FFmpeg  4.2.3
vf_lut3d.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2013 Clément Bœsch
3  * Copyright (c) 2018 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * 3D Lookup table filter
25  */
26 
27 #include "libavutil/opt.h"
28 #include "libavutil/file.h"
29 #include "libavutil/intreadwrite.h"
30 #include "libavutil/avassert.h"
31 #include "libavutil/pixdesc.h"
32 #include "libavutil/avstring.h"
33 #include "avfilter.h"
34 #include "drawutils.h"
35 #include "formats.h"
36 #include "framesync.h"
37 #include "internal.h"
38 #include "video.h"
39 
40 #define R 0
41 #define G 1
42 #define B 2
43 #define A 3
44 
50 };
51 
52 struct rgbvec {
53  float r, g, b;
54 };
55 
56 /* 3D LUT don't often go up to level 32, but it is common to have a Hald CLUT
57  * of 512x512 (64x64x64) */
58 #define MAX_LEVEL 128
59 
60 typedef struct LUT3DContext {
61  const AVClass *class;
62  int interpolation; ///<interp_mode
63  char *file;
64  uint8_t rgba_map[4];
65  int step;
67  struct rgbvec scale;
69  int lutsize;
70 #if CONFIG_HALDCLUT_FILTER
71  uint8_t clut_rgba_map[4];
72  int clut_step;
73  int clut_bits;
74  int clut_planar;
75  int clut_width;
77 #endif
78 } LUT3DContext;
79 
80 typedef struct ThreadData {
81  AVFrame *in, *out;
82 } ThreadData;
83 
84 #define OFFSET(x) offsetof(LUT3DContext, x)
85 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
86 #define COMMON_OPTIONS \
87  { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, NB_INTERP_MODE-1, FLAGS, "interp_mode" }, \
88  { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_NEAREST}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \
89  { "trilinear", "interpolate values using the 8 points defining a cube", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TRILINEAR}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \
90  { "tetrahedral", "interpolate values using a tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TETRAHEDRAL}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \
91  { NULL }
92 
93 static inline float lerpf(float v0, float v1, float f)
94 {
95  return v0 + (v1 - v0) * f;
96 }
97 
98 static inline struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
99 {
100  struct rgbvec v = {
101  lerpf(v0->r, v1->r, f), lerpf(v0->g, v1->g, f), lerpf(v0->b, v1->b, f)
102  };
103  return v;
104 }
105 
106 #define NEAR(x) ((int)((x) + .5))
107 #define PREV(x) ((int)(x))
108 #define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1))
109 
110 /**
111  * Get the nearest defined point
112  */
113 static inline struct rgbvec interp_nearest(const LUT3DContext *lut3d,
114  const struct rgbvec *s)
115 {
116  return lut3d->lut[NEAR(s->r)][NEAR(s->g)][NEAR(s->b)];
117 }
118 
119 /**
120  * Interpolate using the 8 vertices of a cube
121  * @see https://en.wikipedia.org/wiki/Trilinear_interpolation
122  */
123 static inline struct rgbvec interp_trilinear(const LUT3DContext *lut3d,
124  const struct rgbvec *s)
125 {
126  const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
127  const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
128  const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
129  const struct rgbvec c000 = lut3d->lut[prev[0]][prev[1]][prev[2]];
130  const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]];
131  const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]];
132  const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]];
133  const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]];
134  const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]];
135  const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]];
136  const struct rgbvec c111 = lut3d->lut[next[0]][next[1]][next[2]];
137  const struct rgbvec c00 = lerp(&c000, &c100, d.r);
138  const struct rgbvec c10 = lerp(&c010, &c110, d.r);
139  const struct rgbvec c01 = lerp(&c001, &c101, d.r);
140  const struct rgbvec c11 = lerp(&c011, &c111, d.r);
141  const struct rgbvec c0 = lerp(&c00, &c10, d.g);
142  const struct rgbvec c1 = lerp(&c01, &c11, d.g);
143  const struct rgbvec c = lerp(&c0, &c1, d.b);
144  return c;
145 }
146 
147 /**
148  * Tetrahedral interpolation. Based on code found in Truelight Software Library paper.
149  * @see http://www.filmlight.ltd.uk/pdf/whitepapers/FL-TL-TN-0057-SoftwareLib.pdf
150  */
151 static inline struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d,
152  const struct rgbvec *s)
153 {
154  const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
155  const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
156  const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
157  const struct rgbvec c000 = lut3d->lut[prev[0]][prev[1]][prev[2]];
158  const struct rgbvec c111 = lut3d->lut[next[0]][next[1]][next[2]];
159  struct rgbvec c;
160  if (d.r > d.g) {
161  if (d.g > d.b) {
162  const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]];
163  const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]];
164  c.r = (1-d.r) * c000.r + (d.r-d.g) * c100.r + (d.g-d.b) * c110.r + (d.b) * c111.r;
165  c.g = (1-d.r) * c000.g + (d.r-d.g) * c100.g + (d.g-d.b) * c110.g + (d.b) * c111.g;
166  c.b = (1-d.r) * c000.b + (d.r-d.g) * c100.b + (d.g-d.b) * c110.b + (d.b) * c111.b;
167  } else if (d.r > d.b) {
168  const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]];
169  const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]];
170  c.r = (1-d.r) * c000.r + (d.r-d.b) * c100.r + (d.b-d.g) * c101.r + (d.g) * c111.r;
171  c.g = (1-d.r) * c000.g + (d.r-d.b) * c100.g + (d.b-d.g) * c101.g + (d.g) * c111.g;
172  c.b = (1-d.r) * c000.b + (d.r-d.b) * c100.b + (d.b-d.g) * c101.b + (d.g) * c111.b;
173  } else {
174  const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]];
175  const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]];
176  c.r = (1-d.b) * c000.r + (d.b-d.r) * c001.r + (d.r-d.g) * c101.r + (d.g) * c111.r;
177  c.g = (1-d.b) * c000.g + (d.b-d.r) * c001.g + (d.r-d.g) * c101.g + (d.g) * c111.g;
178  c.b = (1-d.b) * c000.b + (d.b-d.r) * c001.b + (d.r-d.g) * c101.b + (d.g) * c111.b;
179  }
180  } else {
181  if (d.b > d.g) {
182  const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]];
183  const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]];
184  c.r = (1-d.b) * c000.r + (d.b-d.g) * c001.r + (d.g-d.r) * c011.r + (d.r) * c111.r;
185  c.g = (1-d.b) * c000.g + (d.b-d.g) * c001.g + (d.g-d.r) * c011.g + (d.r) * c111.g;
186  c.b = (1-d.b) * c000.b + (d.b-d.g) * c001.b + (d.g-d.r) * c011.b + (d.r) * c111.b;
187  } else if (d.b > d.r) {
188  const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]];
189  const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]];
190  c.r = (1-d.g) * c000.r + (d.g-d.b) * c010.r + (d.b-d.r) * c011.r + (d.r) * c111.r;
191  c.g = (1-d.g) * c000.g + (d.g-d.b) * c010.g + (d.b-d.r) * c011.g + (d.r) * c111.g;
192  c.b = (1-d.g) * c000.b + (d.g-d.b) * c010.b + (d.b-d.r) * c011.b + (d.r) * c111.b;
193  } else {
194  const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]];
195  const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]];
196  c.r = (1-d.g) * c000.r + (d.g-d.r) * c010.r + (d.r-d.b) * c110.r + (d.b) * c111.r;
197  c.g = (1-d.g) * c000.g + (d.g-d.r) * c010.g + (d.r-d.b) * c110.g + (d.b) * c111.g;
198  c.b = (1-d.g) * c000.b + (d.g-d.r) * c010.b + (d.r-d.b) * c110.b + (d.b) * c111.b;
199  }
200  }
201  return c;
202 }
203 
204 #define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth) \
205 static int interp_##nbits##_##name##_p##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
206 { \
207  int x, y; \
208  const LUT3DContext *lut3d = ctx->priv; \
209  const ThreadData *td = arg; \
210  const AVFrame *in = td->in; \
211  const AVFrame *out = td->out; \
212  const int direct = out == in; \
213  const int slice_start = (in->height * jobnr ) / nb_jobs; \
214  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
