FFmpeg  4.2.3
vc1_pred.c
Go to the documentation of this file.
1 /*
2  * VC-1 and WMV3 decoder
3  * Copyright (c) 2011 Mashiat Sarker Shakkhar
4  * Copyright (c) 2006-2007 Konstantin Shishkov
5  * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  * @file
26  * VC-1 and WMV3 block decoding routines
27  */
28 
29 #include "mathops.h"
30 #include "mpegutils.h"
31 #include "mpegvideo.h"
32 #include "vc1.h"
33 #include "vc1_pred.h"
34 #include "vc1data.h"
35 
36 static av_always_inline int scaleforsame_x(VC1Context *v, int n /* MV */, int dir)
37 {
38  int scaledvalue, refdist;
39  int scalesame1, scalesame2;
40  int scalezone1_x, zone1offset_x;
41  int table_index = dir ^ v->second_field;
42 
43  if (v->s.pict_type != AV_PICTURE_TYPE_B)
44  refdist = v->refdist;
45  else
46  refdist = dir ? v->brfd : v->frfd;
47  if (refdist > 3)
48  refdist = 3;
49  scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
50  scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
51  scalezone1_x = ff_vc1_field_mvpred_scales[table_index][3][refdist];
52  zone1offset_x = ff_vc1_field_mvpred_scales[table_index][5][refdist];
53 
54  if (FFABS(n) > 255)
55  scaledvalue = n;
56  else {
57  if (FFABS(n) < scalezone1_x)
58  scaledvalue = (n * scalesame1) >> 8;
59  else {
60  if (n < 0)
61  scaledvalue = ((n * scalesame2) >> 8) - zone1offset_x;
62  else
63  scaledvalue = ((n * scalesame2) >> 8) + zone1offset_x;
64  }
65  }
66  return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
67 }
68 
69 static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n /* MV */, int dir)
70 {
71  int scaledvalue, refdist;
72  int scalesame1, scalesame2;
73  int scalezone1_y, zone1offset_y;
74  int table_index = dir ^ v->second_field;
75 
76  if (v->s.pict_type != AV_PICTURE_TYPE_B)
77  refdist = v->refdist;
78  else
79  refdist = dir ? v->brfd : v->frfd;
80  if (refdist > 3)
81  refdist = 3;
82  scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
83  scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
84  scalezone1_y = ff_vc1_field_mvpred_scales[table_index][4][refdist];
85  zone1offset_y = ff_vc1_field_mvpred_scales[table_index][6][refdist];
86 
87  if (FFABS(n) > 63)
88  scaledvalue = n;
89  else {
90  if (FFABS(n) < scalezone1_y)
91  scaledvalue = (n * scalesame1) >> 8;
92  else {
93  if (n < 0)
94  scaledvalue = ((n * scalesame2) >> 8) - zone1offset_y;
95  else
96  scaledvalue = ((n * scalesame2) >> 8) + zone1offset_y;
97  }
98  }
99 
100  if (v->cur_field_type && !v->ref_field_type[dir])
101  return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
102  else
103  return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
104 }
105 
106 static av_always_inline int scaleforopp_x(VC1Context *v, int n /* MV */)
107 {
108  int scalezone1_x, zone1offset_x;
109  int scaleopp1, scaleopp2, brfd;
110  int scaledvalue;
111 
112  brfd = FFMIN(v->brfd, 3);
113  scalezone1_x = ff_vc1_b_field_mvpred_scales[3][brfd];
114  zone1offset_x = ff_vc1_b_field_mvpred_scales[5][brfd];
115  scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
116  scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
117 
118  if (FFABS(n) > 255)
119  scaledvalue = n;
120  else {
121  if (FFABS(n) < scalezone1_x)
122  scaledvalue = (n * scaleopp1) >> 8;
123  else {
124  if (n < 0)
125  scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_x;
126  else
127  scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_x;
128  }
129  }
130  return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
131 }
132 
133 static av_always_inline int scaleforopp_y(VC1Context *v, int n /* MV */, int dir)
134 {
135  int scalezone1_y, zone1offset_y;
136  int scaleopp1, scaleopp2, brfd;
137  int scaledvalue;
138 
139  brfd = FFMIN(v->brfd, 3);
140  scalezone1_y = ff_vc1_b_field_mvpred_scales[4][brfd];
141  zone1offset_y = ff_vc1_b_field_mvpred_scales[6][brfd];
142  scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
143  scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
144 
145  if (FFABS(n) > 63)
146  scaledvalue = n;
147  else {
148  if (FFABS(n) < scalezone1_y)
149  scaledvalue = (n * scaleopp1) >> 8;
150  else {
151  if (n < 0)
152  scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_y;
153  else
154  scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_y;
155  }
156  }
157  if (v->cur_field_type && !v->ref_field_type[dir]) {
158  return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
159  } else {
160  return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
161  }
162 }
163 
164 static av_always_inline int scaleforsame(VC1Context *v, int i, int n /* MV */,
165  int dim, int dir)
