FFmpeg  4.2.1
avf_showspectrum.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2012-2013 Clément Bœsch
3  * Copyright (c) 2013 Rudolf Polzer <divverent@xonotic.org>
4  * Copyright (c) 2015 Paul B Mahol
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * audio to spectrum (video) transmedia filter, based on ffplay rdft showmode
26  * (by Michael Niedermayer) and lavfi/avf_showwaves (by Stefano Sabatini).
27  */
28 
29 #include <math.h>
30 
31 #include "libavcodec/avfft.h"
32 #include "libavutil/audio_fifo.h"
33 #include "libavutil/avassert.h"
34 #include "libavutil/avstring.h"
36 #include "libavutil/opt.h"
37 #include "libavutil/parseutils.h"
39 #include "audio.h"
40 #include "video.h"
41 #include "avfilter.h"
42 #include "filters.h"
43 #include "internal.h"
44 #include "window_func.h"
45 
53 
54 typedef struct ShowSpectrumContext {
55  const AVClass *class;
56  int w, h;
57  char *rate_str;
65  int sliding; ///< 1 if sliding mode, 0 otherwise
66  int mode; ///< channel display mode
67  int color_mode; ///< display color scheme
68  int scale;
69  int fscale;
70  float saturation; ///< color saturation multiplier
71  float rotation; ///< color rotation
72  int start, stop; ///< zoom mode
73  int data;
74  int xpos; ///< x position (current column)
75  FFTContext **fft; ///< Fast Fourier Transform context
76  FFTContext **ifft; ///< Inverse Fast Fourier Transform context
77  int fft_bits; ///< number of bits (FFT window size = 1<<fft_bits)
78  FFTComplex **fft_data; ///< bins holder for each (displayed) channels
79  FFTComplex **fft_scratch; ///< scratch buffers
80  float *window_func_lut; ///< Window function LUT
81  float **magnitudes;
82  float **phases;
83  int win_func;
84  int win_size;
85  int buf_size;
86  double win_scale;
87  float overlap;
88  float gain;
89  int consumed;
90  int hop_size;
91  float *combine_buffer; ///< color combining buffer (3 * h items)
92  float **color_buffer; ///< color buffer (3 * h * ch items)
94  int64_t pts;
95  int64_t old_pts;
96  int old_len;
98  int legend;
100  int (*plot_channel)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
102 
103 #define OFFSET(x) offsetof(ShowSpectrumContext, x)
104 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
105 
106 static const AVOption showspectrum_options[] = {
107  { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS },
108  { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS },
109  { "slide", "set sliding mode", OFFSET(sliding), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_SLIDES-1, FLAGS, "slide" },
110  { "replace", "replace old columns with new", 0, AV_OPT_TYPE_CONST, {.i64=REPLACE}, 0, 0, FLAGS, "slide" },
111  { "scroll", "scroll from right to left", 0, AV_OPT_TYPE_CONST, {.i64=SCROLL}, 0, 0, FLAGS, "slide" },
112  { "fullframe", "return full frames", 0, AV_OPT_TYPE_CONST, {.i64=FULLFRAME}, 0, 0, FLAGS, "slide" },
113  { "rscroll", "scroll from left to right", 0, AV_OPT_TYPE_CONST, {.i64=RSCROLL}, 0, 0, FLAGS, "slide" },
114  { "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, COMBINED, NB_MODES-1, FLAGS, "mode" },
115  { "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, "mode" },
116  { "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, "mode" },
117  { "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=CHANNEL}, CHANNEL, NB_CLMODES-1, FLAGS, "color" },
118  { "channel", "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL}, 0, 0, FLAGS, "color" },
119  { "intensity", "intensity based coloring", 0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, "color" },
120  { "rainbow", "rainbow based coloring", 0, AV_OPT_TYPE_CONST, {.i64=RAINBOW}, 0, 0, FLAGS, "color" },
121  { "moreland", "moreland based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MORELAND}, 0, 0, FLAGS, "color" },
122  { "nebulae", "nebulae based coloring", 0, AV_OPT_TYPE_CONST, {.i64=NEBULAE}, 0, 0, FLAGS, "color" },
123  { "fire", "fire based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIRE}, 0, 0, FLAGS, "color" },
124  { "fiery", "fiery based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIERY}, 0, 0, FLAGS, "color" },
125  { "fruit", "fruit based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FRUIT}, 0, 0, FLAGS, "color" },
126  { "cool", "cool based coloring", 0, AV_OPT_TYPE_CONST, {.i64=COOL}, 0, 0, FLAGS, "color" },
127  { "magma", "magma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MAGMA}, 0, 0, FLAGS, "color" },
128  { "green", "green based coloring", 0, AV_OPT_TYPE_CONST, {.i64=GREEN}, 0, 0, FLAGS, "color" },
129  { "viridis", "viridis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=VIRIDIS}, 0, 0, FLAGS, "color" },
130  { "plasma", "plasma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=PLASMA}, 0, 0, FLAGS, "color" },
131  { "cividis", "cividis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=CIVIDIS}, 0, 0, FLAGS, "color" },
132  { "terrain", "terrain based coloring", 0, AV_OPT_TYPE_CONST, {.i64=TERRAIN}, 0, 0, FLAGS, "color" },
133  { "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=SQRT}, LINEAR, NB_SCALES-1, FLAGS, "scale" },
134  { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, "scale" },
135  { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT}, 0, 0, FLAGS, "scale" },
136  { "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=CBRT}, 0, 0, FLAGS, "scale" },
137  { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, FLAGS, "scale" },
138  { "4thrt","4th root", 0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, "scale" },
139  { "5thrt","5th root", 0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT}, 0, 0, FLAGS, "scale" },
140  { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=F_LINEAR}, 0, NB_FSCALES-1, FLAGS, "fscale" },
141  { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=F_LINEAR}, 0, 0, FLAGS, "fscale" },
142  { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=F_LOG}, 0, 0, FLAGS, "fscale" },
143  { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS },
144  { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64 = WFUNC_HANNING}, 0, NB_WFUNC-1, FLAGS, "win_func" },
145  { "rect", "Rectangular", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT}, 0, 0, FLAGS, "win_func" },
146  { "bartlett", "Bartlett", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, FLAGS, "win_func" },
147  { "hann", "Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" },
148  { "hanning", "Hanning", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" },
149  { "hamming", "Hamming", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING}, 0, 0, FLAGS, "win_func" },
150  { "blackman", "Blackman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BLACKMAN}, 0, 0, FLAGS, "win_func" },
151  { "welch", "Welch", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_WELCH}, 0, 0, FLAGS, "win_func" },
152  { "flattop", "Flat-top", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_FLATTOP}, 0, 0, FLAGS, "win_func" },
153  { "bharris", "Blackman-Harris", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHARRIS}, 0, 0, FLAGS, "win_func" },
154  { "bnuttall", "Blackman-Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BNUTTALL}, 0, 0, FLAGS, "win_func" },
155  { "bhann", "Bartlett-Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHANN}, 0, 0, FLAGS, "win_func" },
156  { "sine", "Sine", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE}, 0, 0, FLAGS, "win_func" },
157  { "nuttall", "Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_NUTTALL}, 0, 0, FLAGS, "win_func" },
158  { "lanczos", "Lanczos", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_LANCZOS}, 0, 0, FLAGS, "win_func" },
159  { "gauss", "Gauss", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_GAUSS}, 0, 0, FLAGS, "win_func" },
160  { "tukey", "Tukey", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_TUKEY}, 0, 0, FLAGS, "win_func" },
161  { "dolph", "Dolph-Chebyshev", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_DOLPH}, 0, 0, FLAGS, "win_func" },
162  { "cauchy", "Cauchy", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_CAUCHY}, 0, 0, FLAGS, "win_func" },
163  { "parzen", "Parzen", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_PARZEN}, 0, 0, FLAGS, "win_func" },
164  { "poisson", "Poisson", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_POISSON}, 0, 0, FLAGS, "win_func" },
165  { "bohman", "Bohman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BOHMAN}, 0, 0, FLAGS, "win_func" },
166  { "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, FLAGS, "orientation" },
167  { "vertical", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL}, 0, 0, FLAGS, "orientation" },
168  { "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, FLAGS, "orientation" },
169  { "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl = 0}, 0, 1, FLAGS },
170  { "gain", "set scale gain", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 128, FLAGS },
171  { "data", "set data mode", OFFSET(data), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_DMODES-1, FLAGS, "data" },
172  { "magnitude", NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_MAGNITUDE}, 0, 0, FLAGS, "data" },
173  { "phase", NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_PHASE}, 0, 0, FLAGS, "data" },
174  { "rotation", "color rotation", OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -1, 1, FLAGS },
175  { "start", "start frequency", OFFSET(start), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
