FFmpeg  4.2.3
diracdec.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
3  * Copyright (C) 2009 David Conrad
4  * Copyright (C) 2011 Jordi Ortiz
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * Dirac Decoder
26  * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
27  */
28 
29 #include "libavutil/pixdesc.h"
30 #include "libavutil/thread.h"
31 #include "avcodec.h"
32 #include "get_bits.h"
33 #include "bytestream.h"
34 #include "internal.h"
35 #include "golomb.h"
36 #include "dirac_arith.h"
37 #include "dirac_vlc.h"
38 #include "mpeg12data.h"
39 #include "libavcodec/mpegvideo.h"
40 #include "mpegvideoencdsp.h"
41 #include "dirac_dwt.h"
42 #include "dirac.h"
43 #include "diractab.h"
44 #include "diracdsp.h"
45 #include "videodsp.h"
46 
47 /**
48  * The spec limits this to 3 for frame coding, but in practice can be as high as 6
49  */
50 #define MAX_REFERENCE_FRAMES 8
51 #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
52 #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
53 #define MAX_QUANT 255 /* max quant for VC-2 */
54 #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
55 
56 /**
57  * DiracBlock->ref flags, if set then the block does MC from the given ref
58  */
59 #define DIRAC_REF_MASK_REF1 1
60 #define DIRAC_REF_MASK_REF2 2
61 #define DIRAC_REF_MASK_GLOBAL 4
62 
63 /**
64  * Value of Picture.reference when Picture is not a reference picture, but
65  * is held for delayed output.
66  */
67 #define DELAYED_PIC_REF 4
68 
69 #define CALC_PADDING(size, depth) \
70  (((size + (1 << depth) - 1) >> depth) << depth)
71 
72 #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
73 
74 typedef struct {
76  int interpolated[3]; /* 1 if hpel[] is valid */
77  uint8_t *hpel[3][4];
78  uint8_t *hpel_base[3][4];
79  int reference;
80 } DiracFrame;
81 
82 typedef struct {
83  union {
84  int16_t mv[2][2];
85  int16_t dc[3];
86  } u; /* anonymous unions aren't in C99 :( */
88 } DiracBlock;
89 
90 typedef struct SubBand {
91  int level;
92  int orientation;
93  int stride; /* in bytes */
94  int width;
95  int height;
96  int pshift;
97  int quant;
98  uint8_t *ibuf;
99  struct SubBand *parent;
100 
101  /* for low delay */
102  unsigned length;
104 } SubBand;
105 
106 typedef struct Plane {
108 
109  int width;
110  int height;
111  ptrdiff_t stride;
112 
113  /* block length */
116  /* block separation (block n+1 starts after this many pixels in block n) */
119  /* amount of overspill on each edge (half of the overlap between blocks) */
122 
123  SubBand band[MAX_DWT_LEVELS][4];
124 } Plane;
125 
126 /* Used by Low Delay and High Quality profiles */
127 typedef struct DiracSlice {
129  int slice_x;
130  int slice_y;
131  int bytes;
132 } DiracSlice;
133 
134 typedef struct DiracContext {
144  int64_t frame_number; /* number of the next frame to display */
148 
149  int bit_depth; /* bit depth */
150  int pshift; /* pixel shift = bit_depth > 8 */
151 
152  int zero_res; /* zero residue flag */
153  int is_arith; /* whether coeffs use arith or golomb coding */
154  int core_syntax; /* use core syntax only */
155  int low_delay; /* use the low delay syntax */
156  int hq_picture; /* high quality picture, enables low_delay */
157  int ld_picture; /* use low delay picture, turns on low_delay */
158  int dc_prediction; /* has dc prediction */
159  int globalmc_flag; /* use global motion compensation */
160  int num_refs; /* number of reference pictures */
161 
162  /* wavelet decoding */
163  unsigned wavelet_depth; /* depth of the IDWT */
164  unsigned wavelet_idx;
165 
166  /**
167  * schroedinger older than 1.0.8 doesn't store
168  * quant delta if only one codebook exists in a band
169  */
170  unsigned old_delta_quant;
171  unsigned codeblock_mode;
172 
173  unsigned num_x; /* number of horizontal slices */
174  unsigned num_y; /* number of vertical slices */
175 
176  uint8_t *thread_buf; /* Per-thread buffer for coefficient storage */
177  int threads_num_buf; /* Current # of buffers allocated */
178  int thread_buf_size; /* Each thread has a buffer this size */
179 
182 
183  struct {
184  unsigned width;
185  unsigned height;
187 
188  struct {
189  AVRational bytes; /* average bytes per slice */
190  uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
191  } lowdelay;
192 
193  struct {
194  unsigned prefix_bytes;
195  uint64_t size_scaler;
196  } highquality;
197 
198  struct {
199  int pan_tilt[2]; /* pan/tilt vector */
200  int zrs[2][2]; /* zoom/rotate/shear matrix */
201  int perspective[2]; /* perspective vector */
202  unsigned zrs_exp;
203  unsigned perspective_exp;
204  } globalmc[2];
205 
206  /* motion compensation */
207  uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
208  int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
209  unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
210 
211  int blwidth; /* number of blocks (horizontally) */
212  int blheight; /* number of blocks (vertically) */
213  int sbwidth; /* number of superblocks (horizontally) */
214  int sbheight; /* number of superblocks (vertically) */
215 
218 
219  uint8_t *edge_emu_buffer[4];
221 
222  uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */
225 
227 
228  void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
229  void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
230  void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
233 
235  DiracFrame *ref_pics[2];
236 
238  DiracFrame *delay_frames[MAX_DELAY+1];
239  DiracFrame all_frames[MAX_FRAMES];
240 } DiracContext;
241 
248 };
249 
250 /* magic number division by 3 from schroedinger */
251 static inline int divide3(int x)
252 {
253  return (int)((x+1U)*21845 + 10922) >> 16;
254 }
255 
256 static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
257 {
258  DiracFrame *remove_pic = NULL;
259  int i, remove_idx = -1;
260 
261  for (i = 0; framelist[i]; i++)
262  if (framelist[i]->avframe->display_picture_number == picnum) {
263  remove_pic = framelist[i];
264  remove_idx = i;
265  }
266 
267  if (remove_pic)
268  for (i = remove_idx; framelist[i]; i++)
269  framelist[i] = framelist[i+1];
270 
271  return remove_pic;
272 }
273 
274 static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
275 {
276  int i;
277  for (i = 0; i < maxframes; i++)
278  if (!framelist[i]) {
279  framelist[i] = frame;
280  return 0;
281  }
282  return -1;
283 }
284 
286 {
287  int sbwidth = DIVRNDUP(s->seq.width, 4);
288  int sbheight = DIVRNDUP(s->seq.height, 4);
289  int i, w, h, top_padding;
290 
291  /* todo: think more about this / use or set Plane here */
292  for (i = 0; i < 3; i++) {
293  int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
294  int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
295  w = s->seq.width >> (i ? s->chroma_x_shift : 0);
296  h = s->seq.height >> (i ? s->chroma_y_shift : 0);
297 
298  /* we allocate the max we support here since num decompositions can
299  * change from frame to frame. Stride is aligned to 16 for SIMD, and
300  * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
301  * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
302  * on each side */
303  top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
304  w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
305  h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
306 
307  s->plane[i].idwt.buf_base = av_mallocz_array((w+max_xblen), h * (2 << s->pshift));
308  s->plane[i].idwt.tmp = av_malloc_array((w+16), 2 << s->pshift);
309  s->plane[i].idwt.buf = s->plane[i].idwt.buf_base + (top_padding*w)*(2 << s->pshift);
310  if (!s->plane[i].idwt.buf_base || !s->plane[i].idwt.tmp)
311  return AVERROR(ENOMEM);
312  }
313 
314  /* fixme: allocate using real stride here */
315  s->sbsplit = av_malloc_array(sbwidth, sbheight);
316  s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion));
317 
318  if (!s->sbsplit || !s->blmotion)
319  return AVERROR(ENOMEM);
320  return 0;
321 }
322 
324 {
325  int w = s->seq.width;
326  int h = s->seq.height;
327 
328  av_assert0(stride >= w);
329  stride += 64;
330 
331  if (s->buffer_stride >= stride)
332  return 0;
333  s->buffer_stride = 0;
334 
336  memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer));
337  av_freep(&s->mctmp);
338  av_freep(&s->mcscratch);
339 
341 
342  s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
344 
345  if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch)
346  return AVERROR(ENOMEM);
347 
348  s->buffer_stride = stride;
349  return 0;
350 }
351 
353 {
354  int i, j, k;
355 
356  for (i = 0; i < MAX_FRAMES; i++) {
357  if (s->all_frames[i].avframe->data[0]) {
359  memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
360  }
361 
362  for (j = 0; j < 3; j++)
363  for (k = 1; k < 4; k++)
364  av_freep(&s->all_frames[i].hpel_base[j][k]);
365  }
366 
367  memset(s->ref_frames, 0, sizeof(s->ref_frames));
368  memset(s->delay_frames, 0, sizeof(s->delay_frames));
369 
370  for (i = 0; i < 3; i++) {
371  av_freep(&s->plane[i].idwt.buf_base);
372  av_freep(&s->plane[i].idwt.tmp);
373  }
374 
375  s->buffer_stride = 0;
376  av_freep(&s->sbsplit);
377  av_freep(&s->blmotion);
379 
380  av_freep(&s->mctmp);
381  av_freep(&s->mcscratch);
382 }
383 
385 
387 {
388  DiracContext *s = avctx->priv_data;
389  int i, ret;
390 
391  s->avctx = avctx;
392  s->frame_number = -1;
393 
394  s->thread_buf = NULL;
395  s->threads_num_buf = -1;
396  s->thread_buf_size = -1;
397 
401  ff_videodsp_init(&s->vdsp, 8);
402 
403  for (i = 0; i < MAX_FRAMES; i++) {
405  if (!s->all_frames[i].avframe) {
406  while (i > 0)
407  av_frame_free(&s->all_frames[--i].avframe);
408  return AVERROR(ENOMEM);
409  }
410  }
412  if (ret != 0)
413  return AVERROR_UNKNOWN;
414 
415  return 0;
416 }
417 
419 {
420  DiracContext *s = avctx->priv_data;
422  s->seen_sequence_header = 0;
423  s->frame_number = -1;
424 }
425 
427 {
428  DiracContext *s = avctx->priv_data;
429  int i;
430 
432 
433  dirac_decode_flush(avctx);
434  for (i = 0; i < MAX_FRAMES; i++)
436 
437  av_freep(&s->thread_buf);
439 
440  return 0;
441 }
442 
443 static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
444 {
445  int coeff = dirac_get_se_golomb(gb);
446  const unsigned sign = FFSIGN(coeff);
447  if (coeff)
448  coeff = sign*((sign * coeff * qfactor + qoffset) >> 2);
449  return coeff;
450 }
451 
452 #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
453 
454 #define UNPACK_ARITH(n, type) \
455  static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \
456  SubBand *b, type *buf, int x, int y) \
457  { \
458  int sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \
459  unsigned coeff; \
460  const int mstride = -(b->stride >> (1+b->pshift)); \
461  if (b->parent) { \
462  const type *pbuf = (type *)b->parent->ibuf; \
463  const int stride = b->parent->stride >> (1+b->parent->pshift); \
464  pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \
465  } \
466  if (b->orientation == subband_hl) \
467  sign_pred = buf[mstride]; \
468  if (x) { \
469  pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \
470  if (b->orientation == subband_lh) \
471  sign_pred = buf[-1]; \
472  } else { \
473  pred_ctx += !buf[mstride]; \
474  } \
475  coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \
476  if (coeff) { \
477  coeff = (coeff * qfactor + qoffset) >> 2; \
478  sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \
479  coeff = (coeff ^ -sign) + sign; \
480  } \
481  *buf = coeff; \
482  } \
483 
484 UNPACK_ARITH(8, int16_t)
486 
487 /**
488  * Decode the coeffs in the rectangle defined by left, right, top, bottom
489  * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
