FFmpeg  4.2.1
adpcm.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2001-2003 The FFmpeg project
3  *
4  * first version by Francois Revol (revol@free.fr)
5  * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
6  * by Mike Melanson (melanson@pcisys.net)
7  * CD-ROM XA ADPCM codec by BERO
8  * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
9  * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
10  * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
11  * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
12  * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
13  * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
14  * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
15  *
16  * This file is part of FFmpeg.
17  *
18  * FFmpeg is free software; you can redistribute it and/or
19  * modify it under the terms of the GNU Lesser General Public
20  * License as published by the Free Software Foundation; either
21  * version 2.1 of the License, or (at your option) any later version.
22  *
23  * FFmpeg is distributed in the hope that it will be useful,
24  * but WITHOUT ANY WARRANTY; without even the implied warranty of
25  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
26  * Lesser General Public License for more details.
27  *
28  * You should have received a copy of the GNU Lesser General Public
29  * License along with FFmpeg; if not, write to the Free Software
30  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
31  */
32 #include "avcodec.h"
33 #include "get_bits.h"
34 #include "bytestream.h"
35 #include "adpcm.h"
36 #include "adpcm_data.h"
37 #include "internal.h"
38 
39 /**
40  * @file
41  * ADPCM decoders
42  * Features and limitations:
43  *
44  * Reference documents:
45  * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
46  * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
47  * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
48  * http://openquicktime.sourceforge.net/
49  * XAnim sources (xa_codec.c) http://xanim.polter.net/
50  * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
51  * SoX source code http://sox.sourceforge.net/
52  *
53  * CD-ROM XA:
54  * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
55  * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
56  * readstr http://www.geocities.co.jp/Playtown/2004/
57  */
58 
59 /* These are for CD-ROM XA ADPCM */
60 static const int8_t xa_adpcm_table[5][2] = {
61  { 0, 0 },
62  { 60, 0 },
63  { 115, -52 },
64  { 98, -55 },
65  { 122, -60 }
66 };
67 
68 static const int16_t ea_adpcm_table[] = {
69  0, 240, 460, 392,
70  0, 0, -208, -220,
71  0, 1, 3, 4,
72  7, 8, 10, 11,
73  0, -1, -3, -4
74 };
75 
76 // padded to zero where table size is less then 16
77 static const int8_t swf_index_tables[4][16] = {
78  /*2*/ { -1, 2 },
79  /*3*/ { -1, -1, 2, 4 },
80  /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
81  /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
82 };
83 
84 /* end of tables */
85 
86 typedef struct ADPCMDecodeContext {
88  int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */
91 
93 {
94  ADPCMDecodeContext *c = avctx->priv_data;
95  unsigned int min_channels = 1;
96  unsigned int max_channels = 2;
97 
98  switch(avctx->codec->id) {
101  min_channels = 2;
102  break;
108  max_channels = 6;
109  break;
111  min_channels = 2;
112  max_channels = 8;
113  break;
115  max_channels = 8;
116  break;
120  max_channels = 14;
121  break;
122  }
123  if (avctx->channels < min_channels || avctx->channels > max_channels) {
124  av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
125  return AVERROR(EINVAL);
126  }
127 
128  switch(avctx->codec->id) {
130  c->status[0].step = c->status[1].step = 511;
131  break;
133  if (avctx->bits_per_coded_sample < 2 || avctx->bits_per_coded_sample > 5)
134  return AVERROR_INVALIDDATA;
135  break;
137  if (avctx->extradata && avctx->extradata_size >= 8) {
138  c->status[0].predictor = AV_RL32(avctx->extradata);
139  c->status[1].predictor = AV_RL32(avctx->extradata + 4);
140  }
141  break;
143  if (avctx->extradata && avctx->extradata_size >= 2)
144  c->vqa_version = AV_RL16(avctx->extradata);
145  break;
146  default:
147  break;
148  }
149 
150  switch(avctx->codec->id) {
168  break;
170  avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P :
172  break;
173  default:
174  avctx->sample_fmt = AV_SAMPLE_FMT_S16;
175  }
176 
177  return 0;
178 }
179 
180 static inline int16_t adpcm_agm_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
181 {
182  int delta, pred, step, add;
183 
184  pred = c->predictor;
185  delta = nibble & 7;
186  step = c->step;
187  add = (delta * 2 + 1) * step;
188  if (add < 0)
189  add = add + 7;
190 
191  if ((nibble & 8) == 0)
192  pred = av_clip(pred + (add >> 3), -32767, 32767);
193  else
194  pred = av_clip(pred - (add >> 3), -32767, 32767);
195 
196  switch (delta) {
197  case 7:
198  step *= 0x99;
199  break;
200  case 6:
201  c->step = av_clip(c->step * 2, 127, 24576);
202  c->predictor = pred;
203  return pred;
204  case 5:
205  step *= 0x66;
206  break;
207  case 4:
208  step *= 0x4d;
209  break;
210  default:
211  step *= 0x39;
212  break;
213  }
214 
215  if (step < 0)
216  step += 0x3f;
217 
218  c->step = step >> 6;
219  c->step = av_clip(c->step, 127, 24576);
220  c->predictor = pred;
221  return pred;
222 }
223 
224 static inline int16_t adpcm_ima_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift)
225 {
226  int step_index;
227  int predictor;
228  int sign, delta, diff, step;
229 
230  step = ff_adpcm_step_table[c->step_index];
231  step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
232  step_index = av_clip(step_index, 0, 88);
233 
234  sign = nibble & 8;
235  delta = nibble & 7;
236  /* perform direct multiplication instead of series of jumps proposed by
237  * the reference ADPCM implementation since modern CPUs can do the mults
238  * quickly enough */
239  diff = ((2 * delta + 1) * step) >> shift;
240  predictor = c->predictor;
241  if (sign) predictor -= diff;
242  else predictor += diff;
243 
244  c->predictor = av_clip_int16(predictor);
245  c->step_index = step_index;
246 
247  return (int16_t)c->predictor;
248 }
249 
251 {
252  int nibble, step_index, predictor, sign, delta, diff, step, shift;
253 
254  shift = bps - 1;
255  nibble = get_bits_le(gb, bps),
256  step = ff_adpcm_step_table[c->step_index];
257  step_index = c->step_index + ff_adpcm_index_tables[bps - 2][nibble];
258  step_index = av_clip(step_index, 0, 88);
259 
260  sign = nibble & (1 << shift);
261  delta = av_mod_uintp2(nibble, shift);
262  diff = ((2 * delta + 1) * step) >> shift;
263  predictor = c->predictor;
264  if (sign) predictor -= diff;
265  else predictor += diff;
266 
267  c->predictor = av_clip_int16(predictor);
268  c->step_index = step_index;
269 
270  return (int16_t)c->predictor;
271 }
272 
273 static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
274 {
275  int step_index;
276  int predictor;
277  int diff, step;
278 
279  step = ff_adpcm_step_table[c->step_index];
280  step_index = c->step_index + ff_adpcm_index_table[nibble];
281  step_index = av_clip(step_index, 0, 88);
