239  int16_t *dct_tokens[3][64];
240  int16_t *dct_tokens_base;
241 #define TOKEN_EOB(eob_run) ((eob_run) << 2)
242 #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) * 512) + ((zero_run) << 2) + 1)
243 #define TOKEN_COEFF(coeff) (((coeff) * 4) + 2)
244 
245  /**
246  * number of blocks that contain DCT coefficients at
247  * the given level or higher
248  */
249  int num_coded_frags[3][64];
251 
252  /* this is a list of indexes into the all_fragments array indicating
253  * which of the fragments are coded */
254  int *coded_fragment_list[3];
255 
258  int num_kf_coded_fragment[3];
259 
260  VLC dc_vlc[16];
261  VLC ac_vlc_1[16];
262  VLC ac_vlc_2[16];
263  VLC ac_vlc_3[16];
264  VLC ac_vlc_4[16];
265 
266  VLC superblock_run_length_vlc; /* version < 2 */
267  VLC fragment_run_length_vlc; /* version < 2 */
268  VLC block_pattern_vlc[2]; /* version >= 2*/
270  VLC motion_vector_vlc; /* version < 2 */
271  VLC vp4_mv_vlc[2][7]; /* version >=2 */
272 
273  /* these arrays need to be on 16-byte boundaries since SSE2 operations
274  * index into them */
275  DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; ///< qmat[qpi][is_inter][plane]
276 
277  /* This table contains superblock_count * 16 entries. Each set of 16
278  * numbers corresponds to the fragment indexes 0..15 of the superblock.
279  * An entry will be -1 to indicate that no entry corresponds to that
280  * index. */
282 
283  /* This is an array that indicates how a particular macroblock
284  * is coded. */
285  unsigned char *macroblock_coding;
286 
288 
289  /* Huffman decode */
290  int hti;
291  unsigned int hbits;
292  int entries;
294  uint32_t huffman_table[80][32][2];
295 
296  uint8_t filter_limit_values[64];
297  DECLARE_ALIGNED(8, int, bounding_values_array)[256 + 2];
298 
299  VP4Predictor * dc_pred_row; /* dc_pred_row[y_superblock_width * 4] */
301 
302 /************************************************************************
303  * VP3 specific functions
304  ************************************************************************/
305 
306 static av_cold void free_tables(AVCodecContext *avctx)
307 {
308  Vp3DecodeContext *s = avctx->priv_data;
309 
311  av_freep(&s->all_fragments);
317  av_freep(&s->dc_pred_row);
318  av_freep(&s->motion_val[0]);
319  av_freep(&s->motion_val[1]);
320 }
321 
322 static void vp3_decode_flush(AVCodecContext *avctx)
323 {
324  Vp3DecodeContext *s = avctx->priv_data;
325 
326  if (s->golden_frame.f)
328  if (s->last_frame.f)
330  if (s->current_frame.f)
332 }
333 
335 {
336  Vp3DecodeContext *s = avctx->priv_data;
337  int i, j;
338 
339  free_tables(avctx);
341 
342  s->theora_tables = 0;
343 
344  /* release all frames */
345  vp3_decode_flush(avctx);
349 
350  for (i = 0; i < 16; i++) {
351  ff_free_vlc(&s->dc_vlc[i]);
352  ff_free_vlc(&s->ac_vlc_1[i]);
353  ff_free_vlc(&s->ac_vlc_2[i]);
354  ff_free_vlc(&s->ac_vlc_3[i]);
355  ff_free_vlc(&s->ac_vlc_4[i]);
356  }
357 
362 
363  for (j = 0; j < 2; j++)
364  for (i = 0; i < 7; i++)
365  ff_free_vlc(&s->vp4_mv_vlc[j][i]);
366 
367  for (i = 0; i < 2; i++)
369  return 0;
370 }
371 
372 /**
373  * This function sets up all of the various blocks mappings:
374  * superblocks <-> fragments, macroblocks <-> fragments,
375  * superblocks <-> macroblocks
376  *
377  * @return 0 is successful; returns 1 if *anything* went wrong.
378  */
380 {
381  int sb_x, sb_y, plane;
382  int x, y, i, j = 0;
383 
384  for (plane = 0; plane < 3; plane++) {
385  int sb_width = plane ? s->c_superblock_width
386  : s->y_superblock_width;
387  int sb_height = plane ? s->c_superblock_height
388  : s->y_superblock_height;
389  int frag_width = s->fragment_width[!!plane];
390  int frag_height = s->fragment_height[!!plane];
391 
392  for (sb_y = 0; sb_y < sb_height; sb_y++)
393  for (sb_x = 0; sb_x < sb_width; sb_x++)
394  for (i = 0; i < 16; i++) {
395  x = 4 * sb_x + hilbert_offset[i][0];
396  y = 4 * sb_y + hilbert_offset[i][1];
397 
398  if (x < frag_width && y < frag_height)
399  s->superblock_fragments[j++] = s->fragment_start[plane] +
400  y * frag_width + x;
401  else
402  s->superblock_fragments[j++] = -1;
403  }
404  }
405 
406  return 0; /* successful path out */
407 }
408 
409 /*
410  * This function sets up the dequantization tables used for a particular
411  * frame.
412  */
414 {
415  int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
416  int i, plane, inter, qri, bmi, bmj, qistart;
417 
418  for (inter = 0; inter < 2; inter++) {
419  for (plane = 0; plane < 3; plane++) {
420  int dc_scale_factor = s->coded_dc_scale_factor[!!plane][s->qps[qpi]];
421  int sum = 0;
422  for (qri = 0; qri < s->qr_count[inter][plane]; qri++) {
423  sum += s->qr_size[inter][plane][qri];
424  if (s->qps[qpi] <= sum)
425  break;
426  }
427  qistart = sum - s->qr_size[inter][plane][qri];
428  bmi = s->qr_base[inter][plane][qri];
429  bmj = s->qr_base[inter][plane][qri + 1];
430  for (i = 0; i < 64; i++) {
431  int coeff = (2 * (sum - s->qps[qpi]) * s->base_matrix[bmi][i] -
432  2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] +
433  s->qr_size[inter][plane][qri]) /
434  (2 * s->qr_size[inter][plane][qri]);
435 
436  int qmin = 8 << (inter + !i);
437  int qscale = i ? ac_scale_factor : dc_scale_factor;
438  int qbias = (1 + inter) * 3;
439  s->qmat[qpi][inter][plane][s->idct_permutation[i]] =
440  (i == 0 || s->version < 2) ? av_clip((qscale * coeff) / 100 * 4, qmin, 4096)
441  : (qscale * (coeff - qbias) / 100 + qbias) * 4;
442  }
443  /* all DC coefficients use the same quant so as not to interfere
444  * with DC prediction */
445  s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
446  }
447  }
448 }
449 
450 /*
451  * This function initializes the loop filter boundary limits if the frame's
452  * quality index is different from the previous frame's.
453  *
454  * The filter_limit_values may not be larger than 127.
455  */
457 {
459 }
460 
461 /*
462  * This function unpacks all of the superblock/macroblock/fragment coding
463  * information from the bitstream.
464  */
466 {
467  int superblock_starts[3] = {
469  };
470  int bit = 0;
471  int current_superblock = 0;
472  int current_run = 0;
473  int num_partial_superblocks = 0;
474 
475  int i, j;
476  int current_fragment;
477  int plane;
478  int plane0_num_coded_frags = 0;
479 
480  if (s->keyframe) {
482  } else {
483  /* unpack the list of partially-coded superblocks */
484  bit = get_bits1(gb) ^ 1;
485  current_run = 0;
486 
487  while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
488  if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
489  bit = get_bits1(gb);
490  else
491  bit ^= 1;
492 
493  current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
494  6, 2) + 1;
495  if (current_run == 34)
496  current_run += get_bits(gb, 12);
497 
498  if (current_run > s->superblock_count - current_superblock) {
500  "Invalid partially coded superblock run length\n");
501  return -1;
502  }
503 
504  memset(s->superblock_coding + current_superblock, bit, current_run);
505 
506  current_superblock += current_run;
507  if (bit)
508  num_partial_superblocks += current_run;
509  }
510 
511  /* unpack the list of fully coded superblocks if any of the blocks were
512  * not marked as partially coded in the previous step */
513  if (num_partial_superblocks < s->superblock_count) {
514  int superblocks_decoded = 0;
515 
516  current_superblock = 0;
517  bit = get_bits1(gb) ^ 1;
518  current_run = 0;
519 
520  while (superblocks_decoded < s->superblock_count - num_partial_superblocks &&
521  get_bits_left(gb) > 0) {
522  if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
523  bit = get_bits1(gb);
524  else
525  bit ^= 1;
526 
527  current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
528  6, 2) + 1;
529  if (current_run == 34)
530  current_run += get_bits(gb, 12);
531 
532  for (j = 0; j < current_run; current_superblock++) {
533  if (current_superblock >= s->superblock_count) {
535  "Invalid fully coded superblock run length\n");
536  return -1;
537  }
538 
539  /* skip any superblocks already marked as partially coded */
540  if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
541  s->superblock_coding[current_superblock] = 2 * bit;
542  j++;
543  }
544  }
545  superblocks_decoded += current_run;
546  }
547  }
548 
549  /* if there were partial blocks, initialize bitstream for
550  * unpacking fragment codings */
551  if (num_partial_superblocks) {
552  current_run = 0;
553  bit = get_bits1(gb);
554  /* toggle the bit because as soon as the first run length is
555  * fetched the bit will be toggled again */
556  bit ^= 1;
557  }
558  }
559 
560  /* figure out which fragments are coded; iterate through each
561  * superblock (all planes) */
562  s->total_num_coded_frags = 0;
564 
567 
568  for (plane = 0; plane < 3; plane++) {
569  int sb_start = superblock_starts[plane];
570  int sb_end = sb_start + (plane ? s->c_superblock_count
571  : s->y_superblock_count);
572  int num_coded_frags = 0;
573 
574  if (s->keyframe) {
575  if (s->num_kf_coded_fragment[plane] == -1) {
576  for (i = sb_start; i < sb_end; i++) {
577  /* iterate through all 16 fragments in a superblock */
578  for (j = 0; j < 16; j++) {
579  /* if the fragment is in bounds, check its coding status */
580  current_fragment = s->superblock_fragments[i * 16 + j];
581  if (current_fragment != -1) {
582  s->coded_fragment_list[plane][num_coded_frags++] =
583  current_fragment;
584  }
585  }
586  }
587  s->num_kf_coded_fragment[plane] = num_coded_frags;
588  } else
589  num_coded_frags = s->num_kf_coded_fragment[plane];
590  } else {
591  for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
592  if (get_bits_left(gb) < plane0_num_coded_frags >> 2) {
593  return AVERROR_INVALIDDATA;
594  }
595  /* iterate through all 16 fragments in a superblock */
596  for (j = 0; j < 16; j++) {
597  /* if the fragment is in bounds, check its coding status */
598  current_fragment = s->superblock_fragments[i * 16 + j];
599  if (current_fragment != -1) {
600  int coded = s->superblock_coding[i];
601 
602  if (coded == SB_PARTIALLY_CODED) {
603  /* fragment may or may not be coded; this is the case
604  * that cares about the fragment coding runs */
605  if (current_run-- == 0) {
606  bit ^= 1;
607  current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2);
608  }
609  coded = bit;
610  }
611 
612  if (coded) {
613  /* default mode; actual mode will be decoded in
614  * the next phase */
615  s->all_fragments[current_fragment].coding_method =
617  s->coded_fragment_list[plane][num_coded_frags++] =
618  current_fragment;
619  } else {
620  /* not coded; copy this fragment from the prior frame */
621  s->all_fragments[current_fragment].coding_method =
622  MODE_COPY;
623  }
624  }
625  }
626  }
627  }
628  if (!plane)
629  plane0_num_coded_frags = num_coded_frags;
630  s->total_num_coded_frags += num_coded_frags;
631  for (i = 0; i < 64; i++)
632  s->num_coded_frags[plane][i] = num_coded_frags;
633  if (plane < 2)
634  s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] +
635  num_coded_frags;
636  }
637  return 0;
638 }
639 
640 #define BLOCK_X (2 * mb_x + (k & 1))
641 #define BLOCK_Y (2 * mb_y + (k >> 1))
642 
643 #if CONFIG_VP4_DECODER
644 /**
645  * @return number of blocks, or > yuv_macroblock_count on error.
646  * return value is always >= 1.
647  */
648 static int vp4_get_mb_count(Vp3DecodeContext *s, GetBitContext *gb)
649 {
650  int v = 1;
651  int bits;
652  while ((bits = show_bits(gb, 9)) == 0x1ff) {
653  skip_bits(gb, 9);
654  v += 256;
655  if (v > s->yuv_macroblock_count) {
656  av_log(s->avctx, AV_LOG_ERROR, "Invalid run length\n");
657  return v;
658  }
659  }
660 #define body(n) { \
661  skip_bits(gb, 2 + n); \
662  v += (1 << n) + get_bits(gb, n); }
663 #define thresh(n) (0x200 - (0x80 >> n))
664 #define else_if(n) else if (bits < thresh(n)) body(n)
665  if (bits < 0x100) {
666  skip_bits(gb, 1);
667  } else if (bits < thresh(0)) {
668  skip_bits(gb, 2);
669  v += 1;
670  }
671  else_if(1)
672  else_if(2)
673  else_if(3)
674  else_if(4)
675  else_if(5)
676  else_if(6)
677  else body(7)
678 #undef body
679 #undef thresh
680 #undef else_if
681  return v;
682 }
683 
684 static int vp4_get_block_pattern(Vp3DecodeContext *s, GetBitContext *gb, int *next_block_pattern_table)
685 {
686  int v = get_vlc2(gb, s->block_pattern_vlc[*next_block_pattern_table].table, 3, 2);
687  if (v == -1) {
688  av_log(s->avctx, AV_LOG_ERROR, "Invalid block pattern\n");
689  *next_block_pattern_table = 0;
690  return 0;
691  }
692  *next_block_pattern_table = vp4_block_pattern_table_selector[v];
693  return v + 1;
694 }
695 
696 static int vp4_unpack_macroblocks(Vp3DecodeContext *s, GetBitContext *gb)
697 {
698  int plane, i, j, k, fragment;
699  int next_block_pattern_table;
700  int bit, current_run, has_partial;
701 
703 
704  if (s->keyframe)
705  return 0;
706 
707  has_partial = 0;
708  bit = get_bits1(gb);
709  for (i = 0; i < s->yuv_macroblock_count; i += current_run) {
710  if (get_bits_left(gb) <= 0)
711  return AVERROR_INVALIDDATA;
712  current_run = vp4_get_mb_count(s, gb);
713  if (current_run > s->yuv_macroblock_count - i)
714  return -1;
715  memset(s->superblock_coding + i, 2 * bit, current_run);
716  bit ^= 1;
717  has_partial |= bit;
718  }
719 
720  if (has_partial) {
721  if (get_bits_left(gb) <= 0)
722  return AVERROR_INVALIDDATA;
723  bit = get_bits1(gb);
724  current_run = vp4_get_mb_count(s, gb);
725  for (i = 0; i < s->yuv_macroblock_count; i++) {
726  if (!s->superblock_coding[i]) {
727  if (!current_run) {
728  bit ^= 1;
729  current_run = vp4_get_mb_count(s, gb);
730  }
731  s->superblock_coding[i] = bit;
732  current_run--;
733  }
734  }
735  if (current_run) /* handle situation when vp4_get_mb_count() fails */
736  return -1;
737  }
738 
739  next_block_pattern_table = 0;
740  i = 0;
741  for (plane = 0; plane < 3; plane++) {
742  int sb_x, sb_y;
743  int sb_width = plane ? s->c_superblock_width : s->y_superblock_width;
744  int sb_height = plane ? s->c_superblock_height : s->y_superblock_height;
745  int mb_width = plane ? s->c_macroblock_width : s->macroblock_width;
746  int mb_height = plane ? s->c_macroblock_height : s->macroblock_height;
747  int fragment_width = s->fragment_width[!!plane];
748  int fragment_height = s->fragment_height[!!plane];
749 
750  for (sb_y = 0; sb_y < sb_height; sb_y++) {
751  for (sb_x = 0; sb_x < sb_width; sb_x++) {
752  for (j = 0; j < 4; j++) {
753  int mb_x = 2 * sb_x + (j >> 1);
754  int mb_y = 2 * sb_y + (j >> 1) ^ (j & 1);
755  int mb_coded, pattern, coded;
756 
757  if (mb_x >= mb_width || mb_y >= mb_height)
758  continue;
759 
760  mb_coded = s->superblock_coding[i++];
761 
762  if (mb_coded == SB_FULLY_CODED)
763  pattern = 0xF;
764  else if (mb_coded == SB_PARTIALLY_CODED)
765  pattern = vp4_get_block_pattern(s, gb, &next_block_pattern_table);
766  else
767  pattern = 0;
768 
769  for (k = 0; k < 4; k++) {
770  if (BLOCK_X >= fragment_width || BLOCK_Y >= fragment_height)
771  continue;
772  fragment = s->fragment_start[plane] + BLOCK_Y * fragment_width + BLOCK_X;
773  coded = pattern & (8 >> k);
774  /* MODE_INTER_NO_MV is the default for coded fragments.