490  */
491 static inline int codeblock(DiracContext *s, SubBand *b,
492  GetBitContext *gb, DiracArith *c,
493  int left, int right, int top, int bottom,
494  int blockcnt_one, int is_arith)
495 {
496  int x, y, zero_block;
497  int qoffset, qfactor;
498  uint8_t *buf;
499 
500  /* check for any coded coefficients in this codeblock */
501  if (!blockcnt_one) {
502  if (is_arith)
503  zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
504  else
505  zero_block = get_bits1(gb);
506 
507  if (zero_block)
508  return 0;
509  }
510 
511  if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
512  int quant;
513  if (is_arith)
515  else
516  quant = dirac_get_se_golomb(gb);
517  if (quant > INT_MAX - b->quant || b->quant + quant < 0) {
518  av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
519  return AVERROR_INVALIDDATA;
520  }
521  b->quant += quant;
522  }
523 
524  if (b->quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
525  av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", b->quant);
526  b->quant = 0;
527  return AVERROR_INVALIDDATA;
528  }
529 
530  qfactor = ff_dirac_qscale_tab[b->quant];
531  /* TODO: context pointer? */
532  if (!s->num_refs)
533  qoffset = ff_dirac_qoffset_intra_tab[b->quant] + 2;
534  else
535  qoffset = ff_dirac_qoffset_inter_tab[b->quant] + 2;
536 
537  buf = b->ibuf + top * b->stride;
538  if (is_arith) {
539  for (y = top; y < bottom; y++) {
540  if (c->error)
541  return c->error;
542  for (x = left; x < right; x++) {
543  if (b->pshift) {
544  coeff_unpack_arith_10(c, qfactor, qoffset, b, (int32_t*)(buf)+x, x, y);
545  } else {
546  coeff_unpack_arith_8(c, qfactor, qoffset, b, (int16_t*)(buf)+x, x, y);
547  }
548  }
549  buf += b->stride;
550  }
551  } else {
552  for (y = top; y < bottom; y++) {
553  if (get_bits_left(gb) < 1)
554  return AVERROR_INVALIDDATA;
555  for (x = left; x < right; x++) {
556  int val = coeff_unpack_golomb(gb, qfactor, qoffset);
557  if (b->pshift) {
558  AV_WN32(&buf[4*x], val);
559  } else {
560  AV_WN16(&buf[2*x], val);
561  }
562  }
563  buf += b->stride;
564  }
565  }
566  return 0;
567 }
568 
569 /**
570  * Dirac Specification ->
571  * 13.3 intra_dc_prediction(band)
572  */
573 #define INTRA_DC_PRED(n, type) \
574  static inline void intra_dc_prediction_##n(SubBand *b) \
575  { \
576  type *buf = (type*)b->ibuf; \
577  int x, y; \
578  \
579  for (x = 1; x < b->width; x++) \
580  buf[x] += buf[x-1]; \
581  buf += (b->stride >> (1+b->pshift)); \
582  \
583  for (y = 1; y < b->height; y++) { \
584  buf[0] += buf[-(b->stride >> (1+b->pshift))]; \
585  \
586  for (x = 1; x < b->width; x++) { \
587  int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \
588  buf[x] += divide3(pred); \
589  } \
590  buf += (b->stride >> (1+b->pshift)); \
591  } \
592  } \
593 
594 INTRA_DC_PRED(8, int16_t)
595 INTRA_DC_PRED(10, uint32_t)
596 
597 /**
598  * Dirac Specification ->
599  * 13.4.2 Non-skipped subbands. subband_coeffs()
600  */
602 {
603  int cb_x, cb_y, left, right, top, bottom;
604  DiracArith c;
605  GetBitContext gb;
606  int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
607  int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
608  int blockcnt_one = (cb_width + cb_height) == 2;
609  int ret;
610 
611  if (!b->length)
612  return 0;
613 
614  init_get_bits8(&gb, b->coeff_data, b->length);
615 
616  if (is_arith)
617  ff_dirac_init_arith_decoder(&c, &gb, b->length);
618 
619  top = 0;
620  for (cb_y = 0; cb_y < cb_height; cb_y++) {
621  bottom = (b->height * (cb_y+1LL)) / cb_height;
622  left = 0;
623  for (cb_x = 0; cb_x < cb_width; cb_x++) {
624  right = (b->width * (cb_x+1LL)) / cb_width;
625  ret = codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
626  if (ret < 0)
627  return ret;
628  left = right;
629  }
630  top = bottom;
631  }
632 
633  if (b->orientation == subband_ll && s->num_refs == 0) {
634  if (s->pshift) {
635  intra_dc_prediction_10(b);
636  } else {
637  intra_dc_prediction_8(b);
638  }
639  }
640  return 0;
641 }
642 
643 static int decode_subband_arith(AVCodecContext *avctx, void *b)
644 {
645  DiracContext *s = avctx->priv_data;
646  return decode_subband_internal(s, b, 1);
647 }
648 
649 static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
650 {
651  DiracContext *s = avctx->priv_data;
652  SubBand **b = arg;
653  return decode_subband_internal(s, *b, 0);
654 }
655 
656 /**
657  * Dirac Specification ->
658  * [DIRAC_STD] 13.4.1 core_transform_data()
659  */
661 {
662  AVCodecContext *avctx = s->avctx;
665  int level, num_bands = 0;
666  int ret[3*MAX_DWT_LEVELS+1];
667  int i;
668  int damaged_count = 0;
669 
670  /* Unpack all subbands at all levels. */
671  for (level = 0; level < s->wavelet_depth; level++) {
672  for (orientation = !!level; orientation < 4; orientation++) {
674  bands[num_bands++] = b;
675 
676  align_get_bits(&s->gb);
677  /* [DIRAC_STD] 13.4.2 subband() */
679  if (b->length) {
681  if (b->quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
682  av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", b->quant);
683  b->quant = 0;
684  return AVERROR_INVALIDDATA;
685  }
686  align_get_bits(&s->gb);
687  b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
688  if (b->length > FFMAX(get_bits_left(&s->gb)/8, 0)) {
689  b->length = FFMAX(get_bits_left(&s->gb)/8, 0);
690  damaged_count ++;
691  }
692  skip_bits_long(&s->gb, b->length*8);
693  }
694  }
695  /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
696  if (s->is_arith)
697  avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
698  ret + 3*level + !!level, 4-!!level, sizeof(SubBand));
699  }
700  /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
701  if (!s->is_arith)
702  avctx->execute(avctx, decode_subband_golomb, bands, ret, num_bands, sizeof(SubBand*));
703 
704  for (i = 0; i < s->wavelet_depth * 3 + 1; i++) {
705  if (ret[i] < 0)
706  damaged_count++;
707  }
708  if (damaged_count > (s->wavelet_depth * 3 + 1) /2)
709  return AVERROR_INVALIDDATA;
710 
711  return 0;
712 }
713 
714 #define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \
715  type *buf = (type *)buf1; \
716  buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
717  if (get_bits_count(gb) >= ebits) \
718  return; \
719  if (buf2) { \
720  buf = (type *)buf2; \
721  buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
722  if (get_bits_count(gb) >= ebits) \
723  return; \
724  } \
725 
727  int slice_x, int slice_y, int bits_end,
728  SubBand *b1, SubBand *b2)
729 {
730  int left = b1->width * slice_x / s->num_x;
731  int right = b1->width *(slice_x+1) / s->num_x;
732  int top = b1->height * slice_y / s->num_y;
733  int bottom = b1->height *(slice_y+1) / s->num_y;
734 
735  int qfactor, qoffset;
736 
737  uint8_t *buf1 = b1->ibuf + top * b1->stride;
738  uint8_t *buf2 = b2 ? b2->ibuf + top * b2->stride: NULL;
739  int x, y;
740 
741  if (quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
742  av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", quant);
743  return;
744  }
745  qfactor = ff_dirac_qscale_tab[quant];
746  qoffset = ff_dirac_qoffset_intra_tab[quant] + 2;
747  /* we have to constantly check for overread since the spec explicitly
748  requires this, with the meaning that all remaining coeffs are set to 0 */
749  if (get_bits_count(gb) >= bits_end)
750  return;
751 
752  if (s->pshift) {
753  for (y = top; y < bottom; y++) {
754  for (x = left; x < right; x++) {
755  PARSE_VALUES(int32_t, x, gb, bits_end, buf1, buf2);
756  }
757  buf1 += b1->stride;
758  if (buf2)
759  buf2 += b2->stride;
760  }
761  }
762  else {
763  for (y = top; y < bottom; y++) {
764  for (x = left; x < right; x++) {
765  PARSE_VALUES(int16_t, x, gb, bits_end, buf1, buf2);
766  }
767  buf1 += b1->stride;
768  if (buf2)
769  buf2 += b2->stride;
770  }
771  }
772 }
773 
774 /**
775  * Dirac Specification ->
776  * 13.5.2 Slices. slice(sx,sy)
777  */
778 static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
779 {
780  DiracContext *s = avctx->priv_data;
781  DiracSlice *slice = arg;
782  GetBitContext *gb = &slice->gb;
784  int level, quant, chroma_bits, chroma_end;
785 
786  int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
787  int length_bits = av_log2(8 * slice->bytes)+1;
788  int luma_bits = get_bits_long(gb, length_bits);
789  int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
790 
791  /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
792  for (level = 0; level < s->wavelet_depth; level++)
793  for (orientation = !!level; orientation < 4; orientation++) {
794  quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
795  decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
796  &s->plane[0].band[level][orientation], NULL);
797  }
798 
799  /* consume any unused bits from luma */
800  skip_bits_long(gb, get_bits_count(gb) - luma_end);
801 
802  chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
803  chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
804  /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
805  for (level = 0; level < s->wavelet_depth; level++)
806  for (orientation = !!level; orientation < 4; orientation++) {
807  quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
808  decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
809  &s->plane[1].band[level][orientation],
810  &s->plane[2].band[level][orientation]);
811  }
812 
813  return 0;
814 }
815 
816 typedef struct SliceCoeffs {
817  int left;
818  int top;
819  int tot_h;
820  int tot_v;
821  int tot;
822 } SliceCoeffs;
823 
824 static int subband_coeffs(DiracContext *s, int x, int y, int p,
826 {
827  int level, coef = 0;
828  for (level = 0; level < s->wavelet_depth; level++) {
829  SliceCoeffs *o = &c[level];
830  SubBand *b = &s->plane[p].band[level][3]; /* orientation doens't matter */
831  o->top = b->height * y / s->num_y;
832  o->left = b->width * x / s->num_x;
833  o->tot_h = ((b->width * (x + 1)) / s->num_x) - o->left;
834  o->tot_v = ((b->height * (y + 1)) / s->num_y) - o->top;
835  o->tot = o->tot_h*o->tot_v;
836  coef += o->tot * (4 - !!level);
837  }
838  return coef;
839 }
840 
841 /**
842  * VC-2 Specification ->
843  * 13.5.3 hq_slice(sx,sy)
844  */
845 static int decode_hq_slice(DiracContext *s, DiracSlice *slice, uint8_t *tmp_buf)
846 {
847  int i, level, orientation, quant_idx;
848  int qfactor[MAX_DWT_LEVELS][4], qoffset[MAX_DWT_LEVELS][4];
849  GetBitContext *gb = &slice->gb;
850  SliceCoeffs coeffs_num[MAX_DWT_LEVELS];
851 
853  quant_idx = get_bits(gb, 8);
854 
855  if (quant_idx > DIRAC_MAX_QUANT_INDEX - 1) {
856  av_log(s->avctx, AV_LOG_ERROR, "Invalid quantization index - %i\n", quant_idx);
857  return AVERROR_INVALIDDATA;
858  }
859 
860  /* Slice quantization (slice_quantizers() in the specs) */
861  for (level = 0; level < s->wavelet_depth; level++) {
862  for (orientation = !!level; orientation < 4; orientation++) {
863  const int quant = FFMAX(quant_idx - s->lowdelay.quant[level][orientation], 0);
866  }
867  }
868 
869  /* Luma + 2 Chroma planes */
870  for (i = 0; i < 3; i++) {
871  int coef_num, coef_par, off = 0;
872  int64_t length = s->highquality.size_scaler*get_bits(gb, 8);
873  int64_t bits_end = get_bits_count(gb) + 8*length;
874  const uint8_t *addr = align_get_bits(gb);
875 
876  if (length*8 > get_bits_left(gb)) {
877  av_log(s->avctx, AV_LOG_ERROR, "end too far away\n");
878  return AVERROR_INVALIDDATA;
879  }
880 
881  coef_num = subband_coeffs(s, slice->slice_x, slice->slice_y, i, coeffs_num);
882 
883  if (s->pshift)
884  coef_par = ff_dirac_golomb_read_32bit(s->reader_ctx, addr,
885  length, tmp_buf, coef_num);
886  else