282 
283  diff = step >> 3;
284  if (nibble & 4) diff += step;
285  if (nibble & 2) diff += step >> 1;
286  if (nibble & 1) diff += step >> 2;
287 
288  if (nibble & 8)
289  predictor = c->predictor - diff;
290  else
291  predictor = c->predictor + diff;
292 
293  c->predictor = av_clip_int16(predictor);
294  c->step_index = step_index;
295 
296  return c->predictor;
297 }
298 
299 static inline int16_t adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
300 {
301  int predictor;
302 
303  predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
304  predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
305 
306  c->sample2 = c->sample1;
307  c->sample1 = av_clip_int16(predictor);
308  c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
309  if (c->idelta < 16) c->idelta = 16;
310  if (c->idelta > INT_MAX/768) {
311  av_log(NULL, AV_LOG_WARNING, "idelta overflow\n");
312  c->idelta = INT_MAX/768;
313  }
314 
315  return c->sample1;
316 }
317 
318 static inline int16_t adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
319 {
320  int step_index, predictor, sign, delta, diff, step;
321 
323  step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
324  step_index = av_clip(step_index, 0, 48);
325 
326  sign = nibble & 8;
327  delta = nibble & 7;
328  diff = ((2 * delta + 1) * step) >> 3;
329  predictor = c->predictor;
330  if (sign) predictor -= diff;
331  else predictor += diff;
332 
333  c->predictor = av_clip_intp2(predictor, 11);
334  c->step_index = step_index;
335 
336  return c->predictor << 4;
337 }
338 
339 static inline int16_t adpcm_ct_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
340 {
341  int sign, delta, diff;
342  int new_step;
343 
344  sign = nibble & 8;
345  delta = nibble & 7;
346  /* perform direct multiplication instead of series of jumps proposed by
347  * the reference ADPCM implementation since modern CPUs can do the mults
348  * quickly enough */
349  diff = ((2 * delta + 1) * c->step) >> 3;
350  /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
351  c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
352  c->predictor = av_clip_int16(c->predictor);
353  /* calculate new step and clamp it to range 511..32767 */
354  new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
355  c->step = av_clip(new_step, 511, 32767);
356 
357  return (int16_t)c->predictor;
358 }
359 
360 static inline int16_t adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int size, int shift)
361 {
362  int sign, delta, diff;
363 
364  sign = nibble & (1<<(size-1));
365  delta = nibble & ((1<<(size-1))-1);
366  diff = delta << (7 + c->step + shift);
367 
368  /* clamp result */
369  c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
370 
371  /* calculate new step */
372  if (delta >= (2*size - 3) && c->step < 3)
373  c->step++;
374  else if (delta == 0 && c->step > 0)
375  c->step--;
376 
377  return (int16_t) c->predictor;
378 }
379 
381 {
382  if(!c->step) {
383  c->predictor = 0;
384  c->step = 127;
385  }
386 
387  c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
388  c->predictor = av_clip_int16(c->predictor);
389  c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
390  c->step = av_clip(c->step, 127, 24576);
391  return c->predictor;
392 }
393 
394 static inline int16_t adpcm_mtaf_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
395 {
396  c->predictor += ff_adpcm_mtaf_stepsize[c->step][nibble];
397  c->predictor = av_clip_int16(c->predictor);
398  c->step += ff_adpcm_index_table[nibble];
399  c->step = av_clip_uintp2(c->step, 5);
400  return c->predictor;
401 }
402 
403 static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1,
404  const uint8_t *in, ADPCMChannelStatus *left,
405  ADPCMChannelStatus *right, int channels, int sample_offset)
406 {
407  int i, j;
408  int shift,filter,f0,f1;
409  int s_1,s_2;
410  int d,s,t;
411 
412  out0 += sample_offset;
413  if (channels == 1)
414  out1 = out0 + 28;
415  else
416  out1 += sample_offset;
417 
418  for(i=0;i<4;i++) {
419  shift = 12 - (in[4+i*2] & 15);
420  filter = in[4+i*2] >> 4;
421  if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
422  avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
423  filter=0;
424  }
425  f0 = xa_adpcm_table[filter][0];
426  f1 = xa_adpcm_table[filter][1];
427 
428  s_1 = left->sample1;
429  s_2 = left->sample2;
430 
431  for(j=0;j<28;j++) {
432  d = in[16+i+j*4];
433 
434  t = sign_extend(d, 4);
435  s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
436  s_2 = s_1;
437  s_1 = av_clip_int16(s);
438  out0[j] = s_1;
439  }
440 
441  if (channels == 2) {
442  left->sample1 = s_1;
443  left->sample2 = s_2;
444  s_1 = right->sample1;
445  s_2 = right->sample2;
446  }
447 
448  shift = 12 - (in[5+i*2] & 15);
449  filter = in[5+i*2] >> 4;
450  if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
451  avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
452  filter=0;
453  }
454 
455  f0 = xa_adpcm_table[filter][0];
456  f1 = xa_adpcm_table[filter][1];
457 
458  for(j=0;j<28;j++) {
459  d = in[16+i+j*4];
460 
461  t = sign_extend(d >> 4, 4);
462  s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
463  s_2 = s_1;
464  s_1 = av_clip_int16(s);
465  out1[j] = s_1;
466  }
467 
468  if (channels == 2) {
469  right->sample1 = s_1;
470  right->sample2 = s_2;
471  } else {
472  left->sample1 = s_1;
473  left->sample2 = s_2;
474  }
475 
476  out0 += 28 * (3 - channels);
477  out1 += 28 * (3 - channels);
478  }
479 
480  return 0;
481 }
482 
483 static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
484 {
485  ADPCMDecodeContext *c = avctx->priv_data;
486  GetBitContext gb;
487  const int8_t *table;
488  int k0, signmask, nb_bits, count;
489  int size = buf_size*8;
490  int i;
491 
492  init_get_bits(&gb, buf, size);
493 
494  //read bits & initial values
495  nb_bits = get_bits(&gb, 2)+2;
496  table = swf_index_tables[nb_bits-2];
497  k0 = 1 << (nb_bits-2);
498  signmask = 1 << (nb_bits-1);
499 
500  while (get_bits_count(&gb) <= size - 22*avctx->channels) {
501  for (i = 0; i < avctx->channels; i++) {
502  *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
503  c->status[i].step_index = get_bits(&gb, 6);
504  }
505 
506  for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
507  int i;
508 
509  for (i = 0; i < avctx->channels; i++) {
510  // similar to IMA adpcm
511  int delta = get_bits(&gb, nb_bits);
512  int step = ff_adpcm_step_table[c->status[i].step_index];
513  int vpdiff = 0; // vpdiff = (delta+0.5)*step/4
514  int k = k0;
515 
516  do {
517  if (delta & k)
518  vpdiff += step;
519  step >>= 1;
520  k >>= 1;
521  } while(k);
522  vpdiff += step;
523 
524  if (delta & signmask)
525  c->status[i].predictor -= vpdiff;
526  else
527  c->status[i].predictor += vpdiff;
528 
529  c->status[i].step_index += table[delta & (~signmask)];
530 
531  c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
532  c->status[i].predictor = av_clip_int16(c->status[i].predictor);
533 
534  *samples++ = c->status[i].predictor;
535  }
536  }
537  }
538 }
539 
540 /**
541  * Get the number of samples that will be decoded from the packet.