176  { "stop", "stop frequency", OFFSET(stop), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
177  { "fps", "set video rate", OFFSET(rate_str), AV_OPT_TYPE_STRING, {.str = "auto"}, 0, 0, FLAGS },
178  { "legend", "draw legend", OFFSET(legend), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
179  { NULL }
180 };
181 
182 AVFILTER_DEFINE_CLASS(showspectrum);
183 
184 static const struct ColorTable {
185  float a, y, u, v;
186 } color_table[][8] = {
187  [INTENSITY] = {
188  { 0, 0, 0, 0 },
189  { 0.13, .03587126228984074, .1573300977624594, -.02548747583751842 },
190  { 0.30, .18572281794568020, .1772436246393981, .17475554840414750 },
191  { 0.60, .28184980583656130, -.1593064119945782, .47132074554608920 },
192  { 0.73, .65830621175547810, -.3716070802232764, .24352759331252930 },
193  { 0.78, .76318535758242900, -.4307467689263783, .16866496622310430 },
194  { 0.91, .95336363636363640, -.2045454545454546, .03313636363636363 },
195  { 1, 1, 0, 0 }},
196  [RAINBOW] = {
197  { 0, 0, 0, 0 },
198  { 0.13, 44/256., (189-128)/256., (138-128)/256. },
199  { 0.25, 29/256., (186-128)/256., (119-128)/256. },
200  { 0.38, 119/256., (194-128)/256., (53-128)/256. },
201  { 0.60, 111/256., (73-128)/256., (59-128)/256. },
202  { 0.73, 205/256., (19-128)/256., (149-128)/256. },
203  { 0.86, 135/256., (83-128)/256., (200-128)/256. },
204  { 1, 73/256., (95-128)/256., (225-128)/256. }},
205  [MORELAND] = {
206  { 0, 44/256., (181-128)/256., (112-128)/256. },
207  { 0.13, 126/256., (177-128)/256., (106-128)/256. },
208  { 0.25, 164/256., (163-128)/256., (109-128)/256. },
209  { 0.38, 200/256., (140-128)/256., (120-128)/256. },
210  { 0.60, 201/256., (117-128)/256., (141-128)/256. },
211  { 0.73, 177/256., (103-128)/256., (165-128)/256. },
212  { 0.86, 136/256., (100-128)/256., (183-128)/256. },
213  { 1, 68/256., (117-128)/256., (203-128)/256. }},
214  [NEBULAE] = {
215  { 0, 10/256., (134-128)/256., (132-128)/256. },
216  { 0.23, 21/256., (137-128)/256., (130-128)/256. },
217  { 0.45, 35/256., (134-128)/256., (134-128)/256. },
218  { 0.57, 51/256., (130-128)/256., (139-128)/256. },
219  { 0.67, 104/256., (116-128)/256., (162-128)/256. },
220  { 0.77, 120/256., (105-128)/256., (188-128)/256. },
221  { 0.87, 140/256., (105-128)/256., (188-128)/256. },
222  { 1, 1, 0, 0 }},
223  [FIRE] = {
224  { 0, 0, 0, 0 },
225  { 0.23, 44/256., (132-128)/256., (127-128)/256. },
226  { 0.45, 62/256., (116-128)/256., (140-128)/256. },
227  { 0.57, 75/256., (105-128)/256., (152-128)/256. },
228  { 0.67, 95/256., (91-128)/256., (166-128)/256. },
229  { 0.77, 126/256., (74-128)/256., (172-128)/256. },
230  { 0.87, 164/256., (73-128)/256., (162-128)/256. },
231  { 1, 1, 0, 0 }},
232  [FIERY] = {
233  { 0, 0, 0, 0 },
234  { 0.23, 36/256., (116-128)/256., (163-128)/256. },
235  { 0.45, 52/256., (102-128)/256., (200-128)/256. },
236  { 0.57, 116/256., (84-128)/256., (196-128)/256. },
237  { 0.67, 157/256., (67-128)/256., (181-128)/256. },
238  { 0.77, 193/256., (40-128)/256., (155-128)/256. },
239  { 0.87, 221/256., (101-128)/256., (134-128)/256. },
240  { 1, 1, 0, 0 }},
241  [FRUIT] = {
242  { 0, 0, 0, 0 },
243  { 0.20, 29/256., (136-128)/256., (119-128)/256. },
244  { 0.30, 60/256., (119-128)/256., (90-128)/256. },
245  { 0.40, 85/256., (91-128)/256., (85-128)/256. },
246  { 0.50, 116/256., (70-128)/256., (105-128)/256. },
247  { 0.60, 151/256., (50-128)/256., (146-128)/256. },
248  { 0.70, 191/256., (63-128)/256., (178-128)/256. },
249  { 1, 98/256., (80-128)/256., (221-128)/256. }},
250  [COOL] = {
251  { 0, 0, 0, 0 },
252  { .15, 0, .5, -.5 },
253  { 1, 1, -.5, .5 }},
254  [MAGMA] = {
255  { 0, 0, 0, 0 },
256  { 0.10, 23/256., (175-128)/256., (120-128)/256. },
257  { 0.23, 43/256., (158-128)/256., (144-128)/256. },
258  { 0.35, 85/256., (138-128)/256., (179-128)/256. },
259  { 0.48, 96/256., (128-128)/256., (189-128)/256. },
260  { 0.64, 128/256., (103-128)/256., (214-128)/256. },
261  { 0.92, 205/256., (80-128)/256., (152-128)/256. },
262  { 1, 1, 0, 0 }},
263  [GREEN] = {
264  { 0, 0, 0, 0 },
265  { .75, .5, 0, -.5 },
266  { 1, 1, 0, 0 }},
267  [VIRIDIS] = {
268  { 0, 0, 0, 0 },
269  { 0.10, 0x39/255., (0x9D -128)/255., (0x8F -128)/255. },
270  { 0.23, 0x5C/255., (0x9A -128)/255., (0x68 -128)/255. },
271  { 0.35, 0x69/255., (0x93 -128)/255., (0x57 -128)/255. },
272  { 0.48, 0x76/255., (0x88 -128)/255., (0x4B -128)/255. },
273  { 0.64, 0x8A/255., (0x72 -128)/255., (0x4F -128)/255. },
274  { 0.80, 0xA3/255., (0x50 -128)/255., (0x66 -128)/255. },
275  { 1, 0xCC/255., (0x2F -128)/255., (0x87 -128)/255. }},
276  [PLASMA] = {
277  { 0, 0, 0, 0 },
278  { 0.10, 0x27/255., (0xC2 -128)/255., (0x82 -128)/255. },
279  { 0.58, 0x5B/255., (0x9A -128)/255., (0xAE -128)/255. },
280  { 0.70, 0x89/255., (0x44 -128)/255., (0xAB -128)/255. },
281  { 0.80, 0xB4/255., (0x2B -128)/255., (0x9E -128)/255. },
282  { 0.91, 0xD2/255., (0x38 -128)/255., (0x92 -128)/255. },
283  { 1, 1, 0, 0. }},
284  [CIVIDIS] = {
285  { 0, 0, 0, 0 },
286  { 0.20, 0x28/255., (0x98 -128)/255., (0x6F -128)/255. },
287  { 0.50, 0x48/255., (0x95 -128)/255., (0x74 -128)/255. },
288  { 0.63, 0x69/255., (0x84 -128)/255., (0x7F -128)/255. },
289  { 0.76, 0x89/255., (0x75 -128)/255., (0x84 -128)/255. },
290  { 0.90, 0xCE/255., (0x35 -128)/255., (0x95 -128)/255. },
291  { 1, 1, 0, 0. }},
292  [TERRAIN] = {
293  { 0, 0, 0, 0 },
294  { 0.15, 0, .5, 0 },
295  { 0.60, 1, -.5, -.5 },
296  { 0.85, 1, -.5, .5 },
297  { 1, 1, 0, 0 }},
298 };
299 
301 {
302  ShowSpectrumContext *s = ctx->priv;
303  int i;
304 
306  if (s->fft) {
307  for (i = 0; i < s->nb_display_channels; i++)
308  av_fft_end(s->fft[i]);
309  }
310  av_freep(&s->fft);
311  if (s->ifft) {
312  for (i = 0; i < s->nb_display_channels; i++)
313  av_fft_end(s->ifft[i]);
314  }
315  av_freep(&s->ifft);
316  if (s->fft_data) {
317  for (i = 0; i < s->nb_display_channels; i++)
318  av_freep(&s->fft_data[i]);
319  }
320  av_freep(&s->fft_data);
321  if (s->fft_scratch) {
322  for (i = 0; i < s->nb_display_channels; i++)
323  av_freep(&s->fft_scratch[i]);
324  }
325  av_freep(&s->fft_scratch);
326  if (s->color_buffer) {
327  for (i = 0; i < s->nb_display_channels; i++)
328  av_freep(&s->color_buffer[i]);
329  }
330  av_freep(&s->color_buffer);
332  if (s->magnitudes) {
333  for (i = 0; i < s->nb_display_channels; i++)
334  av_freep(&s->magnitudes[i]);
335  }
336  av_freep(&s->magnitudes);
339  if (s->phases) {
340  for (i = 0; i < s->nb_display_channels; i++)
341  av_freep(&s->phases[i]);
342  }
343  av_freep(&s->phases);
344 }
345 
347 {
350  AVFilterLink *inlink = ctx->inputs[0];
351  AVFilterLink *outlink = ctx->outputs[0];
354  int ret;
355 
356  /* set input audio formats */
357  formats = ff_make_format_list(sample_fmts);
358  if ((ret = ff_formats_ref(formats, &inlink->out_formats)) < 0)
359  return ret;
360 
361  layouts = ff_all_channel_layouts();
362  if ((ret = ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts)) < 0)
363  return ret;
364 
365  formats = ff_all_samplerates();
366  if ((ret = ff_formats_ref(formats, &inlink->out_samplerates)) < 0)
367  return ret;
368 
369  /* set output video format */
370  formats = ff_make_format_list(pix_fmts);
371  if ((ret = ff_formats_ref(formats, &outlink->in_formats)) < 0)
372  return ret;
373 
374  return 0;
375 }
376 
377 static int run_channel_fft(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
378 {
379  ShowSpectrumContext *s = ctx->priv;
380  AVFilterLink *inlink = ctx->inputs[0];
381  const float *window_func_lut = s->window_func_lut;
382  AVFrame *fin = arg;
383  const int ch = jobnr;
384  int n;
385 
386  /* fill FFT input with the number of samples available */
387  const float *p = (float *)fin->extended_data[ch];
388 
389  for (n = 0; n < s->win_size; n++) {
390  s->fft_data[ch][n].re = p[n] * window_func_lut[n];
391  s->fft_data[ch][n].im = 0;
392  }
393 
394  if (s->stop) {
395  float theta, phi, psi, a, b, S, c;
396  FFTComplex *g = s->fft_data[ch];
397  FFTComplex *h = s->fft_scratch[ch];
398  int L = s->buf_size;
399  int N = s->win_size;
400  int M = s->win_size / 2;
401 
402  phi = 2.f * M_PI * (s->stop - s->start) / (float)inlink->sample_rate / (M - 1);
403  theta = 2.f * M_PI * s->start / (float)inlink->sample_rate;
404 
405  for (int n = 0; n < M; n++) {
406  h[n].re = cosf(n * n / 2.f * phi);
407  h[n].im = sinf(n * n / 2.f * phi);
408  }
409 
410  for (int n = M; n < L; n++) {
411  h[n].re = 0.f;
412  h[n].im = 0.f;
413  }
414 
415  for (int n = L - N; n < L; n++) {
416  h[n].re = cosf((L - n) * (L - n) / 2.f * phi);
417  h[n].im = sinf((L - n) * (L - n) / 2.f * phi);
418  }
419 
420  for (int n = 0; n < N; n++) {
421  g[n].re = s->fft_data[ch][n].re;
422  g[n].im = s->fft_data[ch][n].im;
423  }
424 
425  for (int n = N; n < L; n++) {
426  g[n].re = 0.f;
427  g[n].im = 0.f;
428  }
429 
430  for (int n = 0; n < N; n++) {
431  psi = n * theta + n * n / 2.f * phi;
432  c = cosf(psi);
433  S = -sinf(psi);
434  a = c * g[n].re - S * g[n].im;
435  b = S * g[n].re + c * g[n].im;
436  g[n].re = a;
437  g[n].im = b;
438  }
439 
440  av_fft_permute(s->fft[ch], h);
441  av_fft_calc(s->fft[ch], h);
442 
443  av_fft_permute(s->fft[ch], g);
444  av_fft_calc(s->fft[ch], g);
445 
446  for (int n = 0; n < L; n++) {
447  c = g[n].re;
448  S = g[n].im;
449  a = c * h[n].re - S * h[n].im;
450  b = S * h[n].re + c * h[n].im;
451 
452  g[n].re = a / L;
453  g[n].im = b / L;
