122 #define IIR_CH(name, type, min, max, need_clipping) \ 123 static int iir_ch_## name(AVFilterContext *ctx, void *arg, int ch, int nb_jobs) \ 125 AudioIIRContext *s = ctx->priv; \ 126 const double ig = s->dry_gain; \ 127 const double og = s->wet_gain; \ 128 const double mix = s->mix; \ 129 ThreadData *td = arg; \ 130 AVFrame *in = td->in, *out = td->out; \ 131 const type *src = (const type *)in->extended_data[ch]; \ 132 double *ic = (double *)s->iir[ch].cache[0]; \ 133 double *oc = (double *)s->iir[ch].cache[1]; \ 134 const int nb_a = s->iir[ch].nb_ab[0]; \ 135 const int nb_b = s->iir[ch].nb_ab[1]; \ 136 const double *a = s->iir[ch].ab[0]; \ 137 const double *b = s->iir[ch].ab[1]; \ 138 const double g = s->iir[ch].g; \ 139 int *clippings = &s->iir[ch].clippings; \ 140 type *dst = (type *)out->extended_data[ch]; \ 143 for (n = 0; n < in->nb_samples; n++) { \ 144 double sample = 0.; \ 147 memmove(&ic[1], &ic[0], (nb_b - 1) * sizeof(*ic)); \ 148 memmove(&oc[1], &oc[0], (nb_a - 1) * sizeof(*oc)); \ 149 ic[0] = src[n] * ig; \ 150 for (x = 0; x < nb_b; x++) \ 151 sample += b[x] * ic[x]; \ 153 for (x = 1; x < nb_a; x++) \ 154 sample -= a[x] * oc[x]; \ 158 sample = sample * mix + ic[0] * (1. - mix); \ 159 if (need_clipping && sample < min) { \ 162 } else if (need_clipping && sample > max) { \ 173 IIR_CH(s16p, int16_t, INT16_MIN, INT16_MAX, 1)
175 IIR_CH(fltp,
float, -1., 1., 0)
176 IIR_CH(dblp,
double, -1., 1., 0)
178 #define SERIAL_IIR_CH(name, type, min, max, need_clipping) \ 179 static int iir_ch_serial_## name(AVFilterContext *ctx, void *arg, int ch, int nb_jobs) \ 181 AudioIIRContext *s = ctx->priv; \ 182 const double ig = s->dry_gain; \ 183 const double og = s->wet_gain; \ 184 const double mix = s->mix; \ 185 ThreadData *td = arg; \ 186 AVFrame *in = td->in, *out = td->out; \ 187 const type *src = (const type *)in->extended_data[ch]; \ 188 type *dst = (type *)out->extended_data[ch]; \ 189 IIRChannel *iir = &s->iir[ch]; \ 190 const double g = iir->g; \ 191 int *clippings = &iir->clippings; \ 192 int nb_biquads = (FFMAX(iir->nb_ab[0], iir->nb_ab[1]) + 1) / 2; \ 195 for (i = 0; i < nb_biquads; i++) { \ 196 const double a1 = -iir->biquads[i].a1; \ 197 const double a2 = -iir->biquads[i].a2; \ 198 const double b0 = iir->biquads[i].b0; \ 199 const double b1 = iir->biquads[i].b1; \ 200 const double b2 = iir->biquads[i].b2; \ 201 double i1 = iir->biquads[i].i1; \ 202 double i2 = iir->biquads[i].i2; \ 203 double o1 = iir->biquads[i].o1; \ 204 double o2 = iir->biquads[i].o2; \ 206 for (n = 0; n < in->nb_samples; n++) { \ 207 double sample = ig * (i ? dst[n] : src[n]); \ 208 double o0 = sample * b0 + i1 * b1 + i2 * b2 + o1 * a1 + o2 * a2; \ 216 o0 = o0 * mix + (1. - mix) * sample; \ 217 if (need_clipping && o0 < min) { \ 220 } else if (need_clipping && o0 > max) { \ 227 iir->biquads[i].i1 = i1; \ 228 iir->biquads[i].i2 = i2; \ 229 iir->biquads[i].o1 = o1; \ 230 iir->biquads[i].o2 = o2; \ 249 for (p = item_str; *p && *p !=
'|'; p++) {
258 char *p, *
arg, *old_str, *prev_arg =
NULL, *saveptr =
NULL;
264 for (i = 0; i < nb_items; i++) {
265 if (!(arg =
av_strtok(p,
"|", &saveptr)))
274 if (sscanf(arg,
"%lf", &s->
iir[i].