215  uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
216  uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
217  uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
218  uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
219  const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
220  const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
221  const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
222  const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
223  const float scale_r = (lut3d->scale.r / ((1<<depth) - 1)) * (lut3d->lutsize - 1); \
224  const float scale_g = (lut3d->scale.g / ((1<<depth) - 1)) * (lut3d->lutsize - 1); \
225  const float scale_b = (lut3d->scale.b / ((1<<depth) - 1)) * (lut3d->lutsize - 1); \
226  \
227  for (y = slice_start; y < slice_end; y++) { \
228  uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \
229  uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \
230  uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \
231  uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \
232  const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \
233  const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \
234  const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \
235  const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \
236  for (x = 0; x < in->width; x++) { \
237  const struct rgbvec scaled_rgb = {srcr[x] * scale_r, \
238  srcg[x] * scale_g, \
239  srcb[x] * scale_b}; \
240  struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
241  dstr[x] = av_clip_uintp2(vec.r * (float)((1<<depth) - 1), depth); \
242  dstg[x] = av_clip_uintp2(vec.g * (float)((1<<depth) - 1), depth); \
243  dstb[x] = av_clip_uintp2(vec.b * (float)((1<<depth) - 1), depth); \
244  if (!direct && in->linesize[3]) \
245  dsta[x] = srca[x]; \
246  } \
247  grow += out->linesize[0]; \
248  brow += out->linesize[1]; \
249  rrow += out->linesize[2]; \
250  arow += out->linesize[3]; \
251  srcgrow += in->linesize[0]; \
252  srcbrow += in->linesize[1]; \
253  srcrrow += in->linesize[2]; \
254  srcarow += in->linesize[3]; \
255  } \
256  return 0; \
257 }
258 
259 DEFINE_INTERP_FUNC_PLANAR(nearest, 8, 8)
260 DEFINE_INTERP_FUNC_PLANAR(trilinear, 8, 8)
261 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 8, 8)
262 
263 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 9)
264 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 9)
265 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 9)
266 
267 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 10)
268 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 10)
269 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 10)
270 
271 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 12)
272 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 12)
273 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 12)
274 
275 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 14)
276 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 14)
277 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 14)
278 
279 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 16)
280 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 16)
281 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 16)
282 
283 #define DEFINE_INTERP_FUNC(name, nbits) \
284 static int interp_##nbits##_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
285 { \
286  int x, y; \
287  const LUT3DContext *lut3d = ctx->priv; \
288  const ThreadData *td = arg; \
289  const AVFrame *in = td->in; \
290  const AVFrame *out = td->out; \
291  const int direct = out == in; \
292  const int step = lut3d->step; \
293  const uint8_t r = lut3d->rgba_map[R]; \
294  const uint8_t g = lut3d->rgba_map[G]; \
295  const uint8_t b = lut3d->rgba_map[B]; \
296  const uint8_t a = lut3d->rgba_map[A]; \
297  const int slice_start = (in->height * jobnr ) / nb_jobs; \
298  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
299  uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
300  const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
301  const float scale_r = (lut3d->scale.r / ((1<<nbits) - 1)) * (lut3d->lutsize - 1); \
302  const float scale_g = (lut3d->scale.g / ((1<<nbits) - 1)) * (lut3d->lutsize - 1); \
303  const float scale_b = (lut3d->scale.b / ((1<<nbits) - 1)) * (lut3d->lutsize - 1); \
304  \
305  for (y = slice_start; y < slice_end; y++) { \
306  uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
307  const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
308  for (x = 0; x < in->width * step; x += step) { \
309  const struct rgbvec scaled_rgb = {src[x + r] * scale_r, \
310  src[x + g] * scale_g, \
311  src[x + b] * scale_b}; \
312  struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
313  dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<<nbits) - 1)); \
314  dst[x + g] = av_clip_uint##nbits(vec.g * (float)((1<<nbits) - 1)); \
315  dst[x + b] = av_clip_uint##nbits(vec.b * (float)((1<<nbits) - 1)); \
316  if (!direct && step == 4) \
317  dst[x + a] = src[x + a]; \
318  } \
319  dstrow += out->linesize[0]; \
320  srcrow += in ->linesize[0]; \
321  } \
322  return 0; \
323 }
324 
325 DEFINE_INTERP_FUNC(nearest, 8)
326 DEFINE_INTERP_FUNC(trilinear, 8)
327 DEFINE_INTERP_FUNC(tetrahedral, 8)
328 
329 DEFINE_INTERP_FUNC(nearest, 16)
330 DEFINE_INTERP_FUNC(trilinear, 16)
331 DEFINE_INTERP_FUNC(tetrahedral, 16)
332 
333 #define MAX_LINE_SIZE 512
334 
335 static int skip_line(const char *p)
336 {
337  while (*p && av_isspace(*p))
338  p++;
339  return !*p || *p == '#';
340 }
341 
342 #define NEXT_LINE(loop_cond) do { \
343  if (!fgets(line, sizeof(line), f)) { \
344  av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
345  return AVERROR_INVALIDDATA; \
346  } \
347 } while (loop_cond)
348 
349 /* Basically r g and b float values on each line, with a facultative 3DLUTSIZE
350  * directive; seems to be generated by Davinci */
351 static int parse_dat(AVFilterContext *ctx, FILE *f)
352 {
353  LUT3DContext *lut3d = ctx->priv;
354  char line[MAX_LINE_SIZE];
355  int i, j, k, size;
356 
357  lut3d->lutsize = size = 33;
358 
359  NEXT_LINE(skip_line(line));
360  if (!strncmp(line, "3DLUTSIZE ", 10)) {
361  size = strtol(line + 10, NULL, 0);
362  if (size < 2 || size > MAX_LEVEL) {
363  av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n");
364  return AVERROR(EINVAL);
365  }
366  lut3d->lutsize = size;
367  NEXT_LINE(skip_line(line));
368  }
369  for (k = 0; k < size; k++) {
370  for (j = 0; j < size; j++) {
371  for (i = 0; i < size; i++) {
372  struct rgbvec *vec = &lut3d->lut[k][j][i];
373  if (k != 0 || j != 0 || i != 0)
374  NEXT_LINE(skip_line(line));
375  if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
376  return AVERROR_INVALIDDATA;
377  }
378  }
379  }
380  return 0;
381 }
382 
383 /* Iridas format */
384 static int parse_cube(AVFilterContext *ctx, FILE *f)
385 {
386  LUT3DContext *lut3d = ctx->priv;
387  char line[MAX_LINE_SIZE];
388  float min[3] = {0.0, 0.0, 0.0};
389  float max[3] = {1.0, 1.0, 1.0};
390 
391  while (fgets(line, sizeof(line), f)) {
392  if (!strncmp(line, "LUT_3D_SIZE", 11)) {
393  int i, j, k;
394  const int size = strtol(line + 12, NULL, 0);
395 
396  if (size < 2 || size > MAX_LEVEL) {
397  av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n");
398  return AVERROR(EINVAL);
399  }
400  lut3d->lutsize = size;
401  for (k = 0; k < size; k++) {
402  for (j = 0; j < size; j++) {
403  for (i = 0; i < size; i++) {
404  struct rgbvec *vec = &lut3d->lut[i][j][k];
405 
406  do {
407 try_again:
408  NEXT_LINE(0);
409  if (!strncmp(line, "DOMAIN_", 7)) {
410  float *vals = NULL;
411  if (!strncmp(line + 7, "MIN ", 4)) vals = min;
412  else if (!strncmp(line + 7, "MAX ", 4)) vals = max;
413  if (!vals)
414  return AVERROR_INVALIDDATA;
415  av_sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2);