454  }
455 
456  av_fft_permute(s->ifft[ch], g);
457  av_fft_calc(s->ifft[ch], g);
458 
459  for (int k = 0; k < M; k++) {
460  psi = k * k / 2.f * phi;
461  c = cosf(psi);
462  S = -sinf(psi);
463  a = c * g[k].re - S * g[k].im;
464  b = S * g[k].re + c * g[k].im;
465  s->fft_data[ch][k].re = a;
466  s->fft_data[ch][k].im = b;
467  }
468  } else {
469  /* run FFT on each samples set */
470  av_fft_permute(s->fft[ch], s->fft_data[ch]);
471  av_fft_calc(s->fft[ch], s->fft_data[ch]);
472  }
473 
474  return 0;
475 }
476 
477 static void drawtext(AVFrame *pic, int x, int y, const char *txt, int o)
478 {
479  const uint8_t *font;
480  int font_height;
481  int i;
482 
483  font = avpriv_cga_font, font_height = 8;
484 
485  for (i = 0; txt[i]; i++) {
486  int char_y, mask;
487 
488  if (o) {
489  for (char_y = font_height - 1; char_y >= 0; char_y--) {
490  uint8_t *p = pic->data[0] + (y + i * 10) * pic->linesize[0] + x;
491  for (mask = 0x80; mask; mask >>= 1) {
492  if (font[txt[i] * font_height + font_height - 1 - char_y] & mask)
493  p[char_y] = ~p[char_y];
494  p += pic->linesize[0];
495  }
496  }
497  } else {
498  uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8);
499  for (char_y = 0; char_y < font_height; char_y++) {
500  for (mask = 0x80; mask; mask >>= 1) {
501  if (font[txt[i] * font_height + char_y] & mask)
502  *p = ~(*p);
503  p++;
504  }
505  p += pic->linesize[0] - 8;
506  }
507  }
508  }
509 }
510 
512  float *yf, float *uf, float *vf)
513 {
514  switch (s->mode) {
515  case COMBINED:
516  // reduce range by channel count
517  *yf = 256.0f / s->nb_display_channels;
518  switch (s->color_mode) {
519  case RAINBOW:
520  case MORELAND:
521  case NEBULAE:
522  case FIRE:
523  case FIERY:
524  case FRUIT:
525  case COOL:
526  case GREEN:
527  case VIRIDIS:
528  case PLASMA:
529  case CIVIDIS:
530  case TERRAIN:
531  case MAGMA:
532  case INTENSITY:
533  *uf = *yf;
534  *vf = *yf;
535  break;
536  case CHANNEL:
537  /* adjust saturation for mixed UV coloring */
538  /* this factor is correct for infinite channels, an approximation otherwise */
539  *uf = *yf * M_PI;
540  *vf = *yf * M_PI;
541  break;
542  default:
543  av_assert0(0);
544  }
545  break;
546  case SEPARATE:
547  // full range
548  *yf = 256.0f;
549  *uf = 256.0f;
550  *vf = 256.0f;
551  break;
552  default:
553  av_assert0(0);
554  }
555 
556  if (s->color_mode == CHANNEL) {
557  if (s->nb_display_channels > 1) {
558  *uf *= 0.5f * sinf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation);
559  *vf *= 0.5f * cosf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation);
560  } else {
561  *uf *= 0.5f * sinf(M_PI * s->rotation);
562  *vf *= 0.5f * cosf(M_PI * s->rotation + M_PI_2);
563  }
564  } else {
565  *uf += *uf * sinf(M_PI * s->rotation);
566  *vf += *vf * cosf(M_PI * s->rotation + M_PI_2);
567  }
568 
569  *uf *= s->saturation;
570  *vf *= s->saturation;
571 }
572 
574  float yf, float uf, float vf,
575  float a, float *out)
576 {
577  if (s->color_mode > CHANNEL) {
578  const int cm = s->color_mode;
579  float y, u, v;
580  int i;
581 
582  for (i = 1; i < FF_ARRAY_ELEMS(color_table[cm]) - 1; i++)
583  if (color_table[cm][i].a >= a)
584  break;
585  // i now is the first item >= the color
586  // now we know to interpolate between item i - 1 and i
587  if (a <= color_table[cm][i - 1].a) {
588  y = color_table[cm][i - 1].y;
589  u = color_table[cm][i - 1].u;
590  v = color_table[cm][i - 1].v;
591  } else if (a >= color_table[cm][i].a) {
592  y = color_table[cm][i].y;
593  u = color_table[cm][i].u;
594  v = color_table[cm][i].v;
595  } else {
596  float start = color_table[cm][i - 1].a;
597  float end = color_table[cm][i].a;
598  float lerpfrac = (a - start) / (end - start);
599  y = color_table[cm][i - 1].y * (1.0f - lerpfrac)
600  + color_table[cm][i].y * lerpfrac;
601  u = color_table[cm][i - 1].u * (1.0f - lerpfrac)
602  + color_table[cm][i].u * lerpfrac;
603  v = color_table[cm][i - 1].v * (1.0f - lerpfrac)
604  + color_table[cm][i].v * lerpfrac;
605  }
606 
607  out[0] = y * yf;
608  out[1] = u * uf;
609  out[2] = v * vf;
610  } else {
611  out[0] = a * yf;
612  out[1] = a * uf;
613  out[2] = a * vf;
614  }
615 }
616 
617 static char *get_time(AVFilterContext *ctx, float seconds, int x)
618 {
619  char *units;
620 
621  if (x == 0)
622  units = av_asprintf("0");
623  else if (log10(seconds) > 6)
624  units = av_asprintf("%.2fh", seconds / (60 * 60));
625  else if (log10(seconds) > 3)
626  units = av_asprintf("%.2fm", seconds / 60);
627  else
628  units = av_asprintf("%.2fs", seconds);
629  return units;
630 }
631 
632 static float log_scale(const float value, const float min, const float max)
633 {
634  if (value < min)
635  return min;
636  if (value > max)
637  return max;
638 
639  {
640  const float b = logf(max / min) / (max - min);
641  const float a = max / expf(max * b);
642 
643  return expf(value * b) * a;
644  }
645 }
646 
647 static float get_log_hz(const int bin, const int num_bins, const float sample_rate)
648 {
649  const float max_freq = sample_rate / 2;
650  const float hz_per_bin = max_freq / num_bins;
651  const float freq = hz_per_bin * bin;
652  const float scaled_freq = log_scale(freq + 1, 21, max_freq) - 1;
653 
654  return num_bins * scaled_freq / max_freq;
655 }
656 
657 static float inv_log_scale(const float value, const float min, const float max)
658 {
659  if (value < min)
660  return min;
661  if (value > max)
662  return max;
663 
664  {
665  const float b = logf(max / min) / (max - min);
666  const float a = max / expf(max * b);
667 
668  return logf(value / a) / b;
669  }
670 }
671 
672 static float bin_pos(const int bin, const int num_bins, const float sample_rate)
673 {
674  const float max_freq = sample_rate / 2;
675  const float hz_per_bin = max_freq / num_bins;
676  const float freq = hz_per_bin * bin;
677  const float scaled_freq = inv_log_scale(freq + 1, 21, max_freq) - 1;
678 
679  return num_bins * scaled_freq / max_freq;
680 }
681 
682 static int draw_legend(AVFilterContext *ctx, int samples)
683 {
684  ShowSpectrumContext *s = ctx->priv;
685  AVFilterLink *inlink = ctx->inputs[0];
686  AVFilterLink *outlink = ctx->outputs[0];
687  int ch, y, x = 0, sz = s->orientation == VERTICAL ? s->w : s->h;
688  int multi = (s->mode == SEPARATE && s->color_mode == CHANNEL);
689  float spp = samples / (float)sz;
690  char *text;
691  uint8_t *dst;
692  char chlayout_str[128];
693 
694  av_get_channel_layout_string(chlayout_str, sizeof(chlayout_str), inlink->channels,
695  inlink->channel_layout);
696 
697  text = av_asprintf("%d Hz | %s", inlink->sample_rate, chlayout_str);
698 
699  drawtext(s->outpicref, 2, outlink->h - 10, "CREATED BY LIBAVFILTER", 0);
700  drawtext(s->outpicref, outlink->w - 2 - strlen(text) * 10, outlink->h - 10, text, 0);
701  if (s->stop) {
702  char *text = av_asprintf("Zoom: %d Hz - %d Hz", s->start, s->stop);
703  drawtext(s->outpicref, outlink->w - 2 - strlen(text) * 10, 3, text, 0);
704  av_freep(&text);
705  }
706 
707  av_freep(&text);
708 
709  dst = s->outpicref->data[0] + (s->start_y - 1) * s->outpicref->linesize[0] + s->start_x - 1;
710  for (x = 0; x < s->w + 1; x++)
711  dst[x] = 200;
712  dst = s->outpicref->data[0] + (s->start_y + s->h) * s->outpicref->linesize[0] + s->start_x - 1;
713  for (x = 0; x < s->w + 1; x++)
714  dst[x] = 200;
715  for (y = 0; y < s->h + 2; y++) {
716  dst = s->outpicref->data[0] + (y + s->start_y - 1) * s->outpicref->linesize[0];
717  dst[s->start_x - 1] = 200;
718  dst[s->start_x + s->w] = 200;
719  }
720  if (s->orientation == VERTICAL) {
721  int h = s->mode == SEPARATE ? s->h / s->nb_display_channels : s->h;
722  int hh = s->mode == SEPARATE ? -(s->h % s->nb_display_channels) + 1 : 1;
723  for (ch = 0; ch < (s->mode == SEPARATE ? s->nb_display_channels : 1); ch++) {
724  for (y = 0; y < h; y += 20) {
725  dst = s->outpicref->data[0] + (s->start_y + h * (ch + 1) - y - hh) * s->outpicref->linesize[0];
726  dst[s->start_x - 2] = 200;
727  dst[s->start_x + s->w + 1] = 200;
728  }
729  for (y = 0; y < h; y += 40) {
730  dst = s->outpicref->data[0] + (s->start_y + h * (ch + 1) - y - hh) * s->outpicref->linesize[0];
731  dst[s->start_x - 3] = 200;
732  dst[s->start_x + s->w + 2] = 200;
733  }
734  dst = s->outpicref->data[0] + (s->start_y - 2) * s->outpicref->linesize[0] + s->start_x;
735  for (x = 0; x < s->w; x+=40)
736  dst[x] = 200;
737  dst = s->outpicref->data[0] + (s->start_y - 3) * s->outpicref->linesize[0] + s->start_x;
738  for (x = 0; x < s->w; x+=80)
739  dst[x] = 200;
740  dst = s->outpicref->data[0] + (s->h + s->start_y + 1) * s->outpicref->linesize[0] + s->start_x;
741  for (x = 0; x < s->w; x+=40) {
742  dst[x] = 200;
743  }
744  dst = s->outpicref->data[0] + (s->h + s->start_y + 2) * s->outpicref->linesize[0] + s->start_x;
745  for (x = 0; x < s->w; x+=80) {
746  dst[x] = 200;
747  }
748  for (y = 0; y < h; y += 40) {
749  float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2;
750  float bin = s->fscale == F_LINEAR ? y : get_log_hz(y, h, inlink->sample_rate);
751  float hertz = s->start + bin * range / (float)(1 << (int)ceil(log2(h)));
752  char *units;
753 
754  if (hertz == 0)
755  units = av_asprintf("DC");
756  else
757  units = av_asprintf("%.2f", hertz);
758  if (!units)
759  return AVERROR(ENOMEM);
760 
761  drawtext(s->outpicref, s->start_x - 8 * strlen(units) - 4, h * (ch + 1) + s->start_y - y - 4 - hh, units, 0);
762  av_free(units);