887  coef_par = ff_dirac_golomb_read_16bit(s->reader_ctx, addr,
888  length, tmp_buf, coef_num);
889 
890  if (coef_num > coef_par) {
891  const int start_b = coef_par * (1 << (s->pshift + 1));
892  const int end_b = coef_num * (1 << (s->pshift + 1));
893  memset(&tmp_buf[start_b], 0, end_b - start_b);
894  }
895 
896  for (level = 0; level < s->wavelet_depth; level++) {
897  const SliceCoeffs *c = &coeffs_num[level];
898  for (orientation = !!level; orientation < 4; orientation++) {
899  const SubBand *b1 = &s->plane[i].band[level][orientation];
900  uint8_t *buf = b1->ibuf + c->top * b1->stride + (c->left << (s->pshift + 1));
901 
902  /* Change to c->tot_h <= 4 for AVX2 dequantization */
903  const int qfunc = s->pshift + 2*(c->tot_h <= 2);
904  s->diracdsp.dequant_subband[qfunc](&tmp_buf[off], buf, b1->stride,
905  qfactor[level][orientation],
906  qoffset[level][orientation],
907  c->tot_v, c->tot_h);
908 
909  off += c->tot << (s->pshift + 1);
910  }
911  }
912 
913  skip_bits_long(gb, bits_end - get_bits_count(gb));
914  }
915 
916  return 0;
917 }
918 
919 static int decode_hq_slice_row(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
920 {
921  int i;
922  DiracContext *s = avctx->priv_data;
923  DiracSlice *slices = ((DiracSlice *)arg) + s->num_x*jobnr;
924  uint8_t *thread_buf = &s->thread_buf[s->thread_buf_size*threadnr];
925  for (i = 0; i < s->num_x; i++)
926  decode_hq_slice(s, &slices[i], thread_buf);
927  return 0;
928 }
929 
930 /**
931  * Dirac Specification ->
932  * 13.5.1 low_delay_transform_data()
933  */
935 {
936  AVCodecContext *avctx = s->avctx;
937  int slice_x, slice_y, bufsize;
938  int64_t coef_buf_size, bytes = 0;
939  const uint8_t *buf;
940  DiracSlice *slices;
942  int slice_num = 0;
943 
944  if (s->slice_params_num_buf != (s->num_x * s->num_y)) {
946  if (!s->slice_params_buf) {
947  av_log(s->avctx, AV_LOG_ERROR, "slice params buffer allocation failure\n");
948  s->slice_params_num_buf = 0;
949  return AVERROR(ENOMEM);
950  }
951  s->slice_params_num_buf = s->num_x * s->num_y;
952  }
953  slices = s->slice_params_buf;
954 
955  /* 8 becacuse that's how much the golomb reader could overread junk data
956  * from another plane/slice at most, and 512 because SIMD */
957  coef_buf_size = subband_coeffs(s, s->num_x - 1, s->num_y - 1, 0, tmp) + 8;
958  coef_buf_size = (coef_buf_size << (1 + s->pshift)) + 512;
959 
960  if (s->threads_num_buf != avctx->thread_count ||
961  s->thread_buf_size != coef_buf_size) {
962  s->threads_num_buf = avctx->thread_count;
963  s->thread_buf_size = coef_buf_size;
965  if (!s->thread_buf) {
966  av_log(s->avctx, AV_LOG_ERROR, "thread buffer allocation failure\n");
967  return AVERROR(ENOMEM);
968  }
969  }
970 
971  align_get_bits(&s->gb);
972  /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
973  buf = s->gb.buffer + get_bits_count(&s->gb)/8;
974  bufsize = get_bits_left(&s->gb);
975 
976  if (s->hq_picture) {
977  int i;
978 
979  for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
980  for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
981  bytes = s->highquality.prefix_bytes + 1;
982  for (i = 0; i < 3; i++) {
983  if (bytes <= bufsize/8)
984  bytes += buf[bytes] * s->highquality.size_scaler + 1;
985  }
986  if (bytes >= INT_MAX || bytes*8 > bufsize) {
987  av_log(s->avctx, AV_LOG_ERROR, "too many bytes\n");
988  return AVERROR_INVALIDDATA;
989  }
990 
991  slices[slice_num].bytes = bytes;
992  slices[slice_num].slice_x = slice_x;
993  slices[slice_num].slice_y = slice_y;
994  init_get_bits(&slices[slice_num].gb, buf, bufsize);
995  slice_num++;
996 
997  buf += bytes;
998  if (bufsize/8 >= bytes)
999  bufsize -= bytes*8;
1000  else
1001  bufsize = 0;
1002  }
1003  }
1004 
1005  if (s->num_x*s->num_y != slice_num) {
1006  av_log(s->avctx, AV_LOG_ERROR, "too few slices\n");
1007  return AVERROR_INVALIDDATA;
1008  }
1009 
1010  avctx->execute2(avctx, decode_hq_slice_row, slices, NULL, s->num_y);
1011  } else {
1012  for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
1013  for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
1014  bytes = (slice_num+1) * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den
1015  - slice_num * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den;
1016  if (bytes >= INT_MAX || bytes*8 > bufsize) {
1017  av_log(s->avctx, AV_LOG_ERROR, "too many bytes\n");
1018  return AVERROR_INVALIDDATA;
1019  }
1020  slices[slice_num].bytes = bytes;
1021  slices[slice_num].slice_x = slice_x;
1022  slices[slice_num].slice_y = slice_y;
1023  init_get_bits(&slices[slice_num].gb, buf, bufsize);
1024  slice_num++;
1025 
1026  buf += bytes;
1027  if (bufsize/8 >= bytes)
1028  bufsize -= bytes*8;
1029  else
1030  bufsize = 0;
1031  }
1032  }
1033  avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
1034  sizeof(DiracSlice)); /* [DIRAC_STD] 13.5.2 Slices */
1035  }
1036 
1037  if (s->dc_prediction) {
1038  if (s->pshift) {
1039  intra_dc_prediction_10(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1040  intra_dc_prediction_10(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1041  intra_dc_prediction_10(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1042  } else {
1043  intra_dc_prediction_8(&s->plane[0].band[0][0]);
1044  intra_dc_prediction_8(&s->plane[1].band[0][0]);
1045  intra_dc_prediction_8(&s->plane[2].band[0][0]);
1046  }
1047  }
1048 
1049  return 0;
1050 }
1051 
1053 {
1054  int i, w, h, level, orientation;
1055 
1056  for (i = 0; i < 3; i++) {
1057  Plane *p = &s->plane[i];
1058 
1059  p->width = s->seq.width >> (i ? s->chroma_x_shift : 0);
1060  p->height = s->seq.height >> (i ? s->chroma_y_shift : 0);
1061  p->idwt.width = w = CALC_PADDING(p->width , s->wavelet_depth);
1062  p->idwt.height = h = CALC_PADDING(p->height, s->wavelet_depth);
1063  p->idwt.stride = FFALIGN(p->idwt.width, 8) << (1 + s->pshift);
1064 
1065  for (level = s->wavelet_depth-1; level >= 0; level--) {
1066  w = w>>1;
1067  h = h>>1;
1068  for (orientation = !!level; orientation < 4; orientation++) {
1069  SubBand *b = &p->band[level][orientation];
1070 
1071  b->pshift = s->pshift;
1072  b->ibuf = p->idwt.buf;
1073  b->level = level;
1074  b->stride = p->idwt.stride << (s->wavelet_depth - level);
1075  b->width = w;
1076  b->height = h;
1077  b->orientation = orientation;
1078 
1079  if (orientation & 1)
1080  b->ibuf += w << (1+b->pshift);
1081  if (orientation > 1)
1082  b->ibuf += (b->stride>>1);
1083 
1084  if (level)
1085  b->parent = &p->band[level-1][orientation];
1086  }
1087  }
1088 
1089  if (i > 0) {
1090  p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
1091  p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
1092  p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
1093  p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
1094  }
1095 
1096  p->xoffset = (p->xblen - p->xbsep)/2;
1097  p->yoffset = (p->yblen - p->ybsep)/2;
1098  }
1099 }
1100 
1101 /**
1102  * Unpack the motion compensation parameters
1103  * Dirac Specification ->
1104  * 11.2 Picture prediction data. picture_prediction()
1105  */
1107 {
1108  static const uint8_t default_blen[] = { 4, 12, 16, 24 };
1109 
1110  GetBitContext *gb = &s->gb;
1111  unsigned idx, ref;
1112 
1113  align_get_bits(gb);
1114  /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
1115  /* Luma and Chroma are equal. 11.2.3 */
1116  idx = get_interleaved_ue_golomb(gb); /* [DIRAC_STD] index */
1117 
1118  if (idx > 4) {
1119  av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
1120  return AVERROR_INVALIDDATA;
1121  }
1122 
1123  if (idx == 0) {
1128  } else {
1129  /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
1130  s->plane[0].xblen = default_blen[idx-1];
1131  s->plane[0].yblen = default_blen[idx-1];
1132  s->plane[0].xbsep = 4 * idx;
1133  s->plane[0].ybsep = 4 * idx;
1134  }
1135  /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
1136  Calculated in function dirac_unpack_block_motion_data */
1137 
1138  if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 ||
1139  s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 ||
1140  !s->plane[0].xblen || !s->plane[0].yblen) {
1142  "invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
1143  s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift);
1144  return AVERROR_INVALIDDATA;
1145  }
1146  if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
1147  av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
1148  return AVERROR_INVALIDDATA;
1149  }
1150  if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
1151  av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
1152  return AVERROR_INVALIDDATA;
1153  }
1154  if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
1155  av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
1156  return AVERROR_PATCHWELCOME;
1157  }
1158 
1159  /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
1160  Read motion vector precision */
1162  if (s->mv_precision > 3) {
1163  av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
1164  return AVERROR_INVALIDDATA;
1165  }
1166 
1167  /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
1168  Read the global motion compensation parameters */
1169  s->globalmc_flag = get_bits1(gb);
1170  if (s->globalmc_flag) {
1171  memset(s->globalmc, 0, sizeof(s->globalmc));
1172  /* [DIRAC_STD] pan_tilt(gparams) */
1173  for (ref = 0; ref < s->num_refs; ref++) {
1174  if (get_bits1(gb)) {
1177  }
1178  /* [DIRAC_STD] zoom_rotate_shear(gparams)
1179  zoom/rotation/shear parameters */
1180  if (get_bits1(gb)) {
1182  s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
1183  s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
1184  s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
1185  s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
1186  } else {
1187  s->globalmc[ref].zrs[0][0] = 1;
1188  s->globalmc[ref].zrs[1][1] = 1;
1189  }
1190  /* [DIRAC_STD] perspective(gparams) */
1191  if (get_bits1(gb)) {
1195  }
1196  if (s->globalmc[ref].perspective_exp + (uint64_t)s->globalmc[ref].zrs_exp > 30) {
1197  return AVERROR_INVALIDDATA;
1198  }
1199 
1200  }
1201  }
1202 
1203  /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
1204  Picture prediction mode, not currently used. */
1205  if (get_interleaved_ue_golomb(gb)) {
1206  av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
1207  return AVERROR_INVALIDDATA;
1208  }
1209 
1210  /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
1211  just data read, weight calculation will be done later on. */
1212  s->weight_log2denom = 1;
1213  s->weight[0] = 1;
1214  s->weight[1] = 1;
1215 
1216  if (get_bits1(gb)) {
1218  if (s->weight_log2denom < 1 || s->weight_log2denom > 8) {
1219  av_log(s->avctx, AV_LOG_ERROR, "weight_log2denom unsupported or invalid\n");
1220  s->weight_log2denom = 1;
1221  return AVERROR_INVALIDDATA;
1222  }
1223  s->weight[0] = dirac_get_se_golomb(gb);
1224  if (s->num_refs == 2)
1225  s->weight[1] = dirac_get_se_golomb(gb);
1226  }
1227  return 0;
1228 }
1229 
1230 /**
1231  * Dirac Specification ->
1232  * 11.3 Wavelet transform data. wavelet_transform()
1233  */
1235 {
1236  GetBitContext *gb = &s->gb;
1237  int i, level;
1238  unsigned tmp;
1239 
1240 #define CHECKEDREAD(dst, cond, errmsg) \
1241  tmp = get_interleaved_ue_golomb(gb); \
1242  if (cond) { \
1243  av_log(s->avctx, AV_LOG_ERROR, errmsg); \
1244  return AVERROR_INVALIDDATA; \
1245  }\
1246  dst = tmp;
1247 
1248  align_get_bits(gb);
1249 
1250  s->zero_res = s->num_refs ? get_bits1(gb) : 0;
1251  if (s->zero_res)
1252  return 0;
1253 
1254  /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
