FFmpeg  4.2.2
imc.c
Go to the documentation of this file.
1 /*
2  * IMC compatible decoder
3  * Copyright (c) 2002-2004 Maxim Poliakovski
4  * Copyright (c) 2006 Benjamin Larsson
5  * Copyright (c) 2006 Konstantin Shishkov
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 /**
25  * @file
26  * IMC - Intel Music Coder
27  * A mdct based codec using a 256 points large transform
28  * divided into 32 bands with some mix of scale factors.
29  * Only mono is supported.
30  */
31 
32 
33 #include <math.h>
34 #include <stddef.h>
35 #include <stdio.h>
36 
38 #include "libavutil/ffmath.h"
39 #include "libavutil/float_dsp.h"
40 #include "libavutil/internal.h"
41 #include "avcodec.h"
42 #include "bswapdsp.h"
43 #include "get_bits.h"
44 #include "fft.h"
45 #include "internal.h"
46 #include "sinewin.h"
47 
48 #include "imcdata.h"
49 
50 #define IMC_BLOCK_SIZE 64
51 #define IMC_FRAME_ID 0x21
52 #define BANDS 32
53 #define COEFFS 256
54 
55 typedef struct IMCChannel {
56  float old_floor[BANDS];
57  float flcoeffs1[BANDS];
58  float flcoeffs2[BANDS];
59  float flcoeffs3[BANDS];
60  float flcoeffs4[BANDS];
61  float flcoeffs5[BANDS];
62  float flcoeffs6[BANDS];
63  float CWdecoded[COEFFS];
64 
65  int bandWidthT[BANDS]; ///< codewords per band
66  int bitsBandT[BANDS]; ///< how many bits per codeword in band
67  int CWlengthT[COEFFS]; ///< how many bits in each codeword
69  int bandFlagsBuf[BANDS]; ///< flags for each band
70  int sumLenArr[BANDS]; ///< bits for all coeffs in band
71  int skipFlagRaw[BANDS]; ///< skip flags are stored in raw form or not
72  int skipFlagBits[BANDS]; ///< bits used to code skip flags
73  int skipFlagCount[BANDS]; ///< skipped coefficients per band
74  int skipFlags[COEFFS]; ///< skip coefficient decoding or not
75  int codewords[COEFFS]; ///< raw codewords read from bitstream
76 
78 
80 } IMCChannel;
81 
82 typedef struct IMCContext {
83  IMCChannel chctx[2];
84 
85  /** MDCT tables */
86  //@{
87  float mdct_sine_window[COEFFS];
88  float post_cos[COEFFS];
89  float post_sin[COEFFS];
90  float pre_coef1[COEFFS];
91  float pre_coef2[COEFFS];
92  //@}
93 
94  float sqrt_tab[30];
96 
100  DECLARE_ALIGNED(32, FFTComplex, samples)[COEFFS / 2];
101  float *out_samples;
102 
104 
105  int8_t cyclTab[32], cyclTab2[32];
106  float weights1[31], weights2[31];
107 
109 } IMCContext;
110 
111 static VLC huffman_vlc[4][4];
112 
113 #define VLC_TABLES_SIZE 9512
114 
115 static const int vlc_offsets[17] = {
116  0, 640, 1156, 1732, 2308, 2852, 3396, 3924,
117  4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE
118 };
119 
121 
122 static inline double freq2bark(double freq)
123 {
124  return 3.5 * atan((freq / 7500.0) * (freq / 7500.0)) + 13.0 * atan(freq * 0.00076);
125 }
126 
127 static av_cold void iac_generate_tabs(IMCContext *q, int sampling_rate)
128 {
129  double freqmin[32], freqmid[32], freqmax[32];
130  double scale = sampling_rate / (256.0 * 2.0 * 2.0);
131  double nyquist_freq = sampling_rate * 0.5;
132  double freq, bark, prev_bark = 0, tf, tb;
133  int i, j;
134 
135  for (i = 0; i < 32; i++) {
136  freq = (band_tab[i] + band_tab[i + 1] - 1) * scale;
137  bark = freq2bark(freq);
138 
139  if (i > 0) {
140  tb = bark - prev_bark;
141  q->weights1[i - 1] = ff_exp10(-1.0 * tb);
142  q->weights2[i - 1] = ff_exp10(-2.7 * tb);
143  }
144  prev_bark = bark;
145 
146  freqmid[i] = freq;
147 
148  tf = freq;
149  while (tf < nyquist_freq) {
150  tf += 0.5;
151  tb = freq2bark(tf);
152  if (tb > bark + 0.5)
153  break;
154  }
155  freqmax[i] = tf;
156 
157  tf = freq;
158  while (tf > 0.0) {
159  tf -= 0.5;
160  tb = freq2bark(tf);
161  if (tb <= bark - 0.5)
162  break;
163  }
164  freqmin[i] = tf;
165  }
166 
167  for (i = 0; i < 32; i++) {
168  freq = freqmax[i];
169  for (j = 31; j > 0 && freq <= freqmid[j]; j--);
170  q->cyclTab[i] = j + 1;
171 
172  freq = freqmin[i];
173  for (j = 0; j < 32 && freq >= freqmid[j]; j++);
174  q->cyclTab2[i] = j - 1;
175  }
176 }
177 
179 {
180  int i, j, ret;
181  IMCContext *q = avctx->priv_data;
182  double r1, r2;
183 
184  if (avctx->codec_id == AV_CODEC_ID_IAC && avctx->sample_rate > 96000) {
185  av_log(avctx, AV_LOG_ERROR,
186  "Strange sample rate of %i, file likely corrupt or "
187  "needing a new table derivation method.\n",
188  avctx->sample_rate);
189  return AVERROR_PATCHWELCOME;
190  }
191 
192  if (avctx->codec_id == AV_CODEC_ID_IMC)
193  avctx->channels = 1;
194 
195  if (avctx->channels > 2) {
196  avpriv_request_sample(avctx, "Number of channels > 2");
197  return AVERROR_PATCHWELCOME;
198  }
199 
200  for (j = 0; j < avctx->channels; j++) {
201  q->chctx[j].decoder_reset = 1;
202 
203  for (i = 0; i < BANDS; i++)
204  q->chctx[j].old_floor[i] = 1.0;
205 
206  for (i = 0; i < COEFFS / 2; i++)
207  q->chctx[j].last_fft_im[i] = 0;
208  }
209 
210  /* Build mdct window, a simple sine window normalized with sqrt(2) */
212  for (i = 0; i < COEFFS; i++)
213  q->mdct_sine_window[i] *= sqrt(2.0);
214  for (i = 0; i < COEFFS / 2; i++) {