775  the actual method is decoded in the next phase. */
776  s->all_fragments[fragment].coding_method = coded ? MODE_INTER_NO_MV : MODE_COPY;
777  }
778  }
779  }
780  }
781  }
782  return 0;
783 }
784 #endif
785 
786 /*
787  * This function unpacks all the coding mode data for individual macroblocks
788  * from the bitstream.
789  */
791 {
792  int i, j, k, sb_x, sb_y;
793  int scheme;
794  int current_macroblock;
795  int current_fragment;
796  int coding_mode;
797  int custom_mode_alphabet[CODING_MODE_COUNT];
798  const int *alphabet;
799  Vp3Fragment *frag;
800 
801  if (s->keyframe) {
802  for (i = 0; i < s->fragment_count; i++)
804  } else {
805  /* fetch the mode coding scheme for this frame */
806  scheme = get_bits(gb, 3);
807 
808  /* is it a custom coding scheme? */
809  if (scheme == 0) {
810  for (i = 0; i < 8; i++)
811  custom_mode_alphabet[i] = MODE_INTER_NO_MV;
812  for (i = 0; i < 8; i++)
813  custom_mode_alphabet[get_bits(gb, 3)] = i;
814  alphabet = custom_mode_alphabet;
815  } else
816  alphabet = ModeAlphabet[scheme - 1];
817 
818  /* iterate through all of the macroblocks that contain 1 or more
819  * coded fragments */
820  for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
821  for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
822  if (get_bits_left(gb) <= 0)
823  return -1;
824 
825  for (j = 0; j < 4; j++) {
826  int mb_x = 2 * sb_x + (j >> 1);
827  int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
828  current_macroblock = mb_y * s->macroblock_width + mb_x;
829 
830  if (mb_x >= s->macroblock_width ||
831  mb_y >= s->macroblock_height)
832  continue;
833 
834  /* coding modes are only stored if the macroblock has
835  * at least one luma block coded, otherwise it must be
836  * INTER_NO_MV */
837  for (k = 0; k < 4; k++) {
838  current_fragment = BLOCK_Y *
839  s->fragment_width[0] + BLOCK_X;
840  if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
841  break;
842  }
843  if (k == 4) {
844  s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
845  continue;
846  }
847 
848  /* mode 7 means get 3 bits for each coding mode */
849  if (scheme == 7)
850  coding_mode = get_bits(gb, 3);
851  else
852  coding_mode = alphabet[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
853 
854  s->macroblock_coding[current_macroblock] = coding_mode;
855  for (k = 0; k < 4; k++) {
856  frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X;
857  if (frag->coding_method != MODE_COPY)
858  frag->coding_method = coding_mode;
859  }
860 
861 #define SET_CHROMA_MODES \
862  if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
863  frag[s->fragment_start[1]].coding_method = coding_mode; \
864  if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
865  frag[s->fragment_start[2]].coding_method = coding_mode;
866 
867  if (s->chroma_y_shift) {
868  frag = s->all_fragments + mb_y *
869  s->fragment_width[1] + mb_x;
871  } else if (s->chroma_x_shift) {
872  frag = s->all_fragments +
873  2 * mb_y * s->fragment_width[1] + mb_x;
874  for (k = 0; k < 2; k++) {
876  frag += s->fragment_width[1];
877  }
878  } else {
879  for (k = 0; k < 4; k++) {
880  frag = s->all_fragments +
881  BLOCK_Y * s->fragment_width[1] + BLOCK_X;
883  }
884  }
885  }
886  }
887  }
888  }
889 
890  return 0;
891 }
892 
893 static int vp4_get_mv(Vp3DecodeContext *s, GetBitContext *gb, int axis, int last_motion)
894 {
895  int v = get_vlc2(gb, s->vp4_mv_vlc[axis][vp4_mv_table_selector[FFABS(last_motion)]].table, 6, 2) - 31;
896  return last_motion < 0 ? -v : v;
897 }
898 
899 /*
900  * This function unpacks all the motion vectors for the individual
901  * macroblocks from the bitstream.
902  */
904 {
905  int j, k, sb_x, sb_y;
906  int coding_mode;
907  int motion_x[4];
908  int motion_y[4];
909  int last_motion_x = 0;
910  int last_motion_y = 0;
911  int prior_last_motion_x = 0;
912  int prior_last_motion_y = 0;
913  int last_gold_motion_x = 0;
914  int last_gold_motion_y = 0;
915  int current_macroblock;
916  int current_fragment;
917  int frag;
918 
919  if (s->keyframe)
920  return 0;
921 
922  /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme; 2 is VP4 code scheme */
923  coding_mode = s->version < 2 ? get_bits1(gb) : 2;
924 
925  /* iterate through all of the macroblocks that contain 1 or more
926  * coded fragments */
927  for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
928  for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
929  if (get_bits_left(gb) <= 0)
930  return -1;
931 
932  for (j = 0; j < 4; j++) {
933  int mb_x = 2 * sb_x + (j >> 1);
934  int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
935  current_macroblock = mb_y * s->macroblock_width + mb_x;
936 
937  if (mb_x >= s->macroblock_width ||
938  mb_y >= s->macroblock_height ||
939  s->macroblock_coding[current_macroblock] == MODE_COPY)
940  continue;
941 
942  switch (s->macroblock_coding[current_macroblock]) {
943  case MODE_GOLDEN_MV:
944  if (coding_mode == 2) { /* VP4 */
945  last_gold_motion_x = motion_x[0] = vp4_get_mv(s, gb, 0, last_gold_motion_x);
946  last_gold_motion_y = motion_y[0] = vp4_get_mv(s, gb, 1, last_gold_motion_y);
947  break;
948  } /* otherwise fall through */
949  case MODE_INTER_PLUS_MV:
950  /* all 6 fragments use the same motion vector */
951  if (coding_mode == 0) {
952  motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
953  motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
954  } else if (coding_mode == 1) {
955  motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
956  motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
957  } else { /* VP4 */
958  motion_x[0] = vp4_get_mv(s, gb, 0, last_motion_x);
959  motion_y[0] = vp4_get_mv(s, gb, 1, last_motion_y);
960  }
961 
962  /* vector maintenance, only on MODE_INTER_PLUS_MV */
963  if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) {
964  prior_last_motion_x = last_motion_x;
965  prior_last_motion_y = last_motion_y;
966  last_motion_x = motion_x[0];
967  last_motion_y = motion_y[0];
968  }
969  break;
970 
971  case MODE_INTER_FOURMV:
972  /* vector maintenance */
973  prior_last_motion_x = last_motion_x;
974  prior_last_motion_y = last_motion_y;
975 
976  /* fetch 4 vectors from the bitstream, one for each
977  * Y fragment, then average for the C fragment vectors */
978  for (k = 0; k < 4; k++) {
979  current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X;
980  if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
981  if (coding_mode == 0) {
982  motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
983  motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
984  } else if (coding_mode == 1) {
985  motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
986  motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
987  } else { /* VP4 */
988  motion_x[k] = vp4_get_mv(s, gb, 0, prior_last_motion_x);
989  motion_y[k] = vp4_get_mv(s, gb, 1, prior_last_motion_y);
990  }
991  last_motion_x = motion_x[k];
992  last_motion_y = motion_y[k];
993  } else {
994  motion_x[k] = 0;
995  motion_y[k] = 0;
996  }
997  }
998  break;
999 
1000  case MODE_INTER_LAST_MV:
1001  /* all 6 fragments use the last motion vector */
1002  motion_x[0] = last_motion_x;
1003  motion_y[0] = last_motion_y;
1004 
1005  /* no vector maintenance (last vector remains the
1006  * last vector) */
1007  break;
1008 
1009  case MODE_INTER_PRIOR_LAST:
1010  /* all 6 fragments use the motion vector prior to the
1011  * last motion vector */
1012  motion_x[0] = prior_last_motion_x;
1013  motion_y[0] = prior_last_motion_y;
1014 
1015  /* vector maintenance */
1016  prior_last_motion_x = last_motion_x;
1017  prior_last_motion_y = last_motion_y;
1018  last_motion_x = motion_x[0];
1019  last_motion_y = motion_y[0];
1020  break;
1021 
1022  default:
1023  /* covers intra, inter without MV, golden without MV */
1024  motion_x[0] = 0;
1025  motion_y[0] = 0;
1026 
1027  /* no vector maintenance */
1028  break;
1029  }
1030 
1031  /* assign the motion vectors to the correct fragments */
1032  for (k = 0; k < 4; k++) {
1033  current_fragment =
1034  BLOCK_Y * s->fragment_width[0] + BLOCK_X;
1035  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
1036  s->motion_val[0][current_fragment][0] = motion_x[k];
1037  s->motion_val[0][current_fragment][1] = motion_y[k];
1038  } else {
1039  s->motion_val[0][current_fragment][0] = motion_x[0];
1040  s->motion_val[0][current_fragment][1] = motion_y[0];
1041  }
1042  }
1043 
1044  if (s->chroma_y_shift) {
1045  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
1046  motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] +
1047  motion_x[2] + motion_x[3], 2);
1048  motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] +
1049  motion_y[2] + motion_y[3], 2);
1050  }
1051  if (s->version <= 2) {
1052  motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
1053  motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1);
1054  }
1055  frag = mb_y * s->fragment_width[1] + mb_x;
1056  s->motion_val[1][frag][0] = motion_x[0];
1057  s->motion_val[1][frag][1] = motion_y[0];
1058  } else if (s->chroma_x_shift) {
1059  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
1060  motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
1061  motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
1062  motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
1063  motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
1064  } else {
1065  motion_x[1] = motion_x[0];
1066  motion_y[1] = motion_y[0];
1067  }
1068  if (s->version <= 2) {
1069  motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
1070  motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1);
1071  }
1072  frag = 2 * mb_y * s->fragment_width[1] + mb_x;
1073  for (k = 0; k < 2; k++) {
1074  s->motion_val[1][frag][0] = motion_x[k];
1075  s->motion_val[1][frag][1] = motion_y[k];
1076  frag += s->fragment_width[1];
1077  }
1078  } else {
1079  for (k = 0; k < 4; k++) {
1080  frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X;
1081  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
1082  s->motion_val[1][frag][0] = motion_x[k];
1083  s->motion_val[1][frag][1] = motion_y[k];
1084  } else {
1085  s->motion_val[1][frag][0] = motion_x[0];
1086  s->motion_val[1][frag][1] = motion_y[0];
1087  }
1088  }
1089  }
1090  }
1091  }
1092  }
1093 
1094  return 0;
1095 }
1096 
1098 {
1099  int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
1100  int num_blocks = s->total_num_coded_frags;
1101 
1102  for (qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) {
1103  i = blocks_decoded = num_blocks_at_qpi = 0;
1104 
1105  bit = get_bits1(gb) ^ 1;
1106  run_length = 0;
1107 
1108  do {
1109  if (run_length == MAXIMUM_LONG_BIT_RUN)
1110  bit = get_bits1(gb);
1111  else
1112  bit ^= 1;
1113 
1114  run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
1115  if (run_length == 34)
1116  run_length += get_bits(gb, 12);
1117  blocks_decoded += run_length;
1118 
1119  if (!bit)
1120  num_blocks_at_qpi += run_length;
1121 
1122  for (j = 0; j < run_length; i++) {
1123  if (i >= s->total_num_coded_frags)
1124  return -1;
1125 
1126  if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
1127  s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
1128  j++;
1129  }
1130  }
1131  } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
1132 
1133  num_blocks -= num_blocks_at_qpi;
1134  }
1135 
1136  return 0;
1137 }
1138 
1139 static inline int get_eob_run(GetBitContext *gb, int token)
1140 {
1141  int v = eob_run_table[token].base;
1142  if (eob_run_table[token].bits)
1143  v += get_bits(gb, eob_run_table[token].bits);
1144  return v;
1145 }
1146 
1147 static inline int get_coeff(GetBitContext *gb, int token, int16_t *coeff)
1148 {
1149  int bits_to_get, zero_run;
1150 
1151  bits_to_get = coeff_get_bits[token];
1152  if (bits_to_get)
1153  bits_to_get = get_bits(gb, bits_to_get);
1154  *coeff = coeff_tables[token][bits_to_get];
1155 
1156  zero_run = zero_run_base[token];
1157  if (zero_run_get_bits[token])
1158  zero_run += get_bits(gb, zero_run_get_bits[token]);
1159 
1160  return zero_run;
1161 }
1162 
1163 /*
1164  * This function is called by unpack_dct_coeffs() to extract the VLCs from
1165  * the bitstream. The VLCs encode tokens which are used to unpack DCT
1166  * data. This function unpacks all the VLCs for either the Y plane or both
1167  * C planes, and is called for DC coefficients or different AC coefficient
1168  * levels (since different coefficient types require different VLC tables.
1169  *
1170  * This function returns a residual eob run. E.g, if a particular token gave
1171  * instructions to EOB the next 5 fragments and there were only 2 fragments
1172  * left in the current fragment range, 3 would be returned so that it could
1173  * be passed into the next call to this same function.
1174  */
1176  VLC *table, int coeff_index,
1177  int plane,
1178  int eob_run)
1179 {
1180  int i, j = 0;
1181  int token;
1182  int zero_run = 0;
1183  int16_t coeff = 0;
1184  int blocks_ended;
1185  int coeff_i = 0;
1186  int num_coeffs = s->num_coded_frags[plane][coeff_index];
1187  int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
1188 
1189  /* local references to structure members to avoid repeated dereferences */
1190  int *coded_fragment_list = s->coded_fragment_list[plane];
1191  Vp3Fragment *all_fragments = s->all_fragments;
1192  VLC_TYPE(*vlc_table)[2] = table->table;
1193 
1194  if (num_coeffs < 0) {
1196  "Invalid number of coefficients at level %d\n", coeff_index);
1197  return AVERROR_INVALIDDATA;
1198  }
1199 
1200  if (eob_run > num_coeffs) {
1201  coeff_i =
1202  blocks_ended = num_coeffs;
1203  eob_run -= num_coeffs;
1204  } else {
1205  coeff_i =
1206  blocks_ended = eob_run;
1207  eob_run = 0;
1208  }
1209 
1210  // insert fake EOB token to cover the split between planes or zzi
1211  if (blocks_ended)
1212  dct_tokens[j++] = blocks_ended << 2;
1213 
1214  while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
1215  /* decode a VLC into a token */
1216  token = get_vlc2(gb, vlc_table, 11, 3);
1217  /* use the token to get a zero run, a coefficient, and an eob run */
1218  if ((unsigned) token <= 6U) {
1219  eob_run = get_eob_run(gb, token);
1220  if (!eob_run)
1221  eob_run = INT_MAX;
1222 
1223  // record only the number of blocks ended in this plane,
1224  // any spill will be recorded in the next plane.