763  }
764  }
765 
766  for (x = 0; x < s->w && s->single_pic; x+=80) {
767  float seconds = x * spp / inlink->sample_rate;
768  char *units = get_time(ctx, seconds, x);
769 
770  drawtext(s->outpicref, s->start_x + x - 4 * strlen(units), s->h + s->start_y + 6, units, 0);
771  drawtext(s->outpicref, s->start_x + x - 4 * strlen(units), s->start_y - 12, units, 0);
772  av_free(units);
773  }
774 
775  drawtext(s->outpicref, outlink->w / 2 - 4 * 4, outlink->h - s->start_y / 2, "TIME", 0);
776  drawtext(s->outpicref, s->start_x / 7, outlink->h / 2 - 14 * 4, "FREQUENCY (Hz)", 1);
777  } else {
778  int w = s->mode == SEPARATE ? s->w / s->nb_display_channels : s->w;
779  for (y = 0; y < s->h; y += 20) {
780  dst = s->outpicref->data[0] + (s->start_y + y) * s->outpicref->linesize[0];
781  dst[s->start_x - 2] = 200;
782  dst[s->start_x + s->w + 1] = 200;
783  }
784  for (y = 0; y < s->h; y += 40) {
785  dst = s->outpicref->data[0] + (s->start_y + y) * s->outpicref->linesize[0];
786  dst[s->start_x - 3] = 200;
787  dst[s->start_x + s->w + 2] = 200;
788  }
789  for (ch = 0; ch < (s->mode == SEPARATE ? s->nb_display_channels : 1); ch++) {
790  dst = s->outpicref->data[0] + (s->start_y - 2) * s->outpicref->linesize[0] + s->start_x + w * ch;
791  for (x = 0; x < w; x+=40)
792  dst[x] = 200;
793  dst = s->outpicref->data[0] + (s->start_y - 3) * s->outpicref->linesize[0] + s->start_x + w * ch;
794  for (x = 0; x < w; x+=80)
795  dst[x] = 200;
796  dst = s->outpicref->data[0] + (s->h + s->start_y + 1) * s->outpicref->linesize[0] + s->start_x + w * ch;
797  for (x = 0; x < w; x+=40) {
798  dst[x] = 200;
799  }
800  dst = s->outpicref->data[0] + (s->h + s->start_y + 2) * s->outpicref->linesize[0] + s->start_x + w * ch;
801  for (x = 0; x < w; x+=80) {
802  dst[x] = 200;
803  }
804  for (x = 0; x < w - 79; x += 80) {
805  float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2;
806  float bin = s->fscale == F_LINEAR ? x : get_log_hz(x, w, inlink->sample_rate);
807  float hertz = s->start + bin * range / (float)(1 << (int)ceil(log2(w)));
808  char *units;
809 
810  if (hertz == 0)
811  units = av_asprintf("DC");
812  else
813  units = av_asprintf("%.2f", hertz);
814  if (!units)
815  return AVERROR(ENOMEM);
816 
817  drawtext(s->outpicref, s->start_x - 4 * strlen(units) + x + w * ch, s->start_y - 12, units, 0);
818  drawtext(s->outpicref, s->start_x - 4 * strlen(units) + x + w * ch, s->h + s->start_y + 6, units, 0);
819  av_free(units);
820  }
821  }
822  for (y = 0; y < s->h && s->single_pic; y+=40) {
823  float seconds = y * spp / inlink->sample_rate;
824  char *units = get_time(ctx, seconds, x);
825 
826  drawtext(s->outpicref, s->start_x - 8 * strlen(units) - 4, s->start_y + y - 4, units, 0);
827  av_free(units);
828  }
829  drawtext(s->outpicref, s->start_x / 7, outlink->h / 2 - 4 * 4, "TIME", 1);
830  drawtext(s->outpicref, outlink->w / 2 - 14 * 4, outlink->h - s->start_y / 2, "FREQUENCY (Hz)", 0);
831  }
832 
833  for (ch = 0; ch < (multi ? s->nb_display_channels : 1); ch++) {
834  int h = multi ? s->h / s->nb_display_channels : s->h;
835 
836  for (y = 0; y < h; y++) {
837  float out[3] = { 0., 127.5, 127.5};
838  int chn;
839 
840  for (chn = 0; chn < (s->mode == SEPARATE ? 1 : s->nb_display_channels); chn++) {
841  float yf, uf, vf;
842  int channel = (multi) ? s->nb_display_channels - ch - 1 : chn;
843  float lout[3];
844 
845  color_range(s, channel, &yf, &uf, &vf);
846  pick_color(s, yf, uf, vf, y / (float)h, lout);
847  out[0] += lout[0];
848  out[1] += lout[1];
849  out[2] += lout[2];
850  }
851  memset(s->outpicref->data[0]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[0] + s->w + s->start_x + 20, av_clip_uint8(out[0]), 10);
852  memset(s->outpicref->data[1]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[1] + s->w + s->start_x + 20, av_clip_uint8(out[1]), 10);
853  memset(s->outpicref->data[2]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[2] + s->w + s->start_x + 20, av_clip_uint8(out[2]), 10);
854  }
855 
856  for (y = 0; ch == 0 && y < h; y += h / 10) {
857  float value = 120.f * log10f(1.f - y / (float)h);
858  char *text;
859 
860  if (value < -120)
861  break;
862  text = av_asprintf("%.0f dB", value);
863  if (!text)
864  continue;
865  drawtext(s->outpicref, s->w + s->start_x + 35, s->start_y + y - 5, text, 0);
866  av_free(text);
867  }
868  }
869 
870  return 0;
871 }
872 
873 static float get_value(AVFilterContext *ctx, int ch, int y)
874 {
875  ShowSpectrumContext *s = ctx->priv;
876  float *magnitudes = s->magnitudes[ch];
877  float *phases = s->phases[ch];
878  float a;
879 
880  switch (s->data) {
881  case D_MAGNITUDE:
882  /* get magnitude */
883  a = magnitudes[y];
884  break;
885  case D_PHASE:
886  /* get phase */
887  a = phases[y];
888  break;
889  default:
890  av_assert0(0);
891  }
892 
893  /* apply scale */
894  switch (s->scale) {
895  case LINEAR:
896  a = av_clipf(a, 0, 1);
897  break;
898  case SQRT:
899  a = av_clipf(sqrtf(a), 0, 1);
900  break;
901  case CBRT:
902  a = av_clipf(cbrtf(a), 0, 1);
903  break;
904  case FOURTHRT:
905  a = av_clipf(sqrtf(sqrtf(a)), 0, 1);
906  break;
907  case FIFTHRT:
908  a = av_clipf(powf(a, 0.20), 0, 1);
909  break;
910  case LOG:
911  a = 1.f + log10f(av_clipf(a, 1e-6, 1)) / 6.f; // zero = -120dBFS
912  break;
913  default:
914  av_assert0(0);
915  }
916 
917  return a;
918 }
919 
920 static int plot_channel_lin(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
921 {
922  ShowSpectrumContext *s = ctx->priv;
923  const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width;
924  const int ch = jobnr;
925  float yf, uf, vf;
926  int y;
927 
928  /* decide color range */
929  color_range(s, ch, &yf, &uf, &vf);
930 
931  /* draw the channel */
932  for (y = 0; y < h; y++) {
933  int row = (s->mode == COMBINED) ? y : ch * h + y;
934  float *out = &s->color_buffer[ch][3 * row];
935  float a = get_value(ctx, ch, y);
936 
937  pick_color(s, yf, uf, vf, a, out);
938  }
939 
940  return 0;
941 }
942 
943 static int plot_channel_log(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
944 {
945  ShowSpectrumContext *s = ctx->priv;
946  AVFilterLink *inlink = ctx->inputs[0];
947  const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width;
948  const int ch = jobnr;
949  float y, yf, uf, vf;
950  int yy = 0;
951 
952  /* decide color range */
953  color_range(s, ch, &yf, &uf, &vf);
954 
955  /* draw the channel */
956  for (y = 0; y < h && yy < h; yy++) {
957  float pos0 = bin_pos(yy+0, h, inlink->sample_rate);
958  float pos1 = bin_pos(yy+1, h, inlink->sample_rate);
959  float delta = pos1 - pos0;
960  float a0, a1;
961 
962  a0 = get_value(ctx, ch, yy+0);
963  a1 = get_value(ctx, ch, FFMIN(yy+1, h-1));
964  for (float j = pos0; j < pos1 && y + j - pos0 < h; j++) {
965  float row = (s->mode == COMBINED) ? y + j - pos0 : ch * h + y + j - pos0;
966  float *out = &s->color_buffer[ch][3 * FFMIN(lrintf(row), h-1)];
967  float lerpfrac = (j - pos0) / delta;
968 
969  pick_color(s, yf, uf, vf, lerpfrac * a1 + (1.f-lerpfrac) * a0, out);
970  }
971  y += delta;
972  }
973 
974  return 0;
975 }
976 
977 static int config_output(AVFilterLink *outlink)
978 {
979  AVFilterContext *ctx = outlink->src;
980  AVFilterLink *inlink = ctx->inputs[0];
981  ShowSpectrumContext *s = ctx->priv;
982  int i, fft_bits, h, w;
983  float overlap;
984 
985  switch (s->fscale) {
986  case F_LINEAR: s->plot_channel = plot_channel_lin; break;
987  case F_LOG: s->plot_channel = plot_channel_log; break;
988  default: return AVERROR_BUG;
989  }
990 
991  s->stop = FFMIN(s->stop, inlink->sample_rate / 2);
992  if (s->stop && s->stop <= s->start) {
993  av_log(ctx, AV_LOG_ERROR, "Stop frequency should be greater than start.\n");
994  return AVERROR(EINVAL);
995  }
996 
997  if (!strcmp(ctx->filter->name, "showspectrumpic"))
998  s->single_pic = 1;
999 
1000  outlink->w = s->w;
1001  outlink->h = s->h;
1002  outlink->sample_aspect_ratio = (AVRational){1,1};
1003 
1004  if (s->legend) {
1005  s->start_x = (log10(inlink->sample_rate) + 1) * 25;
1006  s->start_y = 64;
1007  outlink->w += s->start_x * 2;
1008  outlink->h += s->start_y * 2;
1009  }
1010 
1011  h = (s->mode == COMBINED || s->orientation == HORIZONTAL) ? s->h : s->h / inlink->channels;
1012  w = (s->mode == COMBINED || s->orientation == VERTICAL) ? s->w : s->w / inlink->channels;
1013  s->channel_height = h;
1014  s->channel_width = w;
1015 
1016  if (s->orientation == VERTICAL) {
1017  /* FFT window size (precision) according to the requested output frame height */
1018  for (fft_bits = 1; 1 << fft_bits < 2 * h; fft_bits++);
1019  } else {
1020  /* FFT window size (precision) according to the requested output frame width */
1021  for (fft_bits = 1; 1 << fft_bits < 2 * w; fft_bits++);
1022  }
1023 
1024  s->win_size = 1 << fft_bits;
1025  s->buf_size = s->win_size << !!s->stop;
1026 
1027  if (!s->fft) {
1028  s->fft = av_calloc(inlink->channels, sizeof(*s->fft));
1029  if (!s->fft)
1030  return AVERROR(ENOMEM);
1031  }
1032 
1033  if (s->stop) {
1034  if (!s->ifft) {
1035  s->ifft = av_calloc(inlink->channels, sizeof(*s->ifft));
1036  if (!s->ifft)
1037  return AVERROR(ENOMEM);
1038  }
1039  }
1040 
1041  /* (re-)configuration if the video output changed (or first init) */
1042  if (fft_bits != s->fft_bits) {
1043  AVFrame *outpicref;
1044 
1045  s->fft_bits = fft_bits;
1046 
1047  /* FFT buffers: x2 for each (display) channel buffer.