542  * In one case, this is actually the maximum number of samples possible to
543  * decode with the given buf_size.
544  *
545  * @param[out] coded_samples set to the number of samples as coded in the
546  * packet, or 0 if the codec does not encode the
547  * number of samples in each frame.
548  * @param[out] approx_nb_samples set to non-zero if the number of samples
549  * returned is an approximation.
550  */
552  int buf_size, int *coded_samples, int *approx_nb_samples)
553 {
554  ADPCMDecodeContext *s = avctx->priv_data;
555  int nb_samples = 0;
556  int ch = avctx->channels;
557  int has_coded_samples = 0;
558  int header_size;
559 
560  *coded_samples = 0;
561  *approx_nb_samples = 0;
562 
563  if(ch <= 0)
564  return 0;
565 
566  switch (avctx->codec->id) {
567  /* constant, only check buf_size */
569  if (buf_size < 76 * ch)
570  return 0;
571  nb_samples = 128;
572  break;
574  if (buf_size < 34 * ch)
575  return 0;
576  nb_samples = 64;
577  break;
578  /* simple 4-bit adpcm */
586  nb_samples = buf_size * 2 / ch;
587  break;
588  }
589  if (nb_samples)
590  return nb_samples;
591 
592  /* simple 4-bit adpcm, with header */
593  header_size = 0;
594  switch (avctx->codec->id) {
598  case AV_CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
599  case AV_CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
600  case AV_CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4 * ch; break;
601  }
602  if (header_size > 0)
603  return (buf_size - header_size) * 2 / ch;
604 
605  /* more complex formats */
606  switch (avctx->codec->id) {
608  has_coded_samples = 1;
609  *coded_samples = bytestream2_get_le32(gb);
610  *coded_samples -= *coded_samples % 28;
611  nb_samples = (buf_size - 12) / 30 * 28;
612  break;
614  has_coded_samples = 1;
615  *coded_samples = bytestream2_get_le32(gb);
616  nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
617  break;
619  nb_samples = (buf_size - ch) / ch * 2;
620  break;
624  /* maximum number of samples */
625  /* has internal offsets and a per-frame switch to signal raw 16-bit */
626  has_coded_samples = 1;
627  switch (avctx->codec->id) {
629  header_size = 4 + 9 * ch;
630  *coded_samples = bytestream2_get_le32(gb);
631  break;
633  header_size = 4 + 5 * ch;
634  *coded_samples = bytestream2_get_le32(gb);
635  break;
637  header_size = 4 + 5 * ch;
638  *coded_samples = bytestream2_get_be32(gb);
639  break;
640  }
641  *coded_samples -= *coded_samples % 28;
642  nb_samples = (buf_size - header_size) * 2 / ch;
643  nb_samples -= nb_samples % 28;
644  *approx_nb_samples = 1;
645  break;
647  if (avctx->block_align > 0)
648  buf_size = FFMIN(buf_size, avctx->block_align);
649  nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
650  break;
652  if (avctx->block_align > 0)
653  buf_size = FFMIN(buf_size, avctx->block_align);
654  if (buf_size < 4 * ch)
655  return AVERROR_INVALIDDATA;
656  nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
657  break;
659  if (avctx->block_align > 0)
660  buf_size = FFMIN(buf_size, avctx->block_align);
661  nb_samples = (buf_size - 4 * ch) * 2 / ch;
662  break;
664  {
665  int bsize = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
666  int bsamples = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
667  if (avctx->block_align > 0)
668  buf_size = FFMIN(buf_size, avctx->block_align);
669  if (buf_size < 4 * ch)
670  return AVERROR_INVALIDDATA;
671  nb_samples = 1 + (buf_size - 4 * ch) / (bsize * ch) * bsamples;
672  break;
673  }
675  if (avctx->block_align > 0)
676  buf_size = FFMIN(buf_size, avctx->block_align);
677  nb_samples = (buf_size - 6 * ch) * 2 / ch;
678  break;
680  if (avctx->block_align > 0)
681  buf_size = FFMIN(buf_size, avctx->block_align);
682  nb_samples = (buf_size - 16 * (ch / 2)) * 2 / ch;
683  break;
687  {
688  int samples_per_byte;
689  switch (avctx->codec->id) {
690  case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
691  case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
692  case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
693  }
694  if (!s->status[0].step_index) {
695  if (buf_size < ch)
696  return AVERROR_INVALIDDATA;
697  nb_samples++;
698  buf_size -= ch;
699  }
700  nb_samples += buf_size * samples_per_byte / ch;
701  break;
702  }
704  {
705  int buf_bits = buf_size * 8 - 2;
706  int nbits = (bytestream2_get_byte(gb) >> 6) + 2;
707  int block_hdr_size = 22 * ch;
708  int block_size = block_hdr_size + nbits * ch * 4095;
709  int nblocks = buf_bits / block_size;
710  int bits_left = buf_bits - nblocks * block_size;
711  nb_samples = nblocks * 4096;
712  if (bits_left >= block_hdr_size)
713  nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
714  break;
715  }
718  if (avctx->extradata) {
719  nb_samples = buf_size * 14 / (8 * ch);
720  break;
721  }
722  has_coded_samples = 1;
723  bytestream2_skip(gb, 4); // channel size
724  *coded_samples = (avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE) ?