1225  if (eob_run > num_coeffs - coeff_i) {
1226  dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
1227  blocks_ended += num_coeffs - coeff_i;
1228  eob_run -= num_coeffs - coeff_i;
1229  coeff_i = num_coeffs;
1230  } else {
1231  dct_tokens[j++] = TOKEN_EOB(eob_run);
1232  blocks_ended += eob_run;
1233  coeff_i += eob_run;
1234  eob_run = 0;
1235  }
1236  } else if (token >= 0) {
1237  zero_run = get_coeff(gb, token, &coeff);
1238 
1239  if (zero_run) {
1240  dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
1241  } else {
1242  // Save DC into the fragment structure. DC prediction is
1243  // done in raster order, so the actual DC can't be in with
1244  // other tokens. We still need the token in dct_tokens[]
1245  // however, or else the structure collapses on itself.
1246  if (!coeff_index)
1247  all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
1248 
1249  dct_tokens[j++] = TOKEN_COEFF(coeff);
1250  }
1251 
1252  if (coeff_index + zero_run > 64) {
1254  "Invalid zero run of %d with %d coeffs left\n",
1255  zero_run, 64 - coeff_index);
1256  zero_run = 64 - coeff_index;
1257  }
1258 
1259  // zero runs code multiple coefficients,
1260  // so don't try to decode coeffs for those higher levels
1261  for (i = coeff_index + 1; i <= coeff_index + zero_run; i++)
1262  s->num_coded_frags[plane][i]--;
1263  coeff_i++;
1264  } else {
1265  av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
1266  return -1;
1267  }
1268  }
1269 
1270  if (blocks_ended > s->num_coded_frags[plane][coeff_index])
1271  av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
1272 
1273  // decrement the number of blocks that have higher coefficients for each
1274  // EOB run at this level
1275  if (blocks_ended)
1276  for (i = coeff_index + 1; i < 64; i++)
1277  s->num_coded_frags[plane][i] -= blocks_ended;
1278 
1279  // setup the next buffer
1280  if (plane < 2)
1281  s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j;
1282  else if (coeff_index < 63)
1283  s->dct_tokens[0][coeff_index + 1] = dct_tokens + j;
1284 
1285  return eob_run;
1286 }
1287 
1289  int first_fragment,
1290  int fragment_width,
1291  int fragment_height);
1292 /*
1293  * This function unpacks all of the DCT coefficient data from the
1294  * bitstream.
1295  */
1297 {
1298  int i;
1299  int dc_y_table;
1300  int dc_c_table;
1301  int ac_y_table;
1302  int ac_c_table;
1303  int residual_eob_run = 0;
1304  VLC *y_tables[64];
1305  VLC *c_tables[64];
1306 
1307  s->dct_tokens[0][0] = s->dct_tokens_base;
1308 
1309  if (get_bits_left(gb) < 16)
1310  return AVERROR_INVALIDDATA;
1311 
1312  /* fetch the DC table indexes */
1313  dc_y_table = get_bits(gb, 4);
1314  dc_c_table = get_bits(gb, 4);
1315 
1316  /* unpack the Y plane DC coefficients */
1317  residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1318  0, residual_eob_run);
1319  if (residual_eob_run < 0)
1320  return residual_eob_run;
1321  if (get_bits_left(gb) < 8)
1322  return AVERROR_INVALIDDATA;
1323 
1324  /* reverse prediction of the Y-plane DC coefficients */
1326 
1327  /* unpack the C plane DC coefficients */
1328  residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1329  1, residual_eob_run);
1330  if (residual_eob_run < 0)
1331  return residual_eob_run;
1332  residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1333  2, residual_eob_run);
1334  if (residual_eob_run < 0)
1335  return residual_eob_run;
1336 
1337  /* reverse prediction of the C-plane DC coefficients */
1338  if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
1340  s->fragment_width[1], s->fragment_height[1]);
1342  s->fragment_width[1], s->fragment_height[1]);
1343  }
1344 
1345  if (get_bits_left(gb) < 8)
1346  return AVERROR_INVALIDDATA;
1347  /* fetch the AC table indexes */
1348  ac_y_table = get_bits(gb, 4);
1349  ac_c_table = get_bits(gb, 4);
1350 
1351  /* build tables of AC VLC tables */
1352  for (i = 1; i <= 5; i++) {
1353  y_tables[i] = &s->ac_vlc_1[ac_y_table];
1354  c_tables[i] = &s->ac_vlc_1[ac_c_table];
1355  }
1356  for (i = 6; i <= 14; i++) {
1357  y_tables[i] = &s->ac_vlc_2[ac_y_table];
1358  c_tables[i] = &s->ac_vlc_2[ac_c_table];
1359  }
1360  for (i = 15; i <= 27; i++) {
1361  y_tables[i] = &s->ac_vlc_3[ac_y_table];
1362  c_tables[i] = &s->ac_vlc_3[ac_c_table];
1363  }
1364  for (i = 28; i <= 63; i++) {
1365  y_tables[i] = &s->ac_vlc_4[ac_y_table];
1366  c_tables[i] = &s->ac_vlc_4[ac_c_table];
1367  }
1368 
1369  /* decode all AC coefficients */
1370  for (i = 1; i <= 63; i++) {
1371  residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1372  0, residual_eob_run);
1373  if (residual_eob_run < 0)
1374  return residual_eob_run;
1375 
1376  residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1377  1, residual_eob_run);
1378  if (residual_eob_run < 0)
1379  return residual_eob_run;
1380  residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1381  2, residual_eob_run);
1382  if (residual_eob_run < 0)
1383  return residual_eob_run;
1384  }
1385 
1386  return 0;
1387 }
1388 
1389 #if CONFIG_VP4_DECODER
1390 /**
1391  * eob_tracker[] is instead of TOKEN_EOB(value)
1392  * a dummy TOKEN_EOB(0) value is used to make vp3_dequant work
1393  *
1394  * @return < 0 on error
1395  */
1396 static int vp4_unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
1397  VLC *vlc_tables[64],
1398  int plane, int eob_tracker[64], int fragment)
1399 {
1400  int token;
1401  int zero_run = 0;
1402  int16_t coeff = 0;
1403  int coeff_i = 0;
1404  int eob_run;
1405 
1406  while (!eob_tracker[coeff_i]) {
1407  if (get_bits_left(gb) < 1)
1408  return AVERROR_INVALIDDATA;
1409 
1410  token = get_vlc2(gb, vlc_tables[coeff_i]->table, 11, 3);
1411 
1412  /* use the token to get a zero run, a coefficient, and an eob run */
1413  if ((unsigned) token <= 6U) {
1414  eob_run = get_eob_run(gb, token);
1415  *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0);
1416  eob_tracker[coeff_i] = eob_run - 1;
1417  return 0;
1418  } else if (token >= 0) {
1419  zero_run = get_coeff(gb, token, &coeff);
1420 
1421  if (zero_run) {
1422  if (coeff_i + zero_run > 64) {
1424  "Invalid zero run of %d with %d coeffs left\n",
1425  zero_run, 64 - coeff_i);
1426  zero_run = 64 - coeff_i;
1427  }
1428  *s->dct_tokens[plane][coeff_i]++ = TOKEN_ZERO_RUN(coeff, zero_run);
1429  coeff_i += zero_run;
1430  } else {
1431  if (!coeff_i)
1432  s->all_fragments[fragment].dc = coeff;
1433 
1434  *s->dct_tokens[plane][coeff_i]++ = TOKEN_COEFF(coeff);
1435  }
1436  coeff_i++;
1437  if (coeff_i >= 64) /* > 64 occurs when there is a zero_run overflow */
1438  return 0; /* stop */
1439  } else {
1440  av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
1441  return -1;
1442  }
1443  }
1444  *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0);
1445  eob_tracker[coeff_i]--;
1446  return 0;
1447 }
1448 
1449 static void vp4_dc_predictor_reset(VP4Predictor *p)
1450 {
1451  p->dc = 0;
1452  p->type = VP4_DC_UNDEFINED;
1453 }
1454 
1455 static void vp4_dc_pred_before(const Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x)
1456 {
1457  int i, j;
1458 
1459  for (i = 0; i < 4; i++)
1460  dc_pred[0][i + 1] = s->dc_pred_row[sb_x * 4 + i];
1461 
1462  for (j = 1; j < 5; j++)
1463  for (i = 0; i < 4; i++)
1464  vp4_dc_predictor_reset(&dc_pred[j][i + 1]);
1465 }
1466 
1467 static void vp4_dc_pred_after(Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x)
1468 {
1469  int i;
1470 
1471  for (i = 0; i < 4; i++)
1472  s->dc_pred_row[sb_x * 4 + i] = dc_pred[4][i + 1];
1473 
1474  for (i = 1; i < 5; i++)
1475  dc_pred[i][0] = dc_pred[i][4];
1476 }
1477 
1478 /* note: dc_pred points to the current block */
1479 static int vp4_dc_pred(const Vp3DecodeContext *s, const VP4Predictor * dc_pred, const int * last_dc, int type, int plane)
1480 {
1481  int count = 0;
1482  int dc = 0;
1483 
1484  if (dc_pred[-6].type == type) {
1485  dc += dc_pred[-6].dc;
1486  count++;
1487  }
1488 
1489  if (dc_pred[6].type == type) {
1490  dc += dc_pred[6].dc;
1491  count++;
1492  }
1493 
1494  if (count != 2 && dc_pred[-1].type == type) {
1495  dc += dc_pred[-1].dc;
1496  count++;
1497  }
1498 
1499  if (count != 2 && dc_pred[1].type == type) {
1500  dc += dc_pred[1].dc;
1501  count++;
1502  }
1503 
1504  /* using division instead of shift to correctly handle negative values */
1505  return count == 2 ? dc / 2 : last_dc[type];
1506 }
1507 
1508 static void vp4_set_tokens_base(Vp3DecodeContext *s)
1509 {
1510  int plane, i;
1511  int16_t *base = s->dct_tokens_base;
1512  for (plane = 0; plane < 3; plane++) {
1513  for (i = 0; i < 64; i++) {
1514  s->dct_tokens[plane][i] = base;
1515  base += s->fragment_width[!!plane] * s->fragment_height[!!plane];
1516  }
1517  }
1518 }
1519 
1520 static int vp4_unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1521 {
1522  int i, j;
1523  int dc_y_table;
1524  int dc_c_table;
1525  int ac_y_table;
1526  int ac_c_table;
1527  VLC *tables[2][64];
1528  int plane, sb_y, sb_x;
1529  int eob_tracker[64];
1530  VP4Predictor dc_pred[6][6];
1531  int last_dc[NB_VP4_DC_TYPES];
1532 
1533  if (get_bits_left(gb) < 16)
1534  return AVERROR_INVALIDDATA;
1535 
1536  /* fetch the DC table indexes */
1537  dc_y_table = get_bits(gb, 4);
1538  dc_c_table = get_bits(gb, 4);
1539 
1540  ac_y_table = get_bits(gb, 4);
1541  ac_c_table = get_bits(gb, 4);
1542 
1543  /* build tables of DC/AC VLC tables */
1544 
1545  tables[0][0] = &s->dc_vlc[dc_y_table];
1546  tables[1][0] = &s->dc_vlc[dc_c_table];
1547  for (i = 1; i <= 5; i++) {
1548  tables[0][i] = &s->ac_vlc_1[ac_y_table];
1549  tables[1][i] = &s->ac_vlc_1[ac_c_table];
1550  }
1551  for (i = 6; i <= 14; i++) {
1552  tables[0][i] = &s->ac_vlc_2[ac_y_table];
1553  tables[1][i] = &s->ac_vlc_2[ac_c_table];
1554  }
1555  for (i = 15; i <= 27; i++) {
1556  tables[0][i] = &s->ac_vlc_3[ac_y_table];
1557  tables[1][i] = &s->ac_vlc_3[ac_c_table];
1558  }
1559  for (i = 28; i <= 63; i++) {
1560  tables[0][i] = &s->ac_vlc_4[ac_y_table];
1561  tables[1][i] = &s->ac_vlc_4[ac_c_table];
1562  }
1563 
1564  vp4_set_tokens_base(s);
1565 
1566  memset(last_dc, 0, sizeof(last_dc));
1567 
1568  for (plane = 0; plane < ((s->avctx->flags & AV_CODEC_FLAG_GRAY) ? 1 : 3); plane++) {
1569  memset(eob_tracker, 0, sizeof(eob_tracker));
1570 
1571  /* initialise dc prediction */
1572  for (i = 0; i < s->fragment_width[!!plane]; i++)
1573  vp4_dc_predictor_reset(&s->dc_pred_row[i]);
1574 
1575  for (j = 0; j < 6; j++)
1576  for (i = 0; i < 6; i++)
1577  vp4_dc_predictor_reset(&dc_pred[j][i]);
1578 
1579  for (sb_y = 0; sb_y * 4 < s->fragment_height[!!plane]; sb_y++) {
1580  for (sb_x = 0; sb_x *4 < s->fragment_width[!!plane]; sb_x++) {
1581  vp4_dc_pred_before(s, dc_pred, sb_x);
1582  for (j = 0; j < 16; j++) {
1583  int hx = hilbert_offset[j][0];
1584  int hy = hilbert_offset[j][1];
1585  int x = 4 * sb_x + hx;
1586  int y = 4 * sb_y + hy;
1587  VP4Predictor *this_dc_pred = &dc_pred[hy + 1][hx + 1];
1588  int fragment, dc_block_type;
1589 
1590  if (x >= s->fragment_width[!!plane] || y >= s->fragment_height[!!plane])
1591  continue;
1592 
1593  fragment = s->fragment_start[plane] + y * s->fragment_width[!!plane] + x;
1594 
1595  if (s->all_fragments[fragment].coding_method == MODE_COPY)
1596  continue;
1597 
1598  if (vp4_unpack_vlcs(s, gb, tables[!!plane], plane, eob_tracker, fragment) < 0)
1599  return -1;
1600 
1601  dc_block_type = vp4_pred_block_type_map[s->all_fragments[fragment].coding_method];
1602 
1603  s->all_fragments[fragment].dc +=
1604  vp4_dc_pred(s, this_dc_pred, last_dc, dc_block_type, plane);
1605 
1606  this_dc_pred->type = dc_block_type,
1607  this_dc_pred->dc = last_dc[dc_block_type] = s->all_fragments[fragment].dc;
1608  }
1609  vp4_dc_pred_after(s, dc_pred, sb_x);
1610  }
1611  }
1612  }
1613 
1614  vp4_set_tokens_base(s);
1615 
1616  return 0;
1617 }
1618 #endif
1619 
1620 /*
1621  * This function reverses the DC prediction for each coded fragment in
1622  * the frame. Much of this function is adapted directly from the original
1623  * VP3 source code.