166 {
167  int brfd, scalesame;
168  int hpel = 1 - v->s.quarter_sample;
169 
170  n >>= hpel;
171  if (v->s.pict_type != AV_PICTURE_TYPE_B || v->second_field || !dir) {
172  if (dim)
173  n = scaleforsame_y(v, i, n, dir) * (1 << hpel);
174  else
175  n = scaleforsame_x(v, n, dir) * (1 << hpel);
176  return n;
177  }
178  brfd = FFMIN(v->brfd, 3);
179  scalesame = ff_vc1_b_field_mvpred_scales[0][brfd];
180 
181  n = (n * scalesame >> 8) * (1 << hpel);
182  return n;
183 }
184 
185 static av_always_inline int scaleforopp(VC1Context *v, int n /* MV */,
186  int dim, int dir)
187 {
188  int refdist, scaleopp;
189  int hpel = 1 - v->s.quarter_sample;
190 
191  n >>= hpel;
192  if (v->s.pict_type == AV_PICTURE_TYPE_B && !v->second_field && dir == 1) {
193  if (dim)
194  n = scaleforopp_y(v, n, dir) * (1 << hpel);
195  else
196  n = scaleforopp_x(v, n) * (1 << hpel);
197  return n;
198  }
199  if (v->s.pict_type != AV_PICTURE_TYPE_B)
200  refdist = v->refdist;
201  else
202  refdist = dir ? v->brfd : v->frfd;
203  refdist = FFMIN(refdist, 3);
204  scaleopp = ff_vc1_field_mvpred_scales[dir ^ v->second_field][0][refdist];
205 
206  n = (n * scaleopp >> 8) * (1 << hpel);
207  return n;
208 }
209 
210 /** Predict and set motion vector
211  */
212 void ff_vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y,
213  int mv1, int r_x, int r_y, uint8_t* is_intra,
214  int pred_flag, int dir)
215 {
216  MpegEncContext *s = &v->s;
217  int xy, wrap, off = 0;
218  int16_t *A, *B, *C;
219  int px, py;
220  int sum;
221  int mixedmv_pic, num_samefield = 0, num_oppfield = 0;
222  int opposite, a_f, b_f, c_f;
223  int16_t field_predA[2];
224  int16_t field_predB[2];
225  int16_t field_predC[2];
226  int a_valid, b_valid, c_valid;
227  int hybridmv_thresh, y_bias = 0;
228 
229  if (v->mv_mode == MV_PMODE_MIXED_MV ||
231  mixedmv_pic = 1;
232  else
233  mixedmv_pic = 0;
234  /* scale MV difference to be quad-pel */
235  if (!s->quarter_sample) {
236  dmv_x *= 2;
237  dmv_y *= 2;
238  }
239 
240  wrap = s->b8_stride;
241  xy = s->block_index[n];
242 
243  if (s->mb_intra) {
244  s->mv[0][n][0] = s->current_picture.motion_val[0][xy + v->blocks_off][0] = 0;
245  s->mv[0][n][1] = s->current_picture.motion_val[0][xy + v->blocks_off][1] = 0;
246  s->current_picture.motion_val[1][xy + v->blocks_off][0] = 0;
247  s->current_picture.motion_val[1][xy + v->blocks_off][1] = 0;
248  if (mv1) { /* duplicate motion data for 1-MV block */
249  s->current_picture.motion_val[0][xy + 1 + v->blocks_off][0] = 0;
250  s->current_picture.motion_val[0][xy + 1 + v->blocks_off][1] = 0;
251  s->current_picture.motion_val[0][xy + wrap + v->blocks_off][0] = 0;
252  s->current_picture.motion_val[0][xy + wrap + v->blocks_off][1] = 0;
253  s->current_picture.motion_val[0][xy + wrap + 1 + v->blocks_off][0] = 0;
254  s->current_picture.motion_val[0][xy + wrap + 1 + v->blocks_off][1] = 0;
255  v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
256  s->current_picture.motion_val[1][xy + 1 + v->blocks_off][0] = 0;
257  s->current_picture.motion_val[1][xy + 1 + v->blocks_off][1] = 0;
258  s->current_picture.motion_val[1][xy + wrap + v->blocks_off][0] = 0;
259  s->current_picture.motion_val[1][xy + wrap + v->blocks_off][1] = 0;
260  s->current_picture.motion_val[1][xy + wrap + 1 + v->blocks_off][0] = 0;
261  s->current_picture.motion_val[1][xy + wrap + 1 + v->blocks_off][1] = 0;
262  }
263  return;
264  }
265 
266  a_valid = !s->first_slice_line || (n == 2 || n == 3);
267  b_valid = a_valid;
268  c_valid = s->mb_x || (n == 1 || n == 3);
269  if (mv1) {
270  if (v->field_mode && mixedmv_pic)
271  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
272  else
273  off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
274  b_valid = b_valid && s->mb_width > 1;
275  } else {
276  //in 4-MV mode different blocks have different B predictor position
277  switch (n) {
278  case 0:
279  if (v->res_rtm_flag)
280  off = s->mb_x ? -1 : 1;
281  else
282  off = s->mb_x ? -1 : 2 * s->mb_width - wrap - 1;
283  break;
284  case 1:
285  off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
286  break;
287  case 2:
288  off = 1;
289  break;
290  case 3:
291  off = -1;
292  }
293  if (v->field_mode && s->mb_width == 1)
294  b_valid = b_valid && c_valid;
295  }
296 
297  if (v->field_mode) {
298  a_valid = a_valid && !is_intra[xy - wrap];
299  b_valid = b_valid && !is_intra[xy - wrap + off];
300  c_valid = c_valid && !is_intra[xy - 1];
301  }
302 
303  if (a_valid) {
304  A = s->current_picture.motion_val[dir][xy - wrap + v->blocks_off];
305  a_f = v->mv_f[dir][xy - wrap + v->blocks_off];