1255  CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
1256 
1257  CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
1258 
1259  if (!s->low_delay) {
1260  /* Codeblock parameters (core syntax only) */
1261  if (get_bits1(gb)) {
1262  for (i = 0; i <= s->wavelet_depth; i++) {
1263  CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n")
1264  CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n")
1265  }
1266 
1267  CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
1268  }
1269  else {
1270  for (i = 0; i <= s->wavelet_depth; i++)
1271  s->codeblock[i].width = s->codeblock[i].height = 1;
1272  }
1273  }
1274  else {
1277  if (s->num_x * s->num_y == 0 || s->num_x * (uint64_t)s->num_y > INT_MAX ||
1278  s->num_x * (uint64_t)s->avctx->width > INT_MAX ||
1279  s->num_y * (uint64_t)s->avctx->height > INT_MAX ||
1280  s->num_x > s->avctx->width ||
1281  s->num_y > s->avctx->height
1282  ) {
1283  av_log(s->avctx,AV_LOG_ERROR,"Invalid numx/y\n");
1284  s->num_x = s->num_y = 0;
1285  return AVERROR_INVALIDDATA;
1286  }
1287  if (s->ld_picture) {
1290  if (s->lowdelay.bytes.den <= 0) {
1291  av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
1292  return AVERROR_INVALIDDATA;
1293  }
1294  } else if (s->hq_picture) {
1297  if (s->highquality.prefix_bytes >= INT_MAX / 8) {
1298  av_log(s->avctx,AV_LOG_ERROR,"too many prefix bytes\n");
1299  return AVERROR_INVALIDDATA;
1300  }
1301  }
1302 
1303  /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
1304  if (get_bits1(gb)) {
1305  av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
1306  /* custom quantization matrix */
1307  for (level = 0; level < s->wavelet_depth; level++) {
1308  for (i = !!level; i < 4; i++) {
1310  }
1311  }
1312  } else {
1313  if (s->wavelet_depth > 4) {
1314  av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
1315  return AVERROR_INVALIDDATA;
1316  }
1317  /* default quantization matrix */
1318  for (level = 0; level < s->wavelet_depth; level++)
1319  for (i = 0; i < 4; i++) {
1321  /* haar with no shift differs for different depths */
1322  if (s->wavelet_idx == 3)
1323  s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
1324  }
1325  }
1326  }
1327  return 0;
1328 }
1329 
1330 static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
1331 {
1332  static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
1333 
1334  if (!(x|y))
1335  return 0;
1336  else if (!y)
1337  return sbsplit[-1];
1338  else if (!x)
1339  return sbsplit[-stride];
1340 
1341  return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
1342 }
1343 
1344 static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
1345 {
1346  int pred;
1347 
1348  if (!(x|y))
1349  return 0;
1350  else if (!y)
1351  return block[-1].ref & refmask;
1352  else if (!x)
1353  return block[-stride].ref & refmask;
1354 
1355  /* return the majority */
1356  pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
1357  return (pred >> 1) & refmask;
1358 }
1359 
1360 static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
1361 {
1362  int i, n = 0;
1363 
1364  memset(block->u.dc, 0, sizeof(block->u.dc));
1365 
1366  if (x && !(block[-1].ref & 3)) {
1367  for (i = 0; i < 3; i++)
1368  block->u.dc[i] += block[-1].u.dc[i];
1369  n++;
1370  }
1371 
1372  if (y && !(block[-stride].ref & 3)) {
1373  for (i = 0; i < 3; i++)
1374  block->u.dc[i] += block[-stride].u.dc[i];
1375  n++;
1376  }
1377 
1378  if (x && y && !(block[-1-stride].ref & 3)) {
1379  for (i = 0; i < 3; i++)
1380  block->u.dc[i] += block[-1-stride].u.dc[i];
1381  n++;
1382  }
1383 
1384  if (n == 2) {
1385  for (i = 0; i < 3; i++)
1386  block->u.dc[i] = (block->u.dc[i]+1)>>1;
1387  } else if (n == 3) {
1388  for (i = 0; i < 3; i++)
1389  block->u.dc[i] = divide3(block->u.dc[i]);
1390  }
1391 }
1392 
1393 static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
1394 {
1395  int16_t *pred[3];
1396  int refmask = ref+1;
1397  int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
1398  int n = 0;
1399 
1400  if (x && (block[-1].ref & mask) == refmask)
1401  pred[n++] = block[-1].u.mv[ref];
1402 
1403  if (y && (block[-stride].ref & mask) == refmask)
1404  pred[n++] = block[-stride].u.mv[ref];
1405 
1406  if (x && y && (block[-stride-1].ref & mask) == refmask)
1407  pred[n++] = block[-stride-1].u.mv[ref];
1408 
1409  switch (n) {
1410  case 0:
1411  block->u.mv[ref][0] = 0;
1412  block->u.mv[ref][1] = 0;
1413  break;
1414  case 1:
1415  block->u.mv[ref][0] = pred[0][0];
1416  block->u.mv[ref][1] = pred[0][1];
1417  break;
1418  case 2:
1419  block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
1420  block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
1421  break;
1422  case 3:
1423  block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
1424  block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
1425  break;
1426  }
1427 }
1428 
1429 static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
1430 {
1431  int ez = s->globalmc[ref].zrs_exp;
1432  int ep = s->globalmc[ref].perspective_exp;
1433  int (*A)[2] = s->globalmc[ref].zrs;
1434  int *b = s->globalmc[ref].pan_tilt;
1435  int *c = s->globalmc[ref].perspective;
1436 
1437  int64_t m = (1<<ep) - (c[0]*(int64_t)x + c[1]*(int64_t)y);
1438  int64_t mx = m * (int64_t)((A[0][0] * (int64_t)x + A[0][1]*(int64_t)y) + (1LL<<ez) * b[0]);
1439  int64_t my = m * (int64_t)((A[1][0] * (int64_t)x + A[1][1]*(int64_t)y) + (1LL<<ez) * b[1]);
1440 
1441  block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
1442  block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
1443 }
1444 
1446  int stride, int x, int y)
1447 {
1448  int i;
1449 
1450  block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
1451  block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
1452 
1453  if (s->num_refs == 2) {
1454  block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
1455  block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
1456  }
1457 
1458  if (!block->ref) {
1459  pred_block_dc(block, stride, x, y);
1460  for (i = 0; i < 3; i++)
1461  block->u.dc[i] += (unsigned)dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
1462  return;
1463  }
1464 
1465  if (s->globalmc_flag) {
1466  block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
1467  block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
1468  }
1469 
1470  for (i = 0; i < s->num_refs; i++)
1471  if (block->ref & (i+1)) {
1472  if (block->ref & DIRAC_REF_MASK_GLOBAL) {
1473  global_mv(s, block, x, y, i);
1474  } else {
1475  pred_mv(block, stride, x, y, i);
1476  block->u.mv[i][0] += (unsigned)dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
1477  block->u.mv[i][1] += (unsigned)dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
1478  }
1479  }
1480 }
1481 
1482 /**
1483  * Copies the current block to the other blocks covered by the current superblock split mode
1484  */
1486 {
1487  int x, y;
1488  DiracBlock *dst = block;
1489 
1490  for (x = 1; x < size; x++)
1491  dst[x] = *block;
1492 
1493  for (y = 1; y < size; y++) {
1494  dst += stride;
1495  for (x = 0; x < size; x++)
1496  dst[x] = *block;
1497  }
1498 }
1499 
1500 /**
1501  * Dirac Specification ->
1502  * 12. Block motion data syntax
1503  */
1505 {
1506  GetBitContext *gb = &s->gb;
1507  uint8_t *sbsplit = s->sbsplit;
1508  int i, x, y, q, p;
1509  DiracArith arith[8];
1510 
1511  align_get_bits(gb);
1512 
1513  /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
1514  s->sbwidth = DIVRNDUP(s->seq.width, 4*s->plane[0].xbsep);
1515  s->sbheight = DIVRNDUP(s->seq.height, 4*s->plane[0].ybsep);
1516  s->blwidth = 4 * s->sbwidth;
1517  s->blheight = 4 * s->sbheight;
1518 
1519  /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
1520  decode superblock split modes */
1521  ff_dirac_init_arith_decoder(arith, gb, get_interleaved_ue_golomb(gb)); /* get_interleaved_ue_golomb(gb) is the length */
1522  for (y = 0; y < s->sbheight; y++) {
1523  for (x = 0; x < s->sbwidth; x++) {
1524  unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
1525  if (split > 2)
1526  return AVERROR_INVALIDDATA;
1527  sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
1528  }
1529  sbsplit += s->sbwidth;
1530  }
1531 
1532  /* setup arith decoding */
1534  for (i = 0; i < s->num_refs; i++) {
1535  ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, get_interleaved_ue_golomb(gb));
1536  ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, get_interleaved_ue_golomb(gb));
1537  }
1538  for (i = 0; i < 3; i++)
1540 
1541  for (y = 0; y < s->sbheight; y++)
1542  for (x = 0; x < s->sbwidth; x++) {
1543  int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
1544  int step = 4 >> s->sbsplit[y * s->sbwidth + x];
1545 
1546  for (q = 0; q < blkcnt; q++)
1547  for (p = 0; p < blkcnt; p++) {
1548  int bx = 4 * x + p*step;
1549  int by = 4 * y + q*step;
1550  DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
1551  decode_block_params(s, arith, block, s->blwidth, bx, by);
1552  propagate_block_data(block, s->blwidth, step);
1553  }
1554  }
1555 
1556  for (i = 0; i < 4 + 2*s->num_refs; i++) {
1557  if (arith[i].error)
1558  return arith[i].error;
1559  }
1560 
1561  return 0;
1562 }
1563 
1564 static int weight(int i, int blen, int offset)
1565 {
1566 #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
1567  (1 + (6*(i) + offset - 1) / (2*offset - 1))
1568 
1569  if (i < 2*offset)
1570  return ROLLOFF(i);
1571  else if (i > blen-1 - 2*offset)
1572  return ROLLOFF(blen-1 - i);
1573  return 8;
1574 }
1575 
1576 static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
1577  int left, int right, int wy)
1578 {
1579  int x;
1580  for (x = 0; left && x < p->xblen >> 1; x++)
1581  obmc_weight[x] = wy*8;
1582  for (; x < p->xblen >> right; x++)
1583  obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
1584  for (; x < p->xblen; x++)
1585  obmc_weight[x] = wy*8;
1586  for (; x < stride; x++)
1587  obmc_weight[x] = 0;
1588 }
1589 
1590 static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
1591  int left, int right, int top, int bottom)
1592 {
1593  int y;
1594  for (y = 0; top && y < p->yblen >> 1; y++) {
1595  init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
1596  obmc_weight += stride;
1597  }
1598  for (; y < p->yblen >> bottom; y++) {
1599  int wy = weight(y, p->yblen, p->yoffset);
1600  init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
1601  obmc_weight += stride;
1602  }
1603  for (; y < p->yblen; y++) {
1604  init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
1605  obmc_weight += stride;
1606  }
1607 }
1608 
1609 static void init_obmc_weights(DiracContext *s, Plane *p, int by)
1610 {
1611  int top = !by;
1612  int bottom = by == s->blheight-1;
1613 
1614  /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
1615  if (top || bottom || by == 1) {
1616  init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
1617  init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
1618  init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
1619  }
1620 }
1621 
1622 static const uint8_t epel_weights[4][4][4] = {
1623  {{ 16, 0, 0, 0 },
1624  { 12, 4, 0, 0 },
1625  { 8, 8, 0, 0 },
1626  { 4, 12, 0, 0 }},
1627  {{ 12, 0, 4, 0 },
1628  { 9, 3, 3, 1 },
1629  { 6, 6, 2, 2 },
1630  { 3, 9, 1, 3 }},
1631  {{ 8, 0, 8, 0 },
1632  { 6, 2, 6, 2 },
1633  { 4, 4, 4, 4 },
1634  { 2, 6, 2, 6 }},
1635  {{ 4, 0, 12, 0 },
1636  { 3, 1, 9, 3 },
1637  { 2, 2, 6, 6 },
1638  { 1, 3, 3, 9 }}
1639 };
1640 
1641 /**
1642  * For block x,y, determine which of the hpel planes to do bilinear
1643  * interpolation from and set src[] to the location in each hpel plane
1644  * to MC from.