1624  */
1625 #define COMPATIBLE_FRAME(x) \
1626  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1627 #define DC_COEFF(u) s->all_fragments[u].dc
1628 
1630  int first_fragment,
1631  int fragment_width,
1632  int fragment_height)
1633 {
1634 #define PUL 8
1635 #define PU 4
1636 #define PUR 2
1637 #define PL 1
1638 
1639  int x, y;
1640  int i = first_fragment;
1641 
1642  int predicted_dc;
1643 
1644  /* DC values for the left, up-left, up, and up-right fragments */
1645  int vl, vul, vu, vur;
1646 
1647  /* indexes for the left, up-left, up, and up-right fragments */
1648  int l, ul, u, ur;
1649 
1650  /*
1651  * The 6 fields mean:
1652  * 0: up-left multiplier
1653  * 1: up multiplier
1654  * 2: up-right multiplier
1655  * 3: left multiplier
1656  */
1657  static const int predictor_transform[16][4] = {
1658  { 0, 0, 0, 0 },
1659  { 0, 0, 0, 128 }, // PL
1660  { 0, 0, 128, 0 }, // PUR
1661  { 0, 0, 53, 75 }, // PUR|PL
1662  { 0, 128, 0, 0 }, // PU
1663  { 0, 64, 0, 64 }, // PU |PL
1664  { 0, 128, 0, 0 }, // PU |PUR
1665  { 0, 0, 53, 75 }, // PU |PUR|PL
1666  { 128, 0, 0, 0 }, // PUL
1667  { 0, 0, 0, 128 }, // PUL|PL
1668  { 64, 0, 64, 0 }, // PUL|PUR
1669  { 0, 0, 53, 75 }, // PUL|PUR|PL
1670  { 0, 128, 0, 0 }, // PUL|PU
1671  { -104, 116, 0, 116 }, // PUL|PU |PL
1672  { 24, 80, 24, 0 }, // PUL|PU |PUR
1673  { -104, 116, 0, 116 } // PUL|PU |PUR|PL
1674  };
1675 
1676  /* This table shows which types of blocks can use other blocks for
1677  * prediction. For example, INTRA is the only mode in this table to
1678  * have a frame number of 0. That means INTRA blocks can only predict
1679  * from other INTRA blocks. There are 2 golden frame coding types;
1680  * blocks encoding in these modes can only predict from other blocks
1681  * that were encoded with these 1 of these 2 modes. */
1682  static const unsigned char compatible_frame[9] = {
1683  1, /* MODE_INTER_NO_MV */
1684  0, /* MODE_INTRA */
1685  1, /* MODE_INTER_PLUS_MV */
1686  1, /* MODE_INTER_LAST_MV */
1687  1, /* MODE_INTER_PRIOR_MV */
1688  2, /* MODE_USING_GOLDEN */
1689  2, /* MODE_GOLDEN_MV */
1690  1, /* MODE_INTER_FOUR_MV */
1691  3 /* MODE_COPY */
1692  };
1693  int current_frame_type;
1694 
1695  /* there is a last DC predictor for each of the 3 frame types */
1696  short last_dc[3];
1697 
1698  int transform = 0;
1699 
1700  vul =
1701  vu =
1702  vur =
1703  vl = 0;
1704  last_dc[0] =
1705  last_dc[1] =
1706  last_dc[2] = 0;
1707 
1708  /* for each fragment row... */
1709  for (y = 0; y < fragment_height; y++) {
1710  /* for each fragment in a row... */
1711  for (x = 0; x < fragment_width; x++, i++) {
1712 
1713  /* reverse prediction if this block was coded */
1714  if (s->all_fragments[i].coding_method != MODE_COPY) {
1715  current_frame_type =
1716  compatible_frame[s->all_fragments[i].coding_method];
1717 
1718  transform = 0;
1719  if (x) {
1720  l = i - 1;
1721  vl = DC_COEFF(l);
1722  if (COMPATIBLE_FRAME(l))
1723  transform |= PL;
1724  }
1725  if (y) {
1726  u = i - fragment_width;
1727  vu = DC_COEFF(u);
1728  if (COMPATIBLE_FRAME(u))
1729  transform |= PU;
1730  if (x) {
1731  ul = i - fragment_width - 1;
1732  vul = DC_COEFF(ul);
1733  if (COMPATIBLE_FRAME(ul))
1734  transform |= PUL;
1735  }
1736  if (x + 1 < fragment_width) {
1737  ur = i - fragment_width + 1;
1738  vur = DC_COEFF(ur);
1739  if (COMPATIBLE_FRAME(ur))
1740  transform |= PUR;
1741  }
1742  }
1743 
1744  if (transform == 0) {
1745  /* if there were no fragments to predict from, use last
1746  * DC saved */
1747  predicted_dc = last_dc[current_frame_type];
1748  } else {
1749  /* apply the appropriate predictor transform */
1750  predicted_dc =
1751  (predictor_transform[transform][0] * vul) +
1752  (predictor_transform[transform][1] * vu) +
1753  (predictor_transform[transform][2] * vur) +
1754  (predictor_transform[transform][3] * vl);
1755 
1756  predicted_dc /= 128;
1757 
1758  /* check for outranging on the [ul u l] and
1759  * [ul u ur l] predictors */
1760  if ((transform == 15) || (transform == 13)) {
1761  if (FFABS(predicted_dc - vu) > 128)
1762  predicted_dc = vu;
1763  else if (FFABS(predicted_dc - vl) > 128)
1764  predicted_dc = vl;
1765  else if (FFABS(predicted_dc - vul) > 128)
1766  predicted_dc = vul;
1767  }
1768  }
1769 
1770  /* at long last, apply the predictor */
1771  DC_COEFF(i) += predicted_dc;
1772  /* save the DC */
1773  last_dc[current_frame_type] = DC_COEFF(i);
1774  }
1775  }
1776  }
1777 }
1778 
1779 static void apply_loop_filter(Vp3DecodeContext *s, int plane,
1780  int ystart, int yend)
1781 {
1782  int x, y;
1783  int *bounding_values = s->bounding_values_array + 127;
1784 
1785  int width = s->fragment_width[!!plane];
1786  int height = s->fragment_height[!!plane];
1787  int fragment = s->fragment_start[plane] + ystart * width;
1788  ptrdiff_t stride = s->current_frame.f->linesize[plane];
1789  uint8_t *plane_data = s->current_frame.f->data[plane];
1790  if (!s->flipped_image)
1791  stride = -stride;
1792  plane_data += s->data_offset[plane] + 8 * ystart * stride;
1793 
1794  for (y = ystart; y < yend; y++) {
1795  for (x = 0; x < width; x++) {
1796  /* This code basically just deblocks on the edges of coded blocks.
1797  * However, it has to be much more complicated because of the
1798  * brain damaged deblock ordering used in VP3/Theora. Order matters
1799  * because some pixels get filtered twice. */
1800  if (s->all_fragments[fragment].coding_method != MODE_COPY) {
1801  /* do not perform left edge filter for left columns frags */
1802  if (x > 0) {
1803  s->vp3dsp.h_loop_filter(
1804  plane_data + 8 * x,
1805  stride, bounding_values);
1806  }
1807 
1808  /* do not perform top edge filter for top row fragments */
1809  if (y > 0) {
1810  s->vp3dsp.v_loop_filter(
1811  plane_data + 8 * x,
1812  stride, bounding_values);
1813  }
1814 
1815  /* do not perform right edge filter for right column
1816  * fragments or if right fragment neighbor is also coded
1817  * in this frame (it will be filtered in next iteration) */
1818  if ((x < width - 1) &&
1819  (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1820  s->vp3dsp.h_loop_filter(
1821  plane_data + 8 * x + 8,
1822  stride, bounding_values);
1823  }
1824 
1825  /* do not perform bottom edge filter for bottom row
1826  * fragments or if bottom fragment neighbor is also coded
1827  * in this frame (it will be filtered in the next row) */
1828  if ((y < height - 1) &&
1829  (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1830  s->vp3dsp.v_loop_filter(
1831  plane_data + 8 * x + 8 * stride,
1832  stride, bounding_values);
1833  }
1834  }
1835 
1836  fragment++;
1837  }
1838  plane_data += 8 * stride;
1839  }
1840 }
1841 
1842 /**
1843  * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
1844  * for the next block in coding order
1845  */
1846 static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1847  int plane, int inter, int16_t block[64])
1848 {
1849  int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1850  uint8_t *perm = s->idct_scantable;
1851  int i = 0;
1852 
1853  do {
1854  int token = *s->dct_tokens[plane][i];
1855  switch (token & 3) {
1856  case 0: // EOB
1857  if (--token < 4) // 0-3 are token types so the EOB run must now be 0
1858  s->dct_tokens[plane][i]++;
1859  else
1860  *s->dct_tokens[plane][i] = token & ~3;
1861  goto end;
1862  case 1: // zero run
1863  s->dct_tokens[plane][i]++;
1864  i += (token >> 2) & 0x7f;
1865  if (i > 63) {
1866  av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
1867  return i;
1868  }
1869  block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1870  i++;
1871  break;
1872  case 2: // coeff
1873  block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1874  s->dct_tokens[plane][i++]++;
1875  break;
1876  default: // shouldn't happen
1877  return i;
1878  }
1879  } while (i < 64);
1880  // return value is expected to be a valid level
1881  i--;
1882 end:
1883  // the actual DC+prediction is in the fragment structure
1884  block[0] = frag->dc * s->qmat[0][inter][plane][0];
1885  return i;
1886 }
1887 
1888 /**
1889  * called when all pixels up to row y are complete
1890  */
1892 {
1893  int h, cy, i;
1895 
1897  int y_flipped = s->flipped_image ? s->height - y : y;
1898 
1899  /* At the end of the frame, report INT_MAX instead of the height of
1900  * the frame. This makes the other threads' ff_thread_await_progress()
1901  * calls cheaper, because they don't have to clip their values. */
1903  y_flipped == s->height ? INT_MAX
1904  : y_flipped - 1,
1905  0);
1906  }
1907 
1908  if (!s->avctx->draw_horiz_band)
1909  return;
1910 
1911  h = y - s->last_slice_end;
1912  s->last_slice_end = y;
1913  y -= h;
1914 
1915  if (!s->flipped_image)
1916  y = s->height - y - h;
1917 
1918  cy = y >> s->chroma_y_shift;
1919  offset[0] = s->current_frame.f->linesize[0] * y;
1920  offset[1] = s->current_frame.f->linesize[1] * cy;
1921  offset[2] = s->current_frame.f->linesize[2] * cy;
1922  for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
1923  offset[i] = 0;
1924 
1925  emms_c();
1926  s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h);
1927 }
1928 
1929 /**
1930  * Wait for the reference frame of the current fragment.
1931  * The progress value is in luma pixel rows.
1932  */
1934  int motion_y, int y)
1935 {
1936  ThreadFrame *ref_frame;
1937  int ref_row;
1938  int border = motion_y & 1;
1939 
1940  if (fragment->coding_method == MODE_USING_GOLDEN ||
1941  fragment->coding_method == MODE_GOLDEN_MV)
1942  ref_frame = &s->golden_frame;
1943  else
1944  ref_frame = &s->last_frame;
1945 
1946  ref_row = y + (motion_y >> 1);
1947  ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
1948 
1949  ff_thread_await_progress(ref_frame, ref_row, 0);
1950 }
1951 
1952 #if CONFIG_VP4_DECODER
1953 /**
1954  * @return non-zero if temp (edge_emu_buffer) was populated
1955  */
1956 static int vp4_mc_loop_filter(Vp3DecodeContext *s, int plane, int motion_x, int motion_y, int bx, int by,
1957  uint8_t * motion_source, int stride, int src_x, int src_y, uint8_t *temp)
1958 {
1959  int motion_shift = plane ? 4 : 2;
1960  int subpel_mask = plane ? 3 : 1;
1961  int *bounding_values = s->bounding_values_array + 127;
1962 
1963  int i;
1964  int x, y;
1965  int x2, y2;
1966  int x_subpel, y_subpel;
1967  int x_offset, y_offset;
1968 
1969  int block_width = plane ? 8 : 16;
1970  int plane_width = s->width >> (plane && s->chroma_x_shift);
1971  int plane_height = s->height >> (plane && s->chroma_y_shift);
1972 
1973 #define loop_stride 12
1974  uint8_t loop[12 * loop_stride];
1975 
1976  /* using division instead of shift to correctly handle negative values */
1977  x = 8 * bx + motion_x / motion_shift;
1978  y = 8 * by + motion_y / motion_shift;
1979 
1980  x_subpel = motion_x & subpel_mask;
1981  y_subpel = motion_y & subpel_mask;
1982 
1983  if (x_subpel || y_subpel) {
1984  x--;
1985  y--;
1986 
1987  if (x_subpel)
1988  x = FFMIN(x, x + FFSIGN(motion_x));
1989 
1990  if (y_subpel)
1991  y = FFMIN(y, y + FFSIGN(motion_y));
1992 
1993  x2 = x + block_width;
1994  y2 = y + block_width;
1995 
1996  if (x2 < 0 || x2 >= plane_width || y2 < 0 || y2 >= plane_height)
1997  return 0;
1998 
1999  x_offset = (-(x + 2) & 7) + 2;
2000  y_offset = (-(y + 2) & 7) + 2;
2001 
2002  if (x_offset > 8 + x_subpel && y_offset > 8 + y_subpel)
2003  return 0;
2004 
2005  s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1,
2006  loop_stride, stride,
2007  12, 12, src_x - 1, src_y - 1,
2008  plane_width,
2009  plane_height);
2010 
2011  if (x_offset <= 8 + x_subpel)
2012  ff_vp3dsp_h_loop_filter_12(loop + x_offset, loop_stride, bounding_values);
2013 
2014  if (y_offset <= 8 + y_subpel)
2015  ff_vp3dsp_v_loop_filter_12(loop + y_offset*loop_stride, loop_stride, bounding_values);
2016 
2017  } else {
2018 
2019  x_offset = -x & 7;
2020  y_offset = -y & 7;
2021 
2022  if (!x_offset && !y_offset)
2023  return 0;
2024 
2025  s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1,
2026  loop_stride, stride,
2027  12, 12, src_x - 1, src_y - 1,
2028  plane_width,
2029  plane_height);
2030 
2031 #define safe_loop_filter(name, ptr, stride, bounding_values) \
2032  if ((uintptr_t)(ptr) & 7) \
2033  s->vp3dsp.name##_unaligned(ptr, stride, bounding_values); \
2034  else \
2035  s->vp3dsp.name(ptr, stride, bounding_values);
2036 
2037  if (x_offset)
2038  safe_loop_filter(h_loop_filter, loop + loop_stride + x_offset + 1, loop_stride, bounding_values);
2039 
2040  if (y_offset)
2041  safe_loop_filter(v_loop_filter, loop + (y_offset + 1)*loop_stride + 1, loop_stride, bounding_values);
2042  }
2043 
2044  for (i = 0; i < 9; i++)
2045  memcpy(temp + i*stride, loop + (i + 1) * loop_stride + 1, 9);
2046 
2047  return 1;
2048 }
2049 #endif
2050 
2051 /*
2052  * Perform the final rendering for a particular slice of data.
2053  * The slice number ranges from 0..(c_superblock_height - 1).
