FFmpeg  4.3
diracdec.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
3  * Copyright (C) 2009 David Conrad
4  * Copyright (C) 2011 Jordi Ortiz
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * Dirac Decoder
26  * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
27  */
28 
29 #include "libavutil/pixdesc.h"
30 #include "libavutil/thread.h"
31 #include "avcodec.h"
32 #include "get_bits.h"
33 #include "bytestream.h"
34 #include "internal.h"
35 #include "golomb.h"
36 #include "dirac_arith.h"
37 #include "dirac_vlc.h"
38 #include "mpeg12data.h"
39 #include "libavcodec/mpegvideo.h"
40 #include "mpegvideoencdsp.h"
41 #include "dirac_dwt.h"
42 #include "dirac.h"
43 #include "diractab.h"
44 #include "diracdsp.h"
45 #include "videodsp.h"
46 
47 /**
48  * The spec limits this to 3 for frame coding, but in practice can be as high as 6
49  */
50 #define MAX_REFERENCE_FRAMES 8
51 #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
52 #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
53 #define MAX_QUANT 255 /* max quant for VC-2 */
54 #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
55 
56 /**
57  * DiracBlock->ref flags, if set then the block does MC from the given ref
58  */
59 #define DIRAC_REF_MASK_REF1 1
60 #define DIRAC_REF_MASK_REF2 2
61 #define DIRAC_REF_MASK_GLOBAL 4
62 
63 /**
64  * Value of Picture.reference when Picture is not a reference picture, but
65  * is held for delayed output.
66  */
67 #define DELAYED_PIC_REF 4
68 
69 #define CALC_PADDING(size, depth) \
70  (((size + (1 << depth) - 1) >> depth) << depth)
71 
72 #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
73 
74 typedef struct {
76  int interpolated[3]; /* 1 if hpel[] is valid */
77  uint8_t *hpel[3][4];
78  uint8_t *hpel_base[3][4];
79  int reference;
80 } DiracFrame;
81 
82 typedef struct {
83  union {
84  int16_t mv[2][2];
85  int16_t dc[3];
86  } u; /* anonymous unions aren't in C99 :( */
88 } DiracBlock;
89 
90 typedef struct SubBand {
91  int level;
92  int orientation;
93  int stride; /* in bytes */
94  int width;
95  int height;
96  int pshift;
97  int quant;
98  uint8_t *ibuf;
99  struct SubBand *parent;
100 
101  /* for low delay */
102  unsigned length;
104 } SubBand;
105 
106 typedef struct Plane {
108 
109  int width;
110  int height;
111  ptrdiff_t stride;
112 
113  /* block length */
116  /* block separation (block n+1 starts after this many pixels in block n) */
119  /* amount of overspill on each edge (half of the overlap between blocks) */
122 
123  SubBand band[MAX_DWT_LEVELS][4];
124 } Plane;
125 
126 /* Used by Low Delay and High Quality profiles */
127 typedef struct DiracSlice {
129  int slice_x;
130  int slice_y;
131  int bytes;
132 } DiracSlice;
133 
134 typedef struct DiracContext {
143  int64_t frame_number; /* number of the next frame to display */
144  Plane plane[3];
147 
148  int bit_depth; /* bit depth */
149  int pshift; /* pixel shift = bit_depth > 8 */
150 
151  int zero_res; /* zero residue flag */
152  int is_arith; /* whether coeffs use arith or golomb coding */
153  int core_syntax; /* use core syntax only */
154  int low_delay; /* use the low delay syntax */
155  int hq_picture; /* high quality picture, enables low_delay */
156  int ld_picture; /* use low delay picture, turns on low_delay */
157  int dc_prediction; /* has dc prediction */
158  int globalmc_flag; /* use global motion compensation */
159  int num_refs; /* number of reference pictures */
160 
161  /* wavelet decoding */
162  unsigned wavelet_depth; /* depth of the IDWT */
163  unsigned wavelet_idx;
164 
165  /**
166  * schroedinger older than 1.0.8 doesn't store
167  * quant delta if only one codebook exists in a band
168  */
169  unsigned old_delta_quant;
170  unsigned codeblock_mode;
171 
172  unsigned num_x; /* number of horizontal slices */
173  unsigned num_y; /* number of vertical slices */
174 
175  uint8_t *thread_buf; /* Per-thread buffer for coefficient storage */
176  int threads_num_buf; /* Current # of buffers allocated */
177  int thread_buf_size; /* Each thread has a buffer this size */
178 
181 
182  struct {
183  unsigned width;
184  unsigned height;
186 
187  struct {
188  AVRational bytes; /* average bytes per slice */
189  uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
190  } lowdelay;
191 
192  struct {
193  unsigned prefix_bytes;
194  uint64_t size_scaler;
195  } highquality;
196 
197  struct {
198  int pan_tilt[2]; /* pan/tilt vector */
199  int zrs[2][2]; /* zoom/rotate/shear matrix */
200  int perspective[2]; /* perspective vector */
201  unsigned zrs_exp;
202  unsigned perspective_exp;
203  } globalmc[2];
204 
205  /* motion compensation */
206  uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
207  int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
208  unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
209 
210  int blwidth; /* number of blocks (horizontally) */
211  int blheight; /* number of blocks (vertically) */
212  int sbwidth; /* number of superblocks (horizontally) */
213  int sbheight; /* number of superblocks (vertically) */
214 
217 
218  uint8_t *edge_emu_buffer[4];
220 
221  uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */
224 
226 
227  void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
228  void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
229  void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
232 
234  DiracFrame *ref_pics[2];
235 
237  DiracFrame *delay_frames[MAX_DELAY+1];
238  DiracFrame all_frames[MAX_FRAMES];
239 } DiracContext;
240 
247 };
248 
249 /* magic number division by 3 from schroedinger */
250 static inline int divide3(int x)
251 {
252  return (int)((x+1U)*21845 + 10922) >> 16;
253 }
254 
255 static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
256 {
257  DiracFrame *remove_pic = NULL;
258  int i, remove_idx = -1;
259 
260  for (i = 0; framelist[i]; i++)
261  if (framelist[i]->avframe->display_picture_number == picnum) {
262  remove_pic = framelist[i];
263  remove_idx = i;
264  }
265 
266  if (remove_pic)
267  for (i = remove_idx; framelist[i]; i++)
268  framelist[i] = framelist[i+1];
269 
270  return remove_pic;
271 }
272 
273 static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
274 {
275  int i;
276  for (i = 0; i < maxframes; i++)
277  if (!framelist[i]) {
278  framelist[i] = frame;
279  return 0;
280  }
281  return -1;
282 }
283 
285 {
286  int sbwidth = DIVRNDUP(s->seq.width, 4);
287  int sbheight = DIVRNDUP(s->seq.height, 4);
288  int i, w, h, top_padding;
289 
290  /* todo: think more about this / use or set Plane here */
291  for (i = 0; i < 3; i++) {
292  int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
293  int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
294  w = s->seq.width >> (i ? s->chroma_x_shift : 0);
295  h = s->seq.height >> (i ? s->chroma_y_shift : 0);
296 
297  /* we allocate the max we support here since num decompositions can
298  * change from frame to frame. Stride is aligned to 16 for SIMD, and
299  * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
300  * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
301  * on each side */
302  top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
303  w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
304  h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
305 
306  s->plane[i].idwt.buf_base = av_mallocz_array((w+max_xblen), h * (2 << s->pshift));
307  s->plane[i].idwt.tmp = av_malloc_array((w+16), 2 << s->pshift);
308  s->plane[i].idwt.buf = s->plane[i].idwt.buf_base + (top_padding*w)*(2 << s->pshift);
309  if (!s->plane[i].idwt.buf_base || !s->plane[i].idwt.tmp)
310  return AVERROR(ENOMEM);
311  }
312 
313  /* fixme: allocate using real stride here */
314  s->sbsplit = av_malloc_array(sbwidth, sbheight);
315  s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion));
316 
317  if (!s->sbsplit || !s->blmotion)
318  return AVERROR(ENOMEM);
319  return 0;
320 }
321 
323 {
324  int w = s->seq.width;
325  int h = s->seq.height;
326 
327  av_assert0(stride >= w);
328  stride += 64;
329 
330  if (s->buffer_stride >= stride)
331  return 0;
332  s->buffer_stride = 0;
333 
335  memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer));
336  av_freep(&s->mctmp);
337  av_freep(&s->mcscratch);
338 
340 
341  s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
343 
344  if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch)
345  return AVERROR(ENOMEM);
346 
347  s->buffer_stride = stride;
348  return 0;
349 }
350 
352 {
353  int i, j, k;
354 
355  for (i = 0; i < MAX_FRAMES; i++) {
356  if (s->all_frames[i].avframe->data[0]) {
358  memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
359  }
360 
361  for (j = 0; j < 3; j++)
362  for (k = 1; k < 4; k++)
363  av_freep(&s->all_frames[i].hpel_base[j][k]);
364  }
365 
366  memset(s->ref_frames, 0, sizeof(s->ref_frames));
367  memset(s->delay_frames, 0, sizeof(s->delay_frames));
368 
369  for (i = 0; i < 3; i++) {
370  av_freep(&s->plane[i].idwt.buf_base);
371  av_freep(&s->plane[i].idwt.tmp);
372  }
373 
374  s->buffer_stride = 0;
375  av_freep(&s->sbsplit);
376  av_freep(&s->blmotion);
378 
379  av_freep(&s->mctmp);
380  av_freep(&s->mcscratch);
381 }
382 
384 
386 {
387  DiracContext *s = avctx->priv_data;
388  int i, ret;
389 
390  s->avctx = avctx;
391  s->frame_number = -1;
392 
393  s->thread_buf = NULL;
394  s->threads_num_buf = -1;
395  s->thread_buf_size = -1;
396 
399  ff_videodsp_init(&s->vdsp, 8);
400 
401  for (i = 0; i < MAX_FRAMES; i++) {
403  if (!s->all_frames[i].avframe) {
404  while (i > 0)
405  av_frame_free(&s->all_frames[--i].avframe);
406  return AVERROR(ENOMEM);
407  }
408  }
410  if (ret != 0)
411  return AVERROR_UNKNOWN;
412 
413  return 0;
414 }
415 
417 {
418  DiracContext *s = avctx->priv_data;
420  s->seen_sequence_header = 0;
421  s->frame_number = -1;
422 }
423 
425 {
426  DiracContext *s = avctx->priv_data;
427  int i;
428 
429  dirac_decode_flush(avctx);
430  for (i = 0; i < MAX_FRAMES; i++)
432 
433  av_freep(&s->thread_buf);
435 
436  return 0;
437 }
438 
439 static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
440 {
441  int coeff = dirac_get_se_golomb(gb);
442  const unsigned sign = FFSIGN(coeff);
443  if (coeff)
444  coeff = sign*((sign * coeff * qfactor + qoffset) >> 2);
445  return coeff;
446 }
447 
448 #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
449 
450 #define UNPACK_ARITH(n, type) \
451  static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \
452  SubBand *b, type *buf, int x, int y) \
453  { \
454  int sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \
455  unsigned coeff; \
456  const int mstride = -(b->stride >> (1+b->pshift)); \
457  if (b->parent) { \
458  const type *pbuf = (type *)b->parent->ibuf; \
459  const int stride = b->parent->stride >> (1+b->parent->pshift); \
460  pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \
461  } \
462  if (b->orientation == subband_hl) \
463  sign_pred = buf[mstride]; \
464  if (x) { \
465  pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \
466  if (b->orientation == subband_lh) \
467  sign_pred = buf[-1]; \
468  } else { \
469  pred_ctx += !buf[mstride]; \
470  } \
471  coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \
472  if (coeff) { \
473  coeff = (coeff * qfactor + qoffset) >> 2; \
474  sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \
475  coeff = (coeff ^ -sign) + sign; \
476  } \
477  *buf = coeff; \
478  } \
479 
480 UNPACK_ARITH(8, int16_t)
482 
483 /**
484  * Decode the coeffs in the rectangle defined by left, right, top, bottom
485  * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