1645  *
1646  * @return the index of the put_dirac_pixels_tab function to use
1647  * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
1648  */
1650  int x, int y, int ref, int plane)
1651 {
1652  Plane *p = &s->plane[plane];
1653  uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
1654  int motion_x = block->u.mv[ref][0];
1655  int motion_y = block->u.mv[ref][1];
1656  int mx, my, i, epel, nplanes = 0;
1657 
1658  if (plane) {
1659  motion_x >>= s->chroma_x_shift;
1660  motion_y >>= s->chroma_y_shift;
1661  }
1662 
1663  mx = motion_x & ~(-1U << s->mv_precision);
1664  my = motion_y & ~(-1U << s->mv_precision);
1665  motion_x >>= s->mv_precision;
1666  motion_y >>= s->mv_precision;
1667  /* normalize subpel coordinates to epel */
1668  /* TODO: template this function? */
1669  mx <<= 3 - s->mv_precision;
1670  my <<= 3 - s->mv_precision;
1671 
1672  x += motion_x;
1673  y += motion_y;
1674  epel = (mx|my)&1;
1675 
1676  /* hpel position */
1677  if (!((mx|my)&3)) {
1678  nplanes = 1;
1679  src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
1680  } else {
1681  /* qpel or epel */
1682  nplanes = 4;
1683  for (i = 0; i < 4; i++)
1684  src[i] = ref_hpel[i] + y*p->stride + x;
1685 
1686  /* if we're interpolating in the right/bottom halves, adjust the planes as needed
1687  we increment x/y because the edge changes for half of the pixels */
1688  if (mx > 4) {
1689  src[0] += 1;
1690  src[2] += 1;
1691  x++;
1692  }
1693  if (my > 4) {
1694  src[0] += p->stride;
1695  src[1] += p->stride;
1696  y++;
1697  }
1698 
1699  /* hpel planes are:
1700  [0]: F [1]: H
1701  [2]: V [3]: C */
1702  if (!epel) {
1703  /* check if we really only need 2 planes since either mx or my is
1704  a hpel position. (epel weights of 0 handle this there) */
1705  if (!(mx&3)) {
1706  /* mx == 0: average [0] and [2]
1707  mx == 4: average [1] and [3] */
1708  src[!mx] = src[2 + !!mx];
1709  nplanes = 2;
1710  } else if (!(my&3)) {
1711  src[0] = src[(my>>1) ];
1712  src[1] = src[(my>>1)+1];
1713  nplanes = 2;
1714  }
1715  } else {
1716  /* adjust the ordering if needed so the weights work */
1717  if (mx > 4) {
1718  FFSWAP(const uint8_t *, src[0], src[1]);
1719  FFSWAP(const uint8_t *, src[2], src[3]);
1720  }
1721  if (my > 4) {
1722  FFSWAP(const uint8_t *, src[0], src[2]);
1723  FFSWAP(const uint8_t *, src[1], src[3]);
1724  }
1725  src[4] = epel_weights[my&3][mx&3];
1726  }
1727  }
1728 
1729  /* fixme: v/h _edge_pos */
1730  if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
1731  y + p->yblen > p->height+EDGE_WIDTH/2 ||
1732  x < 0 || y < 0) {
1733  for (i = 0; i < nplanes; i++) {
1734  s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i],
1735  p->stride, p->stride,
1736  p->xblen, p->yblen, x, y,
1737  p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
1738  src[i] = s->edge_emu_buffer[i];
1739  }
1740  }
1741  return (nplanes>>1) + epel;
1742 }
1743 
1744 static void add_dc(uint16_t *dst, int dc, int stride,
1745  uint8_t *obmc_weight, int xblen, int yblen)
1746 {
1747  int x, y;
1748  dc += 128;
1749 
1750  for (y = 0; y < yblen; y++) {
1751  for (x = 0; x < xblen; x += 2) {
1752  dst[x ] += dc * obmc_weight[x ];
1753  dst[x+1] += dc * obmc_weight[x+1];
1754  }
1755  dst += stride;
1756  obmc_weight += MAX_BLOCKSIZE;
1757  }
1758 }
1759 
1761  uint16_t *mctmp, uint8_t *obmc_weight,
1762  int plane, int dstx, int dsty)
1763 {
1764  Plane *p = &s->plane[plane];
1765  const uint8_t *src[5];
1766  int idx;
1767 
1768  switch (block->ref&3) {
1769  case 0: /* DC */
1770  add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
1771  return;
1772  case 1:
1773  case 2:
1774  idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
1775  s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1776  if (s->weight_func)
1778  s->weight[0] + s->weight[1], p->yblen);
1779  break;
1780  case 3:
1781  idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
1782  s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1783  idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
1784  if (s->biweight_func) {
1785  /* fixme: +32 is a quick hack */
1786  s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
1788  s->weight[0], s->weight[1], p->yblen);
1789  } else
1790  s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1791  break;
1792  }
1793  s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
1794 }
1795 
1796 static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
1797 {
1798  Plane *p = &s->plane[plane];
1799  int x, dstx = p->xbsep - p->xoffset;
1800 
1801  block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
1802  mctmp += p->xbsep;
1803 
1804  for (x = 1; x < s->blwidth-1; x++) {
1805  block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
1806  dstx += p->xbsep;
1807  mctmp += p->xbsep;
1808  }
1809  block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
1810 }
1811 
1812 static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
1813 {
1814  int idx = 0;
1815  if (xblen > 8)
1816  idx = 1;
1817  if (xblen > 16)
1818  idx = 2;
1819 
1820  memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
1821  memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
1822  s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
1823  if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
1826  } else {
1827  s->weight_func = NULL;
1828  s->biweight_func = NULL;
1829  }
1830 }
1831 
1833 {
1834  /* chroma allocates an edge of 8 when subsampled
1835  which for 4:2:2 means an h edge of 16 and v edge of 8
1836  just use 8 for everything for the moment */
1837  int i, edge = EDGE_WIDTH/2;
1838 
1839  ref->hpel[plane][0] = ref->avframe->data[plane];
1840  s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
1841 
1842  /* no need for hpel if we only have fpel vectors */
1843  if (!s->mv_precision)
1844  return 0;
1845 
1846  for (i = 1; i < 4; i++) {
1847  if (!ref->hpel_base[plane][i])
1848  ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32);
1849  if (!ref->hpel_base[plane][i]) {
1850  return AVERROR(ENOMEM);
1851  }
1852  /* we need to be 16-byte aligned even for chroma */
1853  ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16;
1854  }
1855 
1856  if (!ref->interpolated[plane]) {
1857  s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
1858  ref->hpel[plane][3], ref->hpel[plane][0],
1859  ref->avframe->linesize[plane], width, height);
1860  s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1861  s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1862  s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1863  }
1864  ref->interpolated[plane] = 1;
1865 
1866  return 0;
1867 }
1868 
1869 /**
1870  * Dirac Specification ->
1871  * 13.0 Transform data syntax. transform_data()
1872  */
1874 {
1875  DWTContext d;
1876  int y, i, comp, dsty;
1877  int ret;
1878 
1879  if (s->low_delay) {
1880  /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
1881  if (!s->hq_picture) {
1882  for (comp = 0; comp < 3; comp++) {
1883  Plane *p = &s->plane[comp];
1884  memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
1885  }
1886  }
1887  if (!s->zero_res) {
1888  if ((ret = decode_lowdelay(s)) < 0)
1889  return ret;
1890  }
1891  }
1892 
1893  for (comp = 0; comp < 3; comp++) {
1894  Plane *p = &s->plane[comp];
1896 
1897  /* FIXME: small resolutions */
1898  for (i = 0; i < 4; i++)
1899  s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
1900 
1901  if (!s->zero_res && !s->low_delay)
1902  {
1903  memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
1904  ret = decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
1905  if (ret < 0)
1906  return ret;
1907  }
1908  ret = ff_spatial_idwt_init(&d, &p->idwt, s->wavelet_idx+2,
1909  s->wavelet_depth, s->bit_depth);
1910  if (ret < 0)
1911  return ret;
1912 
1913  if (!s->num_refs) { /* intra */
1914  for (y = 0; y < p->height; y += 16) {
1915  int idx = (s->bit_depth - 8) >> 1;
1916  ff_spatial_idwt_slice2(&d, y+16); /* decode */
1917  s->diracdsp.put_signed_rect_clamped[idx](frame + y*p->stride,
1918  p->stride,
1919  p->idwt.buf + y*p->idwt.stride,
1920  p->idwt.stride, p->width, 16);
1921  }
1922  } else { /* inter */
1923  int rowheight = p->ybsep*p->stride;
1924 
1925  select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
1926 
1927  for (i = 0; i < s->num_refs; i++) {
1928  int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
1929  if (ret < 0)
1930  return ret;
1931  }
1932 
1933  memset(s->mctmp, 0, 4*p->yoffset*p->stride);
1934 
1935  dsty = -p->yoffset;
1936  for (y = 0; y < s->blheight; y++) {
1937  int h = 0,
1938  start = FFMAX(dsty, 0);
1939  uint16_t *mctmp = s->mctmp + y*rowheight;
1940  DiracBlock *blocks = s->blmotion + y*s->blwidth;
1941 
1942  init_obmc_weights(s, p, y);
1943 
1944  if (y == s->blheight-1 || start+p->ybsep > p->height)
1945  h = p->height - start;
1946  else
1947  h = p->ybsep - (start - dsty);
1948  if (h < 0)
1949  break;
1950 
1951  memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
1952  mc_row(s, blocks, mctmp, comp, dsty);
1953 
1954  mctmp += (start - dsty)*p->stride + p->xoffset;
1955  ff_spatial_idwt_slice2(&d, start + h); /* decode */
1956  /* NOTE: add_rect_clamped hasn't been templated hence the shifts.