2054  */
2055 static void render_slice(Vp3DecodeContext *s, int slice)
2056 {
2057  int x, y, i, j, fragment;
2058  int16_t *block = s->block;
2059  int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
2060  int motion_halfpel_index;
2061  uint8_t *motion_source;
2062  int plane, first_pixel;
2063 
2064  if (slice >= s->c_superblock_height)
2065  return;
2066 
2067  for (plane = 0; plane < 3; plane++) {
2068  uint8_t *output_plane = s->current_frame.f->data[plane] +
2069  s->data_offset[plane];
2070  uint8_t *last_plane = s->last_frame.f->data[plane] +
2071  s->data_offset[plane];
2072  uint8_t *golden_plane = s->golden_frame.f->data[plane] +
2073  s->data_offset[plane];
2074  ptrdiff_t stride = s->current_frame.f->linesize[plane];
2075  int plane_width = s->width >> (plane && s->chroma_x_shift);
2076  int plane_height = s->height >> (plane && s->chroma_y_shift);
2077  int8_t(*motion_val)[2] = s->motion_val[!!plane];
2078 
2079  int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
2080  int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
2081  int slice_width = plane ? s->c_superblock_width
2082  : s->y_superblock_width;
2083 
2084  int fragment_width = s->fragment_width[!!plane];
2085  int fragment_height = s->fragment_height[!!plane];
2086  int fragment_start = s->fragment_start[plane];
2087 
2088  int do_await = !plane && HAVE_THREADS &&
2090 
2091  if (!s->flipped_image)
2092  stride = -stride;
2093  if (CONFIG_GRAY && plane && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
2094  continue;
2095 
2096  /* for each superblock row in the slice (both of them)... */
2097  for (; sb_y < slice_height; sb_y++) {
2098  /* for each superblock in a row... */
2099  for (sb_x = 0; sb_x < slice_width; sb_x++) {
2100  /* for each block in a superblock... */
2101  for (j = 0; j < 16; j++) {
2102  x = 4 * sb_x + hilbert_offset[j][0];
2103  y = 4 * sb_y + hilbert_offset[j][1];
2104  fragment = y * fragment_width + x;
2105 
2106  i = fragment_start + fragment;
2107 
2108  // bounds check
2109  if (x >= fragment_width || y >= fragment_height)
2110  continue;
2111 
2112  first_pixel = 8 * y * stride + 8 * x;
2113 
2114  if (do_await &&
2117  motion_val[fragment][1],
2118  (16 * y) >> s->chroma_y_shift);
2119 
2120  /* transform if this block was coded */
2121  if (s->all_fragments[i].coding_method != MODE_COPY) {
2124  motion_source = golden_plane;
2125  else
2126  motion_source = last_plane;
2127 
2128  motion_source += first_pixel;
2129  motion_halfpel_index = 0;
2130 
2131  /* sort out the motion vector if this fragment is coded
2132  * using a motion vector method */
2133  if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
2135  int src_x, src_y;
2136  int standard_mc = 1;
2137  motion_x = motion_val[fragment][0];
2138  motion_y = motion_val[fragment][1];
2139 #if CONFIG_VP4_DECODER
2140  if (plane && s->version >= 2) {
2141  motion_x = (motion_x >> 1) | (motion_x & 1);
2142  motion_y = (motion_y >> 1) | (motion_y & 1);
2143  }
2144 #endif
2145 
2146  src_x = (motion_x >> 1) + 8 * x;
2147  src_y = (motion_y >> 1) + 8 * y;
2148 
2149  motion_halfpel_index = motion_x & 0x01;
2150  motion_source += (motion_x >> 1);
2151 
2152  motion_halfpel_index |= (motion_y & 0x01) << 1;
2153  motion_source += ((motion_y >> 1) * stride);
2154 
2155 #if CONFIG_VP4_DECODER
2156  if (s->version >= 2) {
2158  if (stride < 0)
2159  temp -= 8 * stride;
2160  if (vp4_mc_loop_filter(s, plane, motion_val[fragment][0], motion_val[fragment][1], x, y, motion_source, stride, src_x, src_y, temp)) {
2161  motion_source = temp;
2162  standard_mc = 0;
2163  }
2164  }
2165 #endif
2166 
2167  if (standard_mc && (
2168  src_x < 0 || src_y < 0 ||
2169  src_x + 9 >= plane_width ||
2170  src_y + 9 >= plane_height)) {
2172  if (stride < 0)
2173  temp -= 8 * stride;
2174 
2175  s->vdsp.emulated_edge_mc(temp, motion_source,
2176  stride, stride,
2177  9, 9, src_x, src_y,
2178  plane_width,
2179  plane_height);
2180  motion_source = temp;
2181  }
2182  }
2183 
2184  /* first, take care of copying a block from either the
2185  * previous or the golden frame */
2186  if (s->all_fragments[i].coding_method != MODE_INTRA) {
2187  /* Note, it is possible to implement all MC cases
2188  * with put_no_rnd_pixels_l2 which would look more
2189  * like the VP3 source but this would be slower as
2190  * put_no_rnd_pixels_tab is better optimized */
2191  if (motion_halfpel_index != 3) {
2192  s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
2193  output_plane + first_pixel,
2194  motion_source, stride, 8);
2195  } else {
2196  /* d is 0 if motion_x and _y have the same sign,
2197  * else -1 */
2198  int d = (motion_x ^ motion_y) >> 31;
2199  s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel,
2200  motion_source - d,
2201  motion_source + stride + 1 + d,
2202  stride, 8);
2203  }
2204  }
2205 
2206  /* invert DCT and place (or add) in final output */
2207 
2208  if (s->all_fragments[i].coding_method == MODE_INTRA) {
2209  vp3_dequant(s, s->all_fragments + i,
2210  plane, 0, block);
2211  s->vp3dsp.idct_put(output_plane + first_pixel,
2212  stride,
2213  block);
2214  } else {
2215  if (vp3_dequant(s, s->all_fragments + i,
2216  plane, 1, block)) {
2217  s->vp3dsp.idct_add(output_plane + first_pixel,
2218  stride,
2219  block);
2220  } else {
2221  s->vp3dsp.idct_dc_add(output_plane + first_pixel,
2222  stride, block);
2223  }
2224  }
2225  } else {
2226  /* copy directly from the previous frame */
2227  s->hdsp.put_pixels_tab[1][0](
2228  output_plane + first_pixel,
2229  last_plane + first_pixel,
2230  stride, 8);
2231  }
2232  }
2233  }
2234 
2235  // Filter up to the last row in the superblock row
2236  if (s->version < 2 && !s->skip_loop_filter)
2237  apply_loop_filter(s, plane, 4 * sb_y - !!sb_y,
2238  FFMIN(4 * sb_y + 3, fragment_height - 1));
2239  }
2240  }
2241 
2242  /* this looks like a good place for slice dispatch... */
2243  /* algorithm:
2244  * if (slice == s->macroblock_height - 1)
2245  * dispatch (both last slice & 2nd-to-last slice);
2246  * else if (slice > 0)
2247  * dispatch (slice - 1);
2248  */
2249 
2250  vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16,
2251  s->height - 16));
2252 }
2253 
2254 /// Allocate tables for per-frame data in Vp3DecodeContext
2256 {
2257  Vp3DecodeContext *s = avctx->priv_data;
2258  int y_fragment_count, c_fragment_count;
2259 
2260  free_tables(avctx);
2261 
2262  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
2263  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
2264 
2265  /* superblock_coding is used by unpack_superblocks (VP3/Theora) and vp4_unpack_macroblocks (VP4) */
2268 
2269  s-> kf_coded_fragment_list = av_mallocz_array(s->fragment_count, sizeof(int));
2271  memset(s-> num_kf_coded_fragment, -1, sizeof(s-> num_kf_coded_fragment));
2272 
2274  64 * sizeof(*s->dct_tokens_base));
2275  s->motion_val[0] = av_mallocz_array(y_fragment_count, sizeof(*s->motion_val[0]));
2276  s->motion_val[1] = av_mallocz_array(c_fragment_count, sizeof(*s->motion_val[1]));
2277 
2278  /* work out the block mapping tables */
2279  s->superblock_fragments = av_mallocz_array(s->superblock_count, 16 * sizeof(int));
2281 
2282  s->dc_pred_row = av_malloc_array(s->y_superblock_width * 4, sizeof(*s->dc_pred_row));
2283 
2284  if (!s->superblock_coding || !s->all_fragments ||
2288  !s->dc_pred_row ||
2289  !s->motion_val[0] || !s->motion_val[1]) {
2290  vp3_decode_end(avctx);
2291  return -1;
2292  }
2293 
2294  init_block_mapping(s);
2295 
2296  return 0;
2297 }
2298 
2300 {
2302  s->last_frame.f = av_frame_alloc();
2303  s->golden_frame.f = av_frame_alloc();
2304 
2305  if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f) {
2307  av_frame_free(&s->last_frame.f);
2309  return AVERROR(ENOMEM);
2310  }
2311 
2312  return 0;
2313 }
2314 
2316 {
2317  Vp3DecodeContext *s = avctx->priv_data;
2318  int i, inter, plane, ret;
2319  int c_width;
2320  int c_height;
2321  int y_fragment_count, c_fragment_count;
2322 #if CONFIG_VP4_DECODER
2323  int j;
2324 #endif
2325 
2326  ret = init_frames(s);
2327  if (ret < 0)
2328  return ret;
2329 
2330  if (avctx->codec_tag == MKTAG('V', 'P', '4', '0'))
2331  s->version = 3;
2332  else if (avctx->codec_tag == MKTAG('V', 'P', '3', '0'))
2333  s->version = 0;
2334  else
2335  s->version = 1;
2336 
2337  s->avctx = avctx;
2338  s->width = FFALIGN(avctx->coded_width, 16);
2339  s->height = FFALIGN(avctx->coded_height, 16);
2340  if (avctx->codec_id != AV_CODEC_ID_THEORA)
2341  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
2344  ff_videodsp_init(&s->vdsp, 8);
2345  ff_vp3dsp_init(&s->vp3dsp, avctx->flags);
2346 
2347  for (i = 0; i < 64; i++) {
2348 #define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3))
2349  s->idct_permutation[i] = TRANSPOSE(i);
2351 #undef TRANSPOSE
2352  }
2353 
2354  /* initialize to an impossible value which will force a recalculation
2355  * in the first frame decode */
2356  for (i = 0; i < 3; i++)
2357  s->qps[i] = -1;
2358 
2360  if (ret)
2361  return ret;
2362 
2363  s->y_superblock_width = (s->width + 31) / 32;
2364  s->y_superblock_height = (s->height + 31) / 32;
2366 
2367  /* work out the dimensions for the C planes */
2368  c_width = s->width >> s->chroma_x_shift;
2369  c_height = s->height >> s->chroma_y_shift;
2370  s->c_superblock_width = (c_width + 31) / 32;
2371  s->c_superblock_height = (c_height + 31) / 32;
2373 
2377 
2378  s->macroblock_width = (s->width + 15) / 16;
2379  s->macroblock_height = (s->height + 15) / 16;
2381  s->c_macroblock_width = (c_width + 15) / 16;
2382  s->c_macroblock_height = (c_height + 15) / 16;
2385 
2386  s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
2387  s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
2388  s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift;
2389  s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
2390 
2391  /* fragment count covers all 8x8 blocks for all 3 planes */
2392  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
2393  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
2394  s->fragment_count = y_fragment_count + 2 * c_fragment_count;
2395  s->fragment_start[1] = y_fragment_count;
2396  s->fragment_start[2] = y_fragment_count + c_fragment_count;
2397 
2398  if (!s->theora_tables) {
2399  for (i = 0; i < 64; i++) {
2407  }
2408 
2409  for (inter = 0; inter < 2; inter++) {
2410  for (plane = 0; plane < 3; plane++) {
2411  s->qr_count[inter][plane] = 1;
2412  s->qr_size[inter][plane][0] = 63;
2413  s->qr_base[inter][plane][0] =
2414  s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter;
2415  }
2416  }
2417 
2418  /* init VLC tables */
2419  if (s->version < 2) {
2420  for (i = 0; i < 16; i++) {
2421  /* DC histograms */
2422  init_vlc(&s->dc_vlc[i], 11, 32,
2423  &dc_bias[i][0][1], 4, 2,
2424  &dc_bias[i][0][0], 4, 2, 0);
2425 
2426  /* group 1 AC histograms */
2427  init_vlc(&s->ac_vlc_1[i], 11, 32,
2428  &ac_bias_0[i][0][1], 4, 2,
2429  &ac_bias_0[i][0][0], 4, 2, 0);
2430 
2431  /* group 2 AC histograms */
2432  init_vlc(&s->ac_vlc_2[i], 11, 32,
2433  &ac_bias_1[i][0][1], 4, 2,
2434  &ac_bias_1[i][0][0], 4, 2, 0);
2435 
2436  /* group 3 AC histograms */
2437  init_vlc(&s->ac_vlc_3[i], 11, 32,
2438  &ac_bias_2[i][0][1], 4, 2,
2439  &ac_bias_2[i][0][0], 4, 2, 0);
2440 
2441  /* group 4 AC histograms */
2442  init_vlc(&s->ac_vlc_4[i], 11, 32,
2443  &ac_bias_3[i][0][1], 4, 2,
2444  &ac_bias_3[i][0][0], 4, 2, 0);
2445  }
2446 #if CONFIG_VP4_DECODER
2447  } else { /* version >= 2 */
2448  for (i = 0; i < 16; i++) {
2449  /* DC histograms */
2450  init_vlc(&s->dc_vlc[i], 11, 32,
2451  &vp4_dc_bias[i][0][1], 4, 2,
2452  &vp4_dc_bias[i][0][0], 4, 2, 0);
2453 
2454  /* group 1 AC histograms */
2455  init_vlc(&s->ac_vlc_1[i], 11, 32,
2456  &vp4_ac_bias_0[i][0][1], 4, 2,
2457  &vp4_ac_bias_0[i][0][0], 4, 2, 0);
2458 
2459  /* group 2 AC histograms */
2460  init_vlc(&s->ac_vlc_2[i], 11, 32,
2461  &vp4_ac_bias_1[i][0][1], 4, 2,
2462  &vp4_ac_bias_1[i][0][0], 4, 2, 0);
2463 
2464  /* group 3 AC histograms */
2465  init_vlc(&s->ac_vlc_3[i], 11, 32,
2466  &vp4_ac_bias_2[i][0][1], 4, 2,
2467  &vp4_ac_bias_2[i][0][0], 4, 2, 0);
2468 
2469  /* group 4 AC histograms */
2470  init_vlc(&s->ac_vlc_4[i], 11, 32,
2471  &vp4_ac_bias_3[i][0][1], 4, 2,
2472  &vp4_ac_bias_3[i][0][0], 4, 2, 0);
2473  }
2474 #endif
2475  }
2476  } else {
2477  for (i = 0; i < 16; i++) {
2478  /* DC histograms */
2479  if (init_vlc(&s->dc_vlc[i], 11, 32,
2480  &s->huffman_table[i][0][1], 8, 4,
2481  &s->huffman_table[i][0][0], 8, 4, 0) < 0)
2482  goto vlc_fail;
2483 
2484  /* group 1 AC histograms */
2485  if (init_vlc(&s->ac_vlc_1[i], 11, 32,
2486  &s->huffman_table[i + 16][0][1], 8, 4,
2487  &s->huffman_table[i + 16][0][0], 8, 4, 0) < 0)
2488  goto vlc_fail;
2489 
2490  /* group 2 AC histograms */
2491  if (init_vlc(&s->ac_vlc_2[i], 11, 32,
2492  &s->huffman_table[i + 16 * 2][0][1], 8, 4,
2493  &s->huffman_table[i + 16 * 2][0][0], 8, 4, 0) < 0)
2494  goto vlc_fail;
2495 
2496  /* group 3 AC histograms */
2497  if (init_vlc(&s->ac_vlc_3[i], 11, 32,
2498  &s->huffman_table[i + 16 * 3][0][1], 8, 4,
2499  &s->huffman_table[i + 16 * 3][0][0], 8, 4, 0) < 0)
2500  goto vlc_fail;
2501 
2502  /* group 4 AC histograms */
2503  if (init_vlc(&s->ac_vlc_4[i], 11, 32,
2504  &s->huffman_table[i + 16 * 4][0][1], 8, 4,
2505  &s->huffman_table[i + 16 * 4][0][0], 8, 4, 0) < 0)
2506  goto vlc_fail;
2507  }
2508  }
2509 
2511  &superblock_run_length_vlc_table[0][1], 4, 2,
2512  &superblock_run_length_vlc_table[0][0], 4, 2, 0);
2513 
2514  init_vlc(&s->fragment_run_length_vlc, 5, 30,