725  bytestream2_get_le32(gb) :
726  bytestream2_get_be32(gb);
727  buf_size -= 8 + 36 * ch;
728  buf_size /= ch;
729  nb_samples = buf_size / 8 * 14;
730  if (buf_size % 8 > 1)
731  nb_samples += (buf_size % 8 - 1) * 2;
732  *approx_nb_samples = 1;
733  break;
735  nb_samples = buf_size / (9 * ch) * 16;
736  break;
738  nb_samples = (buf_size / 128) * 224 / ch;
739  break;
742  nb_samples = buf_size / (16 * ch) * 28;
743  break;
744  }
745 
746  /* validate coded sample count */
747  if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
748  return AVERROR_INVALIDDATA;
749 
750  return nb_samples;
751 }
752 
753 static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
754  int *got_frame_ptr, AVPacket *avpkt)
755 {
756  AVFrame *frame = data;
757  const uint8_t *buf = avpkt->data;
758  int buf_size = avpkt->size;
759  ADPCMDecodeContext *c = avctx->priv_data;
760  ADPCMChannelStatus *cs;
761  int n, m, channel, i;
762  int16_t *samples;
763  int16_t **samples_p;
764  int st; /* stereo */
765  int count1, count2;
766  int nb_samples, coded_samples, approx_nb_samples, ret;
767  GetByteContext gb;
768 
769  bytestream2_init(&gb, buf, buf_size);
770  nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples, &approx_nb_samples);
771  if (nb_samples <= 0) {
772  av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
773  return AVERROR_INVALIDDATA;
774  }
775 
776  /* get output buffer */
777  frame->nb_samples = nb_samples;
778  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
779  return ret;
780  samples = (int16_t *)frame->data[0];
781  samples_p = (int16_t **)frame->extended_data;
782 
783  /* use coded_samples when applicable */
784  /* it is always <= nb_samples, so the output buffer will be large enough */
785  if (coded_samples) {
786  if (!approx_nb_samples && coded_samples != nb_samples)
787  av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
788  frame->nb_samples = nb_samples = coded_samples;
789  }
790 
791  st = avctx->channels == 2 ? 1 : 0;
792 
793  switch(avctx->codec->id) {
795  /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
796  Channel data is interleaved per-chunk. */
797  for (channel = 0; channel < avctx->channels; channel++) {
798  int predictor;
799  int step_index;
800  cs = &(c->status[channel]);
801  /* (pppppp) (piiiiiii) */
802 
803  /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
804  predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
805  step_index = predictor & 0x7F;
806  predictor &= ~0x7F;
807 
808  if (cs->step_index == step_index) {
809  int diff = predictor - cs->predictor;
810  if (diff < 0)
811  diff = - diff;
812  if (diff > 0x7f)
813  goto update;
814  } else {
815  update:
816  cs->step_index = step_index;
817  cs->predictor = predictor;
818  }
819 
820  if (cs->step_index > 88u){
821  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
822  channel, cs->step_index);
823  return AVERROR_INVALIDDATA;
824  }
825 
826  samples = samples_p[channel];
827 
828  for (m = 0; m < 64; m += 2) {
829  int byte = bytestream2_get_byteu(&gb);
830  samples[m ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3);
831  samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4 , 3);
832  }
833  }
834  break;
836  for(i=0; i<avctx->channels; i++){
837  cs = &(c->status[i]);
838  cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16);
839 
840  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
841  if (cs->step_index > 88u){
842  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
843  i, cs->step_index);
844  return AVERROR_INVALIDDATA;
845  }
846  }
847 
848  if (avctx->bits_per_coded_sample != 4) {
849  int samples_per_block = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
850  int block_size = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
853 
854  for (n = 0; n < (nb_samples - 1) / samples_per_block; n++) {
855  for (i = 0; i < avctx->channels; i++) {
856  int j;
857 
858  cs = &c->status[i];
859  samples = &samples_p[i][1 + n * samples_per_block];
860  for (j = 0; j < block_size; j++) {
861  temp[j] = buf[4 * avctx->channels + block_size * n * avctx->channels +
862  (j % 4) + (j / 4) * (avctx->channels * 4) + i * 4];
863  }
864  ret = init_get_bits8(&g, (const uint8_t *)&temp, block_size);
865  if (ret < 0)
866  return ret;
867  for (m = 0; m < samples_per_block; m++) {
868  samples[m] = adpcm_ima_wav_expand_nibble(cs, &g,
869  avctx->bits_per_coded_sample);
870  }
871  }
872  }
873  bytestream2_skip(&gb, avctx->block_align - avctx->channels * 4);
874  } else {
875  for (n = 0; n < (nb_samples - 1) / 8; n++) {
876  for (i = 0; i < avctx->channels; i++) {
877  cs = &c->status[i];
878  samples = &samples_p[i][1 + n * 8];
879  for (m = 0; m < 8; m += 2) {
880  int v = bytestream2_get_byteu(&gb);
881  samples[m ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
882  samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
883  }
884  }
885  }
886  }
887  break;
889  for (i = 0; i < avctx->channels; i++)
890  c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
891 
892  for (i = 0; i < avctx->channels; i++) {
893  c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
894  if (c->status[i].step_index > 88u) {
895  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
896  i, c->status[i].step_index);
897  return AVERROR_INVALIDDATA;
898  }
899  }
900 
901  for (i = 0; i < avctx->channels; i++) {
902  samples = (int16_t *)frame->data[i];
903  cs = &c->status[i];
904  for (n = nb_samples >> 1; n > 0; n--) {
905  int v = bytestream2_get_byteu(&gb);
906  *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
907  *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
908  }
909  }
910  break;
912  for (i = 0; i < avctx->channels; i++)
913  c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
914  for (i = 0; i < avctx->channels; i++)
915  c->status[i].step = sign_extend(bytestream2_get_le16u(&gb), 16);
916 
917  for (n = 0; n < nb_samples >> (1 - st); n++) {
918  int v = bytestream2_get_byteu(&gb);
919  *samples++ = adpcm_agm_expand_nibble(&c->status[0], v & 0xF);
920  *samples++ = adpcm_agm_expand_nibble(&c->status[st], v >> 4 );
921  }
922  break;
924  {
925  int block_predictor;
926 
927  block_predictor = bytestream2_get_byteu(&gb);
928  if (block_predictor > 6) {
929  av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
930  block_predictor);
931  return AVERROR_INVALIDDATA;
932  }
933  c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
934  c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