215  q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI);
216  q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI);
217 
218  r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
219  r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
220 
221  if (i & 0x1) {
222  q->pre_coef1[i] = (r1 + r2) * sqrt(2.0);
223  q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
224  } else {
225  q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
226  q->pre_coef2[i] = (r1 - r2) * sqrt(2.0);
227  }
228  }
229 
230  /* Generate a square root table */
231 
232  for (i = 0; i < 30; i++)
233  q->sqrt_tab[i] = sqrt(i);
234 
235  /* initialize the VLC tables */
236  for (i = 0; i < 4 ; i++) {
237  for (j = 0; j < 4; j++) {
238  huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]];
239  huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j];
240  init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i],
241  imc_huffman_lens[i][j], 1, 1,
243  }
244  }
245 
246  if (avctx->codec_id == AV_CODEC_ID_IAC) {
247  iac_generate_tabs(q, avctx->sample_rate);
248  } else {
249  memcpy(q->cyclTab, cyclTab, sizeof(cyclTab));
250  memcpy(q->cyclTab2, cyclTab2, sizeof(cyclTab2));
251  memcpy(q->weights1, imc_weights1, sizeof(imc_weights1));
252  memcpy(q->weights2, imc_weights2, sizeof(imc_weights2));
253  }
254 
255  if ((ret = ff_fft_init(&q->fft, 7, 1))) {
256  av_log(avctx, AV_LOG_INFO, "FFT init failed\n");
257  return ret;
258  }
259  ff_bswapdsp_init(&q->bdsp);
261  if (!q->fdsp) {
262  ff_fft_end(&q->fft);
263 
264  return AVERROR(ENOMEM);
265  }
266 
268  avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO
270 
271  return 0;
272 }
273 
275  float *flcoeffs2, int *bandWidthT,
276  float *flcoeffs3, float *flcoeffs5)
277 {
278  float workT1[BANDS];
279  float workT2[BANDS];
280  float workT3[BANDS];
281  float snr_limit = 1.e-30;
282  float accum = 0.0;
283  int i, cnt2;
284 
285  for (i = 0; i < BANDS; i++) {
286  flcoeffs5[i] = workT2[i] = 0.0;
287  if (bandWidthT[i]) {
288  workT1[i] = flcoeffs1[i] * flcoeffs1[i];
289  flcoeffs3[i] = 2.0 * flcoeffs2[i];
290  } else {
291  workT1[i] = 0.0;
292  flcoeffs3[i] = -30000.0;
293  }
294  workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
295  if (workT3[i] <= snr_limit)
296  workT3[i] = 0.0;
297  }
298 
299  for (i = 0; i < BANDS; i++) {
300  for (cnt2 = i; cnt2 < q->cyclTab[i]; cnt2++)
301  flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
302  workT2[cnt2 - 1] = workT2[cnt2 - 1] + workT3[i];
303  }
304 
305  for (i = 1; i < BANDS; i++) {
306  accum = (workT2[i - 1] + accum) * q->weights1[i - 1];
307  flcoeffs5[i] += accum;
308  }
309 
310  for (i = 0; i < BANDS; i++)
311  workT2[i] = 0.0;
312 
313  for (i = 0; i < BANDS; i++) {
314  for (cnt2 = i - 1; cnt2 > q->cyclTab2[i]; cnt2--)
315  flcoeffs5[cnt2] += workT3[i];
316  workT2[cnt2+1] += workT3[i];
317  }
318 
319  accum = 0.0;
320 
321  for (i = BANDS-2; i >= 0; i--) {
322  accum = (workT2[i+1] + accum) * q->weights2[i];
323  flcoeffs5[i] += accum;
324  // there is missing code here, but it seems to never be triggered
325  }
326 }
327 
328 
329 static void imc_read_level_coeffs(IMCContext *q, int stream_format_code,
330  int *levlCoeffs)
331 {
332  int i;
333  VLC *hufftab[4];
334  int start = 0;
335  const uint8_t *cb_sel;
336  int s;
337 
338  s = stream_format_code >> 1;
339  hufftab[0] = &huffman_vlc[s][0];
340  hufftab[1] = &huffman_vlc[s][1];
341  hufftab[2] = &huffman_vlc[s][2];
342  hufftab[3] = &huffman_vlc[s][3];
343  cb_sel = imc_cb_select[s];
344 
345  if (stream_format_code & 4)
346  start = 1;
347  if (start)
348  levlCoeffs[0] = get_bits(&q->gb, 7);
349  for (i = start; i < BANDS; i++) {
350  levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table,
351  hufftab[cb_sel[i]]->bits, 2);
352  if (levlCoeffs[i] == 17)
353  levlCoeffs[i] += get_bits(&q->gb, 4);
354  }
355 }
356 
357 static void imc_read_level_coeffs_raw(IMCContext *q, int stream_format_code,
358  int *levlCoeffs)
359 {
360  int i;
361 
362  q->coef0_pos = get_bits(&q->gb, 5);
363  levlCoeffs[0] = get_bits(&q->gb, 7);
364  for (i = 1; i < BANDS; i++)
365  levlCoeffs[i] = get_bits(&q->gb, 4);
366 }
367 
369  float *flcoeffs1, float *flcoeffs2)
370 {
371  int i, level;
372  float tmp, tmp2;
373  // maybe some frequency division thingy
374 
375  flcoeffs1[0] = 20000.0 / exp2 (levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
376  flcoeffs2[0] = log2f(flcoeffs1[0]);
377  tmp = flcoeffs1[0];
378  tmp2 = flcoeffs2[0];
379 
380  for (i = 1; i < BANDS; i++) {
381  level = levlCoeffBuf[i];
382  if (level == 16) {
383  flcoeffs1[i] = 1.0;
384  flcoeffs2[i] = 0.0;
385  } else {
386  if (level < 17)
387  level -= 7;
388  else if (level <= 24)
389  level -= 32;
390  else
391  level -= 16;
392 
393  tmp *= imc_exp_tab[15 + level];
394  tmp2 += 0.83048 * level; // 0.83048 = log2(10) * 0.25
395  flcoeffs1[i] = tmp;
396  flcoeffs2[i] = tmp2;
397  }
398  }
399 }
400 
401 