2515  &fragment_run_length_vlc_table[0][1], 4, 2,
2516  &fragment_run_length_vlc_table[0][0], 4, 2, 0);
2517 
2518  init_vlc(&s->mode_code_vlc, 3, 8,
2519  &mode_code_vlc_table[0][1], 2, 1,
2520  &mode_code_vlc_table[0][0], 2, 1, 0);
2521 
2522  init_vlc(&s->motion_vector_vlc, 6, 63,
2523  &motion_vector_vlc_table[0][1], 2, 1,
2524  &motion_vector_vlc_table[0][0], 2, 1, 0);
2525 
2526 #if CONFIG_VP4_DECODER
2527  for (j = 0; j < 2; j++)
2528  for (i = 0; i < 7; i++)
2529  init_vlc(&s->vp4_mv_vlc[j][i], 6, 63,
2530  &vp4_mv_vlc[j][i][0][1], 4, 2,
2531  &vp4_mv_vlc[j][i][0][0], 4, 2, 0);
2532 
2533  /* version >= 2 */
2534  for (i = 0; i < 2; i++)
2535  init_vlc(&s->block_pattern_vlc[i], 3, 14,
2536  &vp4_block_pattern_vlc[i][0][1], 2, 1,
2537  &vp4_block_pattern_vlc[i][0][0], 2, 1, 0);
2538 #endif
2539 
2540  return allocate_tables(avctx);
2541 
2542 vlc_fail:
2543  av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
2544  return -1;
2545 }
2546 
2547 /// Release and shuffle frames after decode finishes
2548 static int update_frames(AVCodecContext *avctx)
2549 {
2550  Vp3DecodeContext *s = avctx->priv_data;
2551  int ret = 0;
2552 
2553  /* shuffle frames (last = current) */
2556  if (ret < 0)
2557  goto fail;
2558 
2559  if (s->keyframe) {
2562  }
2563 
2564 fail:
2566  return ret;
2567 }
2568 
2569 #if HAVE_THREADS
2570 static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src)
2571 {
2573  if (src->f->data[0])
2574  return ff_thread_ref_frame(dst, src);
2575  return 0;
2576 }
2577 
2578 static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src)
2579 {
2580  int ret;
2581  if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 ||
2582  (ret = ref_frame(dst, &dst->golden_frame, &src->golden_frame)) < 0 ||
2583  (ret = ref_frame(dst, &dst->last_frame, &src->last_frame)) < 0)
2584  return ret;
2585  return 0;
2586 }
2587 
2588 static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
2589 {
2590  Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
2591  int qps_changed = 0, i, err;
2592 
2593  if (!s1->current_frame.f->data[0] ||
2594  s->width != s1->width || s->height != s1->height) {
2595  if (s != s1)
2596  ref_frames(s, s1);
2597  return -1;
2598  }
2599 
2600  if (s != s1) {
2601  // copy previous frame data
2602  if ((err = ref_frames(s, s1)) < 0)
2603  return err;
2604 
2605  s->keyframe = s1->keyframe;
2606 
2607  // copy qscale data if necessary
2608  for (i = 0; i < 3; i++) {
2609  if (s->qps[i] != s1->qps[1]) {
2610  qps_changed = 1;
2611  memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
2612  }
2613  }
2614 
2615  if (s->qps[0] != s1->qps[0])
2616  memcpy(&s->bounding_values_array, &s1->bounding_values_array,
2617  sizeof(s->bounding_values_array));
2618 
2619  if (qps_changed) {
2620  memcpy(s->qps, s1->qps, sizeof(s->qps));
2621  memcpy(s->last_qps, s1->last_qps, sizeof(s->last_qps));
2622  s->nqps = s1->nqps;
2623  }
2624  }
2625 
2626  return update_frames(dst);
2627 }
2628 #endif
2629 
2631  void *data, int *got_frame,
2632  AVPacket *avpkt)
2633 {
2634  AVFrame *frame = data;
2635  const uint8_t *buf = avpkt->data;
2636  int buf_size = avpkt->size;
2637  Vp3DecodeContext *s = avctx->priv_data;
2638  GetBitContext gb;
2639  int i, ret;
2640 
2641  if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0)
2642  return ret;
2643 
2644 #if CONFIG_THEORA_DECODER
2645  if (s->theora && get_bits1(&gb)) {
2646  int type = get_bits(&gb, 7);
2647  skip_bits_long(&gb, 6*8); /* "theora" */
2648 
2650  av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n");
2651  return AVERROR_PATCHWELCOME;
2652  }
2653  if (type == 0) {
2654  vp3_decode_end(avctx);
2655  ret = theora_decode_header(avctx, &gb);
2656 
2657  if (ret >= 0)
2658  ret = vp3_decode_init(avctx);
2659  if (ret < 0) {
2660  vp3_decode_end(avctx);
2661  return ret;
2662  }
2663  return buf_size;
2664  } else if (type == 2) {
2665  vp3_decode_end(avctx);
2666  ret = theora_decode_tables(avctx, &gb);
2667  if (ret >= 0)
2668  ret = vp3_decode_init(avctx);
2669  if (ret < 0) {
2670  vp3_decode_end(avctx);
2671  return ret;
2672  }
2673  return buf_size;
2674  }
2675 
2676  av_log(avctx, AV_LOG_ERROR,
2677  "Header packet passed to frame decoder, skipping\n");
2678  return -1;
2679  }
2680 #endif
2681 
2682  s->keyframe = !get_bits1(&gb);
2683  if (!s->all_fragments) {
2684  av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n");
2685  return -1;
2686  }
2687  if (!s->theora)
2688  skip_bits(&gb, 1);
2689  for (i = 0; i < 3; i++)
2690  s->last_qps[i] = s->qps[i];
2691 
2692  s->nqps = 0;
2693  do {
2694  s->qps[s->nqps++] = get_bits(&gb, 6);
2695  } while (s->theora >= 0x030200 && s->nqps < 3 && get_bits1(&gb));
2696  for (i = s->nqps; i < 3; i++)
2697  s->qps[i] = -1;
2698 
2699  if (s->avctx->debug & FF_DEBUG_PICT_INFO)
2700  av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
2701  s->keyframe ? "key" : "", avctx->frame_number + 1, s->qps[0]);
2702 
2703  s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
2704  avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL
2705  : AVDISCARD_NONKEY);
2706 
2707  if (s->qps[0] != s->last_qps[0])
2708  init_loop_filter(s);
2709 
2710  for (i = 0; i < s->nqps; i++)
2711  // reinit all dequantizers if the first one changed, because
2712  // the DC of the first quantizer must be used for all matrices
2713  if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
2714  init_dequantizer(s, i);
2715 
2716  if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
2717  return buf_size;
2718 
2721  s->current_frame.f->key_frame = s->keyframe;
2722  if ((ret = ff_thread_get_buffer(avctx, &s->current_frame, AV_GET_BUFFER_FLAG_REF)) < 0)
2723  goto error;
2724 
2725  if (!s->edge_emu_buffer)
2727 
2728  if (s->keyframe) {
2729  if (!s->theora) {
2730  skip_bits(&gb, 4); /* width code */
2731  skip_bits(&gb, 4); /* height code */
2732  if (s->version) {
2733  s->version = get_bits(&gb, 5);
2734  if (avctx->frame_number == 0)
2736  "VP version: %d\n", s->version);
2737  }
2738  }
2739  if (s->version || s->theora) {
2740  if (get_bits1(&gb))
2742  "Warning, unsupported keyframe coding type?!\n");
2743  skip_bits(&gb, 2); /* reserved? */
2744 
2745 #if CONFIG_VP4_DECODER
2746  if (s->version >= 2) {
2747  int mb_height, mb_width;
2748  int mb_width_mul, mb_width_div, mb_height_mul, mb_height_div;
2749 
2750  mb_height = get_bits(&gb, 8);
2751  mb_width = get_bits(&gb, 8);
2752  if (mb_height != s->macroblock_height ||
2753  mb_width != s->macroblock_width)
2754  avpriv_request_sample(s->avctx, "macroblock dimension mismatch");
2755 
2756  mb_width_mul = get_bits(&gb, 5);
2757  mb_width_div = get_bits(&gb, 3);
2758  mb_height_mul = get_bits(&gb, 5);
2759  mb_height_div = get_bits(&gb, 3);
2760  if (mb_width_mul != 1 || mb_width_div != 1 || mb_height_mul != 1 || mb_height_div != 1)
2761  avpriv_request_sample(s->avctx, "unexpected macroblock dimension multipler/divider");
2762 
2763  if (get_bits(&gb, 2))
2764  avpriv_request_sample(s->avctx, "unknown bits");
2765  }
2766 #endif
2767  }
2768  } else {
2769  if (!s->golden_frame.f->data[0]) {
2771  "vp3: first frame not a keyframe\n");
2772 
2774  if ((ret = ff_thread_get_buffer(avctx, &s->golden_frame,
2775  AV_GET_BUFFER_FLAG_REF)) < 0)
2776  goto error;
2778  if ((ret = ff_thread_ref_frame(&s->last_frame,
2779  &s->golden_frame)) < 0)
2780  goto error;
2781  ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
2782  }
2783  }
2784 
2785  memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
2786  ff_thread_finish_setup(avctx);
2787 
2788  if (s->version < 2) {
2789  if ((ret = unpack_superblocks(s, &gb)) < 0) {
2790  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2791  goto error;
2792  }
2793 #if CONFIG_VP4_DECODER
2794  } else {
2795  if ((ret = vp4_unpack_macroblocks(s, &gb)) < 0) {
2796  av_log(s->avctx, AV_LOG_ERROR, "error in vp4_unpack_macroblocks\n");
2797  goto error;
2798  }
2799 #endif
2800  }
2801  if ((ret = unpack_modes(s, &gb)) < 0) {
2802  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2803  goto error;
2804  }
2805  if (ret = unpack_vectors(s, &gb)) {
2806  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2807  goto error;
2808  }
2809  if ((ret = unpack_block_qpis(s, &gb)) < 0) {
2810  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
2811  goto error;
2812  }
2813 
2814  if (s->version < 2) {
2815  if ((ret = unpack_dct_coeffs(s, &gb)) < 0) {
2816  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2817  goto error;
2818  }
2819 #if CONFIG_VP4_DECODER
2820  } else {
2821  if ((ret = vp4_unpack_dct_coeffs(s, &gb)) < 0) {
2822  av_log(s->avctx, AV_LOG_ERROR, "error in vp4_unpack_dct_coeffs\n");
2823  goto error;
2824  }
2825 #endif
2826  }
2827 
2828  for (i = 0; i < 3; i++) {
2829  int height = s->height >> (i && s->chroma_y_shift);
2830  if (s->flipped_image)
2831  s->data_offset[i] = 0;
2832  else
2833  s->data_offset[i] = (height - 1) * s->current_frame.f->linesize[i];
2834  }
2835 
2836  s->last_slice_end = 0;
2837  for (i = 0; i < s->c_superblock_height; i++)
2838  render_slice(s, i);
2839 
2840  // filter the last row
2841  if (s->version < 2)
2842  for (i = 0; i < 3; i++) {
2843  int row = (s->height >> (3 + (i && s->chroma_y_shift))) - 1;
2844  apply_loop_filter(s, i, row, row + 1);
2845  }
2846  vp3_draw_horiz_band(s, s->height);
2847 
2848  /* output frame, offset as needed */
2849  if ((ret = av_frame_ref(data, s->current_frame.f)) < 0)
2850  return ret;
2851 
2852  frame->crop_left = s->offset_x;
2853  frame->crop_right = avctx->coded_width - avctx->width - s->offset_x;
2854  frame->crop_top = s->offset_y;
2855  frame->crop_bottom = avctx->coded_height - avctx->height - s->offset_y;
2856 
2857  *got_frame = 1;
2858 
2860  ret = update_frames(avctx);
2861  if (ret < 0)
2862  return ret;
2863  }
2864 
2865  return buf_size;
2866 
2867 error:
2868  ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
2869 
2872 
2873  return ret;
2874 }
2875 
2877 {
2878  Vp3DecodeContext *s = avctx->priv_data;
2879 
2880  if (get_bits1(gb)) {
2881  int token;
2882  if (s->entries >= 32) { /* overflow */
2883  av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2884  return -1;
2885  }
2886  token = get_bits(gb, 5);
2887  ff_dlog(avctx, "hti %d hbits %x token %d entry : %d size %d\n",
2888  s->hti, s->hbits, token, s->entries, s->huff_code_size);
2889  s->huffman_table[s->hti][token][0] = s->hbits;
2890  s->huffman_table[s->hti][token][1] = s->huff_code_size;
2891  s->entries++;
2892  } else {
2893  if (s->huff_code_size >= 32) { /* overflow */
2894  av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2895  return -1;
2896  }
2897  s->huff_code_size++;
2898  s->hbits <<= 1;
2899  if (read_huffman_tree(avctx, gb))
2900  return -1;
2901  s->hbits |= 1;
2902  if (read_huffman_tree(avctx, gb))
2903  return -1;
2904  s->hbits >>= 1;
2905  s->huff_code_size--;
2906  }
2907  return 0;
2908 }
2909 
2910 #if CONFIG_THEORA_DECODER
2911 static const enum AVPixelFormat theora_pix_fmts[4] = {
2913 };
2914 
2915 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2916 {
2917  Vp3DecodeContext *s = avctx->priv_data;
2918  int visible_width, visible_height, colorspace;
2919  uint8_t offset_x = 0, offset_y = 0;
2920  int ret;
2921  AVRational fps, aspect;
2922 
2923  s->theora_header = 0;
2924  s->theora = get_bits(gb, 24);
2925  av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2926  if (!s->theora) {
2927  s->theora = 1;
2928  avpriv_request_sample(s->avctx, "theora 0");
2929  }
2930 
2931  /* 3.2.0 aka alpha3 has the same frame orientation as original vp3
2932  * but previous versions have the image flipped relative to vp3 */
2933  if (s->theora < 0x030200) {
2934  s->flipped_image = 1;
2935  av_log(avctx, AV_LOG_DEBUG,
2936  "Old (<alpha3) Theora bitstream, flipped image\n");
2937  }
2938 
2939  visible_width =
2940  s->width = get_bits(gb, 16) << 4;
2941  visible_height =
2942  s->height = get_bits(gb, 16) << 4;
2943 
2944  if (s->theora >= 0x030200) {
2945  visible_width = get_bits(gb, 24);
2946  visible_height = get_bits(gb, 24);
2947 
2948  offset_x = get_bits(gb, 8); /* offset x */
2949  offset_y = get_bits(gb, 8); /* offset y, from bottom */
2950  }
2951 
2952  /* sanity check */
2953  if (av_image_check_size(visible_width, visible_height, 0, avctx) < 0 ||
2954  visible_width + offset_x > s->width ||
2955  visible_height + offset_y > s->height) {
2956  av_log(avctx, AV_LOG_ERROR,
2957  "Invalid frame dimensions - w:%d h:%d x:%d y:%d (%dx%d).\n",
2958  visible_width, visible_height, offset_x, offset_y,
2959  s->width, s->height);
2960  return AVERROR_INVALIDDATA;
2961  }
2962 
2963  fps.num = get_bits_long(gb, 32);
2964  fps.den = get_bits_long(gb, 32);
2965  if (fps.num && fps.den) {
2966  if (fps.num < 0 || fps.den < 0) {
2967  av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n");
2968  return AVERROR_INVALIDDATA;
2969  }
2970  av_reduce(&avctx->framerate.den, &avctx->framerate.num,
2971  fps.den, fps.num, 1 << 30);
2972  }
2973 
2974  aspect.num = get_bits(gb, 24);
2975  aspect.den = get_bits(gb, 24);
2976  if (aspect.num && aspect.den) {
2978  &avctx->sample_aspect_ratio.den,
2979  aspect.num, aspect.den, 1 << 30);
2980  ff_set_sar(avctx, avctx->sample_aspect_ratio);
2981  }
2982 
2983  if (s->theora < 0x030200)
2984  skip_bits(gb, 5); /* keyframe frequency force */
2985  colorspace = get_bits(gb, 8);
2986  skip_bits(gb, 24); /* bitrate */
2987 
2988  skip_bits(gb, 6); /* quality hint */
2989 
2990  if (s->theora >= 0x030200) {
2991  skip_bits(gb, 5); /* keyframe frequency force */