486  */
487 static inline int codeblock(DiracContext *s, SubBand *b,
488  GetBitContext *gb, DiracArith *c,
489  int left, int right, int top, int bottom,
490  int blockcnt_one, int is_arith)
491 {
492  int x, y, zero_block;
493  int qoffset, qfactor;
494  uint8_t *buf;
495 
496  /* check for any coded coefficients in this codeblock */
497  if (!blockcnt_one) {
498  if (is_arith)
499  zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
500  else
501  zero_block = get_bits1(gb);
502 
503  if (zero_block)
504  return 0;
505  }
506 
507  if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
508  int quant;
509  if (is_arith)
511  else
512  quant = dirac_get_se_golomb(gb);
513  if (quant > INT_MAX - b->quant || b->quant + quant < 0) {
514  av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
515  return AVERROR_INVALIDDATA;
516  }
517  b->quant += quant;
518  }
519 
520  if (b->quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
521  av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", b->quant);
522  b->quant = 0;
523  return AVERROR_INVALIDDATA;
524  }
525 
526  qfactor = ff_dirac_qscale_tab[b->quant];
527  /* TODO: context pointer? */
528  if (!s->num_refs)
529  qoffset = ff_dirac_qoffset_intra_tab[b->quant] + 2;
530  else
531  qoffset = ff_dirac_qoffset_inter_tab[b->quant] + 2;
532 
533  buf = b->ibuf + top * b->stride;
534  if (is_arith) {
535  for (y = top; y < bottom; y++) {
536  if (c->error)
537  return c->error;
538  for (x = left; x < right; x++) {
539  if (b->pshift) {
540  coeff_unpack_arith_10(c, qfactor, qoffset, b, (int32_t*)(buf)+x, x, y);
541  } else {
542  coeff_unpack_arith_8(c, qfactor, qoffset, b, (int16_t*)(buf)+x, x, y);
543  }
544  }
545  buf += b->stride;
546  }
547  } else {
548  for (y = top; y < bottom; y++) {
549  if (get_bits_left(gb) < 1)
550  return AVERROR_INVALIDDATA;
551  for (x = left; x < right; x++) {
552  int val = coeff_unpack_golomb(gb, qfactor, qoffset);
553  if (b->pshift) {
554  AV_WN32(&buf[4*x], val);
555  } else {
556  AV_WN16(&buf[2*x], val);
557  }
558  }
559  buf += b->stride;
560  }
561  }
562  return 0;
563 }
564 
565 /**
566  * Dirac Specification ->
567  * 13.3 intra_dc_prediction(band)
568  */
569 #define INTRA_DC_PRED(n, type) \
570  static inline void intra_dc_prediction_##n(SubBand *b) \
571  { \
572  type *buf = (type*)b->ibuf; \
573  int x, y; \
574  \
575  for (x = 1; x < b->width; x++) \
576  buf[x] += buf[x-1]; \
577  buf += (b->stride >> (1+b->pshift)); \
578  \
579  for (y = 1; y < b->height; y++) { \
580  buf[0] += buf[-(b->stride >> (1+b->pshift))]; \
581  \
582  for (x = 1; x < b->width; x++) { \
583  int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \
584  buf[x] += divide3(pred); \
585  } \
586  buf += (b->stride >> (1+b->pshift)); \
587  } \
588  } \
589 
590 INTRA_DC_PRED(8, int16_t)
591 INTRA_DC_PRED(10, uint32_t)
592 
593 /**
594  * Dirac Specification ->
595  * 13.4.2 Non-skipped subbands. subband_coeffs()
596  */
598 {
599  int cb_x, cb_y, left, right, top, bottom;
600  DiracArith c;
601  GetBitContext gb;
602  int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
603  int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
604  int blockcnt_one = (cb_width + cb_height) == 2;
605  int ret;
606 
607  if (!b->length)
608  return 0;
609 
610  init_get_bits8(&gb, b->coeff_data, b->length);
611 
612  if (is_arith)
613  ff_dirac_init_arith_decoder(&c, &gb, b->length);
614 
615  top = 0;
616  for (cb_y = 0; cb_y < cb_height; cb_y++) {
617  bottom = (b->height * (cb_y+1LL)) / cb_height;
618  left = 0;
619  for (cb_x = 0; cb_x < cb_width; cb_x++) {
620  right = (b->width * (cb_x+1LL)) / cb_width;
621  ret = codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
622  if (ret < 0)
623  return ret;
624  left = right;
625  }
626  top = bottom;
627  }
628 
629  if (b->orientation == subband_ll && s->num_refs == 0) {
630  if (s->pshift) {
631  intra_dc_prediction_10(b);
632  } else {
633  intra_dc_prediction_8(b);
634  }
635  }
636  return 0;
637 }
638 
639 static int decode_subband_arith(AVCodecContext *avctx, void *b)
640 {
641  DiracContext *s = avctx->priv_data;
642  return decode_subband_internal(s, b, 1);
643 }
644 
645 static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
646 {
647  DiracContext *s = avctx->priv_data;
648  SubBand **b = arg;
649  return decode_subband_internal(s, *b, 0);
650 }
651 
652 /**
653  * Dirac Specification ->
654  * [DIRAC_STD] 13.4.1 core_transform_data()
655  */
657 {
658  AVCodecContext *avctx = s->avctx;
661  int level, num_bands = 0;
662  int ret[3*MAX_DWT_LEVELS+1];
663  int i;
664  int damaged_count = 0;
665 
666  /* Unpack all subbands at all levels. */
667  for (level = 0; level < s->wavelet_depth; level++) {
668  for (orientation = !!level; orientation < 4; orientation++) {
670  bands[num_bands++] = b;
671 
672  align_get_bits(&s->gb);
673  /* [DIRAC_STD] 13.4.2 subband() */
675  if (b->length) {
677  if (b->quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
678  av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", b->quant);
679  b->quant = 0;
680  return AVERROR_INVALIDDATA;
681  }
682  align_get_bits(&s->gb);
683  b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
684  if (b->length > FFMAX(get_bits_left(&s->gb)/8, 0)) {
685  b->length = FFMAX(get_bits_left(&s->gb)/8, 0);
686  damaged_count ++;
687  }
688  skip_bits_long(&s->gb, b->length*8);
689  }
690  }
691  /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
692  if (s->is_arith)
693  avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
694  ret + 3*level + !!level, 4-!!level, sizeof(SubBand));
695  }
696  /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
697  if (!s->is_arith)
698  avctx->execute(avctx, decode_subband_golomb, bands, ret, num_bands, sizeof(SubBand*));
699 
700  for (i = 0; i < s->wavelet_depth * 3 + 1; i++) {
701  if (ret[i] < 0)
702  damaged_count++;
703  }
704  if (damaged_count > (s->wavelet_depth * 3 + 1) /2)
705  return AVERROR_INVALIDDATA;
706 
707  return 0;
708 }
709 
710 #define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \
711  type *buf = (type *)buf1; \
712  buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
713  if (get_bits_count(gb) >= ebits) \
714  return; \
715  if (buf2) { \
716  buf = (type *)buf2; \
717  buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
718  if (get_bits_count(gb) >= ebits) \
719  return; \
720  } \
721 
723  int slice_x, int slice_y, int bits_end,
724  SubBand *b1, SubBand *b2)
725 {
726  int left = b1->width * slice_x / s->num_x;
727  int right = b1->width *(slice_x+1) / s->num_x;
728  int top = b1->height * slice_y / s->num_y;
729  int bottom = b1->height *(slice_y+1) / s->num_y;
730 
731  int qfactor, qoffset;
732 
733  uint8_t *buf1 = b1->ibuf + top * b1->stride;
734  uint8_t *buf2 = b2 ? b2->ibuf + top * b2->stride: NULL;
735  int x, y;
736 
737  if (quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
738  av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", quant);
739  return;
740  }
741  qfactor = ff_dirac_qscale_tab[quant];
742  qoffset = ff_dirac_qoffset_intra_tab[quant] + 2;
743  /* we have to constantly check for overread since the spec explicitly
744  requires this, with the meaning that all remaining coeffs are set to 0 */
745  if (get_bits_count(gb) >= bits_end)
746  return;
747 
748  if (s->pshift) {
749  for (y = top; y < bottom; y++) {
750  for (x = left; x < right; x++) {
751  PARSE_VALUES(int32_t, x, gb, bits_end, buf1, buf2);
752  }
753  buf1 += b1->stride;
754  if (buf2)
755  buf2 += b2->stride;
756  }
757  }
758  else {
759  for (y = top; y < bottom; y++) {
760  for (x = left; x < right; x++) {
761  PARSE_VALUES(int16_t, x, gb, bits_end, buf1, buf2);
762  }
763  buf1 += b1->stride;
764  if (buf2)
765  buf2 += b2->stride;
766  }
767  }
768 }
769 
770 /**
771  * Dirac Specification ->
772  * 13.5.2 Slices. slice(sx,sy)
773  */
774 static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
775 {
776  DiracContext *s = avctx->priv_data;
777  DiracSlice *slice = arg;
778  GetBitContext *gb = &slice->gb;
780  int level, quant, chroma_bits, chroma_end;
781 
782  int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
783  int length_bits = av_log2(8 * slice->bytes)+1;
784  int luma_bits = get_bits_long(gb, length_bits);
785  int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
786 
787  /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
788  for (level = 0; level < s->wavelet_depth; level++)
789  for (orientation = !!level; orientation < 4; orientation++) {
790  quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
791  decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
792  &s->plane[0].band[level][orientation], NULL);
793  }
794 
795  /* consume any unused bits from luma */
796  skip_bits_long(gb, get_bits_count(gb) - luma_end);
797 
798  chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
799  chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
800  /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
801  for (level = 0; level < s->wavelet_depth; level++)
802  for (orientation = !!level; orientation < 4; orientation++) {
803  quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
804  decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
805  &s->plane[1].band[level][orientation],
806  &s->plane[2].band[level][orientation]);
807  }
808 
809  return 0;
810 }
811 
812 typedef struct SliceCoeffs {
813  int left;
814  int top;
815  int tot_h;
816  int tot_v;
817  int tot;
818 } SliceCoeffs;
819 
820 static int subband_coeffs(DiracContext *s, int x, int y, int p,
822 {
823  int level, coef = 0;
824  for (level = 0; level < s->wavelet_depth; level++) {
825  SliceCoeffs *o = &c[level];
826  SubBand *b = &s->plane[p].band[level][3]; /* orientation doens't matter */
827  o->top = b->height * y / s->num_y;
828  o->left = b->width * x / s->num_x;
829  o->tot_h = ((b->width * (x + 1)) / s->num_x) - o->left;
830  o->tot_v = ((b->height * (y + 1)) / s->num_y) - o->top;
831  o->tot = o->tot_h*o->tot_v;
832  coef += o->tot * (4 - !!level);
833  }
834  return coef;
835 }
836 
837 /**
838  * VC-2 Specification ->
839  * 13.5.3 hq_slice(sx,sy)
840  */
841 static int decode_hq_slice(DiracContext *s, DiracSlice *slice, uint8_t *tmp_buf)
842 {
843  int i, level, orientation, quant_idx;
844  int qfactor[MAX_DWT_LEVELS][4], qoffset[MAX_DWT_LEVELS][4];
845  GetBitContext *gb = &slice->gb;
846  SliceCoeffs coeffs_num[MAX_DWT_LEVELS];
847 
849  quant_idx = get_bits(gb, 8);
850 
851  if (quant_idx > DIRAC_MAX_QUANT_INDEX - 1) {
852  av_log(s->avctx, AV_LOG_ERROR, "Invalid quantization index - %i\n", quant_idx);
853  return AVERROR_INVALIDDATA;
854  }
855 
856  /* Slice quantization (slice_quantizers() in the specs) */
857  for (level = 0; level < s->wavelet_depth; level++) {
858  for (orientation = !!level; orientation < 4; orientation++) {
859  const int quant = FFMAX(quant_idx - s->lowdelay.quant[level][orientation], 0);
862  }
863  }
864 
865  /* Luma + 2 Chroma planes */
866  for (i = 0; i < 3; i++) {
867  int coef_num, coef_par, off = 0;
868  int64_t length = s->highquality.size_scaler*get_bits(gb, 8);
869  int64_t bits_end = get_bits_count(gb) + 8*length;
870  const uint8_t *addr = align_get_bits(gb);
871 
872  if (length*8 > get_bits_left(gb)) {
873  av_log(s->avctx, AV_LOG_ERROR, "end too far away\n");
874  return AVERROR_INVALIDDATA;
875  }
876 
877  coef_num = subband_coeffs(s, slice->slice_x, slice->slice_y, i, coeffs_num);
878 
879  if (s->pshift)
880  coef_par = ff_dirac_golomb_read_32bit(addr, length,
881  tmp_buf, coef_num);