403  float *old_floor, float *flcoeffs1,
404  float *flcoeffs2)
405 {
406  int i;
407  /* FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
408  * and flcoeffs2 old scale factors
409  * might be incomplete due to a missing table that is in the binary code
410  */
411  for (i = 0; i < BANDS; i++) {
412  flcoeffs1[i] = 0;
413  if (levlCoeffBuf[i] < 16) {
414  flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
415  flcoeffs2[i] = (levlCoeffBuf[i] - 7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
416  } else {
417  flcoeffs1[i] = old_floor[i];
418  }
419  }
420 }
421 
423  float *flcoeffs1, float *flcoeffs2)
424 {
425  int i, level, pos;
426  float tmp, tmp2;
427 
428  pos = q->coef0_pos;
429  flcoeffs1[pos] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
430  flcoeffs2[pos] = log2f(flcoeffs1[pos]);
431  tmp = flcoeffs1[pos];
432  tmp2 = flcoeffs2[pos];
433 
434  levlCoeffBuf++;
435  for (i = 0; i < BANDS; i++) {
436  if (i == pos)
437  continue;
438  level = *levlCoeffBuf++;
439  flcoeffs1[i] = tmp * powf(10.0, -level * 0.4375); //todo tab
440  flcoeffs2[i] = tmp2 - 1.4533435415 * level; // 1.4533435415 = log2(10) * 0.4375
441  }
442 }
443 
444 /**
445  * Perform bit allocation depending on bits available
446  */
447 static int bit_allocation(IMCContext *q, IMCChannel *chctx,
448  int stream_format_code, int freebits, int flag)
449 {
450  int i, j;
451  const float limit = -1.e20;
452  float highest = 0.0;
453  int indx;
454  int t1 = 0;
455  int t2 = 1;
456  float summa = 0.0;
457  int iacc = 0;
458  int summer = 0;
459  int rres, cwlen;
460  float lowest = 1.e10;
461  int low_indx = 0;
462  float workT[32];
463  int flg;
464  int found_indx = 0;
465 
466  for (i = 0; i < BANDS; i++)
467  highest = FFMAX(highest, chctx->flcoeffs1[i]);
468 
469  for (i = 0; i < BANDS - 1; i++) {
470  if (chctx->flcoeffs5[i] <= 0) {
471  av_log(q->avctx, AV_LOG_ERROR, "flcoeffs5 %f invalid\n", chctx->flcoeffs5[i]);
472  return AVERROR_INVALIDDATA;
473  }
474  chctx->flcoeffs4[i] = chctx->flcoeffs3[i] - log2f(chctx->flcoeffs5[i]);
475  }
476  chctx->flcoeffs4[BANDS - 1] = limit;
477 
478  highest = highest * 0.25;
479 
480  for (i = 0; i < BANDS; i++) {
481  indx = -1;
482  if ((band_tab[i + 1] - band_tab[i]) == chctx->bandWidthT[i])
483  indx = 0;
484 
485  if ((band_tab[i + 1] - band_tab[i]) > chctx->bandWidthT[i])
486  indx = 1;
487 
488  if (((band_tab[i + 1] - band_tab[i]) / 2) >= chctx->bandWidthT[i])
489  indx = 2;
490 
491  if (indx == -1)
492  return AVERROR_INVALIDDATA;
493 
494  chctx->flcoeffs4[i] += xTab[(indx * 2 + (chctx->flcoeffs1[i] < highest)) * 2 + flag];
495  }
496 
497  if (stream_format_code & 0x2) {
498  chctx->flcoeffs4[0] = limit;
499  chctx->flcoeffs4[1] = limit;
500  chctx->flcoeffs4[2] = limit;
501  chctx->flcoeffs4[3] = limit;
502  }
503 
504  for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS - 1; i++) {
505  iacc += chctx->bandWidthT[i];
506  summa += chctx->bandWidthT[i] * chctx->flcoeffs4[i];
507  }
508 
509  if (!iacc)
510  return AVERROR_INVALIDDATA;
511 
512  chctx->bandWidthT[BANDS - 1] = 0;
513  summa = (summa * 0.5 - freebits) / iacc;
514 
515 
516  for (i = 0; i < BANDS / 2; i++) {
517  rres = summer - freebits;
518  if ((rres >= -8) && (rres <= 8))
519  break;
520 
521  summer = 0;
522  iacc = 0;
523 
524  for (j = (stream_format_code & 0x2) ? 4 : 0; j < BANDS; j++) {
525  cwlen = av_clipf(((chctx->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
526 
527  chctx->bitsBandT[j] = cwlen;
528  summer += chctx->bandWidthT[j] * cwlen;
529 
530  if (cwlen > 0)
531  iacc += chctx->bandWidthT[j];
532  }
533 
534  flg = t2;
535  t2 = 1;
536  if (freebits < summer)
537  t2 = -1;
538  if (i == 0)
539  flg = t2;
540  if (flg != t2)
541  t1++;
542 
543  summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
544  }
545 
546  for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS; i++) {
547  for (j = band_tab[i]; j < band_tab[i + 1]; j++)
548  chctx->CWlengthT[j] = chctx->bitsBandT[i];
549  }
550 
551  if (freebits > summer) {
552  for (i = 0; i < BANDS; i++) {
553  workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
554  : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
555  }
556 
557  highest = 0.0;
558 
559  do {
560  if (highest <= -1.e20)
561  break;
562 
563  found_indx = 0;
564  highest = -1.e20;
565 
566  for (i = 0; i < BANDS; i++) {
567  if (workT[i] > highest) {
568  highest = workT[i];
569  found_indx = i;
570  }
571  }
572 
573  if (highest > -1.e20) {
574  workT[found_indx] -= 2.0;
575  if (++chctx->bitsBandT[found_indx] == 6)
576  workT[found_indx] = -1.e20;
577 
578  for (j = band_tab[found_indx]; j < band_tab[found_indx + 1] && (freebits > summer); j++) {
579  chctx->CWlengthT[j]++;
580  summer++;
581  }
582  }
583  } while (freebits > summer);
584  }
585  if (freebits < summer) {
586  for (i = 0; i < BANDS; i++) {
587  workT[i] = chctx->bitsBandT[i] ? (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] + 1.585)