935  if (st) {
936  block_predictor = bytestream2_get_byteu(&gb);
937  if (block_predictor > 6) {
938  av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
939  block_predictor);
940  return AVERROR_INVALIDDATA;
941  }
942  c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
943  c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
944  }
945  c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
946  if (st){
947  c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
948  }
949 
950  c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
951  if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
952  c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
953  if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
954 
955  *samples++ = c->status[0].sample2;
956  if (st) *samples++ = c->status[1].sample2;
957  *samples++ = c->status[0].sample1;
958  if (st) *samples++ = c->status[1].sample1;
959  for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
960  int byte = bytestream2_get_byteu(&gb);
961  *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 );
962  *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
963  }
964  break;
965  }
967  for (channel = 0; channel < avctx->channels; channel+=2) {
968  bytestream2_skipu(&gb, 4);
969  c->status[channel ].step = bytestream2_get_le16u(&gb) & 0x1f;
970  c->status[channel + 1].step = bytestream2_get_le16u(&gb) & 0x1f;
971  c->status[channel ].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
972  bytestream2_skipu(&gb, 2);
973  c->status[channel + 1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
974  bytestream2_skipu(&gb, 2);
975  for (n = 0; n < nb_samples; n+=2) {
976  int v = bytestream2_get_byteu(&gb);
977  samples_p[channel][n ] = adpcm_mtaf_expand_nibble(&c->status[channel], v & 0x0F);
978  samples_p[channel][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel], v >> 4 );
979  }
980  for (n = 0; n < nb_samples; n+=2) {
981  int v = bytestream2_get_byteu(&gb);
982  samples_p[channel + 1][n ] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v & 0x0F);
983  samples_p[channel + 1][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v >> 4 );
984  }
985  }
986  break;
988  for (channel = 0; channel < avctx->channels; channel++) {
989  cs = &c->status[channel];
990  cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
991  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
992  if (cs->step_index > 88u){
993  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
994  channel, cs->step_index);
995  return AVERROR_INVALIDDATA;
996  }
997  }
998  for (n = (nb_samples - 1) >> (1 - st); n > 0; n--) {
999  int v = bytestream2_get_byteu(&gb);
1000  *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
1001  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
1002  }
1003  break;
1005  {
1006  int last_byte = 0;
1007  int nibble;
1008  int decode_top_nibble_next = 0;
1009  int diff_channel;
1010  const int16_t *samples_end = samples + avctx->channels * nb_samples;
1011 
1012  bytestream2_skipu(&gb, 10);
1013  c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1014  c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1015  c->status[0].step_index = bytestream2_get_byteu(&gb);
1016  c->status[1].step_index = bytestream2_get_byteu(&gb);
1017  if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
1018  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
1019  c->status[0].step_index, c->status[1].step_index);
1020  return AVERROR_INVALIDDATA;
1021  }
1022  /* sign extend the predictors */
1023  diff_channel = c->status[1].predictor;
1024 
1025  /* DK3 ADPCM support macro */
1026 #define DK3_GET_NEXT_NIBBLE() \
1027  if (decode_top_nibble_next) { \
1028  nibble = last_byte >> 4; \
1029  decode_top_nibble_next = 0; \
1030  } else { \
1031  last_byte = bytestream2_get_byteu(&gb); \
1032  nibble = last_byte & 0x0F; \
1033  decode_top_nibble_next = 1; \
1034  }
1035 
1036  while (samples < samples_end) {
1037 
1038  /* for this algorithm, c->status[0] is the sum channel and
1039  * c->status[1] is the diff channel */
1040 
1041  /* process the first predictor of the sum channel */
1043  adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1044 
1045  /* process the diff channel predictor */
1047  adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1048 
1049  /* process the first pair of stereo PCM samples */
1050  diff_channel = (diff_channel + c->status[1].predictor) / 2;
1051  *samples++ = c->status[0].predictor + c->status[1].predictor;
1052  *samples++ = c->status[0].predictor - c->status[1].predictor;
1053 
1054  /* process the second predictor of the sum channel */
1056  adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1057 
1058  /* process the second pair of stereo PCM samples */
1059  diff_channel = (diff_channel + c->status[1].predictor) / 2;
1060  *samples++ = c->status[0].predictor + c->status[1].predictor;
1061  *samples++ = c->status[0].predictor - c->status[1].predictor;
1062  }
1063 
1064  if ((bytestream2_tell(&gb) & 1))
1065  bytestream2_skip(&gb, 1);
1066  break;
1067  }
1069  for (channel = 0; channel < avctx->channels; channel++) {
1070  cs = &c->status[channel];
1071  cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1072  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1073  if (cs->step_index > 88u){
1074  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1075  channel, cs->step_index);
1076  return AVERROR_INVALIDDATA;
1077  }
1078  }
1079 
1080  for (n = nb_samples >> (1 - st); n > 0; n--) {
1081  int v1, v2;
1082  int v = bytestream2_get_byteu(&gb);
1083  /* nibbles are swapped for mono */
1084  if (st) {
1085  v1 = v >> 4;
1086  v2 = v & 0x0F;
1087  } else {
1088  v2 = v >> 4;
1089  v1 = v & 0x0F;
1090  }
1091  *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
1092  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
1093  }
1094  break;
1096  for (channel = 0; channel < avctx->channels; channel++) {
1097  cs = &c->status[channel];
1098  samples = samples_p[channel];
1099  bytestream2_skip(&gb, 4);
1100  for (n = 0; n < nb_samples; n += 2) {
1101  int v = bytestream2_get_byteu(&gb);
1102  *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
1103  *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
1104  }
1105  }
1106  break;
1108  while (bytestream2_get_bytes_left(&gb) > 0) {
1109  int v = bytestream2_get_byteu(&gb);
1110  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
1111  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