1048  * Note: we use free and malloc instead of a realloc-like function to
1049  * make sure the buffer is aligned in memory for the FFT functions. */
1050  for (i = 0; i < s->nb_display_channels; i++) {
1051  if (s->stop) {
1052  av_fft_end(s->ifft[i]);
1053  av_freep(&s->fft_scratch[i]);
1054  }
1055  av_fft_end(s->fft[i]);
1056  av_freep(&s->fft_data[i]);
1057  }
1058  av_freep(&s->fft_data);
1059 
1060  s->nb_display_channels = inlink->channels;
1061  for (i = 0; i < s->nb_display_channels; i++) {
1062  s->fft[i] = av_fft_init(fft_bits + !!s->stop, 0);
1063  if (s->stop) {
1064  s->ifft[i] = av_fft_init(fft_bits + !!s->stop, 1);
1065  if (!s->ifft[i]) {
1066  av_log(ctx, AV_LOG_ERROR, "Unable to create Inverse FFT context. "
1067  "The window size might be too high.\n");
1068  return AVERROR(EINVAL);
1069  }
1070  }
1071  if (!s->fft[i]) {
1072  av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. "
1073  "The window size might be too high.\n");
1074  return AVERROR(EINVAL);
1075  }
1076  }
1077 
1078  s->magnitudes = av_calloc(s->nb_display_channels, sizeof(*s->magnitudes));
1079  if (!s->magnitudes)
1080  return AVERROR(ENOMEM);
1081  for (i = 0; i < s->nb_display_channels; i++) {
1082  s->magnitudes[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->magnitudes));
1083  if (!s->magnitudes[i])
1084  return AVERROR(ENOMEM);
1085  }
1086 
1087  s->phases = av_calloc(s->nb_display_channels, sizeof(*s->phases));
1088  if (!s->phases)
1089  return AVERROR(ENOMEM);
1090  for (i = 0; i < s->nb_display_channels; i++) {
1091  s->phases[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->phases));
1092  if (!s->phases[i])
1093  return AVERROR(ENOMEM);
1094  }
1095 
1096  av_freep(&s->color_buffer);
1098  if (!s->color_buffer)
1099  return AVERROR(ENOMEM);
1100  for (i = 0; i < s->nb_display_channels; i++) {
1101  s->color_buffer[i] = av_calloc(s->orientation == VERTICAL ? s->h * 3 : s->w * 3, sizeof(**s->color_buffer));
1102  if (!s->color_buffer[i])
1103  return AVERROR(ENOMEM);
1104  }
1105 
1106  s->fft_data = av_calloc(s->nb_display_channels, sizeof(*s->fft_data));
1107  if (!s->fft_data)
1108  return AVERROR(ENOMEM);
1109  s->fft_scratch = av_calloc(s->nb_display_channels, sizeof(*s->fft_scratch));
1110  if (!s->fft_scratch)
1111  return AVERROR(ENOMEM);
1112  for (i = 0; i < s->nb_display_channels; i++) {
1113  s->fft_data[i] = av_calloc(s->buf_size, sizeof(**s->fft_data));
1114  if (!s->fft_data[i])
1115  return AVERROR(ENOMEM);
1116 
1117  s->fft_scratch[i] = av_calloc(s->buf_size, sizeof(**s->fft_scratch));
1118  if (!s->fft_scratch[i])
1119  return AVERROR(ENOMEM);
1120  }
1121 
1122  /* pre-calc windowing function */
1123  s->window_func_lut =
1125  sizeof(*s->window_func_lut));
1126  if (!s->window_func_lut)
1127  return AVERROR(ENOMEM);
1128  generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap);
1129  if (s->overlap == 1)
1130  s->overlap = overlap;
1131  s->hop_size = (1.f - s->overlap) * s->win_size;
1132  if (s->hop_size < 1) {
1133  av_log(ctx, AV_LOG_ERROR, "overlap %f too big\n", s->overlap);
1134  return AVERROR(EINVAL);
1135  }
1136 
1137  for (s->win_scale = 0, i = 0; i < s->win_size; i++) {
1138  s->win_scale += s->window_func_lut[i] * s->window_func_lut[i];
1139  }
1140  s->win_scale = 1.f / sqrtf(s->win_scale);
1141 
1142  /* prepare the initial picref buffer (black frame) */
1143  av_frame_free(&s->outpicref);
1144  s->outpicref = outpicref =
1145  ff_get_video_buffer(outlink, outlink->w, outlink->h);
1146  if (!outpicref)
1147  return AVERROR(ENOMEM);
1148  outpicref->sample_aspect_ratio = (AVRational){1,1};
1149  for (i = 0; i < outlink->h; i++) {
1150  memset(outpicref->data[0] + i * outpicref->linesize[0], 0, outlink->w);
1151  memset(outpicref->data[1] + i * outpicref->linesize[1], 128, outlink->w);
1152  memset(outpicref->data[2] + i * outpicref->linesize[2], 128, outlink->w);
1153  }
1154  outpicref->color_range = AVCOL_RANGE_JPEG;
1155 
1156  if (!s->single_pic && s->legend)
1157  draw_legend(ctx, 0);
1158  }
1159 
1160  if ((s->orientation == VERTICAL && s->xpos >= s->w) ||
1161  (s->orientation == HORIZONTAL && s->xpos >= s->h))
1162  s->xpos = 0;
1163 
1164  s->auto_frame_rate = av_make_q(inlink->sample_rate, s->hop_size);
1165  if (s->orientation == VERTICAL && s->sliding == FULLFRAME)
1166  s->auto_frame_rate.den *= s->w;
1167  if (s->orientation == HORIZONTAL && s->sliding == FULLFRAME)
1168  s->auto_frame_rate.den *= s->h;
1169  if (!s->single_pic && strcmp(s->rate_str, "auto")) {
1170  int ret = av_parse_video_rate(&s->frame_rate, s->rate_str);
1171  if (ret < 0)
1172  return ret;
1173  } else {
1174  s->frame_rate = s->auto_frame_rate;
1175  }
1176  outlink->frame_rate = s->frame_rate;
1177  outlink->time_base = av_inv_q(outlink->frame_rate);
1178 
1179  if (s->orientation == VERTICAL) {
1180  s->combine_buffer =
1181  av_realloc_f(s->combine_buffer, s->h * 3,
1182  sizeof(*s->combine_buffer));
1183  } else {
1184  s->combine_buffer =
1185  av_realloc_f(s->combine_buffer, s->w * 3,
1186  sizeof(*s->combine_buffer));
1187  }
1188 
1189  av_log(ctx, AV_LOG_VERBOSE, "s:%dx%d FFT window size:%d\n",
1190  s->w, s->h, s->win_size);
1191 
1193  s->fifo = av_audio_fifo_alloc(inlink->format, inlink->channels, s->win_size);
1194  if (!s->fifo)
1195  return AVERROR(ENOMEM);
1196  return 0;
1197 }
1198 
1199 #define RE(y, ch) s->fft_data[ch][y].re
1200 #define IM(y, ch) s->fft_data[ch][y].im
1201 #define MAGNITUDE(y, ch) hypotf(RE(y, ch), IM(y, ch))
1202 #define PHASE(y, ch) atan2f(IM(y, ch), RE(y, ch))
1203 
1204 static int calc_channel_magnitudes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
1205 {
1206  ShowSpectrumContext *s = ctx->priv;
1207  const double w = s->win_scale * (s->scale == LOG ? s->win_scale : 1);
1208  int y, h = s->orientation == VERTICAL ? s->h : s->w;
1209  const float f = s->gain * w;
1210  const int ch = jobnr;
1211  float *magnitudes = s->magnitudes[ch];
1212 
1213  for (y = 0; y < h; y++)
1214  magnitudes[y] = MAGNITUDE(y, ch) * f;
1215 
1216  return 0;
1217 }
1218 
1219 static int calc_channel_phases(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
1220 {
1221  ShowSpectrumContext *s = ctx->priv;
1222  const int h = s->orientation == VERTICAL ? s->h : s->w;
1223  const int ch = jobnr;
1224  float *phases = s->phases[ch];
1225  int y;
1226 
1227  for (y = 0; y < h; y++)
1228  phases[y] = (PHASE(y, ch) / M_PI + 1) / 2;
1229 
1230  return 0;
1231 }
1232 
1234 {
1235  const double w = s->win_scale * (s->scale == LOG ? s->win_scale : 1);
1236  int ch, y, h = s->orientation == VERTICAL ? s->h : s->w;
1237  const float f = s->gain * w;
1238 
1239  for (ch = 0; ch < s->nb_display_channels; ch++) {
1240  float *magnitudes = s->magnitudes[ch];
1241 
1242  for (y = 0; y < h; y++)
1243  magnitudes[y] += MAGNITUDE(y, ch) * f;
1244  }
1245 }
1246 
1248 {
1249  int ch, y, h = s->orientation == VERTICAL ? s->h : s->w;
1250 
1251  for (ch = 0; ch < s->nb_display_channels; ch++) {
1252  float *magnitudes = s->magnitudes[ch];
1253 
1254  for (y = 0; y < h; y++)
1255  magnitudes[y] *= scale;
1256  }
1257 }
1258 
1260 {
1261  int y;
1262 
1263  for (y = 0; y < size; y++) {
1264  s->combine_buffer[3 * y ] = 0;
1265  s->combine_buffer[3 * y + 1] = 127.5;
1266  s->combine_buffer[3 * y + 2] = 127.5;
1267  }
1268 }
1269 
1270 static int plot_spectrum_column(AVFilterLink *inlink, AVFrame *insamples)
1271 {
1272  AVFilterContext *ctx = inlink->dst;
1273  AVFilterLink *outlink = ctx->outputs[0];
1274  ShowSpectrumContext *s = ctx->priv;
1275  AVFrame *outpicref = s->outpicref;
1276  int ret, plane, x, y, z = s->orientation == VERTICAL ? s->h : s->w;
1277 
1278  /* fill a new spectrum column */
1279  /* initialize buffer for combining to black */
1280  clear_combine_buffer(s, z);
1281 
1283 
1284  for (y = 0; y < z * 3; y++) {
1285  for (x = 0; x < s->nb_display_channels; x++) {
1286  s->combine_buffer[y] += s->color_buffer[x][y];
1287  }
1288  }
1289 
1291  /* copy to output */
1292  if (s->orientation == VERTICAL) {
1293  if (s->sliding == SCROLL) {
1294  for (plane = 0; plane < 3; plane++) {
1295  for (y = 0; y < s->h; y++) {
1296  uint8_t *p = outpicref->data[plane] + s->start_x +
1297  (y + s->start_y) * outpicref->linesize[plane];
1298  memmove(p, p + 1, s->w - 1);
1299  }
1300  }
1301  s->xpos = s->w - 1;
1302  } else if (s->sliding == RSCROLL) {
1303  for (plane = 0; plane < 3; plane++) {
1304  for (y = 0; y < s->h; y++) {
1305  uint8_t *p = outpicref->data[plane] + s->start_x +
1306  (y + s->start_y) * outpicref->linesize[plane];
1307  memmove(p + 1, p, s->w - 1);
1308  }
1309  }
1310  s->xpos = 0;
1311  }
1312  for (plane = 0; plane < 3; plane++) {
1313  uint8_t *p = outpicref->data[plane] + s->start_x +
1314  (outlink->h - 1 - s->start_y) * outpicref->linesize[plane] +