g) != 1) {
290 char *p, *
arg, *old_str, *saveptr =
NULL;
296 for (i = 0; i < nb_items; i++) {
297 if (!(arg =
av_strtok(p,
" ", &saveptr)))
301 if (sscanf(arg,
"%lf", &dst[i]) != 1) {
315 char *p, *
arg, *old_str, *saveptr =
NULL;
321 for (i = 0; i < nb_items; i++) {
322 if (!(arg =
av_strtok(p,
" ", &saveptr)))
326 if (sscanf(arg, format, &dst[i*2], &dst[i*2+1]) != 2) {
338 static const char *
format[] = {
"%lf",
"%lf %lfi",
"%lf %lfr",
"%lf %lfd" };
343 char *p, *
arg, *old_str, *prev_arg =
NULL, *saveptr =
NULL;
352 if (!(arg =
av_strtok(p,
"|", &saveptr)))
365 if (!iir->
ab[ab] || !iir->
cache[ab]) {
387 static void multiply(
double wre,
double wim,
int npz,
double *coeffs)
389 double nwre = -wre, nwim = -wim;
393 for (i = npz; i >= 1; i--) {
394 cre = coeffs[2 * i + 0];
395 cim = coeffs[2 * i + 1];
397 coeffs[2 * i + 0] = (nwre * cre - nwim * cim) + coeffs[2 * (i - 1) + 0];
398 coeffs[2 * i + 1] = (nwre * cim + nwim * cre) + coeffs[2 * (i - 1) + 1];
403 coeffs[0] = nwre * cre - nwim * cim;
404 coeffs[1] = nwre * cim + nwim * cre;
414 for (i = 0; i < nb; i++) {
415 coeffs[2 * (i + 1) ] = 0.0;
416 coeffs[2 * (i + 1) + 1] = 0.0;
419 for (i = 0; i < nb; i++)
420 multiply(pz[2 * i], pz[2 * i + 1], nb, coeffs);
422 for (i = 0; i < nb + 1; i++) {
423 if (fabs(coeffs[2 * i + 1]) > FLT_EPSILON) {
424 av_log(ctx,
AV_LOG_ERROR,
"coeff: %f of z^%d is not real; poles/zeros are not complex conjugates.\n",
425 coeffs[2 * i + 1], i);
436 int ch,
i, j, ret = 0;
444 if (!topc || !botc) {
459 for (j = 0, i = iir->
nb_ab[1]; i >= 0; j++, i--) {
460 iir->
ab[1][j] = topc[2 *
i];
464 for (j = 0, i = iir->
nb_ab[0]; i >= 0; j++, i--) {
465 iir->
ab[0][j] = botc[2 *
i];
487 int current_biquad = 0;
493 while (nb_biquads--) {
494 Pair outmost_pole = { -1, -1 };
495 Pair nearest_zero = { -1, -1 };
496 double zeros[4] = { 0 };
497 double poles[4] = { 0 };
500 double min_distance = DBL_MAX;
504 for (i = 0; i < iir->
nb_ab[0]; i++) {
509 mag =
hypot(iir->
ab[0][2 * i], iir->
ab[0][2 * i + 1]);
517 for (i = 0; i < iir->
nb_ab[1]; i++) {
521 if (iir->
ab[0][2 * i ] == iir->
ab[0][2 * outmost_pole.