2992  avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
2993  if (avctx->pix_fmt == AV_PIX_FMT_NONE) {
2994  av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n");
2995  return AVERROR_INVALIDDATA;
2996  }
2997  skip_bits(gb, 3); /* reserved */
2998  } else
2999  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
3000 
3001  ret = ff_set_dimensions(avctx, s->width, s->height);
3002  if (ret < 0)
3003  return ret;
3004  if (!(avctx->flags2 & AV_CODEC_FLAG2_IGNORE_CROP)) {
3005  avctx->width = visible_width;
3006  avctx->height = visible_height;
3007  // translate offsets from theora axis ([0,0] lower left)
3008  // to normal axis ([0,0] upper left)
3009  s->offset_x = offset_x;
3010  s->offset_y = s->height - visible_height - offset_y;
3011  }
3012 
3013  if (colorspace == 1)
3015  else if (colorspace == 2)
3017 
3018  if (colorspace == 1 || colorspace == 2) {
3019  avctx->colorspace = AVCOL_SPC_BT470BG;
3020  avctx->color_trc = AVCOL_TRC_BT709;
3021  }
3022 
3023  s->theora_header = 1;
3024  return 0;
3025 }
3026 
3027 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
3028 {
3029  Vp3DecodeContext *s = avctx->priv_data;
3030  int i, n, matrices, inter, plane;
3031 
3032  if (!s->theora_header)
3033  return AVERROR_INVALIDDATA;
3034 
3035  if (s->theora >= 0x030200) {
3036  n = get_bits(gb, 3);
3037  /* loop filter limit values table */
3038  if (n)
3039  for (i = 0; i < 64; i++)
3040  s->filter_limit_values[i] = get_bits(gb, n);
3041  }
3042 
3043  if (s->theora >= 0x030200)
3044  n = get_bits(gb, 4) + 1;
3045  else
3046  n = 16;
3047  /* quality threshold table */
3048  for (i = 0; i < 64; i++)
3049  s->coded_ac_scale_factor[i] = get_bits(gb, n);
3050 
3051  if (s->theora >= 0x030200)
3052  n = get_bits(gb, 4) + 1;
3053  else
3054  n = 16;
3055  /* dc scale factor table */
3056  for (i = 0; i < 64; i++)
3057  s->coded_dc_scale_factor[0][i] =
3058  s->coded_dc_scale_factor[1][i] = get_bits(gb, n);
3059 
3060  if (s->theora >= 0x030200)
3061  matrices = get_bits(gb, 9) + 1;
3062  else
3063  matrices = 3;
3064 
3065  if (matrices > 384) {
3066  av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
3067  return -1;
3068  }
3069 
3070  for (n = 0; n < matrices; n++)
3071  for (i = 0; i < 64; i++)
3072  s->base_matrix[n][i] = get_bits(gb, 8);
3073 
3074  for (inter = 0; inter <= 1; inter++) {
3075  for (plane = 0; plane <= 2; plane++) {
3076  int newqr = 1;
3077  if (inter || plane > 0)
3078  newqr = get_bits1(gb);
3079  if (!newqr) {
3080  int qtj, plj;
3081  if (inter && get_bits1(gb)) {
3082  qtj = 0;
3083  plj = plane;
3084  } else {
3085  qtj = (3 * inter + plane - 1) / 3;
3086  plj = (plane + 2) % 3;
3087  }
3088  s->qr_count[inter][plane] = s->qr_count[qtj][plj];
3089  memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj],
3090  sizeof(s->qr_size[0][0]));
3091  memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj],
3092  sizeof(s->qr_base[0][0]));
3093  } else {
3094  int qri = 0;
3095  int qi = 0;
3096 
3097  for (;;) {
3098  i = get_bits(gb, av_log2(matrices - 1) + 1);
3099  if (i >= matrices) {
3100  av_log(avctx, AV_LOG_ERROR,
3101  "invalid base matrix index\n");
3102  return -1;
3103  }
3104  s->qr_base[inter][plane][qri] = i;
3105  if (qi >= 63)
3106  break;
3107  i = get_bits(gb, av_log2(63 - qi) + 1) + 1;
3108  s->qr_size[inter][plane][qri++] = i;
3109  qi += i;
3110  }
3111 
3112  if (qi > 63) {
3113  av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
3114  return -1;
3115  }
3116  s->qr_count[inter][plane] = qri;
3117  }
3118  }
3119  }
3120 
3121  /* Huffman tables */
3122  for (s->hti = 0; s->hti < 80; s->hti++) {
3123  s->entries = 0;
3124  s->huff_code_size = 1;
3125  if (!get_bits1(gb)) {
3126  s->hbits = 0;
3127  if (read_huffman_tree(avctx, gb))
3128  return -1;
3129  s->hbits = 1;
3130  if (read_huffman_tree(avctx, gb))
3131  return -1;
3132  }
3133  }
3134 
3135  s->theora_tables = 1;
3136 
3137  return 0;
3138 }
3139 
3140 static av_cold int theora_decode_init(AVCodecContext *avctx)
3141 {
3142  Vp3DecodeContext *s = avctx->priv_data;
3143  GetBitContext gb;
3144  int ptype;
3145  const uint8_t *header_start[3];
3146  int header_len[3];
3147  int i;
3148  int ret;
3149 
3150  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
3151 
3152  s->theora = 1;
3153 
3154  if (!avctx->extradata_size) {
3155  av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
3156  return -1;
3157  }
3158 
3160  42, header_start, header_len) < 0) {
3161  av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
3162  return -1;
3163  }
3164 
3165  for (i = 0; i < 3; i++) {
3166  if (header_len[i] <= 0)
3167  continue;
3168  ret = init_get_bits8(&gb, header_start[i], header_len[i]);
3169  if (ret < 0)
3170  return ret;
3171 
3172  ptype = get_bits(&gb, 8);
3173 
3174  if (!(ptype & 0x80)) {
3175  av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
3176 // return -1;
3177  }
3178 
3179  // FIXME: Check for this as well.
3180  skip_bits_long(&gb, 6 * 8); /* "theora" */
3181 
3182  switch (ptype) {
3183  case 0x80:
3184  if (theora_decode_header(avctx, &gb) < 0)
3185  return -1;
3186  break;
3187  case 0x81:
3188 // FIXME: is this needed? it breaks sometimes
3189 // theora_decode_comments(avctx, gb);
3190  break;
3191  case 0x82:
3192  if (theora_decode_tables(avctx, &gb))
3193  return -1;
3194  break;
3195  default:
3196  av_log(avctx, AV_LOG_ERROR,
3197  "Unknown Theora config packet: %d\n", ptype & ~0x80);
3198  break;
3199  }
3200  if (ptype != 0x81 && 8 * header_len[i] != get_bits_count(&gb))
3201  av_log(avctx, AV_LOG_WARNING,
3202  "%d bits left in packet %X\n",
3203  8 * header_len[i] - get_bits_count(&gb), ptype);
3204  if (s->theora < 0x030200)
3205  break;
3206  }
3207 
3208  return vp3_decode_init(avctx);
3209 }
3210 
3212  .name = "theora",
3213  .long_name = NULL_IF_CONFIG_SMALL("Theora"),
3214  .type = AVMEDIA_TYPE_VIDEO,
3215  .id = AV_CODEC_ID_THEORA,
3216  .priv_data_size = sizeof(Vp3DecodeContext),
3217  .init = theora_decode_init,
3218  .close = vp3_decode_end,
3223  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
3225 };
3226 #endif
3227 
3229  .name = "vp3",
3230  .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
3231  .type = AVMEDIA_TYPE_VIDEO,
3232  .id = AV_CODEC_ID_VP3,
3233  .priv_data_size = sizeof(Vp3DecodeContext),
3234  .init = vp3_decode_init,
3235  .close = vp3_decode_end,
3240  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
3241  .caps_internal = FF_CODEC_CAP_ALLOCATE_PROGRESS,
3242 };
3243 
3244 #if CONFIG_VP4_DECODER
3246  .name = "vp4",
3247  .long_name = NULL_IF_CONFIG_SMALL("On2 VP4"),
3248  .type = AVMEDIA_TYPE_VIDEO,
3249  .id = AV_CODEC_ID_VP4,
3250  .priv_data_size = sizeof(Vp3DecodeContext),
3251  .init = vp3_decode_init,
3252  .close = vp3_decode_end,
3257  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
3258  .caps_internal = FF_CODEC_CAP_ALLOCATE_PROGRESS,
3259 };
3260 #endif
#define BLOCK_Y
Definition: vp3.c:641
AVCodec ff_vp4_decoder
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
int last_slice_end
Definition: vp3.c:175
uint8_t idct_scantable[64]
Definition: vp3.c:169
AVRational framerate
Definition: avcodec.h:2069
discard all frames except keyframes
Definition: avcodec.h:235
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
#define AV_NUM_DATA_POINTERS
Definition: frame.h:301
int16_t qmat[3][2][3][64]
qmat[qpi][is_inter][plane]
Definition: vp3.c:275
static int init_block_mapping(Vp3DecodeContext *s)
This function sets up all of the various blocks mappings: superblocks <-> fragments, macroblocks <-> fragments, superblocks <-> macroblocks.
Definition: vp3.c:379
#define SB_NOT_CODED
Definition: vp3.c:60
This structure describes decoded (raw) audio or video data.
Definition: frame.h:300
#define TOKEN_EOB(eob_run)
Definition: vp3.c:241
static void render_slice(Vp3DecodeContext *s, int slice)
Definition: vp3.c:2055
if(ret< 0)
Definition: vf_mcdeint.c:279
static const uint16_t vp4_dc_bias[16][32][2]
Definition: vp4data.h:371
#define PUR
int y_superblock_count
Definition: vp3.c:185
static void flush(AVCodecContext *avctx)
int bounding_values_array[256+2]
Definition: vp3.c:297
int coded_width
Bitstream width / height, may be different from width/height e.g.
Definition: avcodec.h:714
void(* put_no_rnd_pixels_l2)(uint8_t *dst, const uint8_t *a, const uint8_t *b, ptrdiff_t stride, int h)
Copy 8xH pixels from source to destination buffer using a bilinear filter with no rounding (i...
Definition: vp3dsp.h:36
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
misc image utilities
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static int get_coeff(GetBitContext *gb, int token, int16_t *coeff)
Definition: vp3.c:1147
uint16_t qr_base[2][3][64]
Definition: vp3.c:220
AVFrame * f
Definition: thread.h:35
else temp
Definition: vf_mcdeint.c:256
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:104
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:291
VLC mode_code_vlc
Definition: vp3.c:269
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
int y_superblock_width
Definition: vp3.c:183
static const uint16_t fragment_run_length_vlc_table[30][2]
Definition: vp3data.h:119
HpelDSPContext hdsp
Definition: vp3.c:170
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601 ...
Definition: pixfmt.h:515
#define avpriv_request_sample(...)
#define MODE_INTER_PLUS_MV
Definition: vp3.c:71
int num
Numerator.
Definition: rational.h:59
int size
Definition: packet.h:356
static av_cold int init_frames(Vp3DecodeContext *s)
Definition: vp3.c:2299
int u_superblock_start
Definition: vp3.c:189
#define BLOCK_X
Definition: vp3.c:640
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel...
Definition: avcodec.h:905
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:790
static const uint8_t zero_run_base[32]
Definition: vp3data.h:207
void(* v_loop_filter)(uint8_t *src, ptrdiff_t stride, int *bounding_values)
Definition: vp3dsp.h:44
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:736
uint8_t coding_method
Definition: vp3.c:56
static av_cold int vp3_decode_init(AVCodecContext *avctx)
Definition: vp3.c:2315
static const uint8_t coeff_get_bits[32]
Definition: vp3data.h:222
int num_kf_coded_fragment[3]
Definition: vp3.c:258
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:465
static const uint16_t vp4_ac_scale_factor[64]
Definition: vp4data.h:64
static void reverse_dc_prediction(Vp3DecodeContext *s, int first_fragment, int fragment_width, int fragment_height)
Definition: vp3.c:1629
discard all
Definition: avcodec.h:236
VLC ac_vlc_4[16]
Definition: vp3.c:264
size_t crop_bottom
Definition: frame.h:661
VLC motion_vector_vlc
Definition: vp3.c:270
static av_cold int vp3_decode_end(AVCodecContext *avctx)
Definition: vp3.c:334
static void error(const char *err)
#define init_vlc(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, codes, codes_wrap, codes_size, flags)
Definition: vlc.h:38
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
int huff_code_size
Definition: vp3.c:293
static const uint16_t vp4_ac_bias_0[16][32][2]
Definition: vp4data.h:534
int * superblock_fragments
Definition: vp3.c:281
VLC superblock_run_length_vlc
Definition: vp3.c:266
int stride
Definition: mace.c:144
AVCodec.
Definition: codec.h:190
#define MAXIMUM_LONG_BIT_RUN
Definition: vp3.c:67
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:71
static const uint16_t ac_bias_3[16][32][2]
Definition: vp3data.h:2633
void(* draw_horiz_band)(struct AVCodecContext *s, const AVFrame *src, int offset[AV_NUM_DATA_POINTERS], int y, int type, int height)
If non NULL, &#39;draw_horiz_band&#39; is called by the libavcodec decoder to draw a horizontal band...
Definition: avcodec.h:761
static const uint16_t dc_bias[16][32][2]
Definition: vp3data.h:445
Vp3Fragment * all_fragments
Definition: vp3.c:205
static void init_loop_filter(Vp3DecodeContext *s)
Definition: vp3.c:456
uint8_t base
Definition: vp3data.h:202
#define COMPATIBLE_FRAME(x)
Definition: vp3.c:1625
static int16_t block[64]
Definition: dct.c:115
int dc
Definition: vp3.c:152
void(* emulated_edge_mc)(uint8_t *dst, const uint8_t *src, ptrdiff_t dst_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:63
uint8_t offset_y
Definition: vp3.c:209
int y_superblock_height
Definition: vp3.c:184
#define TRANSPOSE(x)
uint8_t
#define av_cold
Definition: attributes.h:88
#define av_malloc(s)
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:903
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:190
VLC ac_vlc_1[16]
Definition: vp3.c:261
#define TOKEN_ZERO_RUN(coeff, zero_run)
Definition: vp3.c:242
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:1612
size_t crop_left
Definition: frame.h:662
static int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag, int plane, int inter, int16_t block[64])
Pull DCT tokens from the 64 levels to decode and dequant the coefficients for the next block in codin...
Definition: vp3.c:1846
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
static int FUNC() huffman_table(CodedBitstreamContext *ctx, RWContext *rw, JPEGRawHuffmanTable *current)
unsigned int hbits
Definition: vp3.c:291
Multithreading support functions.
int macroblock_width
Definition: vp3.c:194
uint8_t idct_permutation[64]
Definition: vp3.c:168
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:444
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
Definition: vp3.c:413
#define emms_c()
Definition: internal.h:55
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:627
static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, ptrdiff_t dst_pitch, int dst_height)
Convert and output the current plane.