1112  }
1113  break;
1115  while (bytestream2_get_bytes_left(&gb) > 0) {
1116  int v = bytestream2_get_byteu(&gb);
1117  *samples++ = adpcm_ima_oki_expand_nibble(&c->status[0], v >> 4 );
1118  *samples++ = adpcm_ima_oki_expand_nibble(&c->status[st], v & 0x0F);
1119  }
1120  break;
1122  for (channel = 0; channel < avctx->channels; channel++) {
1123  cs = &c->status[channel];
1124  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1125  cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1126  if (cs->step_index > 88u){
1127  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1128  channel, cs->step_index);
1129  return AVERROR_INVALIDDATA;
1130  }
1131  }
1132  for (n = 0; n < nb_samples / 2; n++) {
1133  int byte[2];
1134 
1135  byte[0] = bytestream2_get_byteu(&gb);
1136  if (st)
1137  byte[1] = bytestream2_get_byteu(&gb);
1138  for(channel = 0; channel < avctx->channels; channel++) {
1139  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] & 0x0F, 3);
1140  }
1141  for(channel = 0; channel < avctx->channels; channel++) {
1142  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] >> 4 , 3);
1143  }
1144  }
1145  break;
1147  if (c->vqa_version == 3) {
1148  for (channel = 0; channel < avctx->channels; channel++) {
1149  int16_t *smp = samples_p[channel];
1150 
1151  for (n = nb_samples / 2; n > 0; n--) {
1152  int v = bytestream2_get_byteu(&gb);
1153  *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
1154  *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1155  }
1156  }
1157  } else {
1158  for (n = nb_samples / 2; n > 0; n--) {
1159  for (channel = 0; channel < avctx->channels; channel++) {
1160  int v = bytestream2_get_byteu(&gb);
1161  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
1162  samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1163  }
1164  samples += avctx->channels;
1165  }
1166  }
1167  bytestream2_seek(&gb, 0, SEEK_END);
1168  break;
1169  case AV_CODEC_ID_ADPCM_XA:
1170  {
1171  int16_t *out0 = samples_p[0];
1172  int16_t *out1 = samples_p[1];
1173  int samples_per_block = 28 * (3 - avctx->channels) * 4;
1174  int sample_offset = 0;
1175  int bytes_remaining;
1176  while (bytestream2_get_bytes_left(&gb) >= 128) {
1177  if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb),
1178  &c->status[0], &c->status[1],
1179  avctx->channels, sample_offset)) < 0)
1180  return ret;
1181  bytestream2_skipu(&gb, 128);
1182  sample_offset += samples_per_block;
1183  }
1184  /* Less than a full block of data left, e.g. when reading from
1185  * 2324 byte per sector XA; the remainder is padding */
1186  bytes_remaining = bytestream2_get_bytes_left(&gb);
1187  if (bytes_remaining > 0) {
1188  bytestream2_skip(&gb, bytes_remaining);
1189  }
1190  break;
1191  }
1193  for (i=0; i<=st; i++) {
1194  c->status[i].step_index = bytestream2_get_le32u(&gb);
1195  if (c->status[i].step_index > 88u) {
1196  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1197  i, c->status[i].step_index);
1198  return AVERROR_INVALIDDATA;
1199  }
1200  }
1201  for (i=0; i<=st; i++)
1202  c->status[i].predictor = bytestream2_get_le32u(&gb);
1203 
1204  for (n = nb_samples >> (1 - st); n > 0; n--) {
1205  int byte = bytestream2_get_byteu(&gb);
1206  *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3);
1207  *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
1208  }
1209  break;
1211  for (n = nb_samples >> (1 - st); n > 0; n--) {
1212  int byte = bytestream2_get_byteu(&gb);
1213  *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6);
1214  *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
1215  }
1216  break;
1217  case AV_CODEC_ID_ADPCM_EA:
1218  {
1219  int previous_left_sample, previous_right_sample;
1220  int current_left_sample, current_right_sample;
1221  int next_left_sample, next_right_sample;
1222  int coeff1l, coeff2l, coeff1r, coeff2r;
1223  int shift_left, shift_right;
1224 
1225  /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
1226  each coding 28 stereo samples. */
1227 
1228  if(avctx->channels != 2)
1229  return AVERROR_INVALIDDATA;
1230 
1231  current_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1232  previous_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1233  current_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1234  previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1235 
1236  for (count1 = 0; count1 < nb_samples / 28; count1++) {
1237  int byte = bytestream2_get_byteu(&gb);
1238  coeff1l = ea_adpcm_table[ byte >> 4 ];
1239  coeff2l = ea_adpcm_table[(byte >> 4 ) + 4];
1240  coeff1r = ea_adpcm_table[ byte & 0x0F];
1241  coeff2r = ea_adpcm_table[(byte & 0x0F) + 4];
1242 
1243  byte = bytestream2_get_byteu(&gb);
1244  shift_left = 20 - (byte >> 4);
1245  shift_right = 20 - (byte & 0x0F);
1246 
1247  for (count2 = 0; count2 < 28; count2++) {
1248  byte = bytestream2_get_byteu(&gb);
1249  next_left_sample = sign_extend(byte >> 4, 4) << shift_left;
1250  next_right_sample = sign_extend(byte, 4) << shift_right;
1251 
1252  next_left_sample = (next_left_sample +
1253  (current_left_sample * coeff1l) +
1254  (previous_left_sample * coeff2l) + 0x80) >> 8;
1255  next_right_sample = (next_right_sample +
1256  (current_right_sample * coeff1r) +
1257  (previous_right_sample * coeff2r) + 0x80) >> 8;
1258 
1259  previous_left_sample = current_left_sample;
1260  current_left_sample = av_clip_int16(next_left_sample);
1261  previous_right_sample = current_right_sample;
1262  current_right_sample = av_clip_int16(next_right_sample);
1263  *samples++ = current_left_sample;
1264  *samples++ = current_right_sample;
1265  }
1266  }
1267 
1268  bytestream2_skip(&gb, 2); // Skip terminating 0x0000
1269 
1270  break;
1271  }
1273  {
1274  int coeff[2][2], shift[2];
1275 
1276  for(channel = 0; channel < avctx->channels; channel++) {
1277  int byte = bytestream2_get_byteu(&gb);
1278  for (i=0; i<2; i++)
1279  coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i];
1280  shift[channel] = 20 - (byte & 0x0F);
1281  }
1282  for (count1 = 0; count1 < nb_samples / 2; count1++) {
1283  int byte[2];
1284 
1285  byte[0] = bytestream2_get_byteu(&gb);
1286  if (st) byte[1] = bytestream2_get_byteu(&gb);
1287  for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1288  for(channel = 0; channel < avctx->channels; channel++) {
1289  int sample = sign_extend(byte[channel] >> i, 4) << shift[channel];
1290  sample = (sample +
1291  c->status[channel].sample1 * coeff[channel][0] +