a ] &&
522 iir->
ab[0][2 * i + 1] == -iir->
ab[0][2 * outmost_pole.
a + 1]) {
530 if (outmost_pole.
a < 0 || outmost_pole.
b < 0)
533 for (i = 0; i < iir->
nb_ab[1]; i++) {
538 distance =
hypot(iir->
ab[0][2 * outmost_pole.
a ] - iir->
ab[1][2 * i ],
539 iir->
ab[0][2 * outmost_pole.
a + 1] - iir->
ab[1][2 * i + 1]);
541 if (distance < min_distance) {
547 for (i = 0; i < iir->
nb_ab[1]; i++) {
551 if (iir->
ab[1][2 * i ] == iir->
ab[1][2 * nearest_zero.
a ] &&
552 iir->
ab[1][2 * i + 1] == -iir->
ab[1][2 * nearest_zero.
a + 1]) {
560 if (nearest_zero.
a < 0 || nearest_zero.
b < 0)
563 poles[0] = iir->
ab[0][2 * outmost_pole.
a ];
564 poles[1] = iir->
ab[0][2 * outmost_pole.
a + 1];
566 zeros[0] = iir->
ab[1][2 * nearest_zero.
a ];
567 zeros[1] = iir->
ab[1][2 * nearest_zero.
a + 1];
569 if (nearest_zero.
a == nearest_zero.
b && outmost_pole.
a == outmost_pole.
b) {
576 poles[2] = iir->
ab[0][2 * outmost_pole.
b ];
577 poles[3] = iir->
ab[0][2 * outmost_pole.
b + 1];
579 zeros[2] = iir->
ab[1][2 * nearest_zero.
b ];
580 zeros[3] = iir->
ab[1][2 * nearest_zero.
b + 1];
583 ret =
expand(ctx, zeros, 2, b);
587 ret =
expand(ctx, poles, 2, a);
591 iir->
ab[0][2 * outmost_pole.
a] = iir->
ab[0][2 * outmost_pole.
a + 1] =
NAN;
592 iir->
ab[0][2 * outmost_pole.
b] = iir->
ab[0][2 * outmost_pole.
b + 1] =
NAN;
593 iir->
ab[1][2 * nearest_zero.
a] = iir->
ab[1][2 * nearest_zero.
a + 1] =
NAN;
594 iir->
ab[1][2 * nearest_zero.
b] = iir->
ab[1][2 * nearest_zero.
b + 1] =
NAN;
597 iir->
biquads[current_biquad].
a1 = a[2] / a[4];
598 iir->
biquads[current_biquad].
a2 = a[0] / a[4];
599 iir->
biquads[current_biquad].
b0 = b[4] / a[4] * (current_biquad ? 1.0 : iir->
g);
600 iir->
biquads[current_biquad].
b1 = b[2] / a[4] * (current_biquad ? 1.0 : iir->
g);
601 iir->
biquads[current_biquad].