416  av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n",
417  min[0], min[1], min[2], max[0], max[1], max[2]);
418  goto try_again;
419  } else if (!strncmp(line, "TITLE", 5)) {
420  goto try_again;
421  }
422  } while (skip_line(line));
423  if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
424  return AVERROR_INVALIDDATA;
425  }
426  }
427  }
428  break;
429  }
430  }
431 
432  lut3d->scale.r = av_clipf(1. / (max[0] - min[0]), 0.f, 1.f);
433  lut3d->scale.g = av_clipf(1. / (max[1] - min[1]), 0.f, 1.f);
434  lut3d->scale.b = av_clipf(1. / (max[2] - min[2]), 0.f, 1.f);
435 
436  return 0;
437 }
438 
439 /* Assume 17x17x17 LUT with a 16-bit depth
440  * FIXME: it seems there are various 3dl formats */
441 static int parse_3dl(AVFilterContext *ctx, FILE *f)
442 {
443  char line[MAX_LINE_SIZE];
444  LUT3DContext *lut3d = ctx->priv;
445  int i, j, k;
446  const int size = 17;
447  const float scale = 16*16*16;
448 
449  lut3d->lutsize = size;
450  NEXT_LINE(skip_line(line));
451  for (k = 0; k < size; k++) {
452  for (j = 0; j < size; j++) {
453  for (i = 0; i < size; i++) {
454  int r, g, b;
455  struct rgbvec *vec = &lut3d->lut[k][j][i];
456 
457  NEXT_LINE(skip_line(line));
458  if (av_sscanf(line, "%d %d %d", &r, &g, &b) != 3)
459  return AVERROR_INVALIDDATA;
460  vec->r = r / scale;
461  vec->g = g / scale;
462  vec->b = b / scale;
463  }
464  }
465  }
466  return 0;
467 }
468 
469 /* Pandora format */
470 static int parse_m3d(AVFilterContext *ctx, FILE *f)
471 {
472  LUT3DContext *lut3d = ctx->priv;
473  float scale;
474  int i, j, k, size, in = -1, out = -1;
475  char line[MAX_LINE_SIZE];
476  uint8_t rgb_map[3] = {0, 1, 2};
477 
478  while (fgets(line, sizeof(line), f)) {
479  if (!strncmp(line, "in", 2)) in = strtol(line + 2, NULL, 0);
480  else if (!strncmp(line, "out", 3)) out = strtol(line + 3, NULL, 0);
481  else if (!strncmp(line, "values", 6)) {
482  const char *p = line + 6;
483 #define SET_COLOR(id) do { \
484  while (av_isspace(*p)) \
485  p++; \
486  switch (*p) { \
487  case 'r': rgb_map[id] = 0; break; \
488  case 'g': rgb_map[id] = 1; break; \
489  case 'b': rgb_map[id] = 2; break; \
490  } \
491  while (*p && !av_isspace(*p)) \
492  p++; \
493 } while (0)
494  SET_COLOR(0);
495  SET_COLOR(1);
496  SET_COLOR(2);
497  break;
498  }
499  }
500 
501  if (in == -1 || out == -1) {
502  av_log(ctx, AV_LOG_ERROR, "in and out must be defined\n");
503  return AVERROR_INVALIDDATA;
504  }
505  if (in < 2 || out < 2 ||
508  av_log(ctx, AV_LOG_ERROR, "invalid in (%d) or out (%d)\n", in, out);
509  return AVERROR_INVALIDDATA;
510  }
511  for (size = 1; size*size*size < in; size++);
512  lut3d->lutsize = size;
513  scale = 1. / (out - 1);
514 
515  for (k = 0; k < size; k++) {
516  for (j = 0; j < size; j++) {
517  for (i = 0; i < size; i++) {
518  struct rgbvec *vec = &lut3d->lut[k][j][i];
519  float val[3];
520 
521  NEXT_LINE(0);
522  if (av_sscanf(line, "%f %f %f", val, val + 1, val + 2) != 3)
523  return AVERROR_INVALIDDATA;
524  vec->r = val[rgb_map[0]] * scale;
525  vec->g = val[rgb_map[1]] * scale;
526  vec->b = val[rgb_map[2]] * scale;
527  }
528  }
529  }
530  return 0;
531 }
532 
534 {
535  LUT3DContext *lut3d = ctx->priv;
536  char line[MAX_LINE_SIZE];
537  float in_min[3] = {0.0, 0.0, 0.0};
538  float in_max[3] = {1.0, 1.0, 1.0};
539  float out_min[3] = {0.0, 0.0, 0.0};
540  float out_max[3] = {1.0, 1.0, 1.0};
541  int inside_metadata = 0, size;
542 
543  NEXT_LINE(skip_line(line));
544  if (strncmp(line, "CSPLUTV100", 10)) {
545  av_log(ctx, AV_LOG_ERROR, "Not cineSpace LUT format\n");
546  return AVERROR(EINVAL);
547  }
548 
549  NEXT_LINE(skip_line(line));
550  if (strncmp(line, "3D", 2)) {
551  av_log(ctx, AV_LOG_ERROR, "Not 3D LUT format\n");
552  return AVERROR(EINVAL);
553  }
554 
555  while (1) {
556  NEXT_LINE(skip_line(line));
557 
558  if (!strncmp(line, "BEGIN METADATA", 14)) {
559  inside_metadata = 1;
560  continue;
561  }
562  if (!strncmp(line, "END METADATA", 12)) {
563  inside_metadata = 0;
564  continue;
565  }
566  if (inside_metadata == 0) {
567  int size_r, size_g, size_b;
568 
569  for (int i = 0; i < 3; i++) {
570  int npoints = strtol(line, NULL, 0);
571 
572  if (npoints != 2) {
573  av_log(ctx, AV_LOG_ERROR, "Unsupported number of pre-lut points.\n");
574  return AVERROR_PATCHWELCOME;
575  }
576 
577  NEXT_LINE(skip_line(line));
578  if (av_sscanf(line, "%f %f", &in_min[i], &in_max[i]) != 2)
579  return AVERROR_INVALIDDATA;
580  NEXT_LINE(skip_line(line));
581  if (av_sscanf(line, "%f %f", &out_min[i], &out_max[i]) != 2)
582  return AVERROR_INVALIDDATA;
583  NEXT_LINE(skip_line(line));
584  }
585 
586  if (av_sscanf(line, "%d %d %d", &size_r, &size_g, &size_b) != 3)
587  return AVERROR(EINVAL);
588  if (size_r != size_g || size_r != size_b) {
589  av_log(ctx, AV_LOG_ERROR, "Unsupported size combination: %dx%dx%d.\n", size_r, size_g, size_b);
590  return AVERROR_PATCHWELCOME;
591  }
592 
593  size = size_r;
594  if (size < 2 || size > MAX_LEVEL) {
595  av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n");
596  return AVERROR(EINVAL);
597  }
598 
599  lut3d->lutsize = size;
600 
601  for (int k = 0; k < size; k++) {
602  for (int j = 0; j < size; j++) {
603  for (int i = 0; i < size; i++) {
604  struct rgbvec *vec = &lut3d->lut[i][j][k];
605  if (k != 0 || j != 0 || i != 0)
606  NEXT_LINE(skip_line(line));
607  if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
608  return AVERROR_INVALIDDATA;
609  vec->r *= out_max[0] - out_min[0];
610  vec->g *= out_max[1] - out_min[1];
611  vec->b *= out_max[2] - out_min[2];
612  }
613  }
614  }
615 
616  break;
617  }
618  }
619 
620  lut3d->scale.r = av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f);
621  lut3d->scale.g = av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f);
622  lut3d->scale.b = av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f);
623 
624  return 0;
625 }
626 
627 static void set_identity_matrix(LUT3DContext *lut3d, int size)
628 {
629  int i, j, k;
630  const float c = 1. / (size - 1);
631 
632  lut3d->lutsize = size;
633  for (k = 0; k < size; k++) {
634  for (j = 0; j < size; j++) {
635  for (i = 0; i < size; i++) {
636  struct rgbvec *vec = &lut3d->lut[k][j][i];
637  vec->r = k * c;
638  vec->g = j * c;
639  vec->b = i * c;
640  }
641  }
642  }
643 }
644 
646 {
647  static const enum AVPixelFormat pix_fmts[] = {
662  };
663  AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
664  if (!fmts_list)
665  return AVERROR(ENOMEM);
666  return ff_set_common_formats(ctx, fmts_list);
667 }
668 
669 static int config_input(AVFilterLink *inlink)
670 {
671  int depth, is16bit = 0, planar = 0;
672  LUT3DContext *lut3d = inlink->dst->priv;
674 
675  depth = desc->comp[0].depth;
676 
677  switch (inlink->format) {
678  case AV_PIX_FMT_RGB48:
679  case AV_PIX_FMT_BGR48:
680  case AV_PIX_FMT_RGBA64:
681  case AV_PIX_FMT_BGRA64:
682  is16bit = 1;
683  break;
684  case AV_PIX_FMT_GBRP9:
685  case AV_PIX_FMT_GBRP10:
686  case AV_PIX_FMT_GBRP12:
687  case AV_PIX_FMT_GBRP14:
688  case AV_PIX_FMT_GBRP16:
689  case AV_PIX_FMT_GBRAP10:
690  case AV_PIX_FMT_GBRAP12:
691  case AV_PIX_FMT_GBRAP16:
692  is16bit = 1;
693  case AV_PIX_FMT_GBRP:
694  case AV_PIX_FMT_GBRAP:
695  planar = 1;
696  break;
697  }
698 
699  ff_fill_rgba_map(lut3d->rgba_map, inlink->format);
700  lut3d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit);
701 
702 #define SET_FUNC(name) do { \
703  if (planar) { \
704  switch (depth) { \
705  case 8: lut3d->interp = interp_8_##name##_p8; break; \
706  case 9: lut3d->interp = interp_16_##name##_p9; break; \
707  case 10: lut3d->interp = interp_16_##name##_p10; break; \
708  case 12: lut3d->interp = interp_16_##name##_p12; break; \
709  case 14: lut3d->interp = interp_16_##name##_p14; break; \
710  case 16: lut3d->interp = interp_16_##name##_p16; break; \
711  } \