1957  * idwt.stride is passed as pixels, not in bytes as in the rest of the decoder */
1958  s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
1959  (int16_t*)(p->idwt.buf) + start*(p->idwt.stride >> 1), (p->idwt.stride >> 1), p->width, h);
1960 
1961  dsty += p->ybsep;
1962  }
1963  }
1964  }
1965 
1966 
1967  return 0;
1968 }
1969 
1971 {
1972  int ret, i;
1973  int chroma_x_shift, chroma_y_shift;
1974  ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift,
1975  &chroma_y_shift);
1976  if (ret < 0)
1977  return ret;
1978 
1979  f->width = avctx->width + 2 * EDGE_WIDTH;
1980  f->height = avctx->height + 2 * EDGE_WIDTH + 2;
1981  ret = ff_get_buffer(avctx, f, flags);
1982  if (ret < 0)
1983  return ret;
1984 
1985  for (i = 0; f->data[i]; i++) {
1986  int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) *
1987  f->linesize[i] + 32;
1988  f->data[i] += offset;
1989  }
1990  f->width = avctx->width;
1991  f->height = avctx->height;
1992 
1993  return 0;
1994 }
1995 
1996 /**
1997  * Dirac Specification ->
1998  * 11.1.1 Picture Header. picture_header()
1999  */
2001 {
2002  unsigned retire, picnum;
2003  int i, j, ret;
2004  int64_t refdist, refnum;
2005  GetBitContext *gb = &s->gb;
2006 
2007  /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
2009 
2010 
2011  av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
2012 
2013  /* if this is the first keyframe after a sequence header, start our
2014  reordering from here */
2015  if (s->frame_number < 0)
2016  s->frame_number = picnum;
2017 
2018  s->ref_pics[0] = s->ref_pics[1] = NULL;
2019  for (i = 0; i < s->num_refs; i++) {
2020  refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
2021  refdist = INT64_MAX;
2022 
2023  /* find the closest reference to the one we want */
2024  /* Jordi: this is needed if the referenced picture hasn't yet arrived */
2025  for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
2026  if (s->ref_frames[j]
2027  && FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) {
2028  s->ref_pics[i] = s->ref_frames[j];
2029  refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum);
2030  }
2031 
2032  if (!s->ref_pics[i] || refdist)
2033  av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
2034 
2035  /* if there were no references at all, allocate one */
2036  if (!s->ref_pics[i])
2037  for (j = 0; j < MAX_FRAMES; j++)
2038  if (!s->all_frames[j].avframe->data[0]) {
2039  s->ref_pics[i] = &s->all_frames[j];
2041  if (ret < 0)
2042  return ret;
2043  break;
2044  }
2045 
2046  if (!s->ref_pics[i]) {
2047  av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n");
2048  return AVERROR_INVALIDDATA;
2049  }
2050 
2051  }
2052 
2053  /* retire the reference frames that are not used anymore */
2054  if (s->current_picture->reference) {
2055  retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
2056  if (retire != picnum) {
2057  DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
2058 
2059  if (retire_pic)
2060  retire_pic->reference &= DELAYED_PIC_REF;
2061  else
2062  av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
2063  }
2064 
2065  /* if reference array is full, remove the oldest as per the spec */
2067  av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
2069  }
2070  }
2071 
2072  if (s->num_refs) {
2073  ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
2074  if (ret < 0)
2075  return ret;
2076  ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */
2077  if (ret < 0)
2078  return ret;
2079  }
2080  ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */
2081  if (ret < 0)
2082  return ret;
2083 
2084  init_planes(s);
2085  return 0;
2086 }
2087 
2088 static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
2089 {
2090  DiracFrame *out = s->delay_frames[0];
2091  int i, out_idx = 0;
2092  int ret;
2093 
2094  /* find frame with lowest picture number */
2095  for (i = 1; s->delay_frames[i]; i++)
2097  out = s->delay_frames[i];
2098  out_idx = i;
2099  }
2100 
2101  for (i = out_idx; s->delay_frames[i]; i++)
2102  s->delay_frames[i] = s->delay_frames[i+1];
2103 
2104  if (out) {
2105  out->reference ^= DELAYED_PIC_REF;
2106  if((ret = av_frame_ref(picture, out->avframe)) < 0)
2107  return ret;
2108  *got_frame = 1;
2109  }
2110 
2111  return 0;
2112 }
2113 
2114 /**
2115  * Dirac Specification ->
2116  * 9.6 Parse Info Header Syntax. parse_info()
2117  * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
2118  */
2119 #define DATA_UNIT_HEADER_SIZE 13
2120 
2121 /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
2122  inside the function parse_sequence() */
2123 static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
2124 {
2125  DiracContext *s = avctx->priv_data;
2126  DiracFrame *pic = NULL;
2127  AVDiracSeqHeader *dsh;
2128  int ret, i;
2129  uint8_t parse_code;
2130  unsigned tmp;
2131 
2132  if (size < DATA_UNIT_HEADER_SIZE)
2133  return AVERROR_INVALIDDATA;
2134 
2135  parse_code = buf[4];
2136 
2137  init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
2138 
2139  if (parse_code == DIRAC_PCODE_SEQ_HEADER) {
2140  if (s->seen_sequence_header)
2141  return 0;
2142 
2143  /* [DIRAC_STD] 10. Sequence header */
2145  if (ret < 0) {
2146  av_log(avctx, AV_LOG_ERROR, "error parsing sequence header");
2147  return ret;
2148  }
2149 
2150  if (CALC_PADDING((int64_t)dsh->width, MAX_DWT_LEVELS) * CALC_PADDING((int64_t)dsh->height, MAX_DWT_LEVELS) * 5LL > avctx->max_pixels)
2151  ret = AVERROR(ERANGE);
2152  if (ret >= 0)
2153  ret = ff_set_dimensions(avctx, dsh->width, dsh->height);
2154  if (ret < 0) {
2155  av_freep(&dsh);
2156  return ret;
2157  }
2158 
2159  ff_set_sar(avctx, dsh->sample_aspect_ratio);
2160  avctx->pix_fmt = dsh->pix_fmt;
2161  avctx->color_range = dsh->color_range;
2162  avctx->color_trc = dsh->color_trc;
2163  avctx->color_primaries = dsh->color_primaries;
2164  avctx->colorspace = dsh->colorspace;
2165  avctx->profile = dsh->profile;
2166  avctx->level = dsh->level;
2167  avctx->framerate = dsh->framerate;
2168  s->bit_depth = dsh->bit_depth;
2169  s->version.major = dsh->version.major;
2170  s->version.minor = dsh->version.minor;
2171  s->seq = *dsh;
2172  av_freep(&dsh);
2173 
2174  s->pshift = s->bit_depth > 8;
2175 
2177  &s->chroma_x_shift,
2178  &s->chroma_y_shift);
2179  if (ret < 0)
2180  return ret;
2181 
2182  ret = alloc_sequence_buffers(s);
2183  if (ret < 0)
2184  return ret;
2185 
2186  s->seen_sequence_header = 1;
2187  } else if (parse_code == DIRAC_PCODE_END_SEQ) { /* [DIRAC_STD] End of Sequence */
2189  s->seen_sequence_header = 0;
2190  } else if (parse_code == DIRAC_PCODE_AUX) {
2191  if (buf[13] == 1) { /* encoder implementation/version */
2192  int ver[3];
2193  /* versions older than 1.0.8 don't store quant delta for
2194  subbands with only one codeblock */
2195  if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
2196  if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
2197  s->old_delta_quant = 1;
2198  }
2199  } else if (parse_code & 0x8) { /* picture data unit */
2200  if (!s->seen_sequence_header) {
2201  av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
2202  return AVERROR_INVALIDDATA;
2203  }
2204 
2205  /* find an unused frame */
2206  for (i = 0; i < MAX_FRAMES; i++)
2207  if (s->all_frames[i].avframe->data[0] == NULL)
2208  pic = &s->all_frames[i];
2209  if (!pic) {
2210  av_log(avctx, AV_LOG_ERROR, "framelist full\n");
2211  return AVERROR_INVALIDDATA;
2212  }
2213 
2214  av_frame_unref(pic->avframe);
2215 
2216  /* [DIRAC_STD] Defined in 9.6.1 ... */
2217  tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
2218  if (tmp > 2) {
2219  av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
2220  return AVERROR_INVALIDDATA;
2221  }
2222  s->num_refs = tmp;
2223  s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
2224  s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
2225  s->core_syntax = (parse_code & 0x88) == 0x08; /* [DIRAC_STD] is_core_syntax() */
2226  s->ld_picture = (parse_code & 0xF8) == 0xC8; /* [DIRAC_STD] is_ld_picture() */
2227  s->hq_picture = (parse_code & 0xF8) == 0xE8; /* [DIRAC_STD] is_hq_picture() */
2228  s->dc_prediction = (parse_code & 0x28) == 0x08; /* [DIRAC_STD] using_dc_prediction() */
2229  pic->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
2230  pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
2231  pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
2232 
2233  /* VC-2 Low Delay has a different parse code than the Dirac Low Delay */
2234  if (s->version.minor == 2 && parse_code == 0x88)
2235  s->ld_picture = 1;
2236 
2237  if (s->low_delay && !(s->ld_picture || s->hq_picture) ) {
2238  av_log(avctx, AV_LOG_ERROR, "Invalid low delay flag\n");
2239  return AVERROR_INVALIDDATA;
2240  }
2241 
2242  if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
2243  return ret;
2244  s->current_picture = pic;
2245  s->plane[0].stride = pic->avframe->linesize[0];
2246  s->plane[1].stride = pic->avframe->linesize[1];
2247  s->plane[2].stride = pic->avframe->linesize[2];
2248 
2249  if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0)
2250  return AVERROR(ENOMEM);
2251 
2252  /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
2253  ret = dirac_decode_picture_header(s);
2254  if (ret < 0)
2255  return ret;
2256 
2257  /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
2258  ret = dirac_decode_frame_internal(s);
2259  if (ret < 0)
2260  return ret;
2261  }
2262  return 0;
2263 }
2264 
2265 static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
2266 {
2267  DiracContext *s = avctx->priv_data;
2268  AVFrame *picture = data;
2269  uint8_t *buf = pkt->data;
2270  int buf_size = pkt->size;
2271  int i, buf_idx = 0;
2272  int ret;
2273  unsigned data_unit_size;
2274 
2275  /* release unused frames */
2276  for (i = 0; i < MAX_FRAMES; i++)
2277  if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].reference) {
2279  memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
2280  }
2281 
2282  s->current_picture = NULL;
2283  *got_frame = 0;
2284 
2285  /* end of stream, so flush delayed pics */
2286  if (buf_size == 0)
2287  return get_delayed_pic(s, (AVFrame *)data, got_frame);
2288 
2289  for (;;) {
2290  /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
2291  [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
2292  BBCD start code search */
2293  for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
2294  if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
2295  buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
2296  break;
2297  }
2298  /* BBCD found or end of data */
2299  if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
2300  break;
2301 
2302  data_unit_size = AV_RB32(buf+buf_idx+5);
2303  if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
2304  if(data_unit_size > buf_size - buf_idx)
2306  "Data unit with size %d is larger than input buffer, discarding\n",
2307  data_unit_size);
2308  buf_idx += 4;
2309  continue;
2310  }
2311  /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
2312  ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size);
2313  if (ret < 0)
2314  {
2315  av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
2316  return ret;
2317  }
2318  buf_idx += data_unit_size;
2319  }
2320 
2321  if (!s->current_picture)
2322  return buf_size;
2323 
2325  DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
2326 
2328 
2330  int min_num = s->delay_frames[0]->avframe->display_picture_number;
2331  /* Too many delayed frames, so we display the frame with the lowest pts */
2332  av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
2333 
2334  for (i = 1; s->delay_frames[i]; i++)
2335  if (s->delay_frames[i]->avframe->display_picture_number < min_num)
2336  min_num = s->delay_frames[i]->avframe->display_picture_number;
2337 
2338  delayed_frame = remove_frame(s->delay_frames, min_num);
2340  }
2341 
2342  if (delayed_frame) {
2343  delayed_frame->reference ^= DELAYED_PIC_REF;
2344  if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0)
2345  return ret;
2346  *got_frame = 1;
2347  }
2349  /* The right frame at the right time :-) */
2350  if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0)
2351  return ret;
2352  *got_frame = 1;
2353  }
2354 
2355  if (*got_frame)
2356  s->frame_number = picture->display_picture_number + 1LL;
2357 
2358  return buf_idx;
2359 }
2360 
2362  .name = "dirac",
2363  .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
2364  .type = AVMEDIA_TYPE_VIDEO,
2365  .id = AV_CODEC_ID_DIRAC,
2366  .priv_data_size = sizeof(DiracContext),
2368  .close = dirac_decode_end,
2371  .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
2373 };
#define CHECKEDREAD(dst, cond, errmsg)
int ff_dirac_golomb_read_32bit(DiracGolombLUT *lut_ctx, const uint8_t *buf, int bytes, uint8_t *_dst, int coeffs)
Definition: dirac_vlc.c:42
int quant
Definition: cfhd.h:53
int plane
Definition: avisynth_c.h:384
uint8_t * thread_buf
Definition: diracdec.c:176
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
#define NULL
Definition: coverity.c:32
#define UNPACK_ARITH(n, type)
Definition: diracdec.c:454
AVRational framerate
Definition: avcodec.h:3105
const char const char void * val
Definition: avisynth_c.h:863
const int32_t ff_dirac_qscale_tab[116]
Definition: diractab.c:34
#define PARSE_VALUES(type, x, gb, ebits, buf1, buf2)
Definition: diracdec.c:714
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
int blheight
Definition: diracdec.c:212
static av_cold int dirac_decode_end(AVCodecContext *avctx)
Definition: diracdec.c:426
struct DiracContext::@76 lowdelay
enum AVColorRange color_range
Definition: dirac.h:107
#define av_realloc_f(p, o, n)
This structure describes decoded (raw) audio or video data.