b2 = b[0] / a[4] * (current_biquad ? 1.0 : iir->
g);
627 for (n = 0; n < iir->
nb_ab[0]; n++) {
628 double r = iir->
ab[0][2*
n];
629 double angle = iir->
ab[0][2*n+1];
631 iir->
ab[0][2*
n] = r * cos(angle);
632 iir->
ab[0][2*n+1] = r * sin(angle);
635 for (n = 0; n < iir->
nb_ab[1]; n++) {
636 double r = iir->
ab[1][2*
n];
637 double angle = iir->
ab[1][2*n+1];
639 iir->
ab[1][2*
n] = r * cos(angle);
640 iir->
ab[1][2*n+1] = r * sin(angle);
654 for (n = 0; n < iir->
nb_ab[0]; n++) {
655 double r = iir->
ab[0][2*
n];
656 double angle =
M_PI*iir->
ab[0][2*n+1]/180.;
658 iir->
ab[0][2*
n] = r * cos(angle);
659 iir->
ab[0][2*n+1] = r * sin(angle);
662 for (n = 0; n < iir->
nb_ab[1]; n++) {
663 double r = iir->
ab[1][2*
n];
664 double angle =
M_PI*iir->
ab[1][2*n+1]/180.;
666 iir->
ab[1][2*
n] = r * cos(angle);
667 iir->
ab[1][2*n+1] = r * sin(angle);
680 for (i = 0; txt[
i]; i++) {
684 for (char_y = 0; char_y < font_height; char_y++) {
685 for (mask = 0x80;
mask; mask >>= 1) {
686 if (font[txt[i] * font_height + char_y] & mask)
697 int dx =
FFABS(x1-x0);
698 int dy =
FFABS(y1-y0), sy = y0 < y1 ? 1 : -1;
699 int err = (dx>dy ? dx : -dy) / 2, e2;
704 if (x0 == x1 && y0 == y1)
724 float *mag, *phase, *
delay,
min = FLT_MAX,
max = FLT_MIN;
725 float min_delay = FLT_MAX, max_delay = FLT_MIN;
726 int prev_ymag = -1, prev_yphase = -1, prev_ydelay = -1;
735 if (!mag || !phase || !delay)
739 for (i = 0; i < s->
w; i++) {
742 double w = i *
M_PI / (s->
w - 1);
745 double real, imag, div;
748 realz = 0., realp = 0.;
749 imagz = 0., imagp = 0.;
751 realz += cos(-x * w) * a[x];
752 imagz += sin(-x * w) * a[x];
756 realp += cos(-x * w) * b[x];
757 imagp += sin(-x * w) * b[x];
760 div = realp * realp + imagp * imagp;
761 real = (realz * realp + imagz * imagp) / div;
762 imag = (imagz * realp - imagp * realz) / div;
767 double ore, oim,
re,
im;
769 re = cos(w) - a[2 * x];
770 im = sin(w) - a[2 * x + 1];
775 real = ore * re - oim *
im;
776 imag = ore * im + oim *
re;
780 double ore, oim,
re,
im;
782 re = cos(w) - b[2 * x];
783 im = sin(w) - b[2 * x + 1];
787 div = re * re + im *
im;
789 real = (ore * re + oim *
im) / div;
790 imag = (oim * re - ore *
im) / div;
795 phase[
i] = atan2(imag, real);
796 min =
fminf(min, mag[i]);
797 max =
fmaxf(max, mag[i]);
800 for (i = 0; i < s->
w - 1; i++) {
801 float dw =
M_PI / (s->
w - 1);
803 delay[
i] = -(phase[i + 1] - phase[
i]) / dw;
804 min_delay =
fminf(min_delay, delay[i]);
805 max_delay =
fmaxf(max_delay, delay[i]);
808 delay[
i] = delay[i - 1];
810 for (i = 0; i < s->
w; i++) {
811 int ymag = mag[
i] / max * (s->
h - 1);
812 int ydelay = (delay[
i] - min_delay) / (max_delay - min_delay) * (s->
h - 1);
813 int yphase = (0.5 * (1. + phase[
i] /
M_PI)) * (s->
h - 1);
815 ymag = s->
h - 1 - av_clip(ymag, 0, s->
h - 1);
816 yphase = s->
h - 1 - av_clip(yphase, 0, s->
h - 1);
817 ydelay = s->
h - 1 - av_clip(ydelay, 0, s->
h - 1);
822 prev_yphase = yphase;
824 prev_ydelay = ydelay;
827 draw_line(out, i, yphase,
FFMAX(i - 1, 0), prev_yphase, 0xFF00FF00);
828 draw_line(out, i, ydelay,
FFMAX(i - 1, 0), prev_ydelay, 0xFF00FFFF);
831 prev_yphase = yphase;
832 prev_ydelay = ydelay;
835 if (s->