712  } else if (is16bit) { lut3d->interp = interp_16_##name; \
713  } else { lut3d->interp = interp_8_##name; } \
714 } while (0)
715 
716  switch (lut3d->interpolation) {
717  case INTERPOLATE_NEAREST: SET_FUNC(nearest); break;
718  case INTERPOLATE_TRILINEAR: SET_FUNC(trilinear); break;
719  case INTERPOLATE_TETRAHEDRAL: SET_FUNC(tetrahedral); break;
720  default:
721  av_assert0(0);
722  }
723 
724  return 0;
725 }
726 
728 {
729  AVFilterContext *ctx = inlink->dst;
730  LUT3DContext *lut3d = ctx->priv;
731  AVFilterLink *outlink = inlink->dst->outputs[0];
732  AVFrame *out;
733  ThreadData td;
734 
735  if (av_frame_is_writable(in)) {
736  out = in;
737  } else {
738  out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
739  if (!out) {
740  av_frame_free(&in);
741  return NULL;
742  }
743  av_frame_copy_props(out, in);
744  }
745 
746  td.in = in;
747  td.out = out;
748  ctx->internal->execute(ctx, lut3d->interp, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
749 
750  if (out != in)
751  av_frame_free(&in);
752 
753  return out;
754 }
755 
756 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
757 {
758  AVFilterLink *outlink = inlink->dst->outputs[0];
759  AVFrame *out = apply_lut(inlink, in);
760  if (!out)
761  return AVERROR(ENOMEM);
762  return ff_filter_frame(outlink, out);
763 }
764 
765 #if CONFIG_LUT3D_FILTER
766 static const AVOption lut3d_options[] = {
767  { "file", "set 3D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
769 };
770 
771 AVFILTER_DEFINE_CLASS(lut3d);
772 
773 static av_cold int lut3d_init(AVFilterContext *ctx)
774 {
775  int ret;
776  FILE *f;
777  const char *ext;
778  LUT3DContext *lut3d = ctx->priv;
779 
780  lut3d->scale.r = lut3d->scale.g = lut3d->scale.b = 1.f;
781 
782  if (!lut3d->file) {
783  set_identity_matrix(lut3d, 32);
784  return 0;
785  }
786 
787  f = fopen(lut3d->file, "r");
788  if (!f) {
789  ret = AVERROR(errno);
790  av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut3d->file, av_err2str(ret));
791  return ret;
792  }
793 
794  ext = strrchr(lut3d->file, '.');
795  if (!ext) {
796  av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n");
797  ret = AVERROR_INVALIDDATA;
798  goto end;
799  }
800  ext++;
801 
802  if (!av_strcasecmp(ext, "dat")) {
803  ret = parse_dat(ctx, f);
804  } else if (!av_strcasecmp(ext, "3dl")) {
805  ret = parse_3dl(ctx, f);
806  } else if (!av_strcasecmp(ext, "cube")) {
807  ret = parse_cube(ctx, f);
808  } else if (!av_strcasecmp(ext, "m3d")) {
809  ret = parse_m3d(ctx, f);
810  } else if (!av_strcasecmp(ext, "csp")) {
811  ret = parse_cinespace(ctx, f);
812  } else {
813  av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext);
814  ret = AVERROR(EINVAL);
815  }
816 
817  if (!ret && !lut3d->lutsize) {
818  av_log(ctx, AV_LOG_ERROR, "3D LUT is empty\n");
819  ret = AVERROR_INVALIDDATA;
820  }
821 
822 end:
823  fclose(f);
824  return ret;
825 }
826 
827 static const AVFilterPad lut3d_inputs[] = {
828  {
829  .name = "default",
830  .type = AVMEDIA_TYPE_VIDEO,
831  .filter_frame = filter_frame,
832  .config_props = config_input,
833  },
834  { NULL }
835 };
836 
837 static const AVFilterPad lut3d_outputs[] = {
838  {
839  .name = "default",
840  .type = AVMEDIA_TYPE_VIDEO,
841  },
842  { NULL }
843 };
844 
846  .name = "lut3d",
847  .description = NULL_IF_CONFIG_SMALL("Adjust colors using a 3D LUT."),
848  .priv_size = sizeof(LUT3DContext),
849  .init = lut3d_init,
851  .inputs = lut3d_inputs,
852  .outputs = lut3d_outputs,
853  .priv_class = &lut3d_class,
855 };
856 #endif
857 
858 #if CONFIG_HALDCLUT_FILTER
859 
860 static void update_clut_packed(LUT3DContext *lut3d, const AVFrame *frame)
861 {
862  const uint8_t *data = frame->data[0];
863  const int linesize = frame->linesize[0];
864  const int w = lut3d->clut_width;
865  const int step = lut3d->clut_step;
866  const uint8_t *rgba_map = lut3d->clut_rgba_map;
867  const int level = lut3d->lutsize;
868 
869 #define LOAD_CLUT(nbits) do { \
870  int i, j, k, x = 0, y = 0; \
871  \
872  for (k = 0; k < level; k++) { \
873  for (j = 0; j < level; j++) { \
874  for (i = 0; i < level; i++) { \
875  const uint##nbits##_t *src = (const uint##nbits##_t *) \
876  (data + y*linesize + x*step); \
877  struct rgbvec *vec = &lut3d->lut[i][j][k]; \
878  vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \
879  vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \
880  vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \
881  if (++x == w) { \
882  x = 0; \
883  y++; \
884  } \
885  } \
886  } \
887  } \
888 } while (0)
889 
890  switch (lut3d->clut_bits) {
891  case 8: LOAD_CLUT(8); break;
892  case 16: LOAD_CLUT(16); break;
893  }
894 }
895 
896 static void update_clut_planar(LUT3DContext *lut3d, const AVFrame *frame)
897 {
898  const uint8_t *datag = frame->data[0];
899  const uint8_t *datab = frame->data[1];
900  const uint8_t *datar = frame->data[2];
901  const int glinesize = frame->linesize[0];
902  const int blinesize = frame->linesize[1];
903  const int rlinesize = frame->linesize[2];
904  const int w = lut3d->clut_width;
905  const int level = lut3d->lutsize;
906 
907 #define LOAD_CLUT_PLANAR(nbits, depth) do { \
908  int i, j, k, x = 0, y = 0; \
909  \
910  for (k = 0; k < level; k++) { \
911  for (j = 0; j < level; j++) { \
912  for (i = 0; i < level; i++) { \
913  const uint##nbits##_t *gsrc = (const uint##nbits##_t *) \
914  (datag + y*glinesize); \
915  const uint##nbits##_t *bsrc = (const uint##nbits##_t *) \
916  (datab + y*blinesize); \
917  const uint##nbits##_t *rsrc = (const uint##nbits##_t *) \
918  (datar + y*rlinesize); \
919  struct rgbvec *vec = &lut3d->lut[i][j][k]; \
920  vec->r = gsrc[x] / (float)((1<<(depth)) - 1); \
921  vec->g = bsrc[x] / (float)((1<<(depth)) - 1); \
922  vec->b = rsrc[x] / (float)((1<<(depth)) - 1); \
923  if (++x == w) { \
924  x = 0; \
925  y++; \
926  } \
927  } \
928  } \
929  } \
930 } while (0)
931 
932  switch (lut3d->clut_bits) {
933  case 8: LOAD_CLUT_PLANAR(8, 8); break;
934  case 9: LOAD_CLUT_PLANAR(16, 9); break;
935  case 10: LOAD_CLUT_PLANAR(16, 10); break;
936  case 12: LOAD_CLUT_PLANAR(16, 12); break;
937  case 14: LOAD_CLUT_PLANAR(16, 14); break;
938  case 16: LOAD_CLUT_PLANAR(16, 16); break;
939  }
940 }
941 
942 static int config_output(AVFilterLink *outlink)
943 {
944  AVFilterContext *ctx = outlink->src;
945  LUT3DContext *lut3d = ctx->priv;
946  int ret;
947 
948  ret = ff_framesync_init_dualinput(&lut3d->fs, ctx);
949  if (ret < 0)
950  return ret;
951  outlink->w = ctx->inputs[0]->w;
952  outlink->h = ctx->inputs[0]->h;
953  outlink->time_base = ctx->inputs[0]->time_base;
954  if ((ret = ff_framesync_configure(&lut3d->fs)) < 0)
955  return ret;
956  return 0;
957 }
958 
959 static int activate(AVFilterContext *ctx)
960 {
961  LUT3DContext *s = ctx->priv;
962  return ff_framesync_activate(&s->fs);
963 }
964 
965 static int config_clut(AVFilterLink *inlink)
966 {
967  int size, level, w, h;
968  AVFilterContext *ctx = inlink->dst;
969  LUT3DContext *lut3d = ctx->priv;
971 
972  av_assert0(desc);
973 
974  lut3d->clut_bits = desc->comp[0].depth;
975  lut3d->clut_planar = av_pix_fmt_count_planes(inlink->format) > 1;
976 
977  lut3d->clut_step = av_get_padded_bits_per_pixel(desc) >> 3;
978  ff_fill_rgba_map(lut3d->clut_rgba_map, inlink->format);
979 
980  if (inlink->w > inlink->h)
981  av_log(ctx, AV_LOG_INFO, "Padding on the right (%dpx) of the "
982  "Hald CLUT will be ignored\n", inlink->w - inlink->h);
983  else if (inlink->w < inlink->h)
984  av_log(ctx, AV_LOG_INFO, "Padding at the bottom (%dpx) of the "
985  "Hald CLUT will be ignored\n", inlink->h - inlink->w);
986  lut3d->clut_width = w = h = FFMIN(inlink->w, inlink->h);
987 
988  for (level = 1; level*level*level < w; level++);
989  size = level*level*level;
990  if (size != w) {
991  av_log(ctx, AV_LOG_WARNING, "The Hald CLUT width does not match the level\n");