1292  c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1294  c->status[channel].sample1 = av_clip_int16(sample);
1295  *samples++ = c->status[channel].sample1;
1296  }
1297  }
1298  }
1299  bytestream2_seek(&gb, 0, SEEK_END);
1300  break;
1301  }
1304  case AV_CODEC_ID_ADPCM_EA_R3: {
1305  /* channel numbering
1306  2chan: 0=fl, 1=fr
1307  4chan: 0=fl, 1=rl, 2=fr, 3=rr
1308  6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1309  const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3;
1310  int previous_sample, current_sample, next_sample;
1311  int coeff1, coeff2;
1312  int shift;
1313  unsigned int channel;
1314  uint16_t *samplesC;
1315  int count = 0;
1316  int offsets[6];
1317 
1318  for (channel=0; channel<avctx->channels; channel++)
1319  offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
1320  bytestream2_get_le32(&gb)) +
1321  (avctx->channels + 1) * 4;
1322 
1323  for (channel=0; channel<avctx->channels; channel++) {
1324  bytestream2_seek(&gb, offsets[channel], SEEK_SET);
1325  samplesC = samples_p[channel];
1326 
1327  if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) {
1328  current_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1329  previous_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1330  } else {
1331  current_sample = c->status[channel].predictor;
1332  previous_sample = c->status[channel].prev_sample;
1333  }
1334 
1335  for (count1 = 0; count1 < nb_samples / 28; count1++) {
1336  int byte = bytestream2_get_byte(&gb);
1337  if (byte == 0xEE) { /* only seen in R2 and R3 */
1338  current_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1339  previous_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1340 
1341  for (count2=0; count2<28; count2++)
1342  *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16);
1343  } else {
1344  coeff1 = ea_adpcm_table[ byte >> 4 ];
1345  coeff2 = ea_adpcm_table[(byte >> 4) + 4];
1346  shift = 20 - (byte & 0x0F);
1347 
1348  for (count2=0; count2<28; count2++) {
1349  if (count2 & 1)
1350  next_sample = sign_extend(byte, 4) << shift;
1351  else {
1352  byte = bytestream2_get_byte(&gb);
1353  next_sample = sign_extend(byte >> 4, 4) << shift;
1354  }
1355 
1356  next_sample += (current_sample * coeff1) +
1357  (previous_sample * coeff2);
1358  next_sample = av_clip_int16(next_sample >> 8);
1359 
1360  previous_sample = current_sample;
1361  current_sample = next_sample;
1362  *samplesC++ = current_sample;
1363  }
1364  }
1365  }
1366  if (!count) {
1367  count = count1;
1368  } else if (count != count1) {
1369  av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
1370  count = FFMAX(count, count1);
1371  }
1372 
1373  if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) {
1374  c->status[channel].predictor = current_sample;
1375  c->status[channel].prev_sample = previous_sample;
1376  }
1377  }
1378 
1379  frame->nb_samples = count * 28;
1380  bytestream2_seek(&gb, 0, SEEK_END);
1381  break;
1382  }
1384  for (channel=0; channel<avctx->channels; channel++) {
1385  int coeff[2][4], shift[4];
1386  int16_t *s = samples_p[channel];
1387  for (n = 0; n < 4; n++, s += 32) {
1388  int val = sign_extend(bytestream2_get_le16u(&gb), 16);
1389  for (i=0; i<2; i++)
1390  coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i];
1391  s[0] = val & ~0x0F;
1392 
1393  val = sign_extend(bytestream2_get_le16u(&gb), 16);
1394  shift[n] = 20 - (val & 0x0F);
1395  s[1] = val & ~0x0F;
1396  }
1397 
1398  for (m=2; m<32; m+=2) {
1399  s = &samples_p[channel][m];
1400  for (n = 0; n < 4; n++, s += 32) {
1401  int level, pred;
1402  int byte = bytestream2_get_byteu(&gb);
1403 
1404  level = sign_extend(byte >> 4, 4) << shift[n];
1405  pred = s[-1] * coeff[0][n] + s[-2] * coeff[1][n];
1406  s[0] = av_clip_int16((level + pred + 0x80) >> 8);
1407 
1408  level = sign_extend(byte, 4) << shift[n];
1409  pred = s[0] * coeff[0][n] + s[-1] * coeff[1][n];
1410  s[1] = av_clip_int16((level + pred + 0x80) >> 8);
1411  }
1412  }
1413  }
1414  break;
1416  c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1417  c->status[0].step_index = bytestream2_get_byteu(&gb);
1418  bytestream2_skipu(&gb, 5);
1419  if (c->status[0].step_index > 88u) {
1420  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1421  c->status[0].step_index);
1422  return AVERROR_INVALIDDATA;
1423  }
1424 
1425  for (n = nb_samples >> (1 - st); n > 0; n--) {
1426  int v = bytestream2_get_byteu(&gb);
1427 
1428  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3);
1429  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v & 0xf, 3);
1430  }
1431  break;
1433  for (i = 0; i < avctx->channels; i++) {
1434  c->status[i].predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
1435  c->status[i].step_index = bytestream2_get_byteu(&gb);
1436  bytestream2_skipu(&gb, 1);
1437  if (c->status[i].step_index > 88u) {
1438  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1439  c->status[i].step_index);
1440  return AVERROR_INVALIDDATA;
1441  }
1442  }
1443 
1444  for (n = nb_samples >> (1 - st); n > 0; n--) {
1445  int v = bytestream2_get_byteu(&gb);
1446 
1447  *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0 ], v >> 4, 3);
1448  *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0xf, 3);
1449  }
1450  break;
1451  case AV_CODEC_ID_ADPCM_CT:
1452  for (n = nb_samples >> (1 - st); n > 0; n--) {
1453  int v = bytestream2_get_byteu(&gb);
1454  *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
1455  *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
1456  }
1457  break;
1461  if (!c->status[0].step_index) {
1462  /* the first byte is a raw sample */
1463  *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1464  if (st)
1465  *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1466  c->status[0].step_index = 1;
1467  nb_samples--;
1468  }
1469  if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) {
1470  for (n = nb_samples >> (1 - st); n > 0; n--) {
1471  int byte = bytestream2_get_byteu(&gb);
1472  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1473  byte >> 4, 4, 0);
1474  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1475  byte & 0x0F, 4, 0);
1476  }
1477  } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) {
1478  for (n = (nb_samples<<st) / 3; n > 0; n--) {
1479  int byte = bytestream2_get_byteu(&gb);
1480  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1481  byte >> 5 , 3, 0);
1482  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1483  (byte >> 2) & 0x07, 3, 0);