Definition: frame.h:295
dirac_weight_func weight_func
Definition: diracdec.c:231
static void flush(AVCodecContext *avctx)
uint8_t * sbsplit
Definition: diracdec.c:216
#define CTX_SB_DATA
Definition: dirac_arith.h:66
#define CTX_PMODE_REF2
Definition: dirac_arith.h:68
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
enum AVColorTransferCharacteristic color_trc
Definition: dirac.h:109
DiracFrame * ref_frames[MAX_REFERENCE_FRAMES+1]
Definition: diracdec.c:237
static int divide3(int x)
Definition: diracdec.c:251
struct DiracContext::@78 globalmc[2]
static int dirac_decode_frame_internal(DiracContext *s)
Dirac Specification -> 13.0 Transform data syntax.
Definition: diracdec.c:1873
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:104
DiracVersionInfo version
Definition: dirac.h:112
int ld_picture
Definition: diracdec.c:157
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:291
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int bit_depth
Definition: diracdec.c:149
static void propagate_block_data(DiracBlock *block, int stride, int size)
Copies the current block to the other blocks covered by the current superblock split mode...
Definition: diracdec.c:1485
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: avcodec.h:2200
dirac_weight_func weight_dirac_pixels_tab[3]
Definition: diracdsp.h:53
int num
Numerator.
Definition: rational.h:59
int size
Definition: avcodec.h:1478
const char * b
Definition: vf_curves.c:116
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output...
Definition: diracdec.c:67
void ff_dirac_init_arith_decoder(DiracArith *c, GetBitContext *gb, int length)
Definition: dirac_arith.c:96
static int subband_coeffs(DiracContext *s, int x, int y, int p, SliceCoeffs c[MAX_DWT_LEVELS])
Definition: diracdec.c:824
unsigned width
Definition: diracdec.c:184
#define DATA_UNIT_HEADER_SIZE
Dirac Specification -> 9.6 Parse Info Header Syntax.
Definition: diracdec.c:2119
const uint8_t * buffer
Definition: get_bits.h:62
uint8_t * buf
Definition: dirac_dwt.h:41
uint8_t yoffset
Definition: diracdec.c:121
void(* add_rect_clamped)(uint8_t *dst, const uint16_t *src, int stride, const int16_t *idwt, int idwt_stride, int width, int height)
Definition: diracdsp.h:47
static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
Definition: diracdec.c:1429
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1775
GetBitContext gb
Definition: diracdec.c:128
static int dirac_get_arith_uint(DiracArith *c, int follow_ctx, int data_ctx)
Definition: dirac_arith.h:175
static int alloc_buffers(DiracContext *s, int stride)
Definition: diracdec.c:323
int ff_dirac_golomb_read_16bit(DiracGolombLUT *lut_ctx, const uint8_t *buf, int bytes, uint8_t *_dst, int coeffs)
Definition: dirac_vlc.c:82
mpegvideo header.
DiracVersionInfo version
Definition: diracdec.c:140
ptrdiff_t stride
Definition: cfhd.h:47
unsigned height
Definition: diracdec.c:185
static AVPacket pkt
#define EDGE_TOP
static void dirac_decode_flush(AVCodecContext *avctx)
Definition: diracdec.c:418
const uint8_t * coeff_data
Definition: diracdec.c:103
#define src
Definition: vp8dsp.c:254
static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
Definition: diracdec.c:2088
static int dirac_unpack_idwt_params(DiracContext *s)
Dirac Specification -> 11.3 Wavelet transform data.
Definition: diracdec.c:1234
int profile
profile
Definition: avcodec.h:2898
#define DIRAC_REF_MASK_REF2
Definition: diracdec.c:60
AVCodec.
Definition: avcodec.h:3481
int zrs[2][2]
Definition: diracdec.c:200
static int decode_hq_slice(DiracContext *s, DiracSlice *slice, uint8_t *tmp_buf)
VC-2 Specification -> 13.5.3 hq_slice(sx,sy)
Definition: diracdec.c:845
unsigned codeblock_mode
Definition: diracdec.c:171
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:42
int num_refs
Definition: diracdec.c:160
int av_dirac_parse_sequence_header(AVDiracSeqHeader **pdsh, const uint8_t *buf, size_t buf_size, void *log_ctx)
Parse a Dirac sequence header.
Definition: dirac.c:402
uint8_t xoffset
Definition: diracdec.c:120
uint8_t * tmp
Definition: dirac_dwt.h:43
unsigned weight_log2denom
Definition: diracdec.c:209
#define CTX_GLOBAL_BLOCK
Definition: dirac_arith.h:69
int width
Definition: cfhd.h:49
static int16_t block[64]
Definition: dct.c:115
void(* draw_edges)(uint8_t *buf, int wrap, int width, int height, int w, int h, int sides)
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
Definition: avcodec.h:1006
void(* emulated_edge_mc)(uint8_t *dst, const uint8_t *src, ptrdiff_t dst_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:63
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
DiracFrame * delay_frames[MAX_DELAY+1]
Definition: diracdec.c:238
uint8_t * mcscratch
Definition: diracdec.c:223
int dc_prediction
Definition: diracdec.c:158
av_cold void ff_mpegvideoencdsp_init(MpegvideoEncDSPContext *c, AVCodecContext *avctx)
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
Definition: internal.h:40
uint8_t
#define av_cold
Definition: attributes.h:82
unsigned wavelet_idx
Definition: diracdec.c:164
#define av_malloc(s)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:189
Interface to Dirac Decoder/Encoder.
#define CTX_PMODE_REF1
Definition: dirac_arith.h:67
static int decode_component(DiracContext *s, int comp)
Dirac Specification -> [DIRAC_STD] 13.4.1 core_transform_data()
Definition: diracdec.c:660
static int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
Definition: diracdec.c:443
#define DIVRNDUP(a, b)
Definition: diracdec.c:72
int hq_picture
Definition: diracdec.c:156
#define f(width, name)
Definition: cbs_vp9.c:255
static av_cold int dirac_decode_init(AVCodecContext *avctx)
Definition: diracdec.c:386
#define AV_RB32
Definition: intreadwrite.h:130
uint8_t quant[MAX_DWT_LEVELS][4]
Definition: diracdec.c:190
unsigned prefix_bytes
Definition: diracdec.c:194
AVRational sample_aspect_ratio
Definition: dirac.h:104
unsigned num_x
Definition: diracdec.c:173
int low_delay
Definition: diracdec.c:155
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:443
Plane plane[3]
Definition: diracdec.c:145
static int dirac_get_se_golomb(GetBitContext *gb)
Definition: golomb.h:359
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:252
static AVFrame * frame
DiracSlice * slice_params_buf
Definition: diracdec.c:180
const char data[16]
Definition: mxf.c:91
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
Definition: mem.h:112
static AVOnce dirac_arith_init
Definition: diracdec.c:384
uint8_t * data
Definition: avcodec.h:1477
static void free_sequence_buffers(DiracContext *s)
Definition: diracdec.c:352
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:119
int height
Definition: dirac_dwt.h:39
bitstream reader API header.
static const uint8_t epel_weights[4][4][4]
Definition: diracdec.c:1622
uint8_t xblen
Definition: diracdec.c:114
static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
Dirac Specification -> 13.5.2 Slices.
Definition: diracdec.c:778
#define CTX_DC_DATA
Definition: dirac_arith.h:73
#define AVOnce
Definition: thread.h:159
#define A(x)
Definition: vp56_arith.h:28
#define FFALIGN(x, a)
Definition: macros.h:48
#define av_log(a,...)
unsigned x
Definition: pixlet.c:45
Definition: cfhd.h:44
void(* avg_dirac_pixels_tab[3][4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
Definition: diracdsp.h:43
static void pred_block_dc(DiracBlock *block, int stride, int x, int y)
Definition: diracdec.c:1360
AVRational framerate
Definition: dirac.h:103
int pan_tilt[2]
Definition: diracdec.c:199
int interpolated[3]
Definition: diracdec.c:76
#define EDGE_WIDTH
Definition: mpegpicture.h:33
#define ROLLOFF(i)
#define U(x)
Definition: vp56_arith.h:37
av_cold int ff_dirac_golomb_reader_init(DiracGolombLUT **lut_ctx)
Definition: dirac_vlc.c:232
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
dirac_subband
Definition: diracdec.c:242
const int32_t ff_dirac_qoffset_intra_tab[120]
Definition: diractab.c:53
av_cold void ff_diracdsp_init(DiracDSPContext *c)
Definition: diracdsp.c:219
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:259
int width
Definition: frame.h:353
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
unsigned length
Definition: diracdec.c:102
static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
Definition: diracdec.c:2265
uint8_t * hpel[3][4]
Definition: diracdec.c:77
int slice_x
Definition: diracdec.c:129
static const uint16_t mask[17]
Definition: lzw.c:38
uint16_t * mctmp
Definition: diracdec.c:222
static av_always_inline int decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
Dirac Specification -> 13.4.2 Non-skipped subbands.
Definition: diracdec.c:601
void(* add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen)
Definition: diracdec.c:230
#define AVERROR(e)
Definition: error.h:43
#define DIRAC_REF_MASK_GLOBAL
Definition: diracdec.c:61
int width
Definition: dirac_dwt.h:38
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:202
static int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
Definition: diracdec.c:1330
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2550
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
Definition: diracdec.c:274
static void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
Definition: diracdec.c:1393
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
const char * arg
Definition: jacosubdec.c:66
const uint8_t ff_dirac_default_qmat[7][4][4]
Definition: diractab.c:24
unsigned num_y
Definition: diracdec.c:174
static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
Definition: diracdec.c:1832
static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5], int x, int y, int ref, int plane)
For block x,y, determine which of the hpel planes to do bilinear interpolation from and set src[] to ...
Definition: diracdec.c:1649
unsigned wavelet_depth
Definition: diracdec.c:163
#define CTX_MV_DATA
Definition: dirac_arith.h:71
int stride
Definition: diracdec.c:93
const char * name
Name of the codec implementation.
Definition: avcodec.h:3488
DiracFrame * current_picture
Definition: diracdec.c:234
int64_t max_pixels
The number of pixels per image to maximally accept.
Definition: avcodec.h:3292
#define DIRAC_MAX_QUANT_INDEX
Definition: diractab.h:41
int slice_y
Definition: diracdec.c:130
unsigned old_delta_quant
schroedinger older than 1.0.8 doesn&#39;t store quant delta if only one codebook exists in a band ...
Definition: diracdec.c:170
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
#define FFMAX(a, b)
Definition: common.h:94
static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
Definition: diracdec.c:2123
DiracDSPContext diracdsp
Definition: diracdec.c:138
int orientation
Definition: cfhd.h:46
#define MAX_BLOCKSIZE
Definition: diracdec.c:54
static char * split(char *message, char delim)
Definition: af_channelmap.c:81
int bytes
Definition: diracdec.c:131
int slice_params_num_buf
Definition: diracdec.c:181
#define INTRA_DC_PRED(n, type)
Dirac Specification -> 13.3 intra_dc_prediction(band)
Definition: diracdec.c:573
static int codeblock(DiracContext *s, SubBand *b, GetBitContext *gb, DiracArith *c, int left, int right, int top, int bottom, int blockcnt_one, int is_arith)
Decode the coeffs in the rectangle defined by left, right, top, bottom [DIRAC_STD] 13...