992  return AVERROR_INVALIDDATA;
993  }
994  av_assert0(w == h && w == size);
995  level *= level;
996  if (level > MAX_LEVEL) {
997  const int max_clut_level = sqrt(MAX_LEVEL);
998  const int max_clut_size = max_clut_level*max_clut_level*max_clut_level;
999  av_log(ctx, AV_LOG_ERROR, "Too large Hald CLUT "
1000  "(maximum level is %d, or %dx%d CLUT)\n",
1001  max_clut_level, max_clut_size, max_clut_size);
1002  return AVERROR(EINVAL);
1003  }
1004  lut3d->lutsize = level;
1005 
1006  return 0;
1007 }
1008 
1009 static int update_apply_clut(FFFrameSync *fs)
1010 {
1011  AVFilterContext *ctx = fs->parent;
1012  LUT3DContext *lut3d = ctx->priv;
1013  AVFilterLink *inlink = ctx->inputs[0];
1014  AVFrame *master, *second, *out;
1015  int ret;
1016 
1017  ret = ff_framesync_dualinput_get(fs, &master, &second);
1018  if (ret < 0)
1019  return ret;
1020  if (!second)
1021  return ff_filter_frame(ctx->outputs[0], master);
1022  if (lut3d->clut_planar)
1023  update_clut_planar(ctx->priv, second);
1024  else
1025  update_clut_packed(ctx->priv, second);
1026  out = apply_lut(inlink, master);
1027  return ff_filter_frame(ctx->outputs[0], out);
1028 }
1029 
1030 static av_cold int haldclut_init(AVFilterContext *ctx)
1031 {
1032  LUT3DContext *lut3d = ctx->priv;
1033  lut3d->scale.r = lut3d->scale.g = lut3d->scale.b = 1.f;
1034  lut3d->fs.on_event = update_apply_clut;
1035  return 0;
1036 }
1037 
1038 static av_cold void haldclut_uninit(AVFilterContext *ctx)
1039 {
1040  LUT3DContext *lut3d = ctx->priv;
1041  ff_framesync_uninit(&lut3d->fs);
1042 }
1043 
1044 static const AVOption haldclut_options[] = {
1045  COMMON_OPTIONS
1046 };
1047 
1048 FRAMESYNC_DEFINE_CLASS(haldclut, LUT3DContext, fs);
1049 
1050 static const AVFilterPad haldclut_inputs[] = {
1051  {
1052  .name = "main",
1053  .type = AVMEDIA_TYPE_VIDEO,
1054  .config_props = config_input,
1055  },{
1056  .name = "clut",
1057  .type = AVMEDIA_TYPE_VIDEO,
1058  .config_props = config_clut,
1059  },
1060  { NULL }
1061 };
1062 
1063 static const AVFilterPad haldclut_outputs[] = {
1064  {
1065  .name = "default",
1066  .type = AVMEDIA_TYPE_VIDEO,
1067  .config_props = config_output,
1068  },
1069  { NULL }
1070 };
1071 
1073  .name = "haldclut",
1074  .description = NULL_IF_CONFIG_SMALL("Adjust colors using a Hald CLUT."),
1075  .priv_size = sizeof(LUT3DContext),
1076  .preinit = haldclut_framesync_preinit,
1077  .init = haldclut_init,
1078  .uninit = haldclut_uninit,
1080  .activate = activate,
1081  .inputs = haldclut_inputs,
1082  .outputs = haldclut_outputs,
1083  .priv_class = &haldclut_class,
1085 };
1086 #endif
1087 
1088 #if CONFIG_LUT1D_FILTER
1089 
1090 enum interp_1d_mode {
1091  INTERPOLATE_1D_NEAREST,
1092  INTERPOLATE_1D_LINEAR,
1093  INTERPOLATE_1D_CUBIC,
1094  INTERPOLATE_1D_COSINE,
1095  INTERPOLATE_1D_SPLINE,
1096  NB_INTERP_1D_MODE
1097 };
1098 
1099 #define MAX_1D_LEVEL 65536
1100 
1101 typedef struct LUT1DContext {
1102  const AVClass *class;
1103  char *file;
1104  int interpolation; ///<interp_1d_mode
1105  struct rgbvec scale;
1106  uint8_t rgba_map[4];
1107  int step;
1108  float lut[3][MAX_1D_LEVEL];
1109  int lutsize;
1110  avfilter_action_func *interp;
1111 } LUT1DContext;
1112 
1113 #undef OFFSET
1114 #define OFFSET(x) offsetof(LUT1DContext, x)
1115 
1116 static void set_identity_matrix_1d(LUT1DContext *lut1d, int size)
1117 {
1118  const float c = 1. / (size - 1);
1119  int i;
1120 
1121  lut1d->lutsize = size;
1122  for (i = 0; i < size; i++) {
1123  lut1d->lut[0][i] = i * c;
1124  lut1d->lut[1][i] = i * c;
1125  lut1d->lut[2][i] = i * c;
1126  }
1127 }
1128 
1129 static int parse_cinespace_1d(AVFilterContext *ctx, FILE *f)
1130 {
1131  LUT1DContext *lut1d = ctx->priv;
1132  char line[MAX_LINE_SIZE];
1133  float in_min[3] = {0.0, 0.0, 0.0};
1134  float in_max[3] = {1.0, 1.0, 1.0};
1135  float out_min[3] = {0.0, 0.0, 0.0};
1136  float out_max[3] = {1.0, 1.0, 1.0};
1137  int inside_metadata = 0, size;
1138 
1139  NEXT_LINE(skip_line(line));
1140  if (strncmp(line, "CSPLUTV100", 10)) {
1141  av_log(ctx, AV_LOG_ERROR, "Not cineSpace LUT format\n");
1142  return AVERROR(EINVAL);
1143  }
1144 
1145  NEXT_LINE(skip_line(line));
1146  if (strncmp(line, "1D", 2)) {
1147  av_log(ctx, AV_LOG_ERROR, "Not 1D LUT format\n");
1148  return AVERROR(EINVAL);
1149  }
1150 
1151  while (1) {
1152  NEXT_LINE(skip_line(line));
1153 
1154  if (!strncmp(line, "BEGIN METADATA", 14)) {
1155  inside_metadata = 1;
1156  continue;
1157  }
1158  if (!strncmp(line, "END METADATA", 12)) {
1159  inside_metadata = 0;
1160  continue;
1161  }
1162  if (inside_metadata == 0) {
1163  for (int i = 0; i < 3; i++) {
1164  int npoints = strtol(line, NULL, 0);
1165 
1166  if (npoints != 2) {
1167  av_log(ctx, AV_LOG_ERROR, "Unsupported number of pre-lut points.\n");
1168  return AVERROR_PATCHWELCOME;
1169  }
1170 
1171  NEXT_LINE(skip_line(line));
1172  if (av_sscanf(line, "%f %f", &in_min[i], &in_max[i]) != 2)
1173  return AVERROR_INVALIDDATA;
1174  NEXT_LINE(skip_line(line));
1175  if (av_sscanf(line, "%f %f", &out_min[i], &out_max[i]) != 2)
1176  return AVERROR_INVALIDDATA;
1177  NEXT_LINE(skip_line(line));
1178  }
1179 
1180  size = strtol(line, NULL, 0);
1181 
1182  if (size < 2 || size > MAX_1D_LEVEL) {
1183  av_log(ctx, AV_LOG_ERROR, "Too large or invalid 1D LUT size\n");
1184  return AVERROR(EINVAL);
1185  }
1186 
1187  lut1d->lutsize = size;
1188 
1189  for (int i = 0; i < size; i++) {
1190  NEXT_LINE(skip_line(line));
1191  if (av_sscanf(line, "%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3)
1192  return AVERROR_INVALIDDATA;
1193  lut1d->lut[0][i] *= out_max[0] - out_min[0];
1194  lut1d->lut[1][i] *= out_max[1] - out_min[1];
1195  lut1d->lut[2][i] *= out_max[2] - out_min[2];
1196  }
1197 
1198  break;
1199  }
1200  }
1201 
1202  lut1d->scale.r = av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f);
1203  lut1d->scale.g = av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f);
1204  lut1d->scale.b = av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f);
1205 
1206  return 0;
1207 }
1208 
1209 static int parse_cube_1d(AVFilterContext *ctx, FILE *f)
1210 {
1211  LUT1DContext *lut1d = ctx->priv;
1212  char line[MAX_LINE_SIZE];
1213  float min[3] = {0.0, 0.0, 0.0};
1214  float max[3] = {1.0, 1.0, 1.0};
1215 
1216  while (fgets(line, sizeof(line), f)) {
1217  if (!strncmp(line, "LUT_1D_SIZE", 11)) {
1218  const int size = strtol(line + 12, NULL, 0);
1219  int i;
1220 
1221  if (size < 2 || size > MAX_1D_LEVEL) {
1222  av_log(ctx, AV_LOG_ERROR, "Too large or invalid 1D LUT size\n");
1223  return AVERROR(EINVAL);
1224  }
1225  lut1d->lutsize = size;
1226  for (i = 0; i < size; i++) {
1227  do {
1228 try_again:
1229  NEXT_LINE(0);
1230  if (!strncmp(line, "DOMAIN_", 7)) {
1231  float *vals = NULL;
1232  if (!strncmp(line + 7, "MIN ", 4)) vals = min;
1233  else if (!strncmp(line + 7, "MAX ", 4)) vals = max;
1234  if (!vals)
1235  return AVERROR_INVALIDDATA;
1236  av_sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2);
1237  av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n",
1238  min[0], min[1], min[2], max[0], max[1], max[2]);
1239  goto try_again;
1240  } else if (!strncmp(line, "LUT_1D_INPUT_RANGE ", 19)) {
1241  av_sscanf(line + 19, "%f %f", min, max);
1242  min[1] = min[2] = min[0];
1243  max[1] = max[2] = max[0];
1244  goto try_again;
1245  } else if (!strncmp(line, "TITLE", 5)) {
1246  goto try_again;
1247  }
1248  } while (skip_line(line));
1249  if (av_sscanf(line, "%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3)
1250  return AVERROR_INVALIDDATA;
1251  }
1252  break;
1253  }
1254  }
1255 
1256  lut1d->scale.r = av_clipf(1. / (max[0] - min[0]), 0.f, 1.f);
1257  lut1d->scale.g = av_clipf(1. / (max[1] - min[1]), 0.f, 1.f);
1258  lut1d->scale.b = av_clipf(1. / (max[2] - min[2]), 0.f, 1.f);
1259 
1260  return 0;
1261 }