588  : 1.e20;
589  }
590  if (stream_format_code & 0x2) {
591  workT[0] = 1.e20;
592  workT[1] = 1.e20;
593  workT[2] = 1.e20;
594  workT[3] = 1.e20;
595  }
596  while (freebits < summer) {
597  lowest = 1.e10;
598  low_indx = 0;
599  for (i = 0; i < BANDS; i++) {
600  if (workT[i] < lowest) {
601  lowest = workT[i];
602  low_indx = i;
603  }
604  }
605  // if (lowest >= 1.e10)
606  // break;
607  workT[low_indx] = lowest + 2.0;
608 
609  if (!--chctx->bitsBandT[low_indx])
610  workT[low_indx] = 1.e20;
611 
612  for (j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++) {
613  if (chctx->CWlengthT[j] > 0) {
614  chctx->CWlengthT[j]--;
615  summer--;
616  }
617  }
618  }
619  }
620  return 0;
621 }
622 
623 static void imc_get_skip_coeff(IMCContext *q, IMCChannel *chctx)
624 {
625  int i, j;
626 
627  memset(chctx->skipFlagBits, 0, sizeof(chctx->skipFlagBits));
628  memset(chctx->skipFlagCount, 0, sizeof(chctx->skipFlagCount));
629  for (i = 0; i < BANDS; i++) {
630  if (!chctx->bandFlagsBuf[i] || !chctx->bandWidthT[i])
631  continue;
632 
633  if (!chctx->skipFlagRaw[i]) {
634  chctx->skipFlagBits[i] = band_tab[i + 1] - band_tab[i];
635 
636  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
637  chctx->skipFlags[j] = get_bits1(&q->gb);
638  if (chctx->skipFlags[j])
639  chctx->skipFlagCount[i]++;
640  }
641  } else {
642  for (j = band_tab[i]; j < band_tab[i + 1] - 1; j += 2) {
643  if (!get_bits1(&q->gb)) { // 0
644  chctx->skipFlagBits[i]++;
645  chctx->skipFlags[j] = 1;
646  chctx->skipFlags[j + 1] = 1;
647  chctx->skipFlagCount[i] += 2;
648  } else {
649  if (get_bits1(&q->gb)) { // 11
650  chctx->skipFlagBits[i] += 2;
651  chctx->skipFlags[j] = 0;
652  chctx->skipFlags[j + 1] = 1;
653  chctx->skipFlagCount[i]++;
654  } else {
655  chctx->skipFlagBits[i] += 3;
656  chctx->skipFlags[j + 1] = 0;
657  if (!get_bits1(&q->gb)) { // 100
658  chctx->skipFlags[j] = 1;
659  chctx->skipFlagCount[i]++;
660  } else { // 101
661  chctx->skipFlags[j] = 0;
662  }
663  }
664  }
665  }
666 
667  if (j < band_tab[i + 1]) {
668  chctx->skipFlagBits[i]++;
669  if ((chctx->skipFlags[j] = get_bits1(&q->gb)))
670  chctx->skipFlagCount[i]++;
671  }
672  }
673  }
674 }
675 
676 /**
677  * Increase highest' band coefficient sizes as some bits won't be used
678  */
680  int summer)
681 {
682  float workT[32];
683  int corrected = 0;
684  int i, j;
685  float highest = 0;
686  int found_indx = 0;
687 
688  for (i = 0; i < BANDS; i++) {
689  workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
690  : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
691  }
692 
693  while (corrected < summer) {
694  if (highest <= -1.e20)
695  break;
696 
697  highest = -1.e20;
698 
699  for (i = 0; i < BANDS; i++) {
700  if (workT[i] > highest) {
701  highest = workT[i];
702  found_indx = i;
703  }
704  }
705 
706  if (highest > -1.e20) {
707  workT[found_indx] -= 2.0;
708  if (++(chctx->bitsBandT[found_indx]) == 6)
709  workT[found_indx] = -1.e20;
710 
711  for (j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
712  if (!chctx->skipFlags[j] && (chctx->CWlengthT[j] < 6)) {
713  chctx->CWlengthT[j]++;
714  corrected++;
715  }
716  }
717  }
718  }
719 }
720 
721 static void imc_imdct256(IMCContext *q, IMCChannel *chctx, int channels)
722 {
723  int i;
724  float re, im;
725  float *dst1 = q->out_samples;
726  float *dst2 = q->out_samples + (COEFFS - 1);
727 
728  /* prerotation */
729  for (i = 0; i < COEFFS / 2; i++) {
730  q->samples[i].re = -(q->pre_coef1[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
731  (q->pre_coef2[i] * chctx->CWdecoded[i * 2]);
732  q->samples[i].im = (q->pre_coef2[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
733  (q->pre_coef1[i] * chctx->CWdecoded[i * 2]);
734  }
735 
736  /* FFT */
737  q->fft.fft_permute(&q->fft, q->samples);
738  q->fft.fft_calc(&q->fft, q->samples);
739 
740  /* postrotation, window and reorder */
741  for (i = 0; i < COEFFS / 2; i++) {
742  re = ( q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
743  im = (-q->samples[i].im * q->post_cos[i]) - ( q->samples[i].re * q->post_sin[i]);
744  *dst1 = (q->mdct_sine_window[COEFFS - 1 - i * 2] * chctx->last_fft_im[i])
745  + (q->mdct_sine_window[i * 2] * re);
746  *dst2 = (q->mdct_sine_window[i * 2] * chctx->last_fft_im[i])
747  - (q->mdct_sine_window[COEFFS - 1 - i * 2] * re);
748  dst1 += 2;
749  dst2 -= 2;
750  chctx->last_fft_im[i] = im;
751  }
752 }
753 
755  int stream_format_code)
756 {
757  int i, j;
758  int middle_value, cw_len, max_size;
759  const float *quantizer;
760 
761  for (i = 0; i < BANDS; i++) {
762  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
763  chctx->CWdecoded[j] = 0;
764  cw_len = chctx->CWlengthT[j];
765 
766  if (cw_len <= 0 || chctx->skipFlags[j])
767  continue;
768 
769  max_size = 1 << cw_len;
770  middle_value = max_size >> 1;
771 
772  if (chctx->codewords[j] >= max_size || chctx->codewords[j] < 0)
773  return AVERROR_INVALIDDATA;
774 