306  num_oppfield += a_f;
307  num_samefield += 1 - a_f;
308  field_predA[0] = A[0];
309  field_predA[1] = A[1];
310  } else {
311  field_predA[0] = field_predA[1] = 0;
312  a_f = 0;
313  }
314  if (b_valid) {
315  B = s->current_picture.motion_val[dir][xy - wrap + off + v->blocks_off];
316  b_f = v->mv_f[dir][xy - wrap + off + v->blocks_off];
317  num_oppfield += b_f;
318  num_samefield += 1 - b_f;
319  field_predB[0] = B[0];
320  field_predB[1] = B[1];
321  } else {
322  field_predB[0] = field_predB[1] = 0;
323  b_f = 0;
324  }
325  if (c_valid) {
326  C = s->current_picture.motion_val[dir][xy - 1 + v->blocks_off];
327  c_f = v->mv_f[dir][xy - 1 + v->blocks_off];
328  num_oppfield += c_f;
329  num_samefield += 1 - c_f;
330  field_predC[0] = C[0];
331  field_predC[1] = C[1];
332  } else {
333  field_predC[0] = field_predC[1] = 0;
334  c_f = 0;
335  }
336 
337  if (v->field_mode) {
338  if (!v->numref)
339  // REFFIELD determines if the last field or the second-last field is
340  // to be used as reference
341  opposite = 1 - v->reffield;
342  else {
343  if (num_samefield <= num_oppfield)
344  opposite = 1 - pred_flag;
345  else
346  opposite = pred_flag;
347  }
348  } else
349  opposite = 0;
350  if (opposite) {
351  v->mv_f[dir][xy + v->blocks_off] = 1;
352  v->ref_field_type[dir] = !v->cur_field_type;
353  if (a_valid && !a_f) {
354  field_predA[0] = scaleforopp(v, field_predA[0], 0, dir);
355  field_predA[1] = scaleforopp(v, field_predA[1], 1, dir);
356  }
357  if (b_valid && !b_f) {
358  field_predB[0] = scaleforopp(v, field_predB[0], 0, dir);
359  field_predB[1] = scaleforopp(v, field_predB[1], 1, dir);
360  }
361  if (c_valid && !c_f) {
362  field_predC[0] = scaleforopp(v, field_predC[0], 0, dir);
363  field_predC[1] = scaleforopp(v, field_predC[1], 1, dir);
364  }
365  } else {
366  v->mv_f[dir][xy + v->blocks_off] = 0;
367  v->ref_field_type[dir] = v->cur_field_type;
368  if (a_valid && a_f) {
369  field_predA[0] = scaleforsame(v, n, field_predA[0], 0, dir);
370  field_predA[1] = scaleforsame(v, n, field_predA[1], 1, dir);
371  }
372  if (b_valid && b_f) {
373  field_predB[0] = scaleforsame(v, n, field_predB[0], 0, dir);
374  field_predB[1] = scaleforsame(v, n, field_predB[1], 1, dir);
375  }
376  if (c_valid && c_f) {
377  field_predC[0] = scaleforsame(v, n, field_predC[0], 0, dir);
378  field_predC[1] = scaleforsame(v, n, field_predC[1], 1, dir);
379  }
380  }
381 
382  if (a_valid) {
383  px = field_predA[0];
384  py = field_predA[1];
385  } else if (c_valid) {
386  px = field_predC[0];
387  py = field_predC[1];
388  } else if (b_valid) {
389  px = field_predB[0];
390  py = field_predB[1];
391  } else {
392  px = 0;
393  py = 0;
394  }
395 
396  if (num_samefield + num_oppfield > 1) {
397  px = mid_pred(field_predA[0], field_predB[0], field_predC[0]);
398  py = mid_pred(field_predA[1], field_predB[1], field_predC[1]);
399  }
400 
401  /* Pullback MV as specified in 8.3.5.3.4 */
402  if (!v->field_mode) {
403  int qx, qy, X, Y;
404  int MV = mv1 ? -60 : -28;
405  qx = (s->mb_x << 6) + ((n == 1 || n == 3) ? 32 : 0);
406  qy = (s->mb_y << 6) + ((n == 2 || n == 3) ? 32 : 0);
407  X = (s->mb_width << 6) - 4;
408  Y = (s->mb_height << 6) - 4;
409  if (qx + px < MV) px = MV - qx;
410  if (qy + py < MV) py = MV - qy;
411  if (qx + px > X) px = X - qx;
412  if (qy + py > Y) py = Y - qy;
413  }
414 
415  if (!v->field_mode || s->pict_type != AV_PICTURE_TYPE_B) {
416  /* Calculate hybrid prediction as specified in 8.3.5.3.5 (also 10.3.5.4.3.5) */
417  hybridmv_thresh = 32;
418  if (a_valid && c_valid) {
419  if (is_intra[xy - wrap])
420  sum = FFABS(px) + FFABS(py);
421  else
422  sum = FFABS(px - field_predA[0]) + FFABS(py - field_predA[1]);
423  if (sum > hybridmv_thresh) {
424  if (get_bits1(&s->gb)) { // read HYBRIDPRED bit
425  px = field_predA[0];
426  py = field_predA[1];
427  } else {
428  px = field_predC[0];
429  py = field_predC[1];
430  }
431  } else {
432  if (is_intra[xy - 1])
433  sum = FFABS(px) + FFABS(py);
434  else
435  sum = FFABS(px - field_predC[0]) + FFABS(py - field_predC[1]);
436  if (sum > hybridmv_thresh) {
437  if (get_bits1(&s->gb)) {
438  px = field_predA[0];
439  py = field_predA[1];
440  } else {
441  px = field_predC[0];
442  py = field_predC[1];
443  }
444  }
445  }
446  }
447  }
448 
449  if (v->field_mode && v->numref)
450  r_y >>= 1;
451  if (v->field_mode && v->cur_field_type && v->ref_field_type[dir] == 0)
452  y_bias = 1;
453  /* store MV using signed modulus of MV range defined in 4.11 */
454  s->mv[dir][n][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