882  else
883  coef_par = ff_dirac_golomb_read_16bit(addr, length,
884  tmp_buf, coef_num);
885 
886  if (coef_num > coef_par) {
887  const int start_b = coef_par * (1 << (s->pshift + 1));
888  const int end_b = coef_num * (1 << (s->pshift + 1));
889  memset(&tmp_buf[start_b], 0, end_b - start_b);
890  }
891 
892  for (level = 0; level < s->wavelet_depth; level++) {
893  const SliceCoeffs *c = &coeffs_num[level];
894  for (orientation = !!level; orientation < 4; orientation++) {
895  const SubBand *b1 = &s->plane[i].band[level][orientation];
896  uint8_t *buf = b1->ibuf + c->top * b1->stride + (c->left << (s->pshift + 1));
897 
898  /* Change to c->tot_h <= 4 for AVX2 dequantization */
899  const int qfunc = s->pshift + 2*(c->tot_h <= 2);
900  s->diracdsp.dequant_subband[qfunc](&tmp_buf[off], buf, b1->stride,
901  qfactor[level][orientation],
902  qoffset[level][orientation],
903  c->tot_v, c->tot_h);
904 
905  off += c->tot << (s->pshift + 1);
906  }
907  }
908 
909  skip_bits_long(gb, bits_end - get_bits_count(gb));
910  }
911 
912  return 0;
913 }
914 
915 static int decode_hq_slice_row(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
916 {
917  int i;
918  DiracContext *s = avctx->priv_data;
919  DiracSlice *slices = ((DiracSlice *)arg) + s->num_x*jobnr;
920  uint8_t *thread_buf = &s->thread_buf[s->thread_buf_size*threadnr];
921  for (i = 0; i < s->num_x; i++)
922  decode_hq_slice(s, &slices[i], thread_buf);
923  return 0;
924 }
925 
926 /**
927  * Dirac Specification ->
928  * 13.5.1 low_delay_transform_data()
929  */
931 {
932  AVCodecContext *avctx = s->avctx;
933  int slice_x, slice_y, bufsize;
934  int64_t coef_buf_size, bytes = 0;
935  const uint8_t *buf;
936  DiracSlice *slices;
938  int slice_num = 0;
939 
940  if (s->slice_params_num_buf != (s->num_x * s->num_y)) {
942  if (!s->slice_params_buf) {
943  av_log(s->avctx, AV_LOG_ERROR, "slice params buffer allocation failure\n");
944  s->slice_params_num_buf = 0;
945  return AVERROR(ENOMEM);
946  }
947  s->slice_params_num_buf = s->num_x * s->num_y;
948  }
949  slices = s->slice_params_buf;
950 
951  /* 8 becacuse that's how much the golomb reader could overread junk data
952  * from another plane/slice at most, and 512 because SIMD */
953  coef_buf_size = subband_coeffs(s, s->num_x - 1, s->num_y - 1, 0, tmp) + 8;
954  coef_buf_size = (coef_buf_size << (1 + s->pshift)) + 512;
955 
956  if (s->threads_num_buf != avctx->thread_count ||
957  s->thread_buf_size != coef_buf_size) {
958  s->threads_num_buf = avctx->thread_count;
959  s->thread_buf_size = coef_buf_size;
961  if (!s->thread_buf) {
962  av_log(s->avctx, AV_LOG_ERROR, "thread buffer allocation failure\n");
963  return AVERROR(ENOMEM);
964  }
965  }
966 
967  align_get_bits(&s->gb);
968  /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
969  buf = s->gb.buffer + get_bits_count(&s->gb)/8;
970  bufsize = get_bits_left(&s->gb);
971 
972  if (s->hq_picture) {
973  int i;
974 
975  for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
976  for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
977  bytes = s->highquality.prefix_bytes + 1;
978  for (i = 0; i < 3; i++) {
979  if (bytes <= bufsize/8)
980  bytes += buf[bytes] * s->highquality.size_scaler + 1;
981  }
982  if (bytes >= INT_MAX || bytes*8 > bufsize) {
983  av_log(s->avctx, AV_LOG_ERROR, "too many bytes\n");
984  return AVERROR_INVALIDDATA;
985  }
986 
987  slices[slice_num].bytes = bytes;
988  slices[slice_num].slice_x = slice_x;
989  slices[slice_num].slice_y = slice_y;
990  init_get_bits(&slices[slice_num].gb, buf, bufsize);
991  slice_num++;
992 
993  buf += bytes;
994  if (bufsize/8 >= bytes)
995  bufsize -= bytes*8;
996  else
997  bufsize = 0;
998  }
999  }
1000 
1001  if (s->num_x*s->num_y != slice_num) {
1002  av_log(s->avctx, AV_LOG_ERROR, "too few slices\n");
1003  return AVERROR_INVALIDDATA;
1004  }
1005 
1006  avctx->execute2(avctx, decode_hq_slice_row, slices, NULL, s->num_y);
1007  } else {
1008  for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
1009  for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
1010  bytes = (slice_num+1) * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den
1011  - slice_num * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den;
1012  if (bytes >= INT_MAX || bytes*8 > bufsize) {
1013  av_log(s->avctx, AV_LOG_ERROR, "too many bytes\n");
1014  return AVERROR_INVALIDDATA;
1015  }
1016  slices[slice_num].bytes = bytes;
1017  slices[slice_num].slice_x = slice_x;
1018  slices[slice_num].slice_y = slice_y;
1019  init_get_bits(&slices[slice_num].gb, buf, bufsize);
1020  slice_num++;
1021 
1022  buf += bytes;
1023  if (bufsize/8 >= bytes)
1024  bufsize -= bytes*8;
1025  else
1026  bufsize = 0;
1027  }
1028  }
1029  avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
1030  sizeof(DiracSlice)); /* [DIRAC_STD] 13.5.2 Slices */
1031  }
1032 
1033  if (s->dc_prediction) {
1034  if (s->pshift) {
1035  intra_dc_prediction_10(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1036  intra_dc_prediction_10(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1037  intra_dc_prediction_10(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1038  } else {
1039  intra_dc_prediction_8(&s->plane[0].band[0][0]);
1040  intra_dc_prediction_8(&s->plane[1].band[0][0]);
1041  intra_dc_prediction_8(&s->plane[2].band[0][0]);
1042  }
1043  }
1044 
1045  return 0;
1046 }
1047 
1049 {
1050  int i, w, h, level, orientation;
1051 
1052  for (i = 0; i < 3; i++) {
1053  Plane *p = &s->plane[i];
1054 
1055  p->width = s->seq.width >> (i ? s->chroma_x_shift : 0);
1056  p->height = s->seq.height >> (i ? s->chroma_y_shift : 0);
1057  p->idwt.width = w = CALC_PADDING(p->width , s->wavelet_depth);
1058  p->idwt.height = h = CALC_PADDING(p->height, s->wavelet_depth);
1059  p->idwt.stride = FFALIGN(p->idwt.width, 8) << (1 + s->pshift);
1060 
1061  for (level = s->wavelet_depth-1; level >= 0; level--) {
1062  w = w>>1;
1063  h = h>>1;
1064  for (orientation = !!level; orientation < 4; orientation++) {
1065  SubBand *b = &p->band[level][orientation];
1066 
1067  b->pshift = s->pshift;
1068  b->ibuf = p->idwt.buf;
1069  b->level = level;
1070  b->stride = p->idwt.stride << (s->wavelet_depth - level);
1071  b->width = w;
1072  b->height = h;
1073  b->orientation = orientation;
1074 
1075  if (orientation & 1)
1076  b->ibuf += w << (1+b->pshift);
1077  if (orientation > 1)
1078  b->ibuf += (b->stride>>1);
1079 
1080  if (level)
1081  b->parent = &p->band[level-1][orientation];
1082  }
1083  }
1084 
1085  if (i > 0) {
1086  p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
1087  p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
1088  p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
1089  p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
1090  }
1091 
1092  p->xoffset = (p->xblen - p->xbsep)/2;
1093  p->yoffset = (p->yblen - p->ybsep)/2;
1094  }
1095 }
1096 
1097 /**
1098  * Unpack the motion compensation parameters
1099  * Dirac Specification ->
1100  * 11.2 Picture prediction data. picture_prediction()
1101  */
1103 {
1104  static const uint8_t default_blen[] = { 4, 12, 16, 24 };
1105 
1106  GetBitContext *gb = &s->gb;
1107  unsigned idx, ref;
1108 
1109  align_get_bits(gb);
1110  /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
1111  /* Luma and Chroma are equal. 11.2.3 */
1112  idx = get_interleaved_ue_golomb(gb); /* [DIRAC_STD] index */
1113 
1114  if (idx > 4) {
1115  av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
1116  return AVERROR_INVALIDDATA;
1117  }
1118 
1119  if (idx == 0) {
1124  } else {
1125  /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
1126  s->plane[0].xblen = default_blen[idx-1];
1127  s->plane[0].yblen = default_blen[idx-1];
1128  s->plane[0].xbsep = 4 * idx;
1129  s->plane[0].ybsep = 4 * idx;
1130  }
1131  /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
1132  Calculated in function dirac_unpack_block_motion_data */
1133 
1134  if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 ||
1135  s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 ||
1136  !s->plane[0].xblen || !s->plane[0].yblen) {
1138  "invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
1139  s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift);
1140  return AVERROR_INVALIDDATA;
1141  }
1142  if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
1143  av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
1144  return AVERROR_INVALIDDATA;
1145  }
1146  if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
1147  av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
1148  return AVERROR_INVALIDDATA;
1149  }
1150  if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
1151  av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
1152  return AVERROR_PATCHWELCOME;
1153  }
1154 
1155  /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
1156  Read motion vector precision */
1158  if (s->mv_precision > 3) {
1159  av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
1160  return AVERROR_INVALIDDATA;
1161  }
1162 
1163  /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
1164  Read the global motion compensation parameters */
1165  s->globalmc_flag = get_bits1(gb);
1166  if (s->globalmc_flag) {
1167  memset(s->globalmc, 0, sizeof(s->globalmc));
1168  /* [DIRAC_STD] pan_tilt(gparams) */
1169  for (ref = 0; ref < s->num_refs; ref++) {
1170  if (get_bits1(gb)) {
1173  }
1174  /* [DIRAC_STD] zoom_rotate_shear(gparams)
1175  zoom/rotation/shear parameters */
1176  if (get_bits1(gb)) {
1178  s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
1179  s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
1180  s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
1181  s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
1182  } else {
1183  s->globalmc[ref].zrs[0][0] = 1;
1184  s->globalmc[ref].zrs[1][1] = 1;
1185  }
1186  /* [DIRAC_STD] perspective(gparams) */
1187  if (get_bits1(gb)) {
1191  }
1192  if (s->globalmc[ref].perspective_exp + (uint64_t)s->globalmc[ref].zrs_exp > 30) {
1193  return AVERROR_INVALIDDATA;
1194  }
1195 
1196  }
1197  }
1198 
1199  /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
1200  Picture prediction mode, not currently used. */
1201  if (get_interleaved_ue_golomb(gb)) {
1202  av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
1203  return AVERROR_INVALIDDATA;
1204  }
1205 
1206  /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
1207  just data read, weight calculation will be done later on. */
1208  s->weight_log2denom = 1;
1209  s->weight[0] = 1;
1210  s->weight[1] = 1;
1211 
1212  if (get_bits1(gb)) {
1214  if (s->weight_log2denom < 1 || s->weight_log2denom > 8) {
1215  av_log(s->avctx, AV_LOG_ERROR, "weight_log2denom unsupported or invalid\n");
1216  s->weight_log2denom = 1;
1217  return AVERROR_INVALIDDATA;
1218  }
1219  s->weight[0] = dirac_get_se_golomb(gb);
1220  if (s->num_refs == 2)
1221  s->weight[1] = dirac_get_se_golomb(gb);
1222  }
1223  return 0;
1224 }
1225 
1226 /**
1227  * Dirac Specification ->
1228  * 11.3 Wavelet transform data. wavelet_transform()
1229  */
1231 {
1232  GetBitContext *gb = &s->gb;
1233  int i, level;
1234  unsigned tmp;
1235 
1236 #define CHECKEDREAD(dst, cond, errmsg) \
1237  tmp = get_interleaved_ue_golomb(gb); \
1238  if (cond) { \
1239  av_log(s->avctx, AV_LOG_ERROR, errmsg); \
1240  return AVERROR_INVALIDDATA; \
1241  }\
1242  dst = tmp;
1243 
1244  align_get_bits(gb);
1245 
1246  s->zero_res = s->num_refs ? get_bits1(gb) : 0;
1247  if (s->zero_res)
1248  return 0;
1249 
1250  /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