775  if (cw_len >= 4) {
776  quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
777  if (chctx->codewords[j] >= middle_value)
778  chctx->CWdecoded[j] = quantizer[chctx->codewords[j] - 8] * chctx->flcoeffs6[i];
779  else
780  chctx->CWdecoded[j] = -quantizer[max_size - chctx->codewords[j] - 8 - 1] * chctx->flcoeffs6[i];
781  }else{
782  quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (chctx->bandFlagsBuf[i] << 1)];
783  if (chctx->codewords[j] >= middle_value)
784  chctx->CWdecoded[j] = quantizer[chctx->codewords[j] - 1] * chctx->flcoeffs6[i];
785  else
786  chctx->CWdecoded[j] = -quantizer[max_size - 2 - chctx->codewords[j]] * chctx->flcoeffs6[i];
787  }
788  }
789  }
790  return 0;
791 }
792 
793 
794 static void imc_get_coeffs(AVCodecContext *avctx,
795  IMCContext *q, IMCChannel *chctx)
796 {
797  int i, j, cw_len, cw;
798 
799  for (i = 0; i < BANDS; i++) {
800  if (!chctx->sumLenArr[i])
801  continue;
802  if (chctx->bandFlagsBuf[i] || chctx->bandWidthT[i]) {
803  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
804  cw_len = chctx->CWlengthT[j];
805  cw = 0;
806 
807  if (cw_len && (!chctx->bandFlagsBuf[i] || !chctx->skipFlags[j])) {
808  if (get_bits_count(&q->gb) + cw_len > 512) {
809  av_log(avctx, AV_LOG_WARNING,
810  "Potential problem on band %i, coefficient %i"
811  ": cw_len=%i\n", i, j, cw_len);
812  } else
813  cw = get_bits(&q->gb, cw_len);
814  }
815 
816  chctx->codewords[j] = cw;
817  }
818  }
819  }
820 }
821 
823 {
824  int i, j;
825  int bits, summer;
826 
827  for (i = 0; i < BANDS; i++) {
828  chctx->sumLenArr[i] = 0;
829  chctx->skipFlagRaw[i] = 0;
830  for (j = band_tab[i]; j < band_tab[i + 1]; j++)
831  chctx->sumLenArr[i] += chctx->CWlengthT[j];
832  if (chctx->bandFlagsBuf[i])
833  if (((int)((band_tab[i + 1] - band_tab[i]) * 1.5) > chctx->sumLenArr[i]) && (chctx->sumLenArr[i] > 0))
834  chctx->skipFlagRaw[i] = 1;
835  }
836 
837  imc_get_skip_coeff(q, chctx);
838 
839  for (i = 0; i < BANDS; i++) {
840  chctx->flcoeffs6[i] = chctx->flcoeffs1[i];
841  /* band has flag set and at least one coded coefficient */
842  if (chctx->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != chctx->skipFlagCount[i]) {
843  chctx->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] /
844  q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - chctx->skipFlagCount[i])];
845  }
846  }
847 
848  /* calculate bits left, bits needed and adjust bit allocation */
849  bits = summer = 0;
850 
851  for (i = 0; i < BANDS; i++) {
852  if (chctx->bandFlagsBuf[i]) {
853  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
854  if (chctx->skipFlags[j]) {
855  summer += chctx->CWlengthT[j];
856  chctx->CWlengthT[j] = 0;
857  }
858  }
859  bits += chctx->skipFlagBits[i];
860  summer -= chctx->skipFlagBits[i];
861  }
862  }
863  imc_adjust_bit_allocation(q, chctx, summer);
864 }
865 
866 static int imc_decode_block(AVCodecContext *avctx, IMCContext *q, int ch)
867 {
868  int stream_format_code;
869  int imc_hdr, i, j, ret;
870  int flag;
871  int bits;
872  int counter, bitscount;
873  IMCChannel *chctx = q->chctx + ch;
874 
875 
876  /* Check the frame header */
877  imc_hdr = get_bits(&q->gb, 9);
878  if (imc_hdr & 0x18) {
879  av_log(avctx, AV_LOG_ERROR, "frame header check failed!\n");
880  av_log(avctx, AV_LOG_ERROR, "got %X.\n", imc_hdr);
881  return AVERROR_INVALIDDATA;
882  }
883  stream_format_code = get_bits(&q->gb, 3);
884 
885  if (stream_format_code & 0x04)
886  chctx->decoder_reset = 1;
887 
888  if (chctx->decoder_reset) {
889  for (i = 0; i < BANDS; i++)
890  chctx->old_floor[i] = 1.0;
891  for (i = 0; i < COEFFS; i++)
892  chctx->CWdecoded[i] = 0;
893  chctx->decoder_reset = 0;
894  }
895 
896  flag = get_bits1(&q->gb);
897  if (stream_format_code & 0x1)
898  imc_read_level_coeffs_raw(q, stream_format_code, chctx->levlCoeffBuf);
899  else
900  imc_read_level_coeffs(q, stream_format_code, chctx->levlCoeffBuf);
901 
902  if (stream_format_code & 0x1)
904  chctx->flcoeffs1, chctx->flcoeffs2);
905  else if (stream_format_code & 0x4)
907  chctx->flcoeffs1, chctx->flcoeffs2);
908  else
910  chctx->flcoeffs1, chctx->flcoeffs2);
911 
912  for(i=0; i<BANDS; i++) {
913  if(chctx->flcoeffs1[i] > INT_MAX) {
914  av_log(avctx, AV_LOG_ERROR, "scalefactor out of range\n");
915  return AVERROR_INVALIDDATA;
916  }
917  }
918 
919  memcpy(chctx->old_floor, chctx->flcoeffs1, 32 * sizeof(float));
920 
921  counter = 0;
922  if (stream_format_code & 0x1) {
923  for (i = 0; i < BANDS; i++) {
924  chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
925  chctx->bandFlagsBuf[i] = 0;
926  chctx->flcoeffs3[i] = chctx->flcoeffs2[i] * 2;
927  chctx->flcoeffs5[i] = 1.0;
928  }
929  } else {
930  for (i = 0; i < BANDS; i++) {
931  if (chctx->levlCoeffBuf[i] == 16) {
932  chctx->bandWidthT[i] = 0;
933  counter++;
934  } else
935  chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
936  }
937 
938  memset(chctx->bandFlagsBuf, 0, BANDS * sizeof(int));
939  for (i = 0; i < BANDS - 1; i++)