Definition: diracdec.c:491
static void init_planes(DiracContext *s)
Definition: diracdec.c:1052
int globalmc_flag
Definition: diracdec.c:159
AVCodec ff_dirac_decoder
Definition: diracdec.c:2361
static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block, int stride, int x, int y)
Definition: diracdec.c:1445
SubBand band[DWT_LEVELS][4]
Definition: cfhd.h:69
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:378
uint8_t * ibuf
Definition: cfhd.h:54
#define FFMIN(a, b)
Definition: common.h:96
int display_picture_number
picture number in display order
Definition: frame.h:413
#define CALC_PADDING(size, depth)
Definition: diracdec.c:69
DiracFrame * ref_pics[2]
Definition: diracdec.c:235
static int decode_hq_slice_row(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
Definition: diracdec.c:919
void(* avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
Definition: diracdec.c:229
static void block_mc(DiracContext *s, DiracBlock *block, uint16_t *mctmp, uint8_t *obmc_weight, int plane, int dstx, int dsty)
Definition: diracdec.c:1760
enum AVColorSpace colorspace
Definition: dirac.h:110
static DiracFrame * remove_frame(DiracFrame *framelist[], int picnum)
Definition: diracdec.c:256
void ff_spatial_idwt_slice2(DWTContext *d, int y)
Definition: dirac_dwt.c:67
#define FFSIGN(a)
Definition: common.h:73
struct DiracContext::@77 highquality
int width
picture width / height.
Definition: avcodec.h:1738
uint8_t w
Definition: llviddspenc.c:38
int perspective[2]
Definition: diracdec.c:201
static int dirac_unpack_prediction_parameters(DiracContext *s)
Unpack the motion compensation parameters Dirac Specification -> 11.2 Picture prediction data...
Definition: diracdec.c:1106
int32_t
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:2179
av_cold void ff_dirac_golomb_reader_end(DiracGolombLUT **lut_ctx)
Definition: dirac_vlc.c:249
MpegvideoEncDSPContext mpvencdsp
Definition: diracdec.c:136
static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
Definition: diracdec.c:1796
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
int level
level
Definition: avcodec.h:3018
unsigned perspective_exp
Definition: diracdec.c:203
int64_t frame_number
Definition: diracdec.c:144
int chroma_y_shift
Definition: diracdec.c:147
static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
Definition: diracdec.c:1812
int n
Definition: avisynth_c.h:760
int16_t dc[3]
Definition: diracdec.c:85
uint8_t * edge_emu_buffer_base
Definition: diracdec.c:220
if(ret< 0)
Definition: vf_mcdeint.c:279
static void error(const char *err)
int thread_count
thread count is used to decide how many independent tasks should be passed to execute() ...
Definition: avcodec.h:2824
#define av_log2
Definition: intmath.h:83
static void init_obmc_weights(DiracContext *s, Plane *p, int by)
Definition: diracdec.c:1609
static const float pred[4]
Definition: siprdata.h:259
void(* add_dirac_obmc[3])(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen)
Definition: diracdsp.h:48
static void comp(unsigned char *dst, ptrdiff_t dst_stride, unsigned char *src, ptrdiff_t src_stride, int add)
Definition: eamad.c:83
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
uint8_t * buf_base
Definition: dirac_dwt.h:42
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
Definition: avcodec.h:1041
static const int8_t mv[256][2]
Definition: 4xm.c:77
int(* execute2)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg, int jobnr, int threadnr), void *arg2, int *ret, int count)
The codec may call this to execute several independent things.
Definition: avcodec.h:2884
static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
Definition: diracdec.c:1970
VideoDSPContext vdsp
Definition: diracdec.c:137
uint8_t ybsep
Definition: diracdec.c:118
#define AV_ONCE_INIT
Definition: thread.h:160
Libavcodec external API header.
void(* dirac_biweight_func)(uint8_t *dst, const uint8_t *src, int stride, int log2_denom, int weightd, int weights, int h)
Definition: diracdsp.h:28
uint8_t * edge_emu_buffer[4]
Definition: diracdec.c:219
typedef void(RENAME(mix_any_func_type))
int seen_sequence_header
Definition: diracdec.c:143
enum AVPixelFormat pix_fmt
Definition: dirac.h:106
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:326
union DiracBlock::@74 u
const int ff_dirac_qoffset_inter_tab[122]
Definition: diractab.c:72
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:677
main external API structure.
Definition: avcodec.h:1565
int buffer_stride
Definition: diracdec.c:224
MPEG-1/2 tables.
DiracFrame all_frames[MAX_FRAMES]
Definition: diracdec.c:239
static const float bands[]
int reference
Definition: diracdec.c:79
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1964
Arithmetic decoder for Dirac.
struct SubBand * parent
Definition: diracdec.c:99
dirac_biweight_func biweight_dirac_pixels_tab[3]
Definition: diracdsp.h:54
#define MAX_DWT_LEVELS
The spec limits the number of wavelet decompositions to 4 for both level 1 (VC-2) and 128 (long-gop d...
Definition: dirac.h:45
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:498
static int decode_lowdelay(DiracContext *s)
Dirac Specification -> 13.5.1 low_delay_transform_data()
Definition: diracdec.c:934
struct DiracContext::@75 codeblock[MAX_DWT_LEVELS+1]
int core_syntax
Definition: diracdec.c:154
static int dirac_get_arith_bit(DiracArith *c, int ctx)
Definition: dirac_arith.h:134
AVCodecContext * avctx
Definition: diracdec.c:135
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:2193
Rational number (pair of numerator and denominator).
Definition: rational.h:58
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:2186
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:659
GetBitContext gb
Definition: diracdec.c:141
#define mid_pred
Definition: mathops.h:97
dirac_biweight_func biweight_func
Definition: diracdec.c:232
uint8_t xbsep
Definition: diracdec.c:117
int thread_buf_size
Definition: diracdec.c:178
int chroma_x_shift
Definition: diracdec.c:146
AVRational bytes
Definition: diracdec.c:189
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:546
static int decode_subband_arith(AVCodecContext *avctx, void *b)
Definition: diracdec.c:643
static int weight(int i, int blen, int offset)
Definition: diracdec.c:1564
#define MAX_DELAY
Definition: diracdec.c:51
unsigned height
Definition: dirac.h:83
int zero_res
Definition: diracdec.c:152
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> dc
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
Definition: frame.c:553
#define MAX_FRAMES
Definition: diracdec.c:52
#define flags(name, subs,...)
Definition: cbs_av1.c:564
int pshift
Definition: cfhd.h:52
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:309
unsigned y
Definition: pixlet.c:45
static int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
Definition: diracdec.c:1344
AVFrame * avframe
Definition: diracdec.c:75
DiracBlock * blmotion
Definition: diracdec.c:217
void(* dirac_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int h)
Definition: diracdsp.h:27
DiracGolombLUT * reader_ctx
Definition: diracdec.c:139
#define MAX_REFERENCE_FRAMES
The spec limits this to 3 for frame coding, but in practice can be as high as 6.
Definition: diracdec.c:50
int
static int dirac_decode_picture_header(DiracContext *s)
Dirac Specification -> 11.1.1 Picture Header.
Definition: diracdec.c:2000
common internal api header.
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
AVDiracSeqHeader seq
Definition: diracdec.c:142
#define AV_WN32(p, v)
Definition: intreadwrite.h:376
ptrdiff_t stride
Definition: cfhd.h:60
static double c[64]
static void decode_subband(DiracContext *s, GetBitContext *gb, int quant, int slice_x, int slice_y, int bits_end, SubBand *b1, SubBand *b2)
Definition: diracdec.c:726
unsigned size
Definition: pixlet.c:44
static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
Definition: diracdec.c:649
int16_t weight[2]
Definition: diracdec.c:208
int16_t mv[2][2]
Definition: diracdec.c:84
static int dirac_get_arith_int(DiracArith *c, int follow_ctx, int data_ctx)
Definition: dirac_arith.h:191
#define CTX_MV_F1
Definition: dirac_arith.h:70
int sbheight
Definition: diracdec.c:214
int den
Denominator.
Definition: rational.h:60
static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride, int left, int right, int wy)
Definition: diracdec.c:1576
#define AVERROR_UNKNOWN
Unknown error, typically from an external library.
Definition: error.h:71
Core video DSP helper functions.
void(* put_dirac_pixels_tab[3][4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
dirac_pixels_tab[width][subpel] width is 2 for 32, 1 for 16, 0 for 8 subpel is 0 for fpel and hpel (o...
Definition: diracdsp.h:42
#define CTX_DC_F1
Definition: dirac_arith.h:72
void * priv_data
Definition: avcodec.h:1592
DWTPlane idwt
Definition: diracdec.c:107
static int alloc_sequence_buffers(DiracContext *s)
Definition: diracdec.c:285
void(* put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h)
Definition: diracdec.c:228
static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride, int left, int right, int top, int bottom)
Definition: diracdec.c:1590
void(* dequant_subband[4])(uint8_t *src, uint8_t *dst, ptrdiff_t stride, const int qf, const int qs, int tot_v, int tot_h)
Definition: diracdsp.h:51
int threads_num_buf
Definition: diracdec.c:177
#define CTX_SB_F1
Definition: dirac_arith.h:65
static int ff_thread_once(char *control, void(*routine)(void))
Definition: thread.h:162
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:373
int height
Definition: cfhd.h:51
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:693
#define EDGE_BOTTOM
int width
Definition: cfhd.h:58
DWTELEM * buf
Definition: snow.h:89
int height
Definition: frame.h:353
FILE * out
Definition: movenc.c:54
uint8_t ref
Definition: diracdec.c:87
int is_arith
Definition: diracdec.c:153
#define av_freep(p)
static void add_dc(uint16_t *dst, int dc, int stride, uint8_t *obmc_weight, int xblen, int yblen)
Definition: diracdec.c:1744
enum AVColorPrimaries color_primaries
Definition: dirac.h:108
void INT64 start
Definition: avisynth_c.h:766
#define AV_WN16(p, v)
Definition: intreadwrite.h:372
#define av_always_inline
Definition: attributes.h:39
#define av_malloc_array(a, b)
uint8_t * hpel_base[3][4]
Definition: diracdec.c:78
unsigned width
Definition: dirac.h:82
#define FFSWAP(type, a, b)
Definition: common.h:99
static unsigned get_interleaved_ue_golomb(GetBitContext *gb)
Definition: golomb.h:143
int stride
Definition: dirac_dwt.h:40
int height
Definition: cfhd.h:59
void(* dirac_hpel_filter)(uint8_t *dsth, uint8_t *dstv, uint8_t *dstc, const uint8_t *src, int stride, int width, int height)
Definition: diracdsp.h:31
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:2864
exp golomb vlc stuff
This structure stores compressed data.
Definition: avcodec.h:1454
void(* put_signed_rect_clamped[3])(uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int width, int height)
Definition: diracdsp.h:45
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:1176
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:981
#define DIRAC_REF_MASK_REF1
DiracBlock->ref flags, if set then the block does MC from the given ref.
Definition: diracdec.c:59
uint64_t size_scaler
Definition: diracdec.c:195
unsigned zrs_exp
Definition: diracdec.c:202
#define FFMAX3(a, b, c)
Definition: common.h:95
uint8_t mv_precision
Definition: diracdec.c:207
static int dirac_unpack_block_motion_data(DiracContext *s)
Dirac Specification ->
Definition: diracdec.c:1504
Definition: cfhd.h:57
uint8_t obmc_weight[3][MAX_BLOCKSIZE *MAX_BLOCKSIZE]
Definition: diracdec.c:226
int ff_spatial_idwt_init(DWTContext *d, DWTPlane *p, enum dwt_type type, int decomposition_count, int bit_depth)
Definition: dirac_dwt.c:36
av_cold void ff_dirac_init_arith_tables(void)
Definition: dirac_arith.c:86
int level
Definition: cfhd.h:45
void * av_mallocz_array(size_t nmemb, size_t size)
Allocate a memory block for an array with av_mallocz().
Definition: mem.c:191
uint8_t yblen
Definition: diracdec.c:115
static uint8_t tmp[11]
Definition: aes_ctr.c:26