1262 
1263 static const AVOption lut1d_options[] = {
1264  { "file", "set 1D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
1265  { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_1D_LINEAR}, 0, NB_INTERP_1D_MODE-1, FLAGS, "interp_mode" },
1266  { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_NEAREST}, INT_MIN, INT_MAX, FLAGS, "interp_mode" },
1267  { "linear", "use values from the linear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_LINEAR}, INT_MIN, INT_MAX, FLAGS, "interp_mode" },
1268  { "cosine", "use values from the cosine interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_COSINE}, INT_MIN, INT_MAX, FLAGS, "interp_mode" },
1269  { "cubic", "use values from the cubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_CUBIC}, INT_MIN, INT_MAX, FLAGS, "interp_mode" },
1270  { "spline", "use values from the spline interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_SPLINE}, INT_MIN, INT_MAX, FLAGS, "interp_mode" },
1271  { NULL }
1272 };
1273 
1274 AVFILTER_DEFINE_CLASS(lut1d);
1275 
1276 static inline float interp_1d_nearest(const LUT1DContext *lut1d,
1277  int idx, const float s)
1278 {
1279  return lut1d->lut[idx][NEAR(s)];
1280 }
1281 
1282 #define NEXT1D(x) (FFMIN((int)(x) + 1, lut1d->lutsize - 1))
1283 
1284 static inline float interp_1d_linear(const LUT1DContext *lut1d,
1285  int idx, const float s)
1286 {
1287  const int prev = PREV(s);
1288  const int next = NEXT1D(s);
1289  const float d = s - prev;
1290  const float p = lut1d->lut[idx][prev];
1291  const float n = lut1d->lut[idx][next];
1292 
1293  return lerpf(p, n, d);
1294 }
1295 
1296 static inline float interp_1d_cosine(const LUT1DContext *lut1d,
1297  int idx, const float s)
1298 {
1299  const int prev = PREV(s);
1300  const int next = NEXT1D(s);
1301  const float d = s - prev;
1302  const float p = lut1d->lut[idx][prev];
1303  const float n = lut1d->lut[idx][next];
1304  const float m = (1.f - cosf(d * M_PI)) * .5f;
1305 
1306  return lerpf(p, n, m);
1307 }
1308 
1309 static inline float interp_1d_cubic(const LUT1DContext *lut1d,
1310  int idx, const float s)
1311 {
1312  const int prev = PREV(s);
1313  const int next = NEXT1D(s);
1314  const float mu = s - prev;
1315  float a0, a1, a2, a3, mu2;
1316 
1317  float y0 = lut1d->lut[idx][FFMAX(prev - 1, 0)];
1318  float y1 = lut1d->lut[idx][prev];
1319  float y2 = lut1d->lut[idx][next];
1320  float y3 = lut1d->lut[idx][FFMIN(next + 1, lut1d->lutsize - 1)];
1321 
1322 
1323  mu2 = mu * mu;
1324  a0 = y3 - y2 - y0 + y1;
1325  a1 = y0 - y1 - a0;
1326  a2 = y2 - y0;
1327  a3 = y1;
1328 
1329  return a0 * mu * mu2 + a1 * mu2 + a2 * mu + a3;
1330 }
1331 
1332 static inline float interp_1d_spline(const LUT1DContext *lut1d,
1333  int idx, const float s)
1334 {
1335  const int prev = PREV(s);
1336  const int next = NEXT1D(s);
1337  const float x = s - prev;
1338  float c0, c1, c2, c3;
1339 
1340  float y0 = lut1d->lut[idx][FFMAX(prev - 1, 0)];
1341  float y1 = lut1d->lut[idx][prev];
1342  float y2 = lut1d->lut[idx][next];
1343  float y3 = lut1d->lut[idx][FFMIN(next + 1, lut1d->lutsize - 1)];
1344 
1345  c0 = y1;
1346  c1 = .5f * (y2 - y0);
1347  c2 = y0 - 2.5f * y1 + 2.f * y2 - .5f * y3;
1348  c3 = .5f * (y3 - y0) + 1.5f * (y1 - y2);
1349 
1350  return ((c3 * x + c2) * x + c1) * x + c0;
1351 }
1352 
1353 #define DEFINE_INTERP_FUNC_PLANAR_1D(name, nbits, depth) \
1354 static int interp_1d_##nbits##_##name##_p##depth(AVFilterContext *ctx, \
1355  void *arg, int jobnr, \
1356  int nb_jobs) \
1357 { \
1358  int x, y; \
1359  const LUT1DContext *lut1d = ctx->priv; \
1360  const ThreadData *td = arg; \
1361  const AVFrame *in = td->in; \
1362  const AVFrame *out = td->out; \
1363  const int direct = out == in; \
1364  const int slice_start = (in->height * jobnr ) / nb_jobs; \
1365  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
1366  uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
1367  uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
1368  uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
1369  uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
1370  const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
1371  const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
1372  const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
1373  const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
1374  const float factor = (1 << depth) - 1; \
1375  const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \
1376  const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \
1377  const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \
1378  \
1379  for (y = slice_start; y < slice_end; y++) { \
1380  uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \
1381  uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \
1382  uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \
1383  uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \
1384  const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \
1385  const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \
1386  const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \
1387  const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \
1388  for (x = 0; x < in->width; x++) { \
1389  float r = srcr[x] * scale_r; \
1390  float g = srcg[x] * scale_g; \
1391  float b = srcb[x] * scale_b; \
1392  r = interp_1d_##name(lut1d, 0, r); \
1393  g = interp_1d_##name(lut1d, 1, g); \
1394  b = interp_1d_##name(lut1d, 2, b); \
1395  dstr[x] = av_clip_uintp2(r * factor, depth); \
1396  dstg[x] = av_clip_uintp2(g * factor, depth); \
1397  dstb[x] = av_clip_uintp2(b * factor, depth); \
1398  if (!direct && in->linesize[3]) \
1399  dsta[x] = srca[x]; \
1400  } \
1401  grow += out->linesize[0]; \
1402  brow += out->linesize[1]; \
1403  rrow += out->linesize[2]; \
1404  arow += out->linesize[3]; \
1405  srcgrow += in->linesize[0]; \
1406  srcbrow += in->linesize[1]; \
1407  srcrrow += in->linesize[2]; \
1408  srcarow += in->linesize[3]; \
1409  } \
1410  return 0; \
1411 }
1412 
1413 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 8, 8)
1414 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 8, 8)
1415 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 8, 8)
1416 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 8, 8)
1417 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 8, 8)
1418 
1419 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 9)
1420 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 9)
1421 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 9)
1422 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 9)
1423 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 9)
1424 
1425 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 10)
1426 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 10)
1427 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 10)
1428 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 10)
1429 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 10)
1430 
1431 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 12)
1432 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 12)
1433 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 12)
1434 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 12)
1435 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 12)
1436 
1437 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 14)
1438 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 14)
1439 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 14)
1440 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 14)
1441 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 14)
1442 
1443 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 16)
1444 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 16)
1445 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 16)
1446 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 16)