1315  s->xpos;
1316  for (y = 0; y < s->h; y++) {
1317  *p = lrintf(av_clipf(s->combine_buffer[3 * y + plane], 0, 255));
1318  p -= outpicref->linesize[plane];
1319  }
1320  }
1321  } else {
1322  if (s->sliding == SCROLL) {
1323  for (plane = 0; plane < 3; plane++) {
1324  for (y = 1; y < s->h; y++) {
1325  memmove(outpicref->data[plane] + (y-1 + s->start_y) * outpicref->linesize[plane] + s->start_x,
1326  outpicref->data[plane] + (y + s->start_y) * outpicref->linesize[plane] + s->start_x,
1327  s->w);
1328  }
1329  }
1330  s->xpos = s->h - 1;
1331  } else if (s->sliding == RSCROLL) {
1332  for (plane = 0; plane < 3; plane++) {
1333  for (y = s->h - 1; y >= 1; y--) {
1334  memmove(outpicref->data[plane] + (y + s->start_y) * outpicref->linesize[plane] + s->start_x,
1335  outpicref->data[plane] + (y-1 + s->start_y) * outpicref->linesize[plane] + s->start_x,
1336  s->w);
1337  }
1338  }
1339  s->xpos = 0;
1340  }
1341  for (plane = 0; plane < 3; plane++) {
1342  uint8_t *p = outpicref->data[plane] + s->start_x +
1343  (s->xpos + s->start_y) * outpicref->linesize[plane];
1344  for (x = 0; x < s->w; x++) {
1345  *p = lrintf(av_clipf(s->combine_buffer[3 * x + plane], 0, 255));
1346  p++;
1347  }
1348  }
1349  }
1350 
1351  if (s->sliding != FULLFRAME || s->xpos == 0)
1352  outpicref->pts = av_rescale_q(insamples->pts, inlink->time_base, outlink->time_base);
1353 
1354  s->xpos++;
1355  if (s->orientation == VERTICAL && s->xpos >= s->w)
1356  s->xpos = 0;
1357  if (s->orientation == HORIZONTAL && s->xpos >= s->h)
1358  s->xpos = 0;
1359  if (!s->single_pic && (s->sliding != FULLFRAME || s->xpos == 0)) {
1360  if (s->old_pts < outpicref->pts) {
1361  if (s->legend) {
1362  char *units = get_time(ctx, insamples->pts /(float)inlink->sample_rate, x);
1363 
1364  if (s->orientation == VERTICAL) {
1365  for (y = 0; y < 10; y++) {
1366  memset(s->outpicref->data[0] + outlink->w / 2 - 4 * s->old_len +
1367  (outlink->h - s->start_y / 2 - 20 + y) * s->outpicref->linesize[0], 0, 10 * s->old_len);
1368  }
1369  drawtext(s->outpicref,
1370  outlink->w / 2 - 4 * strlen(units),
1371  outlink->h - s->start_y / 2 - 20,
1372  units, 0);
1373  } else {
1374  for (y = 0; y < 10 * s->old_len; y++) {
1375  memset(s->outpicref->data[0] + s->start_x / 7 + 20 +
1376  (outlink->h / 2 - 4 * s->old_len + y) * s->outpicref->linesize[0], 0, 10);
1377  }
1378  drawtext(s->outpicref,
1379  s->start_x / 7 + 20,
1380  outlink->h / 2 - 4 * strlen(units),
1381  units, 1);
1382  }
1383  s->old_len = strlen(units);
1384  av_free(units);
1385  }
1386  s->old_pts = outpicref->pts;
1387  ret = ff_filter_frame(outlink, av_frame_clone(s->outpicref));
1388  if (ret < 0)
1389  return ret;
1390  return 0;
1391  }
1392  }
1393 
1394  return 1;
1395 }
1396 
1397 #if CONFIG_SHOWSPECTRUM_FILTER
1398 
1399 static int activate(AVFilterContext *ctx)
1400 {
1401  AVFilterLink *inlink = ctx->inputs[0];
1402  AVFilterLink *outlink = ctx->outputs[0];
1403  ShowSpectrumContext *s = ctx->priv;
1404  int ret;
1405 
1406  FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
1407 
1408  if (av_audio_fifo_size(s->fifo) < s->win_size) {
1409  AVFrame *frame = NULL;
1410 
1411  ret = ff_inlink_consume_frame(inlink, &frame);
1412  if (ret < 0)
1413  return ret;
1414  if (ret > 0) {
1415  s->pts = frame->pts;
1416  s->consumed = 0;
1417 
1418  av_audio_fifo_write(s->fifo, (void **)frame->extended_data, frame->nb_samples);
1419  av_frame_free(&frame);
1420  }
1421  }
1422 
1423  if (s->outpicref && av_audio_fifo_size(s->fifo) >= s->win_size) {
1424  AVFrame *fin = ff_get_audio_buffer(inlink, s->win_size);
1425  if (!fin)
1426  return AVERROR(ENOMEM);
1427 
1428  fin->pts = s->pts + s->consumed;
1429  s->consumed += s->hop_size;
1430  ret = av_audio_fifo_peek(s->fifo, (void **)fin->extended_data,
1432  if (ret < 0) {
1433  av_frame_free(&fin);
1434  return ret;
1435  }
1436 
1437  av_assert0(fin->nb_samples == s->win_size);
1438 
1440 
1441  if (s->data == D_MAGNITUDE)
1443 
1444  if (s->data == D_PHASE)
1446 
1447  ret = plot_spectrum_column(inlink, fin);
1448 
1449  av_frame_free(&fin);
1451  if (ret <= 0)
1452  return ret;
1453  }
1454 
1455  if (ff_outlink_get_status(inlink) == AVERROR_EOF &&
1456  s->sliding == FULLFRAME &&
1457  s->xpos > 0 && s->outpicref) {
1458  int64_t pts;
1459 
1460  if (s->orientation == VERTICAL) {
1461  for (int i = 0; i < outlink->h; i++) {
1462  memset(s->outpicref->data[0] + i * s->outpicref->linesize[0] + s->xpos, 0, outlink->w - s->xpos);
1463  memset(s->outpicref->data[1] + i * s->outpicref->linesize[1] + s->xpos, 128, outlink->w - s->xpos);
1464  memset(s->outpicref->data[2] + i * s->outpicref->linesize[2] + s->xpos, 128, outlink->w - s->xpos);
1465  }
1466  } else {
1467  for (int i = s->xpos; i < outlink->h; i++) {
1468  memset(s->outpicref->data[0] + i * s->outpicref->linesize[0], 0, outlink->w);
1469  memset(s->outpicref->data[1] + i * s->outpicref->linesize[1], 128, outlink->w);
1470  memset(s->outpicref->data[2] + i * s->outpicref->linesize[2], 128, outlink->w);
1471  }
1472  }
1473  s->outpicref->pts += s->consumed;
1474  pts = s->outpicref->pts;
1475  ret = ff_filter_frame(outlink, s->outpicref);
1476  s->outpicref = NULL;
1477  ff_outlink_set_status(outlink, AVERROR_EOF, pts);
1478  return 0;
1479  }
1480 
1481  FF_FILTER_FORWARD_STATUS(inlink, outlink);
1482  if (ff_outlink_frame_wanted(outlink) && av_audio_fifo_size(s->fifo) < s->win_size) {
1483  ff_inlink_request_frame(inlink);
1484  return 0;
1485  }
1486 
1487  if (av_audio_fifo_size(s->fifo) >= s->win_size) {
1488  ff_filter_set_ready(ctx, 10);
1489  return 0;
1490  }
1491  return FFERROR_NOT_READY;
1492 }
1493 
1494 static const AVFilterPad showspectrum_inputs[] = {
1495  {
1496  .name = "default",
1497  .type = AVMEDIA_TYPE_AUDIO,
1498  },
1499  { NULL }
1500 };
1501 
1502 static const AVFilterPad showspectrum_outputs[] = {
1503  {
1504  .name = "default",
1505  .type = AVMEDIA_TYPE_VIDEO,
1506  .config_props = config_output,
1507  },
1508  { NULL }
1509 };
1510 
1512  .name = "showspectrum",
1513  .description = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output."),
1514  .uninit = uninit,
1515  .query_formats = query_formats,
1516  .priv_size = sizeof(ShowSpectrumContext),
1517  .inputs = showspectrum_inputs,
1518  .outputs = showspectrum_outputs,
1519  .activate = activate,
1520  .priv_class = &showspectrum_class,
1522 };
1523 #endif // CONFIG_SHOWSPECTRUM_FILTER
1524 
1525 #if CONFIG_SHOWSPECTRUMPIC_FILTER
1526 
1527 static const AVOption showspectrumpic_options[] = {
1528  { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS },
1529  { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS },
1530  { "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, 0, NB_MODES-1, FLAGS, "mode" },
1531  { "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, "mode" },
1532  { "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, "mode" },
1533  { "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=INTENSITY}, 0, NB_CLMODES-1, FLAGS, "color" },
1534  { "channel", "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL}, 0, 0, FLAGS, "color" },
1535  { "intensity", "intensity based coloring", 0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, "color" },
1536  { "rainbow", "rainbow based coloring", 0, AV_OPT_TYPE_CONST, {.i64=RAINBOW}, 0, 0, FLAGS, "color" },
1537  { "moreland", "moreland based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MORELAND}, 0, 0, FLAGS, "color" },
1538  { "nebulae", "nebulae based coloring", 0, AV_OPT_TYPE_CONST, {.i64=NEBULAE}, 0, 0, FLAGS, "color" },
1539  { "fire", "fire based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIRE}, 0, 0, FLAGS, "color" },
1540  { "fiery", "fiery based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIERY}, 0, 0, FLAGS, "color" },
1541  { "fruit", "fruit based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FRUIT}, 0, 0, FLAGS, "color" },
1542  { "cool", "cool based coloring", 0, AV_OPT_TYPE_CONST, {.i64=COOL}, 0, 0, FLAGS, "color" },
1543  { "magma", "magma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MAGMA}, 0, 0, FLAGS, "color" },
1544  { "green", "green based coloring", 0, AV_OPT_TYPE_CONST, {.i64=GREEN}, 0, 0, FLAGS, "color" },
1545  { "viridis", "viridis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=VIRIDIS}, 0, 0, FLAGS, "color" },
1546  { "plasma", "plasma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=PLASMA}, 0, 0, FLAGS, "color" },
1547  { "cividis", "cividis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=CIVIDIS}, 0, 0, FLAGS, "color" },
1548  { "terrain", "terrain based coloring", 0, AV_OPT_TYPE_CONST, {.i64=TERRAIN}, 0, 0, FLAGS, "color" },
1549  { "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=LOG}, 0, NB_SCALES-1, FLAGS, "scale" },