940  if (chctx->bandWidthT[i])
941  chctx->bandFlagsBuf[i] = get_bits1(&q->gb);
942 
943  imc_calculate_coeffs(q, chctx->flcoeffs1, chctx->flcoeffs2,
944  chctx->bandWidthT, chctx->flcoeffs3,
945  chctx->flcoeffs5);
946  }
947 
948  bitscount = 0;
949  /* first 4 bands will be assigned 5 bits per coefficient */
950  if (stream_format_code & 0x2) {
951  bitscount += 15;
952 
953  chctx->bitsBandT[0] = 5;
954  chctx->CWlengthT[0] = 5;
955  chctx->CWlengthT[1] = 5;
956  chctx->CWlengthT[2] = 5;
957  for (i = 1; i < 4; i++) {
958  if (stream_format_code & 0x1)
959  bits = 5;
960  else
961  bits = (chctx->levlCoeffBuf[i] == 16) ? 0 : 5;
962  chctx->bitsBandT[i] = bits;
963  for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
964  chctx->CWlengthT[j] = bits;
965  bitscount += bits;
966  }
967  }
968  }
969  if (avctx->codec_id == AV_CODEC_ID_IAC) {
970  bitscount += !!chctx->bandWidthT[BANDS - 1];
971  if (!(stream_format_code & 0x2))
972  bitscount += 16;
973  }
974 
975  if ((ret = bit_allocation(q, chctx, stream_format_code,
976  512 - bitscount - get_bits_count(&q->gb),
977  flag)) < 0) {
978  av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
979  chctx->decoder_reset = 1;
980  return ret;
981  }
982 
983  if (stream_format_code & 0x1) {
984  for (i = 0; i < BANDS; i++)
985  chctx->skipFlags[i] = 0;
986  } else {
987  imc_refine_bit_allocation(q, chctx);
988  }
989 
990  for (i = 0; i < BANDS; i++) {
991  chctx->sumLenArr[i] = 0;
992 
993  for (j = band_tab[i]; j < band_tab[i + 1]; j++)
994  if (!chctx->skipFlags[j])
995  chctx->sumLenArr[i] += chctx->CWlengthT[j];
996  }
997 
998  memset(chctx->codewords, 0, sizeof(chctx->codewords));
999 
1000  imc_get_coeffs(avctx, q, chctx);
1001 
1002  if (inverse_quant_coeff(q, chctx, stream_format_code) < 0) {
1003  av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
1004  chctx->decoder_reset = 1;
1005  return AVERROR_INVALIDDATA;
1006  }
1007 
1008  memset(chctx->skipFlags, 0, sizeof(chctx->skipFlags));
1009 
1010  imc_imdct256(q, chctx, avctx->channels);
1011 
1012  return 0;
1013 }
1014 
1015 static int imc_decode_frame(AVCodecContext *avctx, void *data,
1016  int *got_frame_ptr, AVPacket *avpkt)
1017 {
1018  AVFrame *frame = data;
1019  const uint8_t *buf = avpkt->data;
1020  int buf_size = avpkt->size;
1021  int ret, i;
1022 
1023  IMCContext *q = avctx->priv_data;
1024 
1025  LOCAL_ALIGNED_16(uint16_t, buf16, [(IMC_BLOCK_SIZE + AV_INPUT_BUFFER_PADDING_SIZE) / 2]);
1026 
1027  q->avctx = avctx;
1028 
1029  if (buf_size < IMC_BLOCK_SIZE * avctx->channels) {
1030  av_log(avctx, AV_LOG_ERROR, "frame too small!\n");
1031  return AVERROR_INVALIDDATA;
1032  }
1033 
1034  /* get output buffer */
1035  frame->nb_samples = COEFFS;
1036  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1037  return ret;
1038 
1039  for (i = 0; i < avctx->channels; i++) {
1040  q->out_samples = (float *)frame->extended_data[i];
1041 
1042  q->bdsp.bswap16_buf(buf16, (const uint16_t *) buf, IMC_BLOCK_SIZE / 2);
1043 
1044  init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
1045 
1046  buf += IMC_BLOCK_SIZE;
1047 
1048  if ((ret = imc_decode_block(avctx, q, i)) < 0)
1049  return ret;
1050  }
1051 
1052  if (avctx->channels == 2) {
1053  q->fdsp->butterflies_float((float *)frame->extended_data[0],
1054  (float *)frame->extended_data[1], COEFFS);
1055  }
1056 
1057  *got_frame_ptr = 1;
1058 
1059  return IMC_BLOCK_SIZE * avctx->channels;
1060 }
1061 
1063 {
1064  IMCContext *q = avctx->priv_data;
1065 
1066  ff_fft_end(&q->fft);
1067  av_freep(&q->fdsp);
1068 
1069  return 0;
1070 }
1071 
1072 static av_cold void flush(AVCodecContext *avctx)
1073 {
1074  IMCContext *q = avctx->priv_data;
1075 
1076  q->chctx[0].decoder_reset =
1077  q->chctx[1].decoder_reset = 1;
1078 }
1079 
1080 #if CONFIG_IMC_DECODER
1082  .name = "imc",
1083  .long_name = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
1084  .type = AVMEDIA_TYPE_AUDIO,
1085  .id = AV_CODEC_ID_IMC,
1086  .priv_data_size = sizeof(IMCContext),
1087  .init = imc_decode_init,
1088  .close = imc_decode_close,
1090  .flush = flush,
1091  .capabilities = AV_CODEC_CAP_DR1,
1092  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1094 };
1095 #endif
1096 #if CONFIG_IAC_DECODER
1098  .name = "iac",
1099  .long_name = NULL_IF_CONFIG_SMALL("IAC (Indeo Audio Coder)"),
1100  .type = AVMEDIA_TYPE_AUDIO,
1101  .id = AV_CODEC_ID_IAC,
1102  .priv_data_size = sizeof(IMCContext),
1103  .init = imc_decode_init,
1104  .close = imc_decode_close,
1106  .flush = flush,
1107  .capabilities = AV_CODEC_CAP_DR1,
1108  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1110 };
1111 #endif
int skipFlags[COEFFS]
skip coefficient decoding or not
Definition: imc.c:74
float flcoeffs3[BANDS]
Definition: imc.c:59
float, planar
Definition: samplefmt.h:69
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
float flcoeffs1[BANDS]
Definition: imc.c:57
This structure describes decoded (raw) audio or video data.