1447 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 16)
1448 
1449 #define DEFINE_INTERP_FUNC_1D(name, nbits) \
1450 static int interp_1d_##nbits##_##name(AVFilterContext *ctx, void *arg, \
1451  int jobnr, int nb_jobs) \
1452 { \
1453  int x, y; \
1454  const LUT1DContext *lut1d = ctx->priv; \
1455  const ThreadData *td = arg; \
1456  const AVFrame *in = td->in; \
1457  const AVFrame *out = td->out; \
1458  const int direct = out == in; \
1459  const int step = lut1d->step; \
1460  const uint8_t r = lut1d->rgba_map[R]; \
1461  const uint8_t g = lut1d->rgba_map[G]; \
1462  const uint8_t b = lut1d->rgba_map[B]; \
1463  const uint8_t a = lut1d->rgba_map[A]; \
1464  const int slice_start = (in->height * jobnr ) / nb_jobs; \
1465  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
1466  uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
1467  const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
1468  const float factor = (1 << nbits) - 1; \
1469  const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \
1470  const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \
1471  const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \
1472  \
1473  for (y = slice_start; y < slice_end; y++) { \
1474  uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
1475  const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
1476  for (x = 0; x < in->width * step; x += step) { \
1477  float rr = src[x + r] * scale_r; \
1478  float gg = src[x + g] * scale_g; \
1479  float bb = src[x + b] * scale_b; \
1480  rr = interp_1d_##name(lut1d, 0, rr); \
1481  gg = interp_1d_##name(lut1d, 1, gg); \
1482  bb = interp_1d_##name(lut1d, 2, bb); \
1483  dst[x + r] = av_clip_uint##nbits(rr * factor); \
1484  dst[x + g] = av_clip_uint##nbits(gg * factor); \
1485  dst[x + b] = av_clip_uint##nbits(bb * factor); \
1486  if (!direct && step == 4) \
1487  dst[x + a] = src[x + a]; \
1488  } \
1489  dstrow += out->linesize[0]; \
1490  srcrow += in ->linesize[0]; \
1491  } \
1492  return 0; \
1493 }
1494 
1495 DEFINE_INTERP_FUNC_1D(nearest, 8)
1496 DEFINE_INTERP_FUNC_1D(linear, 8)
1497 DEFINE_INTERP_FUNC_1D(cosine, 8)
1498 DEFINE_INTERP_FUNC_1D(cubic, 8)
1499 DEFINE_INTERP_FUNC_1D(spline, 8)
1500 
1501 DEFINE_INTERP_FUNC_1D(nearest, 16)
1502 DEFINE_INTERP_FUNC_1D(linear, 16)
1503 DEFINE_INTERP_FUNC_1D(cosine, 16)
1504 DEFINE_INTERP_FUNC_1D(cubic, 16)
1505 DEFINE_INTERP_FUNC_1D(spline, 16)
1506 
1507 static int config_input_1d(AVFilterLink *inlink)
1508 {
1509  int depth, is16bit = 0, planar = 0;
1510  LUT1DContext *lut1d = inlink->dst->priv;
1512 
1513  depth = desc->comp[0].depth;
1514 
1515  switch (inlink->format) {
1516  case AV_PIX_FMT_RGB48:
1517  case AV_PIX_FMT_BGR48:
1518  case AV_PIX_FMT_RGBA64:
1519  case AV_PIX_FMT_BGRA64:
1520  is16bit = 1;
1521  break;
1522  case AV_PIX_FMT_GBRP9:
1523  case AV_PIX_FMT_GBRP10:
1524  case AV_PIX_FMT_GBRP12:
1525  case AV_PIX_FMT_GBRP14:
1526  case AV_PIX_FMT_GBRP16:
1527  case AV_PIX_FMT_GBRAP10:
1528  case AV_PIX_FMT_GBRAP12:
1529  case AV_PIX_FMT_GBRAP16:
1530  is16bit = 1;
1531  case AV_PIX_FMT_GBRP:
1532  case AV_PIX_FMT_GBRAP:
1533  planar = 1;
1534  break;
1535  }
1536 
1537  ff_fill_rgba_map(lut1d->rgba_map, inlink->format);
1538  lut1d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit);
1539 
1540 #define SET_FUNC_1D(name) do { \
1541  if (planar) { \
1542  switch (depth) { \
1543  case 8: lut1d->interp = interp_1d_8_##name##_p8; break; \
1544  case 9: lut1d->interp = interp_1d_16_##name##_p9; break; \
1545  case 10: lut1d->interp = interp_1d_16_##name##_p10; break; \
1546  case 12: lut1d->interp = interp_1d_16_##name##_p12; break; \
1547  case 14: lut1d->interp = interp_1d_16_##name##_p14; break; \
1548  case 16: lut1d->interp = interp_1d_16_##name##_p16; break; \
1549  } \
1550  } else if (is16bit) { lut1d->interp = interp_1d_16_##name; \
1551  } else { lut1d->interp = interp_1d_8_##name; } \
1552 } while (0)
1553 
1554  switch (lut1d->interpolation) {
1555  case INTERPOLATE_1D_NEAREST: SET_FUNC_1D(nearest); break;
1556  case INTERPOLATE_1D_LINEAR: SET_FUNC_1D(linear); break;
1557  case INTERPOLATE_1D_COSINE: SET_FUNC_1D(cosine); break;
1558  case INTERPOLATE_1D_CUBIC: SET_FUNC_1D(cubic); break;
1559  case INTERPOLATE_1D_SPLINE: SET_FUNC_1D(spline); break;
1560  default:
1561  av_assert0(0);
1562  }
1563 
1564  return 0;
1565 }
1566 
1567 static av_cold int lut1d_init(AVFilterContext *ctx)
1568 {
1569  int ret;
1570  FILE *f;
1571  const char *ext;
1572  LUT1DContext *lut1d = ctx->priv;
1573 
1574  lut1d->scale.r = lut1d->scale.g = lut1d->scale.b = 1.f;
1575 
1576  if (!lut1d->file) {
1577  set_identity_matrix_1d(lut1d, 32);
1578  return 0;
1579  }
1580 
1581  f = fopen(lut1d->file, "r");
1582  if (!f) {
1583  ret = AVERROR(errno);
1584  av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut1d->file, av_err2str(ret));
1585  return ret;
1586  }
1587 
1588  ext = strrchr(lut1d->file, '.');
1589  if (!ext) {
1590  av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n");
1591  ret = AVERROR_INVALIDDATA;
1592  goto end;
1593  }
1594  ext++;
1595 
1596  if (!av_strcasecmp(ext, "cube") || !av_strcasecmp(ext, "1dlut")) {
1597  ret = parse_cube_1d(ctx, f);
1598  } else if (!av_strcasecmp(ext, "csp")) {
1599  ret = parse_cinespace_1d(ctx, f);
1600  } else {
1601  av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext);
1602  ret = AVERROR(EINVAL);
1603  }
1604 
1605  if (!ret && !lut1d->lutsize) {
1606  av_log(ctx, AV_LOG_ERROR, "1D LUT is empty\n");
1607  ret = AVERROR_INVALIDDATA;
1608  }
1609 
1610 end:
1611  fclose(f);
1612  return ret;
1613 }
1614 
1615 static AVFrame *apply_1d_lut(AVFilterLink *inlink, AVFrame *in)
1616 {
1617  AVFilterContext *ctx = inlink->dst;
1618  LUT1DContext *lut1d = ctx->priv;
1619  AVFilterLink *outlink = inlink->dst->outputs[0];
1620  AVFrame *out;
1621  ThreadData td;
1622 
1623  if (av_frame_is_writable(in)) {
1624  out = in;
1625  } else {
1626  out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
1627  if (!out) {
1628  av_frame_free(&in);
1629  return NULL;
1630  }
1631  av_frame_copy_props(out, in);
1632  }
1633 
1634  td.in = in;
1635  td.out = out;
1636  ctx->internal->execute(ctx, lut1d->interp, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
1637 
1638  if (out != in)
1639  av_frame_free(&in);
1640 
1641  return out;
1642 }
1643 
1644 static int filter_frame_1d(AVFilterLink *inlink, AVFrame *in)
1645 {
1646  AVFilterLink *outlink = inlink->dst->outputs[0];
1647  AVFrame *out = apply_1d_lut(inlink, in);
1648  if (!out)
1649  return AVERROR(ENOMEM);
1650  return ff_filter_frame(outlink, out);
1651 }
1652 
1653 static const AVFilterPad lut1d_inputs[] = {
1654  {
1655  .name = "default",
1656  .type = AVMEDIA_TYPE_VIDEO,
1657  .filter_frame = filter_frame_1d,
1658  .config_props = config_input_1d,
1659  },
1660  { NULL }
1661 };
1662 
1663 static const AVFilterPad lut1d_outputs[] = {
1664  {
1665  .name = "default",
1666  .type = AVMEDIA_TYPE_VIDEO,
1667  },
1668  { NULL }
1669 };
1670 
1672  .name = "lut1d",
1673  .description = NULL_IF_CONFIG_SMALL("Adjust colors using a 1D LUT."),
1674  .priv_size = sizeof(LUT1DContext),
1675  .init = lut1d_init,
1677  .inputs = lut1d_inputs,
1678  .outputs = lut1d_outputs,
1679  .priv_class = &lut1d_class,
1681 };
1682 #endif
#define NULL
Definition: coverity.c:32
const char const char void * val
Definition: avisynth_c.h:863
#define FRAMESYNC_DEFINE_CLASS(name, context, field)
Definition: framesync.h:300
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
AVFrame * out
Definition: af_adeclick.c:488
#define COMMON_OPTIONS
Definition: vf_lut3d.c:86
static int config_input(AVFilterLink *inlink)
Definition: vf_lut3d.c:669
int size
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2522
This structure describes decoded (raw) audio or video data.
Definition: frame.h:295
AVOption.