455  s->mv[dir][n][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1] = ((py + dmv_y + r_y - y_bias) & ((r_y << 1) - 1)) - r_y + y_bias;
456  if (mv1) { /* duplicate motion data for 1-MV block */
457  s->current_picture.motion_val[dir][xy + 1 + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
458  s->current_picture.motion_val[dir][xy + 1 + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
459  s->current_picture.motion_val[dir][xy + wrap + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
460  s->current_picture.motion_val[dir][xy + wrap + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
461  s->current_picture.motion_val[dir][xy + wrap + 1 + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
462  s->current_picture.motion_val[dir][xy + wrap + 1 + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
463  v->mv_f[dir][xy + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
464  v->mv_f[dir][xy + wrap + v->blocks_off] = v->mv_f[dir][xy + wrap + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
465  }
466 }
467 
468 /** Predict and set motion vector for interlaced frame picture MBs
469  */
470 void ff_vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y,
471  int mvn, int r_x, int r_y, uint8_t* is_intra, int dir)
472 {
473  MpegEncContext *s = &v->s;
474  int xy, wrap, off = 0;
475  int A[2], B[2], C[2];
476  int px = 0, py = 0;
477  int a_valid = 0, b_valid = 0, c_valid = 0;
478  int field_a, field_b, field_c; // 0: same, 1: opposite
479  int total_valid, num_samefield, num_oppfield;
480  int pos_c, pos_b, n_adj;
481 
482  wrap = s->b8_stride;
483  xy = s->block_index[n];
484 
485  if (s->mb_intra) {
486  s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
487  s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
488  s->current_picture.motion_val[1][xy][0] = 0;
489  s->current_picture.motion_val[1][xy][1] = 0;
490  if (mvn == 1) { /* duplicate motion data for 1-MV block */
491  s->current_picture.motion_val[0][xy + 1][0] = 0;
492  s->current_picture.motion_val[0][xy + 1][1] = 0;
493  s->current_picture.motion_val[0][xy + wrap][0] = 0;
494  s->current_picture.motion_val[0][xy + wrap][1] = 0;
495  s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
496  s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
497  v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
498  s->current_picture.motion_val[1][xy + 1][0] = 0;
499  s->current_picture.motion_val[1][xy + 1][1] = 0;
500  s->current_picture.motion_val[1][xy + wrap][0] = 0;
501  s->current_picture.motion_val[1][xy + wrap][1] = 0;
502  s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
503  s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
504  }
505  return;
506  }
507 
508  off = ((n == 0) || (n == 1)) ? 1 : -1;
509  /* predict A */
510  if (s->mb_x || (n == 1) || (n == 3)) {
511  if ((v->blk_mv_type[xy]) // current block (MB) has a field MV
512  || (!v->blk_mv_type[xy] && !v->blk_mv_type[xy - 1])) { // or both have frame MV
513  A[0] = s->current_picture.motion_val[dir][xy - 1][0];
514  A[1] = s->current_picture.motion_val[dir][xy - 1][1];
515  a_valid = 1;
516  } else { // current block has frame mv and cand. has field MV (so average)
517  A[0] = (s->current_picture.motion_val[dir][xy - 1][0]
518  + s->current_picture.motion_val[dir][xy - 1 + off * wrap][0] + 1) >> 1;
519  A[1] = (s->current_picture.motion_val[dir][xy - 1][1]
520  + s->current_picture.motion_val[dir][xy - 1 + off * wrap][1] + 1) >> 1;
521  a_valid = 1;
522  }
523  if (!(n & 1) && v->is_intra[s->mb_x - 1]) {
524  a_valid = 0;
525  A[0] = A[1] = 0;
526  }
527  } else
528  A[0] = A[1] = 0;
529  /* Predict B and C */
530  B[0] = B[1] = C[0] = C[1] = 0;
531  if (n == 0 || n == 1 || v->blk_mv_type[xy]) {
532  if (!s->first_slice_line) {
533  if (!v->is_intra[s->mb_x - s->mb_stride]) {
534  b_valid = 1;
535  n_adj = n | 2;
536  pos_b = s->block_index[n_adj] - 2 * wrap;
537  if (v->blk_mv_type[pos_b] && v->blk_mv_type[xy]) {
538  n_adj = (n & 2) | (n & 1);
539  }
540  B[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap][0];
541  B[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap][1];
542  if (v->blk_mv_type[pos_b] && !v->blk_mv_type[xy]) {
543  B[0] = (B[0] + s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap][0] + 1) >> 1;
544  B[1] = (B[1] + s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap][1] + 1) >> 1;
545  }
546  }
547  if (s->mb_width > 1) {
548  if (!v->is_intra[s->mb_x - s->mb_stride + 1]) {
549  c_valid = 1;
550  n_adj = 2;
551  pos_c = s->block_index[2] - 2 * wrap + 2;
552  if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
553  n_adj = n & 2;
554  }