1251  CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
1252 
1253  CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
1254 
1255  if (!s->low_delay) {
1256  /* Codeblock parameters (core syntax only) */
1257  if (get_bits1(gb)) {
1258  for (i = 0; i <= s->wavelet_depth; i++) {
1259  CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n")
1260  CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n")
1261  }
1262 
1263  CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
1264  }
1265  else {
1266  for (i = 0; i <= s->wavelet_depth; i++)
1267  s->codeblock[i].width = s->codeblock[i].height = 1;
1268  }
1269  }
1270  else {
1273  if (s->num_x * s->num_y == 0 || s->num_x * (uint64_t)s->num_y > INT_MAX ||
1274  s->num_x * (uint64_t)s->avctx->width > INT_MAX ||
1275  s->num_y * (uint64_t)s->avctx->height > INT_MAX ||
1276  s->num_x > s->avctx->width ||
1277  s->num_y > s->avctx->height
1278  ) {
1279  av_log(s->avctx,AV_LOG_ERROR,"Invalid numx/y\n");
1280  s->num_x = s->num_y = 0;
1281  return AVERROR_INVALIDDATA;
1282  }
1283  if (s->ld_picture) {
1286  if (s->lowdelay.bytes.den <= 0) {
1287  av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
1288  return AVERROR_INVALIDDATA;
1289  }
1290  } else if (s->hq_picture) {
1293  if (s->highquality.prefix_bytes >= INT_MAX / 8) {
1294  av_log(s->avctx,AV_LOG_ERROR,"too many prefix bytes\n");
1295  return AVERROR_INVALIDDATA;
1296  }
1297  }
1298 
1299  /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
1300  if (get_bits1(gb)) {
1301  av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
1302  /* custom quantization matrix */
1303  for (level = 0; level < s->wavelet_depth; level++) {
1304  for (i = !!level; i < 4; i++) {
1306  }
1307  }
1308  } else {
1309  if (s->wavelet_depth > 4) {
1310  av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
1311  return AVERROR_INVALIDDATA;
1312  }
1313  /* default quantization matrix */
1314  for (level = 0; level < s->wavelet_depth; level++)
1315  for (i = 0; i < 4; i++) {
1317  /* haar with no shift differs for different depths */
1318  if (s->wavelet_idx == 3)
1319  s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
1320  }
1321  }
1322  }
1323  return 0;
1324 }
1325 
1326 static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
1327 {
1328  static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
1329 
1330  if (!(x|y))
1331  return 0;
1332  else if (!y)
1333  return sbsplit[-1];
1334  else if (!x)
1335  return sbsplit[-stride];
1336 
1337  return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
1338 }
1339 
1340 static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
1341 {
1342  int pred;
1343 
1344  if (!(x|y))
1345  return 0;
1346  else if (!y)
1347  return block[-1].ref & refmask;
1348  else if (!x)
1349  return block[-stride].ref & refmask;
1350 
1351  /* return the majority */
1352  pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
1353  return (pred >> 1) & refmask;
1354 }
1355 
1356 static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
1357 {
1358  int i, n = 0;
1359 
1360  memset(block->u.dc, 0, sizeof(block->u.dc));
1361 
1362  if (x && !(block[-1].ref & 3)) {
1363  for (i = 0; i < 3; i++)
1364  block->u.dc[i] += block[-1].u.dc[i];
1365  n++;
1366  }
1367 
1368  if (y && !(block[-stride].ref & 3)) {
1369  for (i = 0; i < 3; i++)
1370  block->u.dc[i] += block[-stride].u.dc[i];
1371  n++;
1372  }
1373 
1374  if (x && y && !(block[-1-stride].ref & 3)) {
1375  for (i = 0; i < 3; i++)
1376  block->u.dc[i] += block[-1-stride].u.dc[i];
1377  n++;
1378  }
1379 
1380  if (n == 2) {
1381  for (i = 0; i < 3; i++)
1382  block->u.dc[i] = (block->u.dc[i]+1)>>1;
1383  } else if (n == 3) {
1384  for (i = 0; i < 3; i++)
1385  block->u.dc[i] = divide3(block->u.dc[i]);
1386  }
1387 }
1388 
1389 static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
1390 {
1391  int16_t *pred[3];
1392  int refmask = ref+1;
1393  int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
1394  int n = 0;
1395 
1396  if (x && (block[-1].ref & mask) == refmask)
1397  pred[n++] = block[-1].u.mv[ref];
1398 
1399  if (y && (block[-stride].ref & mask) == refmask)
1400  pred[n++] = block[-stride].u.mv[ref];
1401 
1402  if (x && y && (block[-stride-1].ref & mask) == refmask)
1403  pred[n++] = block[-stride-1].u.mv[ref];
1404 
1405  switch (n) {
1406  case 0:
1407  block->u.mv[ref][0] = 0;
1408  block->u.mv[ref][1] = 0;
1409  break;
1410  case 1:
1411  block->u.mv[ref][0] = pred[0][0];
1412  block->u.mv[ref][1] = pred[0][1];
1413  break;
1414  case 2:
1415  block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
1416  block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
1417  break;
1418  case 3:
1419  block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
1420  block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
1421  break;
1422  }
1423 }
1424 
1425 static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
1426 {
1427  int ez = s->globalmc[ref].zrs_exp;
1428  int ep = s->globalmc[ref].perspective_exp;
1429  int (*A)[2] = s->globalmc[ref].zrs;
1430  int *b = s->globalmc[ref].pan_tilt;
1431  int *c = s->globalmc[ref].perspective;
1432 
1433  int64_t m = (1<<ep) - (c[0]*(int64_t)x + c[1]*(int64_t)y);
1434  int64_t mx = m * (int64_t)((A[0][0] * (int64_t)x + A[0][1]*(int64_t)y) + (1LL<<ez) * b[0]);
1435  int64_t my = m * (int64_t)((A[1][0] * (int64_t)x + A[1][1]*(int64_t)y) + (1LL<<ez) * b[1]);
1436 
1437  block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
1438  block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
1439 }
1440 
1442  int stride, int x, int y)
1443 {
1444  int i;
1445 
1446  block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
1447  block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
1448 
1449  if (s->num_refs == 2) {
1450  block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
1451  block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
1452  }
1453 
1454  if (!block->ref) {
1455  pred_block_dc(block, stride, x, y);
1456  for (i = 0; i < 3; i++)
1457  block->u.dc[i] += (unsigned)dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
1458  return;
1459  }
1460 
1461  if (s->globalmc_flag) {
1462  block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
1463  block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
1464  }
1465 
1466  for (i = 0; i < s->num_refs; i++)
1467  if (block->ref & (i+1)) {
1468  if (block->ref & DIRAC_REF_MASK_GLOBAL) {
1469  global_mv(s, block, x, y, i);
1470  } else {
1471  pred_mv(block, stride, x, y, i);
1472  block->u.mv[i][0] += (unsigned)dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
1473  block->u.mv[i][1] += (unsigned)dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
1474  }
1475  }
1476 }
1477 
1478 /**
1479  * Copies the current block to the other blocks covered by the current superblock split mode
1480  */
1482 {
1483  int x, y;
1484  DiracBlock *dst = block;
1485 
1486  for (x = 1; x < size; x++)
1487  dst[x] = *block;
1488 
1489  for (y = 1; y < size; y++) {
1490  dst += stride;
1491  for (x = 0; x < size; x++)
1492  dst[x] = *block;
1493  }
1494 }
1495 
1496 /**
1497  * Dirac Specification ->
1498  * 12. Block motion data syntax
1499  */
1501 {
1502  GetBitContext *gb = &s->gb;
1503  uint8_t *sbsplit = s->sbsplit;
1504  int i, x, y, q, p;
1505  DiracArith arith[8];
1506 
1507  align_get_bits(gb);
1508 
1509  /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
1510  s->sbwidth = DIVRNDUP(s->seq.width, 4*s->plane[0].xbsep);
1511  s->sbheight = DIVRNDUP(s->seq.height, 4*s->plane[0].ybsep);
1512  s->blwidth = 4 * s->sbwidth;
1513  s->blheight = 4 * s->sbheight;
1514 
1515  /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
1516  decode superblock split modes */
1517  ff_dirac_init_arith_decoder(arith, gb, get_interleaved_ue_golomb(gb)); /* get_interleaved_ue_golomb(gb) is the length */
1518  for (y = 0; y < s->sbheight; y++) {
1519  for (x = 0; x < s->sbwidth; x++) {
1520  unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
1521  if (split > 2)
1522  return AVERROR_INVALIDDATA;
1523  sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
1524  }
1525  sbsplit += s->sbwidth;
1526  }
1527 
1528  /* setup arith decoding */
1530  for (i = 0; i < s->num_refs; i++) {
1531  ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, get_interleaved_ue_golomb(gb));
1532  ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, get_interleaved_ue_golomb(gb));
1533  }
1534  for (i = 0; i < 3; i++)
1536 
1537  for (y = 0; y < s->sbheight; y++)
1538  for (x = 0; x < s->sbwidth; x++) {
1539  int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
1540  int step = 4 >> s->sbsplit[y * s->sbwidth + x];
1541 
1542  for (q = 0; q < blkcnt; q++)
1543  for (p = 0; p < blkcnt; p++) {
1544  int bx = 4 * x + p*step;
1545  int by = 4 * y + q*step;
1546  DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
1547  decode_block_params(s, arith, block, s->blwidth, bx, by);
1548  propagate_block_data(block, s->blwidth, step);
1549  }
1550  }
1551 
1552  for (i = 0; i < 4 + 2*s->num_refs; i++) {
1553  if (arith[i].error)
1554  return arith[i].error;
1555  }
1556 
1557  return 0;
1558 }
1559 
1560 static int weight(int i, int blen, int offset)
1561 {
1562 #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
1563  (1 + (6*(i) + offset - 1) / (2*offset - 1))
1564 
1565  if (i < 2*offset)
1566  return ROLLOFF(i);
1567  else if (i > blen-1 - 2*offset)
1568  return ROLLOFF(blen-1 - i);
1569  return 8;
1570 }
1571 
1572 static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
1573  int left, int right, int wy)
1574 {
1575  int x;
1576  for (x = 0; left && x < p->xblen >> 1; x++)
1577  obmc_weight[x] = wy*8;
1578  for (; x < p->xblen >> right; x++)
1579  obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
1580  for (; x < p->xblen; x++)
1581  obmc_weight[x] = wy*8;
1582  for (; x < stride; x++)
1583  obmc_weight[x] = 0;
1584 }
1585 
1586 static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
1587  int left, int right, int top, int bottom)
1588 {
1589  int y;
1590  for (y = 0; top && y < p->yblen >> 1; y++) {
1591  init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
1592  obmc_weight += stride;
1593  }
1594  for (; y < p->yblen >> bottom; y++) {
1595  int wy = weight(y, p->yblen, p->yoffset);
1596  init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
1597  obmc_weight += stride;
1598  }
1599  for (; y < p->yblen; y++) {
1600  init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
1601  obmc_weight += stride;
1602  }
1603 }
1604 
1605 static void init_obmc_weights(DiracContext *s, Plane *p, int by)
1606 {
1607  int top = !by;
1608  int bottom = by == s->blheight-1;
1609 
1610  /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
1611  if (top || bottom || by == 1) {
1612  init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
1613  init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
1614  init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
1615  }
1616 }
1617 
1618 static const uint8_t epel_weights[4][4][4] = {
1619  {{ 16, 0, 0, 0 },
1620  { 12, 4, 0, 0 },
1621  { 8, 8, 0, 0 },
1622  { 4, 12, 0, 0 }},
1623  {{ 12, 0, 4, 0 },
1624  { 9, 3, 3, 1 },
1625  { 6, 6, 2, 2 },
1626  { 3, 9, 1, 3 }},
1627  {{ 8, 0, 8, 0 },
1628  { 6, 2, 6, 2 },
1629  { 4, 4, 4, 4 },
1630  { 2, 6, 2, 6 }},
1631  {{ 4, 0, 12, 0 },
1632  { 3, 1, 9, 3 },
1633  { 2, 2, 6, 6 },
1634  { 1, 3, 3, 9 }}
1635 };
1636 
1637 /**
1638  * For block x,y, determine which of the hpel planes to do bilinear
1639  * interpolation from and set src[] to the location in each hpel plane
1640  * to MC from.