Definition: opt.h:246
static struct rgbvec interp_trilinear(const LUT3DContext *lut3d, const struct rgbvec *s)
Interpolate using the 8 vertices of a cube.
Definition: vf_lut3d.c:123
#define AV_PIX_FMT_GBRAP10
Definition: pixfmt.h:407
static int linear(InterplayACMContext *s, unsigned ind, unsigned col)
Definition: interplayacm.c:121
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2562
Main libavfilter public API header.
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
const char * desc
Definition: nvenc.c:68
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
#define AV_PIX_FMT_RGBA64
Definition: pixfmt.h:377
#define a0
Definition: regdef.h:46
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
static int skip_line(const char *p)
Definition: vf_lut3d.c:335
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:403
static av_const int av_isspace(int c)
Locale-independent conversion of ASCII isspace.
Definition: avstring.h:222
#define AV_PIX_FMT_BGRA64
Definition: pixfmt.h:382
#define a1
Definition: regdef.h:47
static int parse_cube(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:384
int ff_framesync_configure(FFFrameSync *fs)
Configure a frame sync structure.
Definition: framesync.c:117
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Definition: pixfmt.h:239
const char * master
Definition: vf_curves.c:117
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:99
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:283
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
Definition: avfilter.h:125
const char * name
Pad name.
Definition: internal.h:60
AVFilterContext * parent
Parent filter context.
Definition: framesync.h:152
AVFilterLink ** inputs
array of pointers to input links
Definition: avfilter.h:346
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
#define MAX_LEVEL
Definition: vf_lut3d.c:58
AVFilter ff_vf_haldclut
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1080
#define a3
Definition: regdef.h:49
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch const uint8_t **in ch off *out planar
Definition: audioconvert.c:56
static float lerpf(float v0, float v1, float f)
Definition: vf_lut3d.c:93
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
AVFilter ff_vf_lut1d
uint8_t
#define av_cold
Definition: attributes.h:82
static av_cold int uninit(AVCodecContext *avctx)
Definition: crystalhd.c:279
#define fs(width, name, subs,...)
Definition: cbs_vp9.c:259
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
Definition: pixfmt.h:238
AVOptions.
int ff_framesync_init_dualinput(FFFrameSync *fs, AVFilterContext *parent)
Initialize a frame sync structure for dualinput.
Definition: framesync.c:361
#define f(width, name)
Definition: cbs_vp9.c:255
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
int ff_framesync_dualinput_get(FFFrameSync *fs, AVFrame **f0, AVFrame **f1)
Definition: framesync.c:379
static void set_identity_matrix(LUT3DContext *lut3d, int size)
Definition: vf_lut3d.c:627
#define cosf(x)
Definition: libm.h:78
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:402
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:94
static AVFrame * frame
Misc file utilities.
#define NEAR(x)
Definition: vf_lut3d.c:106
const char data[16]
Definition: mxf.c:91
#define OFFSET(x)
Definition: vf_lut3d.c:84
static const uint64_t c1
Definition: murmur3.c:49
#define AV_PIX_FMT_BGR48
Definition: pixfmt.h:378
struct rgbvec scale
Definition: vf_lut3d.c:67
#define max(a, b)
Definition: cuda_runtime.h:33
static int parse_cinespace(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:533
#define av_log(a,...)
A filter pad used for either input or output.
Definition: internal.h:54
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:259
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int ff_set_common_formats(AVFilterContext *ctx, AVFilterFormats *formats)
A helper for query_formats() which sets all links to the same list of formats.
Definition: formats.c:568
#define td
Definition: regdef.h:70
uint8_t rgba_map[4]
Definition: vf_lut3d.c:64
void ff_framesync_uninit(FFFrameSync *fs)
Free all memory currently allocated.
Definition: framesync.c:293
interp_mode
Definition: vf_lut3d.c:45
#define DEFINE_INTERP_FUNC(name, nbits)
Definition: vf_lut3d.c:283
Frame sync structure.
Definition: framesync.h:146
#define AVERROR(e)
Definition: error.h:43
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:202
#define NEXT(x)
Definition: vf_lut3d.c:108
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
#define MAX_LINE_SIZE
Definition: vf_lut3d.c:333
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:95
void * priv
private data for use by the filter
Definition: avfilter.h:353
int av_get_padded_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel for the pixel format described by pixdesc, including any padding ...
Definition: pixdesc.c:2487
static struct rgbvec interp_nearest(const LUT3DContext *lut3d, const struct rgbvec *s)
Get the nearest defined point.
Definition: vf_lut3d.c:113
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
Definition: avfilter.h:116
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
static int config_output(AVFilterLink *outlink)
Definition: af_aecho.c:232
Definition: graph2dot.c:48
#define AV_PIX_FMT_GBRAP12
Definition: pixfmt.h:408
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:373
simple assert() macros that are a bit more flexible than ISO C assert().
int ff_framesync_activate(FFFrameSync *fs)
Examine the frames in the filter&#39;s input and try to produce output.
Definition: framesync.c:344
#define FLAGS
Definition: vf_lut3d.c:85
#define FFMAX(a, b)
Definition: common.h:94
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:92
#define AV_PIX_FMT_GBRAP16
Definition: pixfmt.h:409
int av_sscanf(const char *string, const char *format,...)
See libc sscanf manual for more information.
Definition: avsscanf.c:962
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:93
#define SET_COLOR(id)
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:406
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Definition: avfilter.c:802
#define FFMIN(a, b)
Definition: common.h:96
int av_strcasecmp(const char *a, const char *b)
Locale-independent case-insensitive compare.
Definition: avstring.c:213
uint8_t w
Definition: llviddspenc.c:38
int() avfilter_action_func(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
A function pointer passed to the AVFilterGraph::execute callback to be executed multiple times...
Definition: avfilter.h:823
static int interpolation(DeclickChannel *c, const double *src, int ar_order, double *acoefficients, int *index, int nb_errors, double *auxiliary, double *interpolated)
Definition: af_adeclick.c:351
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
Definition: error.h:119
AVFormatContext * ctx
Definition: movenc.c:48
#define a2
Definition: regdef.h:48
#define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth)
Definition: vf_lut3d.c:204
static int activate(AVFilterContext *ctx)
Definition: af_adeclick.c:609
int lutsize
Definition: vf_lut3d.c:69
#define s(width, name)
Definition: cbs_vp9.c:257
int n
Definition: avisynth_c.h:760
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:69
static const AVFilterPad inputs[]
Definition: af_acontrast.c:193
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:405
static AVFrame * apply_lut(AVFilterLink *inlink, AVFrame *in)
Definition: vf_lut3d.c:727
static const AVFilterPad outputs[]
Definition: af_acontrast.c:203
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
Definition: drawutils.c:35
#define PREV(x)
Definition: vf_lut3d.c:107
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
char * file
Definition: vf_lut3d.c:63
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
misc drawing utilities
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
Definition: frame.c:594
Used for passing data between threads.
Definition: af_adeclick.c:487
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:326
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
float b
Definition: vf_lut3d.c:53
static struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
Definition: vf_lut3d.c:98
int interpolation
interp_mode
Definition: vf_lut3d.c:62
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
Describe the class of an AVClass context structure.
Definition: log.h:67
Filter definition.
Definition: avfilter.h:144
AVFilter ff_vf_lut3d
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
Definition: pixfmt.h:240
const char * name
Filter name.
Definition: avfilter.h:148
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
Definition: avfilter.h:133
static struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d, const struct rgbvec *s)
Tetrahedral interpolation.
Definition: vf_lut3d.c:151
AVFilterLink ** outputs
array of pointers to output links
Definition: avfilter.h:350
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:275
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:404
#define flags(name, subs,...)
Definition: cbs_av1.c:564
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
Definition: avfilter.h:378
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:309
uint8_t level
Definition: svq3.c:207
#define v0
Definition: regdef.h:26
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:215
static double c[64]
#define NEXT_LINE(loop_cond)
Definition: vf_lut3d.c:342
static int parse_m3d(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:470
static const uint64_t c2
Definition: murmur3.c:50
static int parse_3dl(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:441
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
Definition: vf_lut3d.c:756
avfilter_execute_func * execute
Definition: internal.h:155
static int parse_dat(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:351
float r
Definition: vf_lut3d.c:53
#define AVFILTER_DEFINE_CLASS(fname)
Definition: internal.h:334
A list of supported formats for one end of a filter link.
Definition: formats.h:64
An instance of a filter.
Definition: avfilter.h:338
FILE * out
Definition: movenc.c:54
#define M_PI
Definition: mathematics.h:52
static int query_formats(AVFilterContext *ctx)
Definition: vf_lut3d.c:645
AVFrame * in
Definition: af_afftdn.c:1082
float g
Definition: vf_lut3d.c:53
internal API functions
int depth
Number of bits in the component.
Definition: pixdesc.h:58
#define SET_FUNC(name)
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
Definition: pixfmt.h:237
float min
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
Definition: frame.c:654
avfilter_action_func * interp
Definition: vf_lut3d.c:66
struct rgbvec lut[MAX_LEVEL][MAX_LEVEL][MAX_LEVEL]
Definition: vf_lut3d.c:68