555  C[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap + 2][0];
556  C[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap + 2][1];
557  if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
558  C[0] = (1 + C[0] + (s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap + 2][0])) >> 1;
559  C[1] = (1 + C[1] + (s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap + 2][1])) >> 1;
560  }
561  if (s->mb_x == s->mb_width - 1) {
562  if (!v->is_intra[s->mb_x - s->mb_stride - 1]) {
563  c_valid = 1;
564  n_adj = 3;
565  pos_c = s->block_index[3] - 2 * wrap - 2;
566  if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
567  n_adj = n | 1;
568  }
569  C[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap - 2][0];
570  C[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap - 2][1];
571  if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
572  C[0] = (1 + C[0] + s->current_picture.motion_val[dir][s->block_index[1] - 2 * wrap - 2][0]) >> 1;
573  C[1] = (1 + C[1] + s->current_picture.motion_val[dir][s->block_index[1] - 2 * wrap - 2][1]) >> 1;
574  }
575  } else
576  c_valid = 0;
577  }
578  }
579  }
580  }
581  } else {
582  pos_b = s->block_index[1];
583  b_valid = 1;
584  B[0] = s->current_picture.motion_val[dir][pos_b][0];
585  B[1] = s->current_picture.motion_val[dir][pos_b][1];
586  pos_c = s->block_index[0];
587  c_valid = 1;
588  C[0] = s->current_picture.motion_val[dir][pos_c][0];
589  C[1] = s->current_picture.motion_val[dir][pos_c][1];
590  }
591 
592  total_valid = a_valid + b_valid + c_valid;
593  // check if predictor A is out of bounds
594  if (!s->mb_x && !(n == 1 || n == 3)) {
595  A[0] = A[1] = 0;
596  }
597  // check if predictor B is out of bounds
598  if ((s->first_slice_line && v->blk_mv_type[xy]) || (s->first_slice_line && !(n & 2))) {
599  B[0] = B[1] = C[0] = C[1] = 0;
600  }
601  if (!v->blk_mv_type[xy]) {
602  if (s->mb_width == 1) {
603  px = B[0];
604  py = B[1];
605  } else {
606  if (total_valid >= 2) {
607  px = mid_pred(A[0], B[0], C[0]);
608  py = mid_pred(A[1], B[1], C[1]);
609  } else if (total_valid) {
610  if (a_valid) { px = A[0]; py = A[1]; }
611  else if (b_valid) { px = B[0]; py = B[1]; }
612  else { px = C[0]; py = C[1]; }
613  }
614  }
615  } else {
616  if (a_valid)
617  field_a = (A[1] & 4) ? 1 : 0;
618  else
619  field_a = 0;
620  if (b_valid)
621  field_b = (B[1] & 4) ? 1 : 0;
622  else
623  field_b = 0;
624  if (c_valid)
625  field_c = (C[1] & 4) ? 1 : 0;
626  else
627  field_c = 0;
628 
629  num_oppfield = field_a + field_b + field_c;
630  num_samefield = total_valid - num_oppfield;
631  if (total_valid == 3) {
632  if ((num_samefield == 3) || (num_oppfield == 3)) {
633  px = mid_pred(A[0], B[0], C[0]);
634  py = mid_pred(A[1], B[1], C[1]);
635  } else if (num_samefield >= num_oppfield) {
636  /* take one MV from same field set depending on priority
637  the check for B may not be necessary */
638  px = !field_a ? A[0] : B[0];
639  py = !field_a ? A[1] : B[1];
640  } else {
641  px = field_a ? A[0] : B[0];
642  py = field_a ? A[1] : B[1];
643  }
644  } else if (total_valid == 2) {
645  if (num_samefield >= num_oppfield) {
646  if (!field_a && a_valid) {
647  px = A[0];
648  py = A[1];
649  } else if (!field_b && b_valid) {
650  px = B[0];
651  py = B[1];
652  } else /*if (c_valid)*/ {
653  av_assert1(c_valid);
654  px = C[0];
655  py = C[1];
656  }
657  } else {
658  if (field_a && a_valid) {
659  px = A[0];
660  py = A[1];
661  } else /*if (field_b && b_valid)*/ {
662  av_assert1(field_b && b_valid);
663  px = B[0];
664  py = B[1];
665  }
666  }
667  } else if (total_valid == 1) {
668  px = (a_valid) ? A[0] : ((b_valid) ? B[0] : C[0]);
669  py = (a_valid) ? A[1] : ((b_valid) ? B[1] : C[1]);
670  }
671  }
672 
673  /* store MV using signed modulus of MV range defined in 4.11 */
674  s->mv[dir][n][0] = s->current_picture.motion_val[dir][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
675  s->mv[dir][n][1] = s->current_picture.motion_val[dir][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
676  if (mvn == 1) { /* duplicate motion data for 1-MV block */
677  s->current_picture.motion_val[dir][xy + 1 ][0] = s->current_picture.motion_val[dir][xy][0];
678  s->current_picture.motion_val[dir][xy + 1 ][1] = s->current_picture.motion_val[dir][xy][1];
679  s->current_picture.motion_val[dir][xy + wrap ][0] = s->current_picture.motion_val[dir][xy][0];
680  s->current_picture.motion_val[dir][xy + wrap ][1] = s->current_picture.motion_val[dir][xy][1];
681  s->current_picture.motion_val[dir][xy + wrap + 1][0] = s->current_picture.motion_val[dir][xy][0];