1641  *
1642  * @return the index of the put_dirac_pixels_tab function to use
1643  * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
1644  */
1646  int x, int y, int ref, int plane)
1647 {
1648  Plane *p = &s->plane[plane];
1649  uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
1650  int motion_x = block->u.mv[ref][0];
1651  int motion_y = block->u.mv[ref][1];
1652  int mx, my, i, epel, nplanes = 0;
1653 
1654  if (plane) {
1655  motion_x >>= s->chroma_x_shift;
1656  motion_y >>= s->chroma_y_shift;
1657  }
1658 
1659  mx = motion_x & ~(-1U << s->mv_precision);
1660  my = motion_y & ~(-1U << s->mv_precision);
1661  motion_x >>= s->mv_precision;
1662  motion_y >>= s->mv_precision;
1663  /* normalize subpel coordinates to epel */
1664  /* TODO: template this function? */
1665  mx <<= 3 - s->mv_precision;
1666  my <<= 3 - s->mv_precision;
1667 
1668  x += motion_x;
1669  y += motion_y;
1670  epel = (mx|my)&1;
1671 
1672  /* hpel position */
1673  if (!((mx|my)&3)) {
1674  nplanes = 1;
1675  src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
1676  } else {
1677  /* qpel or epel */
1678  nplanes = 4;
1679  for (i = 0; i < 4; i++)
1680  src[i] = ref_hpel[i] + y*p->stride + x;
1681 
1682  /* if we're interpolating in the right/bottom halves, adjust the planes as needed
1683  we increment x/y because the edge changes for half of the pixels */
1684  if (mx > 4) {
1685  src[0] += 1;
1686  src[2] += 1;
1687  x++;
1688  }
1689  if (my > 4) {
1690  src[0] += p->stride;
1691  src[1] += p->stride;
1692  y++;
1693  }
1694 
1695  /* hpel planes are:
1696  [0]: F [1]: H
1697  [2]: V [3]: C */
1698  if (!epel) {
1699  /* check if we really only need 2 planes since either mx or my is
1700  a hpel position. (epel weights of 0 handle this there) */
1701  if (!(mx&3)) {
1702  /* mx == 0: average [0] and [2]
1703  mx == 4: average [1] and [3] */
1704  src[!mx] = src[2 + !!mx];
1705  nplanes = 2;
1706  } else if (!(my&3)) {
1707  src[0] = src[(my>>1) ];
1708  src[1] = src[(my>>1)+1];
1709  nplanes = 2;
1710  }
1711  } else {
1712  /* adjust the ordering if needed so the weights work */
1713  if (mx > 4) {
1714  FFSWAP(const uint8_t *, src[0], src[1]);
1715  FFSWAP(const uint8_t *, src[2], src[3]);
1716  }
1717  if (my > 4) {
1718  FFSWAP(const uint8_t *, src[0], src[2]);
1719  FFSWAP(const uint8_t *, src[1], src[3]);
1720  }
1721  src[4] = epel_weights[my&3][mx&3];
1722  }
1723  }
1724 
1725  /* fixme: v/h _edge_pos */
1726  if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
1727  y + p->yblen > p->height+EDGE_WIDTH/2 ||
1728  x < 0 || y < 0) {
1729  for (i = 0; i < nplanes; i++) {
1730  s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i],
1731  p->stride, p->stride,
1732  p->xblen, p->yblen, x, y,
1733  p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
1734  src[i] = s->edge_emu_buffer[i];
1735  }
1736  }
1737  return (nplanes>>1) + epel;
1738 }
1739 
1740 static void add_dc(uint16_t *dst, int dc, int stride,
1741  uint8_t *obmc_weight, int xblen, int yblen)
1742 {
1743  int x, y;
1744  dc += 128;
1745 
1746  for (y = 0; y < yblen; y++) {
1747  for (x = 0; x < xblen; x += 2) {
1748  dst[x ] += dc * obmc_weight[x ];
1749  dst[x+1] += dc * obmc_weight[x+1];
1750  }
1751  dst += stride;
1752  obmc_weight += MAX_BLOCKSIZE;
1753  }
1754 }
1755 
1757  uint16_t *mctmp, uint8_t *obmc_weight,
1758  int plane, int dstx, int dsty)
1759 {
1760  Plane *p = &s->plane[plane];
1761  const uint8_t *src[5];
1762  int idx;
1763 
1764  switch (block->ref&3) {
1765  case 0: /* DC */
1766  add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
1767  return;
1768  case 1:
1769  case 2:
1770  idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
1771  s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1772  if (s->weight_func)
1774  s->weight[0] + s->weight[1], p->yblen);
1775  break;
1776  case 3:
1777  idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
1778  s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1779  idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
1780  if (s->biweight_func) {
1781  /* fixme: +32 is a quick hack */
1782  s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
1784  s->weight[0], s->weight[1], p->yblen);
1785  } else
1786  s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1787  break;
1788  }
1789  s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
1790 }
1791 
1792 static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
1793 {
1794  Plane *p = &s->plane[plane];
1795  int x, dstx = p->xbsep - p->xoffset;
1796 
1797  block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
1798  mctmp += p->xbsep;
1799 
1800  for (x = 1; x < s->blwidth-1; x++) {
1801  block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
1802  dstx += p->xbsep;
1803  mctmp += p->xbsep;
1804  }
1805  block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
1806 }
1807 
1808 static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
1809 {
1810  int idx = 0;
1811  if (xblen > 8)
1812  idx = 1;
1813  if (xblen > 16)
1814  idx = 2;
1815 
1816  memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
1817  memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
1818  s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
1819  if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
1822  } else {
1823  s->weight_func = NULL;
1824  s->biweight_func = NULL;
1825  }
1826 }
1827 
1828 static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
1829 {
1830  /* chroma allocates an edge of 8 when subsampled
1831  which for 4:2:2 means an h edge of 16 and v edge of 8
1832  just use 8 for everything for the moment */
1833  int i, edge = EDGE_WIDTH/2;
1834 
1835  ref->hpel[plane][0] = ref->avframe->data[plane];
1836  s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
1837 
1838  /* no need for hpel if we only have fpel vectors */
1839  if (!s->mv_precision)
1840  return 0;
1841 
1842  for (i = 1; i < 4; i++) {
1843  if (!ref->hpel_base[plane][i])
1844  ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32);
1845  if (!ref->hpel_base[plane][i]) {
1846  return AVERROR(ENOMEM);
1847  }
1848  /* we need to be 16-byte aligned even for chroma */
1849  ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16;
1850  }
1851 
1852  if (!ref->interpolated[plane]) {
1853  s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
1854  ref->hpel[plane][3], ref->hpel[plane][0],
1855  ref->avframe->linesize[plane], width, height);
1856  s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1857  s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1858  s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1859  }
1860  ref->interpolated[plane] = 1;
1861 
1862  return 0;
1863 }
1864 
1865 /**
1866  * Dirac Specification ->
1867  * 13.0 Transform data syntax. transform_data()
1868  */
1870 {
1871  DWTContext d;
1872  int y, i, comp, dsty;
1873  int ret;
1874 
1875  if (s->low_delay) {
1876  /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
1877  if (!s->hq_picture) {
1878  for (comp = 0; comp < 3; comp++) {
1879  Plane *p = &s->plane[comp];
1880  memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
1881  }
1882  }
1883  if (!s->zero_res) {
1884  if ((ret = decode_lowdelay(s)) < 0)
1885  return ret;
1886  }
1887  }
1888 
1889  for (comp = 0; comp < 3; comp++) {
1890  Plane *p = &s->plane[comp];
1892 
1893  /* FIXME: small resolutions */
1894  for (i = 0; i < 4; i++)
1895  s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
1896 
1897  if (!s->zero_res && !s->low_delay)
1898  {
1899  memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
1900  ret = decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
1901  if (ret < 0)
1902  return ret;
1903  }
1904  ret = ff_spatial_idwt_init(&d, &p->idwt, s->wavelet_idx+2,
1905  s->wavelet_depth, s->bit_depth);
1906  if (ret < 0)
1907  return ret;
1908 
1909  if (!s->num_refs) { /* intra */
1910  for (y = 0; y < p->height; y += 16) {
1911  int idx = (s->bit_depth - 8) >> 1;
1912  ff_spatial_idwt_slice2(&d, y+16); /* decode */
1913  s->diracdsp.put_signed_rect_clamped[idx](frame + y*p->stride,
1914  p->stride,
1915  p->idwt.buf + y*p->idwt.stride,
1916  p->idwt.stride, p->width, 16);
1917  }
1918  } else { /* inter */
1919  int rowheight = p->ybsep*p->stride;
1920 
1921  select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
1922 
1923  for (i = 0; i < s->num_refs; i++) {
1924  int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
1925  if (ret < 0)
1926  return ret;
1927  }
1928 
1929  memset(s->mctmp, 0, 4*p->yoffset*p->stride);
1930 
1931  dsty = -p->yoffset;
1932  for (y = 0; y < s->blheight; y++) {
1933  int h = 0,
1934  start = FFMAX(dsty, 0);
1935  uint16_t *mctmp = s->mctmp + y*rowheight;
1936  DiracBlock *blocks = s->blmotion + y*s->blwidth;
1937 
1938  init_obmc_weights(s, p, y);
1939 
1940  if (y == s->blheight-1 || start+p->ybsep > p->height)
1941  h = p->height - start;
1942  else
1943  h = p->ybsep - (start - dsty);
1944  if (h < 0)
1945  break;
1946 
1947  memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
1948  mc_row(s, blocks, mctmp, comp, dsty);
1949 
1950  mctmp += (start - dsty)*p->stride + p->xoffset;
1951  ff_spatial_idwt_slice2(&d, start + h); /* decode */
1952  /* NOTE: add_rect_clamped hasn't been templated hence the shifts.