1550  { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, "scale" },
1551  { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT}, 0, 0, FLAGS, "scale" },
1552  { "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=CBRT}, 0, 0, FLAGS, "scale" },
1553  { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, FLAGS, "scale" },
1554  { "4thrt","4th root", 0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, "scale" },
1555  { "5thrt","5th root", 0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT}, 0, 0, FLAGS, "scale" },
1556  { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=F_LINEAR}, 0, NB_FSCALES-1, FLAGS, "fscale" },
1557  { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=F_LINEAR}, 0, 0, FLAGS, "fscale" },
1558  { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=F_LOG}, 0, 0, FLAGS, "fscale" },
1559  { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS },
1560  { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64 = WFUNC_HANNING}, 0, NB_WFUNC-1, FLAGS, "win_func" },
1561  { "rect", "Rectangular", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT}, 0, 0, FLAGS, "win_func" },
1562  { "bartlett", "Bartlett", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, FLAGS, "win_func" },
1563  { "hann", "Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" },
1564  { "hanning", "Hanning", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" },
1565  { "hamming", "Hamming", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING}, 0, 0, FLAGS, "win_func" },
1566  { "blackman", "Blackman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BLACKMAN}, 0, 0, FLAGS, "win_func" },
1567  { "welch", "Welch", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_WELCH}, 0, 0, FLAGS, "win_func" },
1568  { "flattop", "Flat-top", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_FLATTOP}, 0, 0, FLAGS, "win_func" },
1569  { "bharris", "Blackman-Harris", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHARRIS}, 0, 0, FLAGS, "win_func" },
1570  { "bnuttall", "Blackman-Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BNUTTALL}, 0, 0, FLAGS, "win_func" },
1571  { "bhann", "Bartlett-Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHANN}, 0, 0, FLAGS, "win_func" },
1572  { "sine", "Sine", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE}, 0, 0, FLAGS, "win_func" },
1573  { "nuttall", "Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_NUTTALL}, 0, 0, FLAGS, "win_func" },
1574  { "lanczos", "Lanczos", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_LANCZOS}, 0, 0, FLAGS, "win_func" },
1575  { "gauss", "Gauss", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_GAUSS}, 0, 0, FLAGS, "win_func" },
1576  { "tukey", "Tukey", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_TUKEY}, 0, 0, FLAGS, "win_func" },
1577  { "dolph", "Dolph-Chebyshev", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_DOLPH}, 0, 0, FLAGS, "win_func" },
1578  { "cauchy", "Cauchy", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_CAUCHY}, 0, 0, FLAGS, "win_func" },
1579  { "parzen", "Parzen", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_PARZEN}, 0, 0, FLAGS, "win_func" },
1580  { "poisson", "Poisson", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_POISSON}, 0, 0, FLAGS, "win_func" },
1581  { "bohman", "Bohman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BOHMAN}, 0, 0, FLAGS, "win_func" },
1582  { "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, FLAGS, "orientation" },
1583  { "vertical", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL}, 0, 0, FLAGS, "orientation" },
1584  { "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, FLAGS, "orientation" },
1585  { "gain", "set scale gain", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 128, FLAGS },
1586  { "legend", "draw legend", OFFSET(legend), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS },
1587  { "rotation", "color rotation", OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -1, 1, FLAGS },
1588  { "start", "start frequency", OFFSET(start), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
1589  { "stop", "stop frequency", OFFSET(stop), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
1590  { NULL }
1591 };
1592 
1593 AVFILTER_DEFINE_CLASS(showspectrumpic);
1594 
1595 static int showspectrumpic_request_frame(AVFilterLink *outlink)
1596 {
1597  AVFilterContext *ctx = outlink->src;
1598  ShowSpectrumContext *s = ctx->priv;
1599  AVFilterLink *inlink = ctx->inputs[0];
1600  int ret, samples;
1601 
1602  ret = ff_request_frame(inlink);
1603  samples = av_audio_fifo_size(s->fifo);
1604  if (ret == AVERROR_EOF && s->outpicref && samples > 0) {
1605  int consumed = 0;
1606  int x = 0, sz = s->orientation == VERTICAL ? s->w : s->h;
1607  int ch, spf, spb;
1608  AVFrame *fin;
1609 
1610  spf = s->win_size * (samples / ((s->win_size * sz) * ceil(samples / (float)(s->win_size * sz))));
1611  spf = FFMAX(1, spf);
1612 
1613  spb = (samples / (spf * sz)) * spf;
1614 
1615  fin = ff_get_audio_buffer(inlink, s->win_size);
1616  if (!fin)
1617  return AVERROR(ENOMEM);
1618 
1619  while (x < sz) {
1620  ret = av_audio_fifo_peek(s->fifo, (void **)fin->extended_data, s->win_size);
1621  if (ret < 0) {
1622  av_frame_free(&fin);
1623  return ret;
1624  }
1625 
1626  av_audio_fifo_drain(s->fifo, spf);
1627 
1628  if (ret < s->win_size) {
1629  for (ch = 0; ch < s->nb_display_channels; ch++) {
1630  memset(fin->extended_data[ch] + ret * sizeof(float), 0,
1631  (s->win_size - ret) * sizeof(float));
1632  }
1633  }
1634 
1636  acalc_magnitudes(s);
1637 
1638  consumed += spf;
1639  if (consumed >= spb) {
1640  int h = s->orientation == VERTICAL ? s->h : s->w;
1641 
1642  scale_magnitudes(s, 1.f / (consumed / spf));
1643  plot_spectrum_column(inlink, fin);
1644  consumed = 0;
1645  x++;
1646  for (ch = 0; ch < s->nb_display_channels; ch++)
1647  memset(s->magnitudes[ch], 0, h * sizeof(float));
1648  }
1649  }
1650 
1651  av_frame_free(&fin);
1652  s->outpicref->pts = 0;
1653 
1654  if (s->legend)
1655  draw_legend(ctx, samples);
1656 
1657  ret = ff_filter_frame(outlink, s->outpicref);
1658  s->outpicref = NULL;
1659  }
1660 
1661  return ret;
1662 }
1663 
1664 static int showspectrumpic_filter_frame(AVFilterLink *inlink, AVFrame *insamples)
1665 {
1666  AVFilterContext *ctx = inlink->dst;
1667  ShowSpectrumContext *s = ctx->priv;
1668  int ret;
1669 
1670  ret = av_audio_fifo_write(s->fifo, (void **)insamples->extended_data, insamples->nb_samples);
1671  av_frame_free(&insamples);
1672  return ret;
1673 }
1674 
1675 static const AVFilterPad showspectrumpic_inputs[] = {
1676  {
1677  .name = "default",
1678  .type = AVMEDIA_TYPE_AUDIO,
1679  .filter_frame = showspectrumpic_filter_frame,
1680  },
1681  { NULL }
1682 };
1683 
1684 static const AVFilterPad showspectrumpic_outputs[] = {
1685  {
1686  .name = "default",
1687  .type = AVMEDIA_TYPE_VIDEO,
1688  .config_props = config_output,
1689  .request_frame = showspectrumpic_request_frame,
1690  },
1691  { NULL }
1692 };
1693 
1695  .name = "showspectrumpic",
1696  .description = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output single picture."),
1697  .uninit = uninit,
1698  .query_formats = query_formats,
1699  .priv_size = sizeof(ShowSpectrumContext),
1700  .inputs = showspectrumpic_inputs,
1701  .outputs = showspectrumpic_outputs,
1702  .priv_class = &showspectrumpic_class,
1704 };
1705 
1706 #endif // CONFIG_SHOWSPECTRUMPIC_FILTER
int plane
Definition: avisynth_c.h:384
float, planar
Definition: samplefmt.h:69
int ff_inlink_consume_frame(AVFilterLink *link, AVFrame **rframe)
Take a frame from the link&#39;s FIFO and update the link&#39;s stats.
Definition: avfilter.c:1481
#define NULL
Definition: coverity.c:32
AVAudioFifo * av_audio_fifo_alloc(enum AVSampleFormat sample_fmt, int channels, int nb_samples)
Allocate an AVAudioFifo.
Definition: audio_fifo.c:59
int size
#define av_realloc_f(p, o, n)
This structure describes decoded (raw) audio or video data.
Definition: frame.h:295
int av_parse_video_rate(AVRational *rate, const char *arg)
Parse str and store the detected values in *rate.
Definition: parseutils.c:179
AVOption.
Definition: opt.h:246
av_cold void av_fft_end(FFTContext *s)
Definition: avfft.c:48
float rotation
color rotation
static int plot_channel_log(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
Main libavfilter public API header.
const char * g
Definition: vf_curves.c:115
static float get_log_hz(const int bin, const int num_bins, const float sample_rate)
FFTComplex ** fft_data
bins holder for each (displayed) channels
static int plot_channel_lin(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define a0
Definition: regdef.h:46
static int draw_legend(AVFilterContext *ctx, int samples)
void av_audio_fifo_free(AVAudioFifo *af)
Free an AVAudioFifo.