682  s->current_picture.motion_val[dir][xy + wrap + 1][1] = s->current_picture.motion_val[dir][xy][1];
683  } else if (mvn == 2) { /* duplicate motion data for 2-Field MV block */
684  s->current_picture.motion_val[dir][xy + 1][0] = s->current_picture.motion_val[dir][xy][0];
685  s->current_picture.motion_val[dir][xy + 1][1] = s->current_picture.motion_val[dir][xy][1];
686  s->mv[dir][n + 1][0] = s->mv[dir][n][0];
687  s->mv[dir][n + 1][1] = s->mv[dir][n][1];
688  }
689 }
690 
691 void ff_vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2],
692  int direct, int mvtype)
693 {
694  MpegEncContext *s = &v->s;
695  int xy, wrap, off = 0;
696  int16_t *A, *B, *C;
697  int px, py;
698  int sum;
699  int r_x, r_y;
700  const uint8_t *is_intra = v->mb_type[0];
701 
702  av_assert0(!v->field_mode);
703 
704  r_x = v->range_x;
705  r_y = v->range_y;
706  /* scale MV difference to be quad-pel */
707  if (!s->quarter_sample) {
708  dmv_x[0] *= 2;
709  dmv_y[0] *= 2;
710  dmv_x[1] *= 2;
711  dmv_y[1] *= 2;
712  }
713 
714  wrap = s->b8_stride;
715  xy = s->block_index[0];
716 
717  if (s->mb_intra) {
718  s->current_picture.motion_val[0][xy][0] =
719  s->current_picture.motion_val[0][xy][1] =
720  s->current_picture.motion_val[1][xy][0] =
721  s->current_picture.motion_val[1][xy][1] = 0;
722  return;
723  }
724  if (direct && s->next_picture_ptr->field_picture)
725  av_log(s->avctx, AV_LOG_WARNING, "Mixed frame/field direct mode not supported\n");
726 
727  s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
728  s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
729  s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
730  s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
731 
732  /* Pullback predicted motion vectors as specified in 8.4.5.4 */
733  s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
734  s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
735  s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
736  s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
737  if (direct) {
738  s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
739  s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
740  s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
741  s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
742  return;
743  }
744 
745  if ((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
746  C = s->current_picture.motion_val[0][xy - 2];
747  A = s->current_picture.motion_val[0][xy - wrap * 2];
748  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
749  B = s->current_picture.motion_val[0][xy - wrap * 2 + off];
750 
751  if (!s->mb_x) C[0] = C[1] = 0;
752  if (!s->first_slice_line) { // predictor A is not out of bounds
753  if (s->mb_width == 1) {
754  px = A[0];
755  py = A[1];
756  } else {
757  px = mid_pred(A[0], B[0], C[0]);
758  py = mid_pred(A[1], B[1], C[1]);
759  }
760  } else if (s->mb_x) { // predictor C is not out of bounds
761  px = C[0];
762  py = C[1];
763  } else {
764  px = py = 0;
765  }
766  /* Pullback MV as specified in 8.3.5.3.4 */
767  {
768  int qx, qy, X, Y;
769  int sh = v->profile < PROFILE_ADVANCED ? 5 : 6;
770  int MV = 4 - (1 << sh);
771  qx = (s->mb_x << sh);
772  qy = (s->mb_y << sh);
773  X = (s->mb_width << sh) - 4;
774  Y = (s->mb_height << sh) - 4;
775  if (qx + px < MV) px = MV - qx;
776  if (qy + py < MV) py = MV - qy;
777  if (qx + px > X) px = X - qx;
778  if (qy + py > Y) py = Y - qy;
779  }
780  /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
781  if (0 && !s->first_slice_line && s->mb_x) {
782  if (is_intra[xy - wrap])
783  sum = FFABS(px) + FFABS(py);
784  else
785  sum = FFABS(px - A[0]) + FFABS(py - A[1]);
786  if (sum > 32) {
787  if (get_bits1(&s->gb)) {
788  px = A[0];
789  py = A[1];
790  } else {
791  px = C[0];
792  py = C[1];
793  }
794  } else {
795  if (is_intra[xy - 2])
796  sum = FFABS(px) + FFABS(py);
797  else
798  sum = FFABS(px - C[0]) + FFABS(py - C[1]);
799  if (sum > 32) {
800  if (get_bits1(&s->gb)) {
801  px = A[0];
802  py = A[1];
803  } else {
804  px = C[0];
805  py = C[1];
806  }
807  }
808  }
809  }
810  /* store MV using signed modulus of MV range defined in 4.11 */
811  s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
812  s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
813  }
814  if ((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
815  C = s->current_picture.motion_val[1][xy - 2];
816  A = s->current_picture.motion_val[1][xy - wrap * 2];
817  off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
818  B = s->current_picture.motion_val[1][xy - wrap * 2 + off];
819 
820  if (!s->mb_x)