1953  * idwt.stride is passed as pixels, not in bytes as in the rest of the decoder */
1954  s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
1955  (int16_t*)(p->idwt.buf) + start*(p->idwt.stride >> 1), (p->idwt.stride >> 1), p->width, h);
1956 
1957  dsty += p->ybsep;
1958  }
1959  }
1960  }
1961 
1962 
1963  return 0;
1964 }
1965 
1967 {
1968  int ret, i;
1969  int chroma_x_shift, chroma_y_shift;
1970  ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift,
1971  &chroma_y_shift);
1972  if (ret < 0)
1973  return ret;
1974 
1975  f->width = avctx->width + 2 * EDGE_WIDTH;
1976  f->height = avctx->height + 2 * EDGE_WIDTH + 2;
1977  ret = ff_get_buffer(avctx, f, flags);
1978  if (ret < 0)
1979  return ret;
1980 
1981  for (i = 0; f->data[i]; i++) {
1982  int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) *
1983  f->linesize[i] + 32;
1984  f->data[i] += offset;
1985  }
1986  f->width = avctx->width;
1987  f->height = avctx->height;
1988 
1989  return 0;
1990 }
1991 
1992 /**
1993  * Dirac Specification ->
1994  * 11.1.1 Picture Header. picture_header()
1995  */
1997 {
1998  unsigned retire, picnum;
1999  int i, j, ret;
2000  int64_t refdist, refnum;
2001  GetBitContext *gb = &s->gb;
2002 
2003  /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
2005 
2006 
2007  av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
2008 
2009  /* if this is the first keyframe after a sequence header, start our
2010  reordering from here */
2011  if (s->frame_number < 0)
2012  s->frame_number = picnum;
2013 
2014  s->ref_pics[0] = s->ref_pics[1] = NULL;
2015  for (i = 0; i < s->num_refs; i++) {
2016  refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
2017  refdist = INT64_MAX;
2018 
2019  /* find the closest reference to the one we want */
2020  /* Jordi: this is needed if the referenced picture hasn't yet arrived */
2021  for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
2022  if (s->ref_frames[j]
2023  && FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) {
2024  s->ref_pics[i] = s->ref_frames[j];
2025  refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum);
2026  }
2027 
2028  if (!s->ref_pics[i] || refdist)
2029  av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
2030 
2031  /* if there were no references at all, allocate one */
2032  if (!s->ref_pics[i])
2033  for (j = 0; j < MAX_FRAMES; j++)
2034  if (!s->all_frames[j].avframe->data[0]) {
2035  s->ref_pics[i] = &s->all_frames[j];
2037  if (ret < 0)
2038  return ret;
2039  break;
2040  }
2041 
2042  if (!s->ref_pics[i]) {
2043  av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n");
2044  return AVERROR_INVALIDDATA;
2045  }
2046 
2047  }
2048 
2049  /* retire the reference frames that are not used anymore */
2050  if (s->current_picture->reference) {
2051  retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
2052  if (retire != picnum) {
2053  DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
2054 
2055  if (retire_pic)
2056  retire_pic->reference &= DELAYED_PIC_REF;
2057  else
2058  av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
2059  }
2060 
2061  /* if reference array is full, remove the oldest as per the spec */
2063  av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
2065  }
2066  }
2067 
2068  if (s->num_refs) {
2069  ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
2070  if (ret < 0)
2071  return ret;
2072  ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */
2073  if (ret < 0)
2074  return ret;
2075  }
2076  ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */
2077  if (ret < 0)
2078  return ret;
2079 
2080  init_planes(s);
2081  return 0;
2082 }
2083 
2084 static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
2085 {
2086  DiracFrame *out = s->delay_frames[0];
2087  int i, out_idx = 0;
2088  int ret;
2089 
2090  /* find frame with lowest picture number */
2091  for (i = 1; s->delay_frames[i]; i++)
2093  out = s->delay_frames[i];
2094  out_idx = i;
2095  }
2096 
2097  for (i = out_idx; s->delay_frames[i]; i++)
2098  s->delay_frames[i] = s->delay_frames[i+1];
2099 
2100  if (out) {
2101  out->reference ^= DELAYED_PIC_REF;
2102  if((ret = av_frame_ref(picture, out->avframe)) < 0)
2103  return ret;
2104  *got_frame = 1;
2105  }
2106 
2107  return 0;
2108 }
2109 
2110 /**
2111  * Dirac Specification ->
2112  * 9.6 Parse Info Header Syntax. parse_info()
2113  * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
2114  */
2115 #define DATA_UNIT_HEADER_SIZE 13
2116 
2117 /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
2118  inside the function parse_sequence() */
2119 static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
2120 {
2121  DiracContext *s = avctx->priv_data;
2122  DiracFrame *pic = NULL;
2123  AVDiracSeqHeader *dsh;
2124  int ret, i;
2125  uint8_t parse_code;
2126  unsigned tmp;
2127 
2128  if (size < DATA_UNIT_HEADER_SIZE)
2129  return AVERROR_INVALIDDATA;
2130 
2131  parse_code = buf[4];
2132 
2133  init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
2134 
2135  if (parse_code == DIRAC_PCODE_SEQ_HEADER) {
2136  if (s->seen_sequence_header)
2137  return 0;
2138 
2139  /* [DIRAC_STD] 10. Sequence header */
2141  if (ret < 0) {
2142  av_log(avctx, AV_LOG_ERROR, "error parsing sequence header");
2143  return ret;
2144  }
2145 
2146  if (CALC_PADDING((int64_t)dsh->width, MAX_DWT_LEVELS) * CALC_PADDING((int64_t)dsh->height, MAX_DWT_LEVELS) * 5LL > avctx->max_pixels)
2147  ret = AVERROR(ERANGE);
2148  if (ret >= 0)
2149  ret = ff_set_dimensions(avctx, dsh->width, dsh->height);
2150  if (ret < 0) {
2151  av_freep(&dsh);
2152  return ret;
2153  }
2154 
2155  ff_set_sar(avctx, dsh->sample_aspect_ratio);
2156  avctx->pix_fmt = dsh->pix_fmt;
2157  avctx->color_range = dsh->color_range;
2158  avctx->color_trc = dsh->color_trc;
2159  avctx->color_primaries = dsh->color_primaries;
2160  avctx->colorspace = dsh->colorspace;
2161  avctx->profile = dsh->profile;
2162  avctx->level = dsh->level;
2163  avctx->framerate = dsh->framerate;
2164  s->bit_depth = dsh->bit_depth;
2165  s->version.major = dsh->version.major;
2166  s->version.minor = dsh->version.minor;
2167  s->seq = *dsh;
2168  av_freep(&dsh);
2169 
2170  s->pshift = s->bit_depth > 8;
2171 
2173  &s->chroma_x_shift,
2174  &s->chroma_y_shift);
2175  if (ret < 0)
2176  return ret;
2177 
2178  ret = alloc_sequence_buffers(s);
2179  if (ret < 0)
2180  return ret;
2181 
2182  s->seen_sequence_header = 1;
2183  } else if (parse_code == DIRAC_PCODE_END_SEQ) { /* [DIRAC_STD] End of Sequence */
2185  s->seen_sequence_header = 0;
2186  } else if (parse_code == DIRAC_PCODE_AUX) {
2187  if (buf[13] == 1) { /* encoder implementation/version */
2188  int ver[3];
2189  /* versions older than 1.0.8 don't store quant delta for
2190  subbands with only one codeblock */
2191  if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
2192  if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
2193  s->old_delta_quant = 1;
2194  }
2195  } else if (parse_code & 0x8) { /* picture data unit */
2196  if (!s->seen_sequence_header) {
2197  av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
2198  return AVERROR_INVALIDDATA;
2199  }
2200 
2201  /* find an unused frame */
2202  for (i = 0; i < MAX_FRAMES; i++)
2203  if (s->all_frames[i].avframe->data[0] == NULL)
2204  pic = &s->all_frames[i];
2205  if (!pic) {
2206  av_log(avctx, AV_LOG_ERROR, "framelist full\n");
2207  return AVERROR_INVALIDDATA;
2208  }
2209 
2210  av_frame_unref(pic->avframe);
2211 
2212  /* [DIRAC_STD] Defined in 9.6.1 ... */
2213  tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
2214  if (tmp > 2) {
2215  av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
2216  return AVERROR_INVALIDDATA;
2217  }
2218  s->num_refs = tmp;
2219  s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
2220  s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
2221  s->core_syntax = (parse_code & 0x88) == 0x08; /* [DIRAC_STD] is_core_syntax() */
2222  s->ld_picture = (parse_code & 0xF8) == 0xC8; /* [DIRAC_STD] is_ld_picture() */
2223  s->hq_picture = (parse_code & 0xF8) == 0xE8; /* [DIRAC_STD] is_hq_picture() */
2224  s->dc_prediction = (parse_code & 0x28) == 0x08; /* [DIRAC_STD] using_dc_prediction() */
2225  pic->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
2226  pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
2227  pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
2228 
2229  /* VC-2 Low Delay has a different parse code than the Dirac Low Delay */
2230  if (s->version.minor == 2 && parse_code == 0x88)
2231  s->ld_picture = 1;
2232 
2233  if (s->low_delay && !(s->ld_picture || s->hq_picture) ) {
2234  av_log(avctx, AV_LOG_ERROR, "Invalid low delay flag\n");
2235  return AVERROR_INVALIDDATA;
2236  }
2237 
2238  if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
2239  return ret;
2240  s->current_picture = pic;
2241  s->plane[0].stride = pic->avframe->linesize[0];
2242  s->plane[1].stride = pic->avframe->linesize[1];
2243  s->plane[2].stride = pic->avframe->linesize[2];
2244 
2245  if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0)
2246  return AVERROR(ENOMEM);
2247 
2248  /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
2249  ret = dirac_decode_picture_header(s);
2250  if (ret < 0)
2251  return ret;
2252 
2253  /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
2254  ret = dirac_decode_frame_internal(s);
2255  if (ret < 0)
2256  return ret;
2257  }
2258  return 0;
2259 }
2260 
2261 static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
2262 {
2263  DiracContext *s = avctx->priv_data;
2264  AVFrame *picture = data;
2265  uint8_t *buf = pkt->data;
2266  int buf_size = pkt->size;
2267  int i, buf_idx = 0;
2268  int ret;
2269  unsigned data_unit_size;
2270 
2271  /* release unused frames */
2272  for (i = 0; i < MAX_FRAMES; i++)
2273  if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].reference) {
2275  memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
2276  }
2277 
2278  s->current_picture = NULL;
2279  *got_frame = 0;
2280 
2281  /* end of stream, so flush delayed pics */
2282  if (buf_size == 0)
2283  return get_delayed_pic(s, (AVFrame *)data, got_frame);
2284 
2285  for (;;) {
2286  /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
2287  [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
2288  BBCD start code search */
2289  for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
2290  if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
2291  buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
2292  break;
2293  }
2294  /* BBCD found or end of data */
2295  if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
2296  break;
2297 
2298  data_unit_size = AV_RB32(buf+buf_idx+5);
2299  if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
2300  if(data_unit_size > buf_size - buf_idx)
2302  "Data unit with size %d is larger than input buffer, discarding\n",
2303  data_unit_size);
2304  buf_idx += 4;
2305  continue;
2306  }
2307  /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
2308  ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size);
2309  if (ret < 0)
2310  {
2311  av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
2312  return ret;
2313  }
2314  buf_idx += data_unit_size;
2315  }
2316 
2317  if (!s->current_picture)
2318  return buf_size;
2319 
2321  DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
2322 
2324 
2326  int min_num = s->delay_frames[0]->avframe->display_picture_number;
2327  /* Too many delayed frames, so we display the frame with the lowest pts */
2328  av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
2329 
2330  for (i = 1; s->delay_frames[i]; i++)
2331  if (s->delay_frames[i]->avframe->display_picture_number < min_num)
2332  min_num = s->delay_frames[i]->avframe->display_picture_number;
2333 
2334  delayed_frame = remove_frame(s->delay_frames, min_num);
2336  }
2337 
2338  if (delayed_frame) {
2339  delayed_frame->reference ^= DELAYED_PIC_REF;
2340  if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0)
2341  return ret;
2342  *got_frame = 1;
2343  }
2345  /* The right frame at the right time :-) */
2346  if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0)
2347  return ret;
2348  *got_frame = 1;
2349  }
2350 
2351  if (*got_frame)
2352  s->frame_number = picture->display_picture_number + 1LL;
2353 
2354  return buf_idx;
2355 }
2356 
2358  .name = "dirac",
2359  .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
2360  .type = AVMEDIA_TYPE_VIDEO,
2361  .id = AV_CODEC_ID_DIRAC,
2362  .priv_data_size = sizeof(DiracContext),
2364  .close = dirac_decode_end,
2367  .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
2369 };
#define CHECKEDREAD(dst, cond, errmsg)
int quant
Definition: cfhd.h:53
uint8_t * thread_buf
Definition: diracdec.c:175
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
#define NULL
Definition: coverity.c:32
#define UNPACK_ARITH(n, type)
Definition: diracdec.c:450
AVRational framerate
Definition: avcodec.h:2069
const int32_t ff_dirac_qscale_tab[116]
Definition: diractab.c:34
#define PARSE_VALUES(type, x, gb, ebits, buf1, buf2)
Definition: diracdec.c:710
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
int blheight
Definition: diracdec.c:211
static av_cold int dirac_decode_end(AVCodecContext *avctx)
Definition: diracdec.c:424
enum AVColorRange color_range
Definition: dirac.h:107
#define av_realloc_f(p, o, n)
This structure describes decoded (raw) audio or video data.