Definition: audio_fifo.c:45
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
const char * b
Definition: vf_curves.c:116
#define FFERROR_NOT_READY
Filters implementation helper functions.
Definition: filters.h:34
#define a1
Definition: regdef.h:47
float * window_func_lut
Window function LUT.
FFTSample re
Definition: avfft.h:38
color_range
void av_fft_permute(FFTContext *s, FFTComplex *z)
Do the permutation needed BEFORE calling ff_fft_calc().
Definition: avfft.c:38
static void generate_window_func(float *lut, int N, int win_func, float *overlap)
Definition: window_func.h:36
int fft_bits
number of bits (FFT window size = 1<<fft_bits)
static int query_formats(AVFilterContext *ctx)
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:99
int sliding
1 if sliding mode, 0 otherwise
static void ff_outlink_set_status(AVFilterLink *link, int status, int64_t pts)
Set the status field of a link from the source filter.
Definition: filters.h:189
void ff_inlink_request_frame(AVFilterLink *link)
Mark that a frame is wanted on the link.
Definition: avfilter.c:1607
#define N
Definition: af_mcompand.c:54
static int ff_outlink_frame_wanted(AVFilterLink *link)
Test if a frame is wanted on an output link.
Definition: filters.h:172
int mode
channel display mode
#define log2(x)
Definition: libm.h:404
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
Definition: mem.c:244
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:283
DisplayScale
const char * name
Pad name.
Definition: internal.h:60
AVFilterLink ** inputs
array of pointers to input links
Definition: avfilter.h:346
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
int ff_channel_layouts_ref(AVFilterChannelLayouts *f, AVFilterChannelLayouts **ref)
Add *ref as a new reference to f.
Definition: formats.c:435
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1080
#define M(a, b)
Definition: vp3dsp.c:45
static void drawtext(AVFrame *pic, int x, int y, const char *txt, int o)
uint8_t
#define av_cold
Definition: attributes.h:82
float delta
static const AVOption showspectrum_options[]
AVOptions.
static int calc_channel_magnitudes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define f(width, name)
Definition: cbs_vp9.c:255
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
AVRational auto_frame_rate
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
Definition: frame.h:388
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:252
#define cosf(x)
Definition: libm.h:78
static AVFrame * frame
static int run_channel_fft(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static int calc_channel_phases(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
#define AVERROR_EOF
End of file.
Definition: error.h:55
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
#define lrintf(x)
Definition: libm_mips.h:70
#define max(a, b)
Definition: cuda_runtime.h:33
static char * get_time(AVFilterContext *ctx, float seconds, int x)
#define av_log(a,...)
SlideMode
#define cm
Definition: dvbsubdec.c:37
#define FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink)
Forward the status on an output link to an input link.
Definition: filters.h:199
A filter pad used for either input or output.
Definition: internal.h:54
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
Definition: mathematics.c:142
#define expf(x)
Definition: libm.h:283
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:259
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define PHASE(y, ch)
const uint8_t avpriv_cga_font[2048]
Definition: xga_font_data.c:29
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
Definition: audio.c:86
static const uint16_t mask[17]
Definition: lzw.c:38
#define S(s, c, i)
#define AVERROR(e)
Definition: error.h:43
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:202
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
float ** color_buffer
color buffer (3 * h * ch items)
void * priv
private data for use by the filter
Definition: avfilter.h:353
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: frame.h:539
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
Definition: avfilter.h:116
float saturation
color saturation multiplier
const char * arg
Definition: jacosubdec.c:66
float * combine_buffer
color combining buffer (3 * h items)
simple assert() macros that are a bit more flexible than ISO C assert().
FFTContext * av_fft_init(int nbits, int inverse)
Set up a complex FFT.
Definition: avfft.c:28
#define FFMAX(a, b)
Definition: common.h:94
#define powf(x, y)
Definition: libm.h:50
Context for an Audio FIFO Buffer.
Definition: audio_fifo.c:34
char * av_asprintf(const char *fmt,...)
Definition: avstring.c:113
int av_audio_fifo_size(AVAudioFifo *af)
Get the current number of samples in the AVAudioFifo available for reading.
Definition: audio_fifo.c:228
Definition: fft.h:88
audio channel layout utility functions
#define FFMIN(a, b)
Definition: common.h:96
int ff_formats_ref(AVFilterFormats *f, AVFilterFormats **ref)
Add *ref as a new reference to formats.
Definition: formats.c:440
#define M_PI_2
Definition: mathematics.h:55
AVFormatContext * ctx
Definition: movenc.c:48
ColorMode
static int activate(AVFilterContext *ctx)
Definition: af_adeclick.c:609
static void acalc_magnitudes(ShowSpectrumContext *s)
#define s(width, name)
Definition: cbs_vp9.c:257
#define FLAGS
static float get_value(AVFilterContext *ctx, int ch, int y)
int n
Definition: avisynth_c.h:760
#define MAGNITUDE(y, ch)
#define L(x)
Definition: vp56_arith.h:36
static const AVFilterPad inputs[]
Definition: af_acontrast.c:193
if(ret< 0)
Definition: vf_mcdeint.c:279
FrequencyScale
Definition: avf_showfreqs.c:41
AVFilterChannelLayouts * ff_all_channel_layouts(void)
Construct an empty AVFilterChannelLayouts/AVFilterFormats struct – representing any channel layout (...
Definition: formats.c:401
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
Definition: frame.c:540
static const AVFilterPad outputs[]
Definition: af_acontrast.c:203
#define FF_ARRAY_ELEMS(a)
FFTContext ** ifft
Inverse Fast Fourier Transform context.
the normal 2^n-1 "JPEG" YUV ranges
Definition: pixfmt.h:522
A list of supported channel layouts.
Definition: formats.h:85
void av_get_channel_layout_string(char *buf, int buf_size, int nb_channels, uint64_t channel_layout)
Return a description of a channel layout.
static float bin_pos(const int bin, const int num_bins, const float sample_rate)
Orientation
#define sinf(x)
Definition: libm.h:419
sample_rate
static int config_output(AVFilterLink *outlink)
static void color_range(ShowSpectrumContext *s, int ch, float *yf, float *uf, float *vf)
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
static const struct ColorTable color_table[][8]
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:326
AVFilter ff_avf_showspectrum
static AVRational av_make_q(int num, int den)
Create an AVRational.
Definition: rational.h:71
FFT functions.
AVRational sample_aspect_ratio
Sample aspect ratio for the video frame, 0/1 if unknown/unspecified.
Definition: frame.h:383
static av_always_inline float cbrtf(float x)
Definition: libm.h:61
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
Definition: error.h:50
double value
Definition: eval.c:98
Describe the class of an AVClass context structure.
Definition: log.h:67
Filter definition.
Definition: avfilter.h:144
int ff_outlink_get_status(AVFilterLink *link)
Get the status on an output link.
Definition: avfilter.c:1630
AVFILTER_DEFINE_CLASS(showspectrum)
Rational number (pair of numerator and denominator).
Definition: rational.h:58
const char * name
Filter name.
Definition: avfilter.h:148
offset must point to two consecutive integers
Definition: opt.h:233
DataMode
misc parsing utilities
AVFilterLink ** outputs
array of pointers to output links
Definition: avfilter.h:350
enum MovChannelLayoutTag * layouts
Definition: mov_chan.c:434
#define FF_FILTER_FORWARD_STATUS(inlink, outlink)
Acknowledge the status on an input link and forward it to an output link.
Definition: filters.h:226
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:275
AVFilterFormats * ff_all_samplerates(void)
Definition: formats.c:395
int av_frame_make_writable(AVFrame *frame)
Ensure that the frame data is writable, avoiding data copy if possible.
Definition: frame.c:611
#define flags(name, subs,...)
Definition: cbs_av1.c:561
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
Definition: avfilter.h:378
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:309
int av_audio_fifo_write(AVAudioFifo *af, void **data, int nb_samples)
Write data to an AVAudioFifo.
Definition: audio_fifo.c:112
static av_cold void uninit(AVFilterContext *ctx)
int av_audio_fifo_drain(AVAudioFifo *af, int nb_samples)
Drain data from an AVAudioFifo.
Definition: audio_fifo.c:201
static av_always_inline AVRational av_inv_q(AVRational q)
Invert a rational.
Definition: rational.h:159
static int plot_spectrum_column(AVFilterLink *inlink, AVFrame *insamples)
int
FFTSample im
Definition: avfft.h:38
static double c[64]
channel
Use these values when setting the channel map with ebur128_set_channel().
Definition: ebur128.h:39
FFTContext ** fft
Fast Fourier Transform context.
void ff_filter_set_ready(AVFilterContext *filter, unsigned priority)
Mark a filter ready and schedule it for activation.
Definition: avfilter.c:193
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:80
int den
Denominator.
Definition: rational.h:60
avfilter_execute_func * execute
Definition: internal.h:155
#define av_free(p)
Audio FIFO Buffer.
int(* plot_channel)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
A list of supported formats for one end of a filter link.
Definition: formats.h:64
int av_audio_fifo_peek(AVAudioFifo *af, void **data, int nb_samples)
Peek data from an AVAudioFifo.
Definition: audio_fifo.c:138
AVFilter ff_avf_showspectrumpic
An instance of a filter.
Definition: avfilter.h:338
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:701
#define OFFSET(x)
FILE * out
Definition: movenc.c:54
#define av_freep(p)
#define M_PI
Definition: mathematics.h:52
static float log_scale(const float value, const float min, const float max)
static void scale_magnitudes(ShowSpectrumContext *s, float scale)
#define log10f(x)
Definition: libm.h:414
int ff_request_frame(AVFilterLink *link)
Request an input frame from the filter at the other end of the link.
Definition: avfilter.c:407
formats
Definition: signature.h:48
static void pick_color(ShowSpectrumContext *s, float yf, float uf, float vf, float a, float *out)
internal API functions
uint8_t ** extended_data
pointers to the data planes/channels.
Definition: frame.h:342
int xpos
x position (current column)
float min
void av_fft_calc(FFTContext *s, FFTComplex *z)
Do a complex FFT with the parameters defined in av_fft_init().
Definition: avfft.c:43
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
static void clear_combine_buffer(ShowSpectrumContext *s, int size)
static float inv_log_scale(const float value, const float min, const float max)
mode
Use these values in ebur128_init (or&#39;ed).
Definition: ebur128.h:83
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:361
const AVFilter * filter
the AVFilter of which this is an instance
Definition: avfilter.h:341
for(j=16;j >0;--j)
FFTComplex ** fft_scratch
scratch buffers
CGA/EGA/VGA ROM font data.
int color_mode
display color scheme
DisplayMode