Definition: frame.h:295
int codewords[COEFFS]
raw codewords read from bitstream
Definition: imc.c:75
void(* bswap16_buf)(uint16_t *dst, const uint16_t *src, int len)
Definition: bswapdsp.h:26
float post_sin[COEFFS]
Definition: imc.c:89
float re
Definition: fft.c:82
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
int skipFlagRaw[BANDS]
skip flags are stored in raw form or not
Definition: imc.c:71
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
static const int vlc_offsets[17]
Definition: imc.c:115
#define avpriv_request_sample(...)
channels
Definition: aptx.c:30
int size
Definition: avcodec.h:1478
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
float mdct_sine_window[COEFFS]
MDCT tables.
Definition: imc.c:87
static const uint8_t imc_huffman_lens[4][4][18]
Definition: imcdata.h:115
int skipFlagCount[BANDS]
skipped coefficients per band
Definition: imc.c:73
static const float imc_weights2[31]
Definition: imcdata.h:53
FFTSample re
Definition: avfft.h:38
int8_t cyclTab2[32]
Definition: imc.c:105
#define AV_CH_LAYOUT_STEREO
static void imc_read_level_coeffs(IMCContext *q, int stream_format_code, int *levlCoeffs)
Definition: imc.c:329
#define init_vlc(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, codes, codes_wrap, codes_size, flags)
Definition: vlc.h:38
float flcoeffs4[BANDS]
Definition: imc.c:60
AVCodec.
Definition: avcodec.h:3481
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:42
float sqrt_tab[30]
Definition: imc.c:94
#define tf
Definition: regdef.h:73
float old_floor[BANDS]
Definition: imc.c:56
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:2233
uint8_t
#define av_cold
Definition: attributes.h:82
float pre_coef1[COEFFS]
Definition: imc.c:90
float CWdecoded[COEFFS]
Definition: imc.c:63
int bandFlagsBuf[BANDS]
flags for each band
Definition: imc.c:69
int coef0_pos
Definition: imc.c:103
static av_cold int imc_decode_close(AVCodecContext *avctx)
Definition: imc.c:1062
static const int8_t cyclTab[32]
Definition: imcdata.h:36
static AVFrame * frame
const char data[16]
Definition: mxf.c:91
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
Definition: mem.h:112
uint8_t * data
Definition: avcodec.h:1477
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
static const float imc_weights1[31]
Definition: imcdata.h:47
bitstream reader API header.
float weights2[31]
Definition: imc.c:106
static void imc_get_skip_coeff(IMCContext *q, IMCChannel *chctx)
Definition: imc.c:623
#define av_log(a,...)
static void imc_refine_bit_allocation(IMCContext *q, IMCChannel *chctx)
Definition: imc.c:822
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:259
static av_always_inline double ff_exp10(double x)
Compute 10^x for floating point values.
Definition: ffmath.h:42
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
float pre_coef2[COEFFS]
Definition: imc.c:91
void(* fft_permute)(struct FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling fft_calc().
Definition: fft.h:101
av_cold AVFloatDSPContext * avpriv_float_dsp_alloc(int bit_exact)
Allocate a float DSP context.
Definition: float_dsp.c:135
static const float *const imc_exp_tab2
Definition: imcdata.h:97
static void imc_decode_level_coefficients_raw(IMCContext *q, int *levlCoeffBuf, float *flcoeffs1, float *flcoeffs2)
Definition: imc.c:422
#define AVERROR(e)
Definition: error.h:43
float weights1[31]
Definition: imc.c:106
#define VLC_TABLES_SIZE
Definition: imc.c:113
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
static void imc_imdct256(IMCContext *q, IMCChannel *chctx, int channels)
Definition: imc.c:721
#define t1
Definition: regdef.h:29
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:1645
static void imc_calculate_coeffs(IMCContext *q, float *flcoeffs1, float *flcoeffs2, int *bandWidthT, float *flcoeffs3, float *flcoeffs5)
Definition: imc.c:274
const char * name
Name of the codec implementation.
Definition: avcodec.h:3488
uint8_t bits
Definition: vp3data.h:202
#define FFMAX(a, b)
Definition: common.h:94
GetBitContext gb
Definition: imc.c:95
Definition: vlc.h:26
uint64_t channel_layout
Audio channel layout.