Definition: frame.h:300
if(ret< 0)
Definition: vf_mcdeint.c:279
dirac_weight_func weight_func
Definition: diracdec.c:230
static void flush(AVCodecContext *avctx)
uint8_t * sbsplit
Definition: diracdec.c:215
#define CTX_SB_DATA
Definition: dirac_arith.h:66
#define CTX_PMODE_REF2
Definition: dirac_arith.h:68
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
enum AVColorTransferCharacteristic color_trc
Definition: dirac.h:109
DiracFrame * ref_frames[MAX_REFERENCE_FRAMES+1]
Definition: diracdec.c:236
static int divide3(int x)
Definition: diracdec.c:250
static int dirac_decode_frame_internal(DiracContext *s)
Dirac Specification -> 13.0 Transform data syntax.
Definition: diracdec.c:1869
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:104
DiracVersionInfo version
Definition: dirac.h:112
int ld_picture
Definition: diracdec.c:156
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:291
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int bit_depth
Definition: diracdec.c:148
static void propagate_block_data(DiracBlock *block, int stride, int size)
Copies the current block to the other blocks covered by the current superblock split mode...
Definition: diracdec.c:1481
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: avcodec.h:1161
dirac_weight_func weight_dirac_pixels_tab[3]
Definition: diracdsp.h:53
int num
Numerator.
Definition: rational.h:59
int size
Definition: packet.h:356
const char * b
Definition: vf_curves.c:116
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output...
Definition: diracdec.c:67
void ff_dirac_init_arith_decoder(DiracArith *c, GetBitContext *gb, int length)
Definition: dirac_arith.c:96
static int subband_coeffs(DiracContext *s, int x, int y, int p, SliceCoeffs c[MAX_DWT_LEVELS])
Definition: diracdec.c:820
unsigned width
Definition: diracdec.c:183
#define DATA_UNIT_HEADER_SIZE
Dirac Specification -> 9.6 Parse Info Header Syntax.
Definition: diracdec.c:2115
const uint8_t * buffer
Definition: get_bits.h:62
uint8_t * buf
Definition: dirac_dwt.h:41
uint8_t yoffset
Definition: diracdec.c:121
void(* add_rect_clamped)(uint8_t *dst, const uint16_t *src, int stride, const int16_t *idwt, int idwt_stride, int width, int height)
Definition: diracdsp.h:47
static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
Definition: diracdec.c:1425
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:736
GetBitContext gb
Definition: diracdec.c:128
static int dirac_get_arith_uint(DiracArith *c, int follow_ctx, int data_ctx)
Definition: dirac_arith.h:175
static int alloc_buffers(DiracContext *s, int stride)
Definition: diracdec.c:322
mpegvideo header.
DiracVersionInfo version
Definition: diracdec.c:139
ptrdiff_t stride
Definition: cfhd.h:47
unsigned height
Definition: diracdec.c:184
static AVPacket pkt
#define EDGE_TOP
static void error(const char *err)
static void dirac_decode_flush(AVCodecContext *avctx)
Definition: diracdec.c:416
const uint8_t * coeff_data
Definition: diracdec.c:103
static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
Definition: diracdec.c:2084
static int dirac_unpack_idwt_params(DiracContext *s)
Dirac Specification -> 11.3 Wavelet transform data.
Definition: diracdec.c:1230
int profile
profile
Definition: avcodec.h:1859
#define DIRAC_REF_MASK_REF2
Definition: diracdec.c:60
AVCodec.
Definition: codec.h:190
int zrs[2][2]
Definition: diracdec.c:199
static int decode_hq_slice(DiracContext *s, DiracSlice *slice, uint8_t *tmp_buf)
VC-2 Specification -> 13.5.3 hq_slice(sx,sy)
Definition: diracdec.c:841
unsigned codeblock_mode
Definition: diracdec.c:170
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:71
int num_refs
Definition: diracdec.c:159
int av_dirac_parse_sequence_header(AVDiracSeqHeader **pdsh, const uint8_t *buf, size_t buf_size, void *log_ctx)
Parse a Dirac sequence header.
Definition: dirac.c:402
uint8_t xoffset
Definition: diracdec.c:120
uint8_t * tmp
Definition: dirac_dwt.h:43
unsigned weight_log2denom
Definition: diracdec.c:208
#define CTX_GLOBAL_BLOCK
Definition: dirac_arith.h:69
int width
Definition: cfhd.h:49
static int16_t block[64]
Definition: dct.c:115
void(* draw_edges)(uint8_t *buf, int wrap, int width, int height, int w, int h, int sides)
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Definition: codec.h:75
void(* emulated_edge_mc)(uint8_t *dst, const uint8_t *src, ptrdiff_t dst_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:63
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
DiracFrame * delay_frames[MAX_DELAY+1]
Definition: diracdec.c:237
uint8_t * mcscratch
Definition: diracdec.c:222
int dc_prediction
Definition: diracdec.c:157
av_cold void ff_mpegvideoencdsp_init(MpegvideoEncDSPContext *c, AVCodecContext *avctx)
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
Definition: internal.h:40
uint8_t
#define av_cold
Definition: attributes.h:88
unsigned wavelet_idx
Definition: diracdec.c:163
#define av_malloc(s)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:190
Interface to Dirac Decoder/Encoder.
#define CTX_PMODE_REF1
Definition: dirac_arith.h:67
static int decode_component(DiracContext *s, int comp)
Dirac Specification -> [DIRAC_STD] 13.4.1 core_transform_data()
Definition: diracdec.c:656
static int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
Definition: diracdec.c:439
#define DIVRNDUP(a, b)
Definition: diracdec.c:72
int hq_picture
Definition: diracdec.c:155
#define f(width, name)
Definition: cbs_vp9.c:255
static av_cold int dirac_decode_init(AVCodecContext *avctx)
Definition: diracdec.c:385
#define AV_RB32
Definition: intreadwrite.h:130
uint8_t quant[MAX_DWT_LEVELS][4]
Definition: diracdec.c:189
unsigned prefix_bytes
Definition: diracdec.c:193
AVRational sample_aspect_ratio
Definition: dirac.h:104
unsigned num_x
Definition: diracdec.c:172
int low_delay
Definition: diracdec.c:154
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:444
Plane plane[3]
Definition: diracdec.c:144
static int dirac_get_se_golomb(GetBitContext *gb)
Definition: golomb.h:359
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:262
static AVFrame * frame
DiracSlice * slice_params_buf
Definition: diracdec.c:179
const char data[16]
Definition: mxf.c:91
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
Definition: mem.h:112
static AVOnce dirac_arith_init
Definition: diracdec.c:383
uint8_t * data
Definition: packet.h:355
static void free_sequence_buffers(DiracContext *s)
Definition: diracdec.c:351
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:119
int height
Definition: dirac_dwt.h:39
bitstream reader API header.
static const uint8_t epel_weights[4][4][4]
Definition: diracdec.c:1618
uint8_t xblen
Definition: diracdec.c:114
static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
Dirac Specification -> 13.5.2 Slices.
Definition: diracdec.c:774
#define CTX_DC_DATA
Definition: dirac_arith.h:73
#define AVOnce
Definition: thread.h:172
#define A(x)
Definition: vp56_arith.h:28
#define FFALIGN(x, a)
Definition: macros.h:48
#define av_log(a,...)
unsigned x
Definition: pixlet.c:45
Definition: cfhd.h:44
void(* avg_dirac_pixels_tab[3][4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
Definition: diracdsp.h:43
static void pred_block_dc(DiracBlock *block, int stride, int x, int y)
Definition: diracdec.c:1356
AVRational framerate
Definition: dirac.h:103
int pan_tilt[2]
Definition: diracdec.c:198
int interpolated[3]
Definition: diracdec.c:76
#define EDGE_WIDTH
Definition: mpegpicture.h:33
#define ROLLOFF(i)
#define U(x)
Definition: vp56_arith.h:37
#define src
Definition: vp8dsp.c:254
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
dirac_subband
Definition: diracdec.c:241
const int32_t ff_dirac_qoffset_intra_tab[120]
Definition: diractab.c:53
av_cold void ff_diracdsp_init(DiracDSPContext *c)
Definition: diracdsp.c:219
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
int width
Definition: frame.h:358
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
unsigned length
Definition: diracdec.c:102
static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
Definition: diracdec.c:2261
uint8_t * hpel[3][4]
Definition: diracdec.c:77
int slice_x
Definition: diracdec.c:129
static const uint16_t mask[17]
Definition: lzw.c:38
uint16_t * mctmp
Definition: diracdec.c:221
static av_always_inline int decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
Dirac Specification -> 13.4.2 Non-skipped subbands.
Definition: diracdec.c:597
void(* add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen)
Definition: diracdec.c:229
#define AVERROR(e)
Definition: error.h:43
#define DIRAC_REF_MASK_GLOBAL
Definition: diracdec.c:61
int width
Definition: dirac_dwt.h:38
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:203
static int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
Definition: diracdec.c:1326
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2577
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
Definition: diracdec.c:273
static void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
Definition: diracdec.c:1389
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
const char * arg
Definition: jacosubdec.c:66
const uint8_t ff_dirac_default_qmat[7][4][4]
Definition: diractab.c:24
unsigned num_y
Definition: diracdec.c:173
static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
Definition: diracdec.c:1828
static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5], int x, int y, int ref, int plane)
For block x,y, determine which of the hpel planes to do bilinear interpolation from and set src[] to ...
Definition: diracdec.c:1645
unsigned wavelet_depth
Definition: diracdec.c:162
#define CTX_MV_DATA
Definition: dirac_arith.h:71
int stride
Definition: diracdec.c:93
const char * name
Name of the codec implementation.
Definition: codec.h:197
DiracFrame * current_picture
Definition: diracdec.c:233
int64_t max_pixels
The number of pixels per image to maximally accept.
Definition: avcodec.h:2256
#define DIRAC_MAX_QUANT_INDEX
Definition: diractab.h:41
int slice_y
Definition: diracdec.c:130
unsigned old_delta_quant
schroedinger older than 1.0.8 doesn&#39;t store quant delta if only one codebook exists in a band ...
Definition: diracdec.c:169
static const uint8_t offset[127][2]
Definition: vf_spp.c:93
int ff_dirac_golomb_read_16bit(const uint8_t *buf, int bytes, uint8_t *_dst, int coeffs)
Definition: dirac_vlc.c:1093
#define FFMAX(a, b)
Definition: common.h:94
static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
Definition: diracdec.c:2119
DiracDSPContext diracdsp
Definition: diracdec.c:138
int orientation
Definition: cfhd.h:46
#define MAX_BLOCKSIZE
Definition: diracdec.c:54
static char * split(char *message, char delim)
Definition: af_channelmap.c:81
int bytes
Definition: diracdec.c:131
int slice_params_num_buf
Definition: diracdec.c:180
#define INTRA_DC_PRED(n, type)
Dirac Specification -> 13.3 intra_dc_prediction(band)
Definition: diracdec.c:569
static int codeblock(DiracContext *s, SubBand *b, GetBitContext *gb, DiracArith *c, int left, int right, int top, int bottom, int blockcnt_one, int is_arith)
Decode the coeffs in the rectangle defined by left, right, top, bottom [DIRAC_STD] 13...