w > 400 && s->
h > 100) {
836 drawtext(out, 2, 2,
"Max Magnitude:", 0xDDDDDDDD);
837 snprintf(text,
sizeof(text),
"%.2f", max);
838 drawtext(out, 15 * 8 + 2, 2, text, 0xDDDDDDDD);
840 drawtext(out, 2, 12,
"Min Magnitude:", 0xDDDDDDDD);
841 snprintf(text,
sizeof(text),
"%.2f", min);
842 drawtext(out, 15 * 8 + 2, 12, text, 0xDDDDDDDD);
844 drawtext(out, 2, 22,
"Max Delay:", 0xDDDDDDDD);
845 snprintf(text,
sizeof(text),
"%.2f", max_delay);
846 drawtext(out, 11 * 8 + 2, 22, text, 0xDDDDDDDD);
848 drawtext(out, 2, 32,
"Min Delay:", 0xDDDDDDDD);
849 snprintf(text,
sizeof(text),
"%.2f", min_delay);
850 drawtext(out, 11 * 8 + 2, 32, text, 0xDDDDDDDD);
885 }
else if (s->
format == 3) {
899 av_log(ctx,
AV_LOG_WARNING,
"tf coefficients format is not recommended for too high number of zeros/poles.\n");
902 av_log(ctx,
AV_LOG_WARNING,
"Direct processsing is not recommended for zp coefficients format.\n");
908 av_log(ctx,
AV_LOG_ERROR,
"Serial cascading is not implemented for transfer function.\n");
922 for (i = 1; i < iir->
nb_ab[0]; i++) {
923 iir->
ab[0][
i] /= iir->
ab[0][0];
926 for (i = 0; i < iir->
nb_ab[1]; i++) {
927 iir->
ab[1][
i] *= iir->
g / iir->
ab[0][0];
965 for (ch = 0; ch < outlink->
channels; ch++) {
980 if (new_pts > old_pts) {
1062 for (ch = 0; ch < s->
channels; ch++) {
1088 #define OFFSET(x) offsetof(AudioIIRContext, x) 1089 #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM 1090 #define VF AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM 1101 {
"pr",
"Z-plane zeros/poles (polar radians)", 0,
AV_OPT_TYPE_CONST, {.i64=2}, 0, 0,
AF,
"format" },
1102 {
"pd",
"Z-plane zeros/poles (polar degrees)", 0,
AV_OPT_TYPE_CONST, {.i64=3}, 0, 0,
AF,
"format" },
1107 {
"dbl",
"double-precision floating-point", 0,
AV_OPT_TYPE_CONST, {.i64=0}, 0, 0,
AF,
"precision" },
1108 {
"flt",
"single-precision floating-point", 0,
AV_OPT_TYPE_CONST, {.i64=1}, 0, 0,
AF,
"precision" },
1113 {
"channel",
"set IR channel to display frequency response",
OFFSET(ir_channel),
AV_OPT_TYPE_INT, {.i64=0}, 0, 1024,
VF },
1123 .description =
NULL_IF_CONFIG_SMALL(
"Apply Infinite Impulse Response filter with supplied coefficients."),
1125 .priv_class = &aiir_class,
static const char * format[]
This structure describes decoded (raw) audio or video data.
enum AVSampleFormat sample_format
#define AV_LOG_WARNING
Something somehow does not look correct.
Main libavfilter public API header.
static int config_video(AVFilterLink *outlink)
int h
agreed upon image height
static void convert_pd2zp(AVFilterContext *ctx, int channels)
static void drawtext(AVFrame *pic, int x, int y, const char *txt, uint32_t color)
float fminf(float, float)
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch ch
static int decompose_zp2biquads(AVFilterContext *ctx, int channels)
#define SERIAL_IIR_CH(name, type, min, max, need_clipping)
static void count_coefficients(char *item_str, int *nb_items)
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
static int config_output(AVFilterLink *outlink)
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
static int process(struct ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed)
const char * name
Pad name.