Definition: indeo3.c:1027
uint8_t qpi
Definition: vp3.c:57
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:262
static void vp3_decode_flush(AVCodecContext *avctx)
Definition: vp3.c:322
static AVFrame * frame
#define DC_COEFF(u)
Definition: vp3.c:1627
const char data[16]
Definition: mxf.c:91
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
Definition: mem.h:112
#define height
uint8_t * data
Definition: packet.h:355
uint8_t filter_limit_values[64]
Definition: vp3.c:296
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
int ff_thread_ref_frame(ThreadFrame *dst, ThreadFrame *src)
Definition: utils.c:1840
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:119
#define ff_dlog(a,...)
bitstream reader API header.
VLC ac_vlc_2[16]
Definition: vp3.c:262
static const uint8_t vp31_intra_c_dequant[64]
Definition: vp3data.h:42
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
void ff_thread_finish_setup(AVCodecContext *avctx)
If the codec defines update_thread_context(), call this when they are ready for the next thread to st...
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:308
static const uint8_t mode_code_vlc_table[8][2]
Definition: vp3data.h:144
enum AVChromaLocation chroma_sample_location
This defines the location of chroma samples.
Definition: avcodec.h:1168
#define FFALIGN(x, a)
Definition: macros.h:48
#define MODE_INTRA
Definition: vp3.c:70
#define av_log(a,...)
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:1296
static const uint16_t table[]
Definition: prosumer.c:206
#define FF_CODEC_CAP_ALLOCATE_PROGRESS
Definition: internal.h:75
static void body(uint32_t ABCD[4], const uint8_t *src, int nblocks)
Definition: md5.c:101
static const uint16_t ac_bias_1[16][32][2]
Definition: vp3data.h:1539
int height
Definition: vp3.c:162
static const uint8_t vp4_pred_block_type_map[8]
Definition: vp3.c:140
#define U(x)
Definition: vp56_arith.h:37
#define src
Definition: vp8dsp.c:254
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
static int vp3_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
Definition: vp3.c:2630
static const uint8_t motion_vector_vlc_table[63][2]
Definition: vp3data.h:151
also FCC Title 47 Code of Federal Regulations 73.682 (a)(20)
Definition: pixfmt.h:460
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define AV_CODEC_FLAG2_IGNORE_CROP
Discard cropping information from SPS.
Definition: avcodec.h:371
VP3DSPContext vp3dsp
Definition: vp3.c:172
void ff_thread_release_buffer(AVCodecContext *avctx, ThreadFrame *f)
Wrapper around release_buffer() frame-for multithreaded codecs.
int c_superblock_width
Definition: vp3.c:186
uint8_t qr_count[2][3]
Definition: vp3.c:218
int fragment_height[2]
Definition: vp3.c:203
#define AVERROR(e)
Definition: error.h:43
VLC ac_vlc_3[16]
Definition: vp3.c:263
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:203
#define CODING_MODE_COUNT
Definition: vp3.c:77
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2577
void(* idct_add)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vp3dsp.h:42
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:1804
static const int8_t fixed_motion_vector_table[64]
Definition: vp3data.h:189
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:606
void(* h_loop_filter)(uint8_t *src, ptrdiff_t stride, int *bounding_values)
Definition: vp3dsp.h:45
AVCodec ff_theora_decoder
int theora
Definition: vp3.c:160
static av_cold void free_tables(AVCodecContext *avctx)
Definition: vp3.c:306
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:239
const char * name
Name of the codec implementation.
Definition: codec.h:197
uint8_t bits
Definition: vp3data.h:202
int theora_header
Definition: vp3.c:160
static const uint8_t offset[127][2]
Definition: vf_spp.c:93
#define FFMAX(a, b)
Definition: common.h:94
uint16_t coded_dc_scale_factor[2][64]
Definition: vp3.c:215
int qps[3]
Definition: vp3.c:178
#define fail()
Definition: checkasm.h:123
static const int ModeAlphabet[6][CODING_MODE_COUNT]
Definition: vp3.c:87
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: codec.h:106
#define FF_CODEC_CAP_EXPORTS_CROPPING
The decoder sets the cropping fields in the output frames manually.
Definition: internal.h:66
Definition: vlc.h:26
static const uint8_t *const tables[]
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
#define ONLY_IF_THREADS_ENABLED(x)
Define a function with only the non-default version specified.
Definition: internal.h:225
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
Definition: hpeldsp.c:338
static const int16_t *const coeff_tables[32]
Definition: vp3data.h:407
size_t crop_top
Definition: frame.h:660
int chroma_y_shift
Definition: vp3.c:163
int flipped_image
Definition: vp3.c:174
unsigned char * macroblock_coding
Definition: vp3.c:285
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
Definition: imgutils.c:282
Half-pel DSP context.
Definition: hpeldsp.h:45
int fragment_width[2]
Definition: vp3.c:202
#define AV_CODEC_CAP_DRAW_HORIZ_BAND
Decoder can use draw_horiz_band callback.
Definition: codec.h:44
int type
Definition: vp3.c:153
#define SET_CHROMA_MODES
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:383
static const uint8_t vp31_intra_y_dequant[64]
Definition: vp3data.h:29
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
Definition: avcodec.h:333
VLC block_pattern_vlc[2]
Definition: vp3.c:268
#define FF_THREAD_FRAME
Decode more than one frame at once.
Definition: avcodec.h:1796
#define FFMIN(a, b)
Definition: common.h:96
VLC fragment_run_length_vlc
Definition: vp3.c:267
VLC vp4_mv_vlc[2][7]
Definition: vp3.c:271
#define PU
#define width
#define FFSIGN(a)
Definition: common.h:73
int macroblock_height
Definition: vp3.c:195
int width
picture width / height.
Definition: avcodec.h:699
#define SB_PARTIALLY_CODED
Definition: vp3.c:61
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, VLC *table, int coeff_index, int plane, int eob_run)
Definition: vp3.c:1175
int yuv_macroblock_count
Definition: vp3.c:199
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM
Definition: pixfmt.h:462
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
uint8_t * edge_emu_buffer
Definition: vp3.c:287
static const uint8_t vp4_mv_table_selector[32]
Definition: vp4data.h:105
static const uint16_t vp4_ac_bias_3[16][32][2]
Definition: vp4data.h:1023
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:1140
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
Definition: get_bits.h:446
static const uint16_t vp31_ac_scale_factor[64]
Definition: vp3data.h:76
perm
Definition: f_perms.c:74
static const int8_t motion_vector_table[63]
Definition: vp3data.h:179
#define MODE_COPY
Definition: vp3.c:80
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
int avpriv_split_xiph_headers(const uint8_t *extradata, int extradata_size, int first_header_size, const uint8_t *header_start[3], int header_len[3])
Split a single extradata buffer into the three headers that most Xiph codecs use. ...
Definition: xiph.c:24
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:797
#define CONFIG_GRAY
Definition: config.h:549
static const uint16_t ac_bias_2[16][32][2]
Definition: vp3data.h:2086
static const uint8_t hilbert_offset[16][2]
Definition: vp3.c:125
static const uint8_t vp4_y_dc_scale_factor[64]
Definition: vp4data.h:42
int macroblock_count
Definition: vp3.c:193
int c_superblock_height
Definition: vp3.c:187
void ff_vp3dsp_h_loop_filter_12(uint8_t *first_pixel, ptrdiff_t stride, int *bounding_values)
int offset_x_warned
Definition: vp3.c:210
int total_num_coded_frags
Definition: vp3.c:250
void(* idct_dc_add)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vp3dsp.h:43
int c_superblock_count
Definition: vp3.c:188
#define av_log2
Definition: intmath.h:83
AVCodec ff_vp3_decoder
Definition: vp3.c:3228
VP4 video decoder.
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
Definition: vp3.c:1779
static const int8_t transform[32][32]
Definition: hevcdsp.c:27
also ITU-R BT1361
Definition: pixfmt.h:482
static const uint8_t vp4_filter_limit_values[64]
Definition: vp4data.h:75
Half-pel DSP functions.
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
int superblock_count
Definition: vp3.c:182
static const uint8_t vp4_block_pattern_table_selector[14]
Definition: vp4data.h:86
Libavcodec external API header.
int entries
Definition: vp3.c:292
static const uint16_t ac_bias_0[16][32][2]
Definition: vp3data.h:992
enum AVCodecID codec_id
Definition: avcodec.h:536
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:331
int16_t * dct_tokens[3][64]
This is a list of all tokens in bitstream order.
Definition: vp3.c:239
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:677
int skip_loop_filter
Definition: vp3.c:176
static int loop
Definition: ffplay.c:341
int debug
debug
Definition: avcodec.h:1611
int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
ThreadFrame current_frame
Definition: vp3.c:166
main external API structure.
Definition: avcodec.h:526
#define RSHIFT(a, b)
Definition: common.h:54
int last_qps[3]
Definition: vp3.c:180
static const uint8_t vp4_generic_dequant[64]
Definition: vp4data.h:31
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> (&#39;D&#39;<<24) + (&#39;C&#39;<<16) + (&#39;B&#39;<<8) + &#39;A&#39;).
Definition: avcodec.h:551
uint8_t qr_size[2][3][64]
Definition: vp3.c:219
op_pixels_func put_pixels_tab[4][4]
Halfpel motion compensation with rounding (a+b+1)>>1.
Definition: hpeldsp.h:56
#define PUL
static av_cold int allocate_tables(AVCodecContext *avctx)
Allocate tables for per-frame data in Vp3DecodeContext.
Definition: vp3.c:2255
int data_offset[3]
Definition: vp3.c:207
size_t crop_right
Definition: frame.h:663
int extradata_size
Definition: avcodec.h:628
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:498
int coded_height
Definition: avcodec.h:714
op_pixels_func put_no_rnd_pixels_tab[4][4]
Halfpel motion compensation with no rounding (a+b)>>1.
Definition: hpeldsp.h:82
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:467
#define SB_FULLY_CODED
Definition: vp3.c:62
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:1154
Rational number (pair of numerator and denominator).
Definition: rational.h:58
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:1147
cl_device_type type
int * nkf_coded_fragment_list
Definition: vp3.c:257
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
int num_coded_frags[3][64]
number of blocks that contain DCT coefficients at the given level or higher
Definition: vp3.c:249
int keyframe
Definition: vp3.c:167
#define TOKEN_COEFF(coeff)
Definition: vp3.c:243
#define s1
Definition: regdef.h:38
static int vp4_get_mv(Vp3DecodeContext *s, GetBitContext *gb, int axis, int last_motion)
Definition: vp3.c:893
static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2]
Definition: imc.c:120
#define MODE_GOLDEN_MV
Definition: vp3.c:75
static const uint8_t vp31_dc_scale_factor[64]
Definition: vp3data.h:65
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:546
#define FRAGMENT_PIXELS
Definition: vp3.c:51
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
Definition: vp3.c:2876
static int update_frames(AVCodecContext *avctx)
Release and shuffle frames after decode finishes.
Definition: vp3.c:2548
static const uint16_t superblock_run_length_vlc_table[34][2]
Definition: vp3data.h:98
#define MODE_USING_GOLDEN
Definition: vp3.c:74
uint32_t huffman_table[80][32][2]
Definition: vp3.c:294
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
Definition: frame.c:554
#define MODE_INTER_FOURMV
Definition: vp3.c:76
static const uint8_t vp4_uv_dc_scale_factor[64]
Definition: vp4data.h:53
int16_t block[64]
Definition: vp3.c:173
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:314
static const struct @167 eob_run_table[7]
int v_superblock_start
Definition: vp3.c:190
static const uint8_t vp4_block_pattern_vlc[2][14][2]
Definition: vp4data.h:90
static int theora_header(AVFormatContext *s, int idx)
int version
Definition: vp3.c:161
static const uint16_t vp4_ac_bias_2[16][32][2]
Definition: vp4data.h:860
void ff_vp3dsp_v_loop_filter_12(uint8_t *first_pixel, ptrdiff_t stride, int *bounding_values)
int * coded_fragment_list[3]
Definition: vp3.c:254
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
static const uint8_t vp31_inter_dequant[64]
Definition: vp3data.h:54
unsigned char * superblock_coding
Definition: vp3.c:191
common internal api header.
ThreadFrame last_frame
Definition: vp3.c:165
int16_t * dct_tokens_base
Definition: vp3.c:240
AVCodecContext * avctx
Definition: vp3.c:159
#define bit(string, value)
Definition: cbs_mpeg2.c:58
static int get_eob_run(GetBitContext *gb, int token)
Definition: vp3.c:1139
VideoDSPContext vdsp
Definition: vp3.c:171
int c_macroblock_width
Definition: vp3.c:197
static const uint16_t vp4_ac_bias_1[16][32][2]
Definition: vp4data.h:697
int den
Denominator.
Definition: rational.h:60
int c_macroblock_count
Definition: vp3.c:196
Core video DSP helper functions.
uint8_t base_matrix[384][64]
Definition: vp3.c:217
void ff_vp3dsp_set_bounding_values(int *bounding_values_array, int filter_limit)
Definition: vp3dsp.c:473
int fragment_count
Definition: vp3.c:201
void * priv_data
Definition: avcodec.h:553
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:1097
int * kf_coded_fragment_list
Definition: vp3.c:256
static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, int motion_y, int y)
Wait for the reference frame of the current fragment.
Definition: vp3.c:1933
VLC_TYPE(* table)[2]
code, bits
Definition: vlc.h:28
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:378
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
int c_macroblock_height
Definition: vp3.c:198
int flags2
AV_CODEC_FLAG2_*.
Definition: avcodec.h:613
#define HAVE_THREADS
Definition: config.h:273
#define MODE_INTER_PRIOR_LAST
Definition: vp3.c:73
#define MODE_INTER_NO_MV
Definition: vp3.c:69
VP4Predictor * dc_pred_row
Definition: vp3.c:299
int fragment_start[3]
Definition: vp3.c:206
int theora_tables
Definition: vp3.c:160
#define av_freep(p)
static const uint16_t vp4_mv_vlc[2][7][63][2]
Definition: vp4data.h:112
#define AV_LOG_FATAL
Something went wrong and recovery is not possible.
Definition: log.h:170
MPEG-1 4:2:0, JPEG 4:2:0, H.263 4:2:0.
Definition: pixfmt.h:557
#define VLC_TYPE
Definition: vlc.h:24
#define MODE_INTER_LAST_MV
Definition: vp3.c:72
#define av_malloc_array(a, b)
ThreadFrame golden_frame
Definition: vp3.c:164
int chroma_x_shift
Definition: vp3.c:163
void(* idct_put)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vp3dsp.h:41
av_cold void ff_vp3dsp_init(VP3DSPContext *c, int flags)
Definition: vp3dsp.c:445
static const uint8_t vp31_filter_limit_values[64]
Definition: vp3data.h:87
#define MKTAG(a, b, c, d)
Definition: common.h:406
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
This structure stores compressed data.
Definition: packet.h:332
static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
called when all pixels up to row y are complete
Definition: vp3.c:1891
void ff_free_vlc(VLC *vlc)
Definition: bitstream.c:359
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:509
int16_t dc
Definition: vp3.c:55
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:50
uint8_t offset_x
Definition: vp3.c:208
for(j=16;j >0;--j)
uint32_t coded_ac_scale_factor[64]
Definition: vp3.c:216
static const uint8_t zero_run_get_bits[32]
Definition: vp3data.h:214
Predicted.
Definition: avutil.h:275
VLC dc_vlc[16]
Definition: vp3.c:260
void * av_mallocz_array(size_t nmemb, size_t size)
Allocate a memory block for an array with av_mallocz().
Definition: mem.c:192
#define PL
int8_t(*[2] motion_val)[2]
Definition: vp3.c:212