Definition: diracdec.c:487
static void init_planes(DiracContext *s)
Definition: diracdec.c:1048
int globalmc_flag
Definition: diracdec.c:158
AVCodec ff_dirac_decoder
Definition: diracdec.c:2357
static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block, int stride, int x, int y)
Definition: diracdec.c:1441
SubBand band[DWT_LEVELS][4]
Definition: cfhd.h:69
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:383
uint8_t * ibuf
Definition: cfhd.h:54
#define FFMIN(a, b)
Definition: common.h:96
int display_picture_number
picture number in display order
Definition: frame.h:418
#define CALC_PADDING(size, depth)
Definition: diracdec.c:69
DiracFrame * ref_pics[2]
Definition: diracdec.c:234
static int decode_hq_slice_row(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
Definition: diracdec.c:915
void(* avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
Definition: diracdec.c:228
static void block_mc(DiracContext *s, DiracBlock *block, uint16_t *mctmp, uint8_t *obmc_weight, int plane, int dstx, int dsty)
Definition: diracdec.c:1756
enum AVColorSpace colorspace
Definition: dirac.h:110
static DiracFrame * remove_frame(DiracFrame *framelist[], int picnum)
Definition: diracdec.c:255
void ff_spatial_idwt_slice2(DWTContext *d, int y)
Definition: dirac_dwt.c:67
#define FFSIGN(a)
Definition: common.h:73
int width
picture width / height.
Definition: avcodec.h:699
uint8_t w
Definition: llviddspenc.c:38
int perspective[2]
Definition: diracdec.c:200
static int dirac_unpack_prediction_parameters(DiracContext *s)
Unpack the motion compensation parameters Dirac Specification -> 11.2 Picture prediction data...
Definition: diracdec.c:1102
int32_t
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:1140
struct DiracContext::@57 globalmc[2]
MpegvideoEncDSPContext mpvencdsp
Definition: diracdec.c:136
static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
Definition: diracdec.c:1792
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
int level
level
Definition: avcodec.h:1982
unsigned perspective_exp
Definition: diracdec.c:202
int64_t frame_number
Definition: diracdec.c:143
int chroma_y_shift
Definition: diracdec.c:146
static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
Definition: diracdec.c:1808
struct DiracContext::@56 highquality
int16_t dc[3]
Definition: diracdec.c:85
uint8_t * edge_emu_buffer_base
Definition: diracdec.c:219
int thread_count
thread count is used to decide how many independent tasks should be passed to execute() ...
Definition: avcodec.h:1785
#define av_log2
Definition: intmath.h:83
static void init_obmc_weights(DiracContext *s, Plane *p, int by)
Definition: diracdec.c:1605
static const float pred[4]
Definition: siprdata.h:259
void(* add_dirac_obmc[3])(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen)
Definition: diracdsp.h:48
static void comp(unsigned char *dst, ptrdiff_t dst_stride, unsigned char *src, ptrdiff_t src_stride, int add)
Definition: eamad.c:83
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
uint8_t * buf_base
Definition: dirac_dwt.h:42
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: codec.h:110
static const int8_t mv[256][2]
Definition: 4xm.c:77
static double b1(void *priv, double x, double y)
Definition: vf_xfade.c:1332
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
Definition: avcodec.h:1845
static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
Definition: diracdec.c:1966
VideoDSPContext vdsp
Definition: diracdec.c:137
uint8_t ybsep
Definition: diracdec.c:118
#define AV_ONCE_INIT
Definition: thread.h:173
Libavcodec external API header.
void(* dirac_biweight_func)(uint8_t *dst, const uint8_t *src, int stride, int log2_denom, int weightd, int weights, int h)
Definition: diracdsp.h:28
uint8_t * edge_emu_buffer[4]
Definition: diracdec.c:218
typedef void(RENAME(mix_any_func_type))
int seen_sequence_header
Definition: diracdec.c:142
enum AVPixelFormat pix_fmt
Definition: dirac.h:106
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:331
const int ff_dirac_qoffset_inter_tab[122]
Definition: diractab.c:72
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:677
main external API structure.
Definition: avcodec.h:526
int buffer_stride
Definition: diracdec.c:223
MPEG-1/2 tables.
DiracFrame all_frames[MAX_FRAMES]
Definition: diracdec.c:238
static const float bands[]
int reference
Definition: diracdec.c:79
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1854
Arithmetic decoder for Dirac.
struct SubBand * parent
Definition: diracdec.c:99
dirac_biweight_func biweight_dirac_pixels_tab[3]
Definition: diracdsp.h:54
#define MAX_DWT_LEVELS
The spec limits the number of wavelet decompositions to 4 for both level 1 (VC-2) and 128 (long-gop d...
Definition: dirac.h:45
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:498
static int decode_lowdelay(DiracContext *s)
Dirac Specification -> 13.5.1 low_delay_transform_data()
Definition: diracdec.c:930
int core_syntax
Definition: diracdec.c:153
static int dirac_get_arith_bit(DiracArith *c, int ctx)
Definition: dirac_arith.h:134
AVCodecContext * avctx
Definition: diracdec.c:135
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:1154
Rational number (pair of numerator and denominator).
Definition: rational.h:58
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:1147
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:659
GetBitContext gb
Definition: diracdec.c:140
#define mid_pred
Definition: mathops.h:97
dirac_biweight_func biweight_func
Definition: diracdec.c:231
uint8_t xbsep
Definition: diracdec.c:117
int thread_buf_size
Definition: diracdec.c:177
int chroma_x_shift
Definition: diracdec.c:145
AVRational bytes
Definition: diracdec.c:188
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:546
static int decode_subband_arith(AVCodecContext *avctx, void *b)
Definition: diracdec.c:639
static int weight(int i, int blen, int offset)
Definition: diracdec.c:1560
#define MAX_DELAY
Definition: diracdec.c:51
unsigned height
Definition: dirac.h:83
int zero_res
Definition: diracdec.c:151
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> dc
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
Definition: frame.c:554
#define MAX_FRAMES
Definition: diracdec.c:52
#define flags(name, subs,...)
Definition: cbs_av1.c:564
int pshift
Definition: cfhd.h:52
int ff_dirac_golomb_read_32bit(const uint8_t *buf, int bytes, uint8_t *_dst, int coeffs)
Definition: dirac_vlc.c:1113
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:314
unsigned y
Definition: pixlet.c:45
static int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
Definition: diracdec.c:1340
AVFrame * avframe
Definition: diracdec.c:75
DiracBlock * blmotion
Definition: diracdec.c:216
void(* dirac_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int h)
Definition: diracdsp.h:27
#define MAX_REFERENCE_FRAMES
The spec limits this to 3 for frame coding, but in practice can be as high as 6.
Definition: diracdec.c:50
int
static int dirac_decode_picture_header(DiracContext *s)
Dirac Specification -> 11.1.1 Picture Header.
Definition: diracdec.c:1996
common internal api header.
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
AVDiracSeqHeader seq
Definition: diracdec.c:141
#define AV_WN32(p, v)
Definition: intreadwrite.h:376
ptrdiff_t stride
Definition: cfhd.h:60
static double c[64]
static void decode_subband(DiracContext *s, GetBitContext *gb, int quant, int slice_x, int slice_y, int bits_end, SubBand *b1, SubBand *b2)
Definition: diracdec.c:722
unsigned size
Definition: pixlet.c:44
static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
Definition: diracdec.c:645
int16_t weight[2]
Definition: diracdec.c:207
struct DiracContext::@55 lowdelay
int16_t mv[2][2]
Definition: diracdec.c:84
static int dirac_get_arith_int(DiracArith *c, int follow_ctx, int data_ctx)
Definition: dirac_arith.h:191
#define CTX_MV_F1
Definition: dirac_arith.h:70
int sbheight
Definition: diracdec.c:213
int den
Denominator.
Definition: rational.h:60
static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride, int left, int right, int wy)
Definition: diracdec.c:1572
#define AVERROR_UNKNOWN
Unknown error, typically from an external library.
Definition: error.h:71
Core video DSP helper functions.
void(* put_dirac_pixels_tab[3][4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
dirac_pixels_tab[width][subpel] width is 2 for 32, 1 for 16, 0 for 8 subpel is 0 for fpel and hpel (o...
Definition: diracdsp.h:42
#define CTX_DC_F1
Definition: dirac_arith.h:72
void * priv_data
Definition: avcodec.h:553
DWTPlane idwt
Definition: diracdec.c:107
static int alloc_sequence_buffers(DiracContext *s)
Definition: diracdec.c:284
void(* put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
Definition: diracdec.c:227
static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride, int left, int right, int top, int bottom)
Definition: diracdec.c:1586
void(* dequant_subband[4])(uint8_t *src, uint8_t *dst, ptrdiff_t stride, const int qf, const int qs, int tot_v, int tot_h)
Definition: diracdsp.h:51
int threads_num_buf
Definition: diracdec.c:176
#define CTX_SB_F1
Definition: dirac_arith.h:65
static int ff_thread_once(char *control, void(*routine)(void))
Definition: thread.h:175
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:378
int height
Definition: cfhd.h:51
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:693
#define EDGE_BOTTOM
int width
Definition: cfhd.h:58
DWTELEM * buf
Definition: snow.h:89
int height
Definition: frame.h:358
FILE * out
Definition: movenc.c:54
uint8_t ref
Definition: diracdec.c:87
int is_arith
Definition: diracdec.c:152
#define av_freep(p)
static void add_dc(uint16_t *dst, int dc, int stride, uint8_t *obmc_weight, int xblen, int yblen)
Definition: diracdec.c:1740
enum AVColorPrimaries color_primaries
Definition: dirac.h:108
#define AV_WN16(p, v)
Definition: intreadwrite.h:372
#define av_always_inline
Definition: attributes.h:45
#define av_malloc_array(a, b)
uint8_t * hpel_base[3][4]
Definition: diracdec.c:78
unsigned width
Definition: dirac.h:82
#define FFSWAP(type, a, b)
Definition: common.h:99
static unsigned get_interleaved_ue_golomb(GetBitContext *gb)
Definition: golomb.h:143
int stride
Definition: dirac_dwt.h:40
int height
Definition: cfhd.h:59
void(* dirac_hpel_filter)(uint8_t *dsth, uint8_t *dstv, uint8_t *dstc, const uint8_t *src, int stride, int width, int height)
Definition: diracdsp.h:31
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:1825
exp golomb vlc stuff
static double val(void *priv, double ch)
Definition: aeval.c:76
This structure stores compressed data.
Definition: packet.h:332
void(* put_signed_rect_clamped[3])(uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int width, int height)
Definition: diracdsp.h:45
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:509
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:50
#define DIRAC_REF_MASK_REF1
DiracBlock->ref flags, if set then the block does MC from the given ref.
Definition: diracdec.c:59
uint64_t size_scaler
Definition: diracdec.c:194
unsigned zrs_exp
Definition: diracdec.c:201
struct DiracContext::@54 codeblock[MAX_DWT_LEVELS+1]
#define FFMAX3(a, b, c)
Definition: common.h:95
uint8_t mv_precision
Definition: diracdec.c:206
static int dirac_unpack_block_motion_data(DiracContext *s)
Dirac Specification ->
Definition: diracdec.c:1500
Definition: cfhd.h:57
uint8_t obmc_weight[3][MAX_BLOCKSIZE *MAX_BLOCKSIZE]
Definition: diracdec.c:225
int ff_spatial_idwt_init(DWTContext *d, DWTPlane *p, enum dwt_type type, int decomposition_count, int bit_depth)
Definition: dirac_dwt.c:36
av_cold void ff_dirac_init_arith_tables(void)
Definition: dirac_arith.c:86
int level
Definition: cfhd.h:45
void * av_mallocz_array(size_t nmemb, size_t size)
Allocate a memory block for an array with av_mallocz().
Definition: mem.c:192
union DiracBlock::@53 u
uint8_t yblen
Definition: diracdec.c:115
static double b2(void *priv, double x, double y)
Definition: vf_xfade.c:1333
static uint8_t tmp[11]
Definition: aes_ctr.c:26