821  C[0] = C[1] = 0;
822  if (!s->first_slice_line) { // predictor A is not out of bounds
823  if (s->mb_width == 1) {
824  px = A[0];
825  py = A[1];
826  } else {
827  px = mid_pred(A[0], B[0], C[0]);
828  py = mid_pred(A[1], B[1], C[1]);
829  }
830  } else if (s->mb_x) { // predictor C is not out of bounds
831  px = C[0];
832  py = C[1];
833  } else {
834  px = py = 0;
835  }
836  /* Pullback MV as specified in 8.3.5.3.4 */
837  {
838  int qx, qy, X, Y;
839  int sh = v->profile < PROFILE_ADVANCED ? 5 : 6;
840  int MV = 4 - (1 << sh);
841  qx = (s->mb_x << sh);
842  qy = (s->mb_y << sh);
843  X = (s->mb_width << sh) - 4;
844  Y = (s->mb_height << sh) - 4;
845  if (qx + px < MV) px = MV - qx;
846  if (qy + py < MV) py = MV - qy;
847  if (qx + px > X) px = X - qx;
848  if (qy + py > Y) py = Y - qy;
849  }
850  /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
851  if (0 && !s->first_slice_line && s->mb_x) {
852  if (is_intra[xy - wrap])
853  sum = FFABS(px) + FFABS(py);
854  else
855  sum = FFABS(px - A[0]) + FFABS(py - A[1]);
856  if (sum > 32) {
857  if (get_bits1(&s->gb)) {
858  px = A[0];
859  py = A[1];
860  } else {
861  px = C[0];
862  py = C[1];
863  }
864  } else {
865  if (is_intra[xy - 2])
866  sum = FFABS(px) + FFABS(py);
867  else
868  sum = FFABS(px - C[0]) + FFABS(py - C[1]);
869  if (sum > 32) {
870  if (get_bits1(&s->gb)) {
871  px = A[0];
872  py = A[1];
873  } else {
874  px = C[0];
875  py = C[1];
876  }
877  }
878  }
879  }
880  /* store MV using signed modulus of MV range defined in 4.11 */
881 
882  s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
883  s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
884  }
885  s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
886  s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
887  s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
888  s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
889 }
890 
891 void ff_vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y,
892  int mv1, int *pred_flag)
893 {
894  int dir = (v->bmvtype == BMV_TYPE_BACKWARD) ? 1 : 0;
895  MpegEncContext *s = &v->s;
896  int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
897 
898  if (v->bmvtype == BMV_TYPE_DIRECT) {
899  int total_opp, k, f;
900  if (s->next_picture.mb_type[mb_pos + v->mb_off] != MB_TYPE_INTRA) {
901  s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][0],
902  v->bfraction, 0, s->quarter_sample);
903  s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][1],
904  v->bfraction, 0, s->quarter_sample);
905  s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][0],
906  v->bfraction, 1, s->quarter_sample);
907  s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][1],
908  v->bfraction, 1, s->quarter_sample);
909 
910  total_opp = v->mv_f_next[0][s->block_index[0] + v->blocks_off]
911  + v->mv_f_next[0][s->block_index[1] + v->blocks_off]
912  + v->mv_f_next[0][s->block_index[2] + v->blocks_off]
913  + v->mv_f_next[0][s->block_index[3] + v->blocks_off];
914  f = (total_opp > 2) ? 1 : 0;
915  } else {
916  s->mv[0][0][0] = s->mv[0][0][1] = 0;
917  s->mv[1][0][0] = s->mv[1][0][1] = 0;
918  f = 0;
919  }
920  v->ref_field_type[0] = v->ref_field_type[1] = v->cur_field_type ^ f;
921  for (k = 0; k < 4; k++) {
922  s->current_picture.motion_val[0][s->block_index[k] + v->blocks_off][0] = s->mv[0][0][0];
923  s->current_picture.motion_val[0][s->block_index[k] + v->blocks_off][1] = s->mv[0][0][1];
924  s->current_picture.motion_val[1][s->block_index[k] + v->blocks_off][0] = s->mv[1][0][0];
925  s->current_picture.motion_val[1][s->block_index[k] + v->blocks_off][1] = s->mv[1][0][1];
926  v->mv_f[0][s->block_index[k] + v->blocks_off] = f;
927  v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
928  }
929  return;
930  }
931  if (v->bmvtype == BMV_TYPE_INTERPOLATED) {
932  ff_vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
933  ff_vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
934  return;
935  }
936  if (dir) { // backward
937  ff_vc1_pred_mv(v, n, dmv_x[1], dmv_y[1], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
938  if (n == 3 || mv1) {
939  ff_vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
940  }
941  } else { // forward
942  ff_vc1_pred_mv(v, n, dmv_x[0], dmv_y[0], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
943  if (n == 3 || mv1) {
944  ff_vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], 0, 1);
945  }
946  }
947 }
void ff_vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t *is_intra, int pred_flag, int dir)
Predict and set motion vector.
Definition: vc1_pred.c:212
The VC1 Context.