Definition: avcodec.h:2276
#define IMC_BLOCK_SIZE
Definition: imc.c:50
IMCChannel chctx[2]
Definition: imc.c:83
#define powf(x, y)
Definition: libm.h:50
static const int8_t cyclTab2[32]
Definition: imcdata.h:42
static int imc_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Definition: imc.c:1015
static void imc_decode_level_coefficients2(IMCContext *q, int *levlCoeffBuf, float *old_floor, float *flcoeffs1, float *flcoeffs2)
Definition: imc.c:402
common internal API header
#define COEFFS
Definition: imc.c:53
Definition: fft.h:88
audio channel layout utility functions
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
Definition: avcodec.h:908
static const uint16_t band_tab[33]
Definition: imcdata.h:29
AVCodec ff_imc_decoder
FFTContext fft
Definition: imc.c:99
#define ff_fft_init
Definition: fft.h:149
float flcoeffs5[BANDS]
Definition: imc.c:61
int bitsBandT[BANDS]
how many bits per codeword in band
Definition: imc.c:66
#define s(width, name)
Definition: cbs_vp9.c:257
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:797
Definition: imc.c:82
if(ret< 0)
Definition: vf_mcdeint.c:279
float last_fft_im[COEFFS]
Definition: imc.c:77
float post_cos[COEFFS]
Definition: imc.c:88
int bits
Definition: vlc.h:27
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int table_allocated
Definition: vlc.h:29
AVCodec ff_iac_decoder
static void imc_get_coeffs(AVCodecContext *avctx, IMCContext *q, IMCChannel *chctx)
Definition: imc.c:794
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
float flcoeffs6[BANDS]
Definition: imc.c:62
static const float xTab[14]
Definition: imcdata.h:84
FFTComplex samples[COEFFS/2]
Definition: imc.c:100
Libavcodec external API header.
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
int8_t cyclTab[32]
Definition: imc.c:105
enum AVCodecID codec_id
Definition: avcodec.h:1575
static int inverse_quant_coeff(IMCContext *q, IMCChannel *chctx, int stream_format_code)
Definition: imc.c:754
int sample_rate
samples per second
Definition: avcodec.h:2225
void AAC_RENAME() ff_sine_window_init(INTFLOAT *window, int n)
Generate a sine window.
Definition: imc.c:55
main external API structure.
Definition: avcodec.h:1565
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1964
void(* butterflies_float)(float *av_restrict v1, float *av_restrict v2, int len)
Calculate the sum and difference of two vectors of floats.
Definition: float_dsp.h:164
static double freq2bark(double freq)
Definition: imc.c:122
void * buf
Definition: avisynth_c.h:766
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:498
int bandWidthT[BANDS]
codewords per band
Definition: imc.c:65
float * out_samples
Definition: imc.c:101
static av_cold void flush(AVCodecContext *avctx)
Definition: imc.c:1072
float im
Definition: fft.c:82
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:659
static VLC huffman_vlc[4][4]
Definition: imc.c:111
static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2]
Definition: imc.c:120
static const float imc_quantizer1[4][8]
Definition: imcdata.h:59
#define BANDS
Definition: imc.c:52
uint8_t level
Definition: svq3.c:207
static av_cold void iac_generate_tabs(IMCContext *q, int sampling_rate)
Definition: imc.c:127
int levlCoeffBuf[BANDS]
Definition: imc.c:68
internal math functions header
int decoder_reset
Definition: imc.c:79
common internal api header.
FFTSample im
Definition: avfft.h:38
static int imc_decode_block(AVCodecContext *avctx, IMCContext *q, int ch)
Definition: imc.c:866
#define exp2(x)
Definition: libm.h:288
#define log2f(x)
Definition: libm.h:409
#define flag(name)
Definition: cbs_av1.c:553
#define INIT_VLC_USE_NEW_STATIC
Definition: vlc.h:55
BswapDSPContext bdsp
Definition: imc.c:97
#define ff_fft_end
Definition: fft.h:150
void(* fft_calc)(struct FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in ff_fft_init().
Definition: fft.h:106
static int bit_allocation(IMCContext *q, IMCChannel *chctx, int stream_format_code, int freebits, int flag)
Perform bit allocation depending on bits available.
Definition: imc.c:447
AVFloatDSPContext * fdsp
Definition: imc.c:98
#define AV_INPUT_BUFFER_PADDING_SIZE
Required number of additionally allocated bytes at the end of the input bitstream for decoding...
Definition: avcodec.h:790
static const uint8_t imc_cb_select[4][32]
Definition: imcdata.h:100
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
void * priv_data
Definition: avcodec.h:1592
int channels
number of audio channels
Definition: avcodec.h:2226
VLC_TYPE(* table)[2]
code, bits
Definition: vlc.h:28
AVCodecContext * avctx
Definition: imc.c:108
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:701
#define LOCAL_ALIGNED_16(t, v,...)
Definition: internal.h:131
#define av_freep(p)
void INT64 start
Definition: avisynth_c.h:766
static void imc_adjust_bit_allocation(IMCContext *q, IMCChannel *chctx, int summer)
Increase highest&#39; band coefficient sizes as some bits won&#39;t be used.
Definition: imc.c:679
#define M_PI
Definition: mathematics.h:52
#define VLC_TYPE
Definition: vlc.h:24
static const float imc_quantizer2[2][56]
Definition: imcdata.h:66
int sumLenArr[BANDS]
bits for all coeffs in band
Definition: imc.c:70
static const uint8_t imc_huffman_sizes[4]
Definition: imcdata.h:111
uint8_t ** extended_data
pointers to the data planes/channels.
Definition: frame.h:342
#define AV_CH_LAYOUT_MONO
static void imc_read_level_coeffs_raw(IMCContext *q, int stream_format_code, int *levlCoeffs)
Definition: imc.c:357
This structure stores compressed data.
Definition: avcodec.h:1454
static void imc_decode_level_coefficients(IMCContext *q, int *levlCoeffBuf, float *flcoeffs1, float *flcoeffs2)
Definition: imc.c:368
int skipFlagBits[BANDS]
bits used to code skip flags
Definition: imc.c:72
static av_cold int imc_decode_init(AVCodecContext *avctx)
Definition: imc.c:178
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:361
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:981
static const float imc_exp_tab[32]
Definition: imcdata.h:87
float flcoeffs2[BANDS]
Definition: imc.c:58
for(j=16;j >0;--j)
#define t2
Definition: regdef.h:30
static const uint16_t imc_huffman_bits[4][4][18]
Definition: imcdata.h:142
#define tb
Definition: regdef.h:68
int CWlengthT[COEFFS]
how many bits in each codeword
Definition: imc.c:67
static uint8_t tmp[11]
Definition: aes_ctr.c:26