AVFilterLink ** inputs
array of pointers to input links
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
AVFilterPad * output_pads
array of output pads
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
static av_cold int end(AVCodecContext *avctx)
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
static av_cold int init(AVFilterContext *ctx)
static int expand(AVFilterContext *ctx, double *pz, int nb, double *coeffs)
#define IIR_CH(name, type, min, max, need_clipping)
#define AV_LOG_VERBOSE
Detailed information.
static int read_tf_coefficients(AVFilterContext *ctx, char *item_str, int nb_items, double *dst)
#define AVFILTER_FLAG_DYNAMIC_OUTPUTS
The number of the filter outputs is not determined just by AVFilter.outputs.
static int query_formats(AVFilterContext *ctx)
A filter pad used for either input or output.
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
A link between two filters.
#define i(width, name, range_min, range_max)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
const uint8_t avpriv_cga_font[2048]
AVRational frame_rate
Frame rate of the stream on the link, or 1/0 if unknown or variable; if left to 0/0, will be automatically copied from the first input of the source filter if it exists.
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
static int read_channels(AVFilterContext *ctx, int channels, uint8_t *item_str, int ab)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
void * priv
private data for use by the filter
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link...
simple assert() macros that are a bit more flexible than ISO C assert().
AVFilterFormats * in_formats
Lists of formats and channel layouts supported by the input and output filters respectively.
static float distance(float x, float y, int band)
int w
agreed upon image width
static av_const double hypot(double x, double y)
static int convert_zp2tf(AVFilterContext *ctx, int channels)
float fmaxf(float, float)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
AVFilterContext * src
source filter
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
int format
agreed upon media format
A list of supported channel layouts.
static void draw_response(AVFilterContext *ctx, AVFrame *out)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
static int mix(int c0, int c1)
char * av_strdup(const char *s)
Duplicate a string.
AVSampleFormat
Audio sample formats.
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
Used for passing data between threads.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
Describe the class of an AVClass context structure.
static int read_gains(AVFilterContext *ctx, char *item_str, int nb_items)
static void convert_pr2zp(AVFilterContext *ctx, int channels)
Rational number (pair of numerator and denominator).
offset must point to AVRational
const char * name
Filter name.
static int read_zp_coefficients(AVFilterContext *ctx, char *item_str, int nb_items, double *dst, const char *format)
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
static av_cold void uninit(AVFilterContext *ctx)
offset must point to two consecutive integers
static const AVFilterPad inputs[]
AVFilterLink ** outputs
array of pointers to output links
enum MovChannelLayoutTag * layouts
static enum AVPixelFormat pix_fmts[]
#define flags(name, subs,...)
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
char * av_strtok(char *s, const char *delim, char **saveptr)
Split the string into several tokens which can be accessed by successive calls to av_strtok()...
static av_always_inline AVRational av_inv_q(AVRational q)
Invert a rational.
int(* iir_channel)(AVFilterContext *ctx, void *arg, int ch, int nb_jobs)
static void draw_line(AVFrame *out, int x0, int y0, int x1, int y1, uint32_t color)
int channels
Number of channels.
avfilter_execute_func * execute
AVFilterContext * dst
dest filter
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
static enum AVSampleFormat sample_fmts[]
AVFILTER_DEFINE_CLASS(aiir)
#define av_malloc_array(a, b)
static int ff_insert_outpad(AVFilterContext *f, unsigned index, AVFilterPad *p)
Insert a new output pad for the filter.
AVPixelFormat
Pixel format.
int nb_samples
number of audio samples (per channel) described by this frame
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
static const AVOption aiir_options[]
CGA/EGA/VGA ROM font data.
static void multiply(double wre, double wim, int npz, double *coeffs)