Definition: vc1.h:173
int reffield
if numref = 0 (1 reference) then reffield decides which
Definition: vc1.h:359
static av_always_inline int scaleforopp_x(VC1Context *v, int n)
Definition: vc1_pred.c:106
#define C
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static av_always_inline int scaleforsame(VC1Context *v, int i, int n, int dim, int dir)
Definition: vc1_pred.c:164
int field_picture
whether or not the picture was encoded in separate fields
Definition: mpegpicture.h:79
#define MB_TYPE_INTRA
Definition: mpegutils.h:73
int frfd
Definition: vc1.h:368
mpegvideo header.
uint8_t * mv_f[2]
0: MV obtained from same field, 1: opposite field
Definition: vc1.h:351
int range_x
Definition: vc1.h:237
const uint16_t ff_vc1_b_field_mvpred_scales[7][4]
Definition: vc1data.c:1121
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
int refdist
distance of the current picture from reference
Definition: vc1.h:356
VC-1 tables.
void ff_vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y, int mv1, int *pred_flag)
Definition: vc1_pred.c:891
uint8_t
#define f(width, name)
Definition: cbs_vp9.c:255
static av_always_inline int scaleforopp_y(VC1Context *v, int n, int dir)
Definition: vc1_pred.c:133
int second_field
Definition: vc1.h:355
Picture current_picture
copy of the current picture structure.
Definition: mpegvideo.h:180
int16_t bfraction
Relative position % anchors=> how to scale MVs.
Definition: vc1.h:272
int16_t((* luma_mv)[2]
Definition: vc1.h:394
int profile
Sequence header data for all Profiles TODO: choose between ints, uint8_ts and monobit flags...
Definition: vc1.h:218
int mb_height
number of MBs horizontally & vertically
Definition: mpegvideo.h:129
#define A(x)
Definition: vp56_arith.h:28
#define av_log(a,...)
int range_y
MV range.
Definition: vc1.h:237
static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n, int dir)
Definition: vc1_pred.c:69
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:259
#define B
Definition: huffyuvdsp.h:32
#define wrap(func)
Definition: neontest.h:65
int quarter_sample
1->qpel, 0->half pel ME/MC
Definition: mpegvideo.h:401
GetBitContext gb
Definition: mpegvideo.h:448
#define scale_mv(n, dim)
Definition: clearvideo.c:43
int res_rtm_flag
reserved, set to 1
Definition: vc1.h:191
uint8_t * blk_mv_type
0: frame MV, 1: field MV (interlaced frame)
Definition: vc1.h:350
int cur_field_type
0: top, 1: bottom
Definition: vc1.h:363
#define Y
Definition: boxblur.h:38
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
#define FFMIN(a, b)
Definition: common.h:96
int field_mode
1 for interlaced field pictures
Definition: vc1.h:353
uint8_t mv_mode
Frame decoding info for all profiles.
Definition: vc1.h:233
int16_t(*[2] motion_val)[2]
Definition: mpegpicture.h:53
int mb_off
Definition: vc1.h:365
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
int n
Definition: avisynth_c.h:760
const uint16_t ff_vc1_field_mvpred_scales[2][7][4]
Definition: vc1data.c:1097
int block_index[6]
index to current MB in block based arrays with edges
Definition: mpegvideo.h:293
int first_slice_line
used in MPEG-4 too to handle resync markers
Definition: mpegvideo.h:436
static av_always_inline int scaleforsame_x(VC1Context *v, int n, int dir)
Definition: vc1_pred.c:36
uint8_t * is_intra
Definition: vc1.h:393
void ff_vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
Definition: vc1_pred.c:691
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:498
#define mid_pred
Definition: mathops.h:97
int dim
int ref_field_type[2]
forward and backward reference field type (top or bottom)
Definition: vc1.h:364
int pict_type
AV_PICTURE_TYPE_I, AV_PICTURE_TYPE_P, AV_PICTURE_TYPE_B, ...
Definition: mpegvideo.h:212
int numref
number of past field pictures used as reference
Definition: vc1.h:357
int blocks_off
Definition: vc1.h:365
int mv[2][4][2]
motion vectors for a macroblock first coordinate : 0 = forward 1 = backward second " : depend...
Definition: mpegvideo.h:276
int b8_stride
2*mb_width+1 used for some 8x8 block arrays to allow simple addressing
Definition: mpegvideo.h:131
MpegEncContext s
Definition: vc1.h:174
MpegEncContext.
Definition: mpegvideo.h:81
Picture * next_picture_ptr
pointer to the next picture (for bidir pred)
Definition: mpegvideo.h:183
struct AVCodecContext * avctx
Definition: mpegvideo.h:98
int mb_stride
mb_width+1 used for some arrays to allow simple addressing of left & top MBs without sig11 ...
Definition: mpegvideo.h:130
Bi-dir predicted.
Definition: avutil.h:276
void ff_vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y, int mvn, int r_x, int r_y, uint8_t *is_intra, int dir)
Predict and set motion vector for interlaced frame picture MBs.
Definition: vc1_pred.c:470
int bmvtype
Definition: vc1.h:367
Picture next_picture
copy of the next picture structure.
Definition: mpegvideo.h:168
int brfd
reference frame distance (forward or backward)
Definition: vc1.h:368
uint32_t * mb_type
types and macros are defined in mpegutils.h
Definition: mpegpicture.h:56
#define av_always_inline
Definition: attributes.h:39
uint8_t mv_mode2
Secondary MV coding mode (B-frames)
Definition: vc1.h:234
uint8_t * mv_f_next[2]
Definition: vc1.h:352
uint8_t * mb_type[3]
Definition: vc1.h:264
static av_always_inline int scaleforopp(VC1Context *v, int n, int dim, int dir)
Definition: vc1_pred.c:185