1484  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1485  byte & 0x03, 2, 0);
1486  }
1487  } else {
1488  for (n = nb_samples >> (2 - st); n > 0; n--) {
1489  int byte = bytestream2_get_byteu(&gb);
1490  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1491  byte >> 6 , 2, 2);
1492  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1493  (byte >> 4) & 0x03, 2, 2);
1494  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1495  (byte >> 2) & 0x03, 2, 2);
1496  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1497  byte & 0x03, 2, 2);
1498  }
1499  }
1500  break;
1501  case AV_CODEC_ID_ADPCM_SWF:
1502  adpcm_swf_decode(avctx, buf, buf_size, samples);
1503  bytestream2_seek(&gb, 0, SEEK_END);
1504  break;
1506  for (n = nb_samples >> (1 - st); n > 0; n--) {
1507  int v = bytestream2_get_byteu(&gb);
1508  *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
1509  *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
1510  }
1511  break;
1513  if (!c->has_status) {
1514  for (channel = 0; channel < avctx->channels; channel++)
1515  c->status[channel].step = 0;
1516  c->has_status = 1;
1517  }
1518  for (channel = 0; channel < avctx->channels; channel++) {
1519  samples = samples_p[channel];
1520  for (n = nb_samples >> 1; n > 0; n--) {
1521  int v = bytestream2_get_byteu(&gb);
1522  *samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v & 0x0F);
1523  *samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v >> 4 );
1524  }
1525  }
1526  break;
1527  case AV_CODEC_ID_ADPCM_AFC:
1528  {
1529  int samples_per_block;
1530  int blocks;
1531 
1532  if (avctx->extradata && avctx->extradata_size == 1 && avctx->extradata[0]) {
1533  samples_per_block = avctx->extradata[0] / 16;
1534  blocks = nb_samples / avctx->extradata[0];
1535  } else {
1536  samples_per_block = nb_samples / 16;
1537  blocks = 1;
1538  }
1539 
1540  for (m = 0; m < blocks; m++) {
1541  for (channel = 0; channel < avctx->channels; channel++) {
1542  int prev1 = c->status[channel].sample1;
1543  int prev2 = c->status[channel].sample2;
1544 
1545  samples = samples_p[channel] + m * 16;
1546  /* Read in every sample for this channel. */
1547  for (i = 0; i < samples_per_block; i++) {
1548  int byte = bytestream2_get_byteu(&gb);
1549  int scale = 1 << (byte >> 4);
1550  int index = byte & 0xf;
1551  int factor1 = ff_adpcm_afc_coeffs[0][index];
1552  int factor2 = ff_adpcm_afc_coeffs[1][index];
1553 
1554  /* Decode 16 samples. */
1555  for (n = 0; n < 16; n++) {
1556  int32_t sampledat;
1557 
1558  if (n & 1) {
1559  sampledat = sign_extend(byte, 4);
1560  } else {
1561  byte = bytestream2_get_byteu(&gb);
1562  sampledat = sign_extend(byte >> 4, 4);
1563  }
1564 
1565  sampledat = ((prev1 * factor1 + prev2 * factor2) +
1566  ((sampledat * scale) << 11)) >> 11;
1567  *samples = av_clip_int16(sampledat);
1568  prev2 = prev1;
1569  prev1 = *samples++;
1570  }
1571  }
1572 
1573  c->status[channel].sample1 = prev1;
1574  c->status[channel].sample2 = prev2;
1575  }
1576  }
1577  bytestream2_seek(&gb, 0, SEEK_END);
1578  break;
1579  }
1580  case AV_CODEC_ID_ADPCM_THP:
1582  {
1583  int table[14][16];
1584  int ch;
1585 
1586 #define THP_GET16(g) \
1587  sign_extend( \
1588  avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE ? \
1589  bytestream2_get_le16u(&(g)) : \
1590  bytestream2_get_be16u(&(g)), 16)
1591 
1592  if (avctx->extradata) {
1594  if (avctx->extradata_size < 32 * avctx->channels) {
1595  av_log(avctx, AV_LOG_ERROR, "Missing coeff table\n");
1596  return AVERROR_INVALIDDATA;
1597  }
1598 
1599  bytestream2_init(&tb, avctx->extradata, avctx->extradata_size);
1600  for (i = 0; i < avctx->channels; i++)
1601  for (n = 0; n < 16; n++)
1602  table[i][n] = THP_GET16(tb);
1603  } else {
1604  for (i = 0; i < avctx->channels; i++)
1605  for (n = 0; n < 16; n++)
1606  table[i][n] = THP_GET16(gb);
1607 
1608  if (!c->has_status) {
1609  /* Initialize the previous sample. */
1610  for (i = 0; i < avctx->channels; i++) {
1611  c->status[i].sample1 = THP_GET16(gb);
1612  c->status[i].sample2 = THP_GET16(gb);
1613  }
1614  c->has_status = 1;
1615  } else {
1616  bytestream2_skip(&gb, avctx->channels * 4);
1617  }
1618  }
1619 
1620  for (ch = 0; ch < avctx->channels; ch++) {
1621  samples = samples_p[ch];
1622 
1623  /* Read in every sample for this channel. */
1624  for (i = 0; i < (nb_samples + 13) / 14; i++) {
1625  int byte = bytestream2_get_byteu(&gb);
1626  int index = (byte >> 4) & 7;
1627  unsigned int exp = byte & 0x0F;
1628  int factor1 = table[ch][index * 2];
1629  int factor2 = table[ch][index * 2 + 1];
1630 
1631  /* Decode 14 samples. */
1632  for (n = 0; n < 14 && (i * 14 + n < nb_samples); n++) {
1633  int32_t sampledat;
1634 
1635  if (n & 1) {
1636  sampledat = sign_extend(byte, 4);
1637  } else {
1638  byte = bytestream2_get_byteu(&gb);
1639  sampledat = sign_extend(byte >> 4, 4);
1640  }
1641 
1642  sampledat = ((c->status[ch].sample1 * factor1
1643  + c->status[ch].sample2 * factor2) >> 11) + (sampledat << exp);
1644  *samples = av_clip_int16(sampledat);
1645  c->status[ch].sample2 = c->status[ch].sample1;
1646  c->status[ch].sample1 = *samples++;
1647  }
1648  }
1649  }
1650  break;
1651  }
1652  case AV_CODEC_ID_ADPCM_DTK:
1653  for (channel = 0; channel < avctx->channels; channel++) {
1654  samples = samples_p[channel];
1655 
1656  /* Read in every sample for this channel. */
1657  for (i = 0; i < nb_samples / 28; i++) {
1658  int byte, header;
1659  if (channel)
1660  bytestream2_skipu(&gb, 1);
1661  header = bytestream2_get_byteu(&gb);
1662  bytestream2_skipu(&gb, 3 - channel);
1663 
1664  /* Decode 28 samples. */
1665  for (n = 0; n < 28; n++) {
1666  int32_t sampledat, prev;
1667 
1668  switch (header >> 4) {
1669  case 1:
1670  prev = (c->status[channel].sample1 * 0x3c);
1671  break;
1672  case 2:
1673  prev = (c->status[channel].sample1 * 0x73) - (c->status[channel].sample2 * 0x34);
1674  break;
1675  case 3:
1676  prev = (c->status[channel].sample1 * 0x62) - (c->status[channel].sample2 * 0x37);
1677  break;
1678  default:
1679  prev = 0;
1680  }
1681 
1682  prev = av_clip_intp2((prev + 0x20) >> 6, 21);
1683 
1684  byte = bytestream2_get_byteu(&gb);
1685  if (!channel)
1686  sampledat = sign_extend(byte, 4);
1687  else
1688  sampledat = sign_extend(byte >> 4, 4);
1689 
1690  sampledat = (((sampledat << 12) >> (header & 0xf)) << 6) + prev;
1691  *samples++ = av_clip_int16(sampledat >> 6);
1693  c->status[channel].sample1 = sampledat;
1694  }
1695  }
1696  if (!channel)
1697  bytestream2_seek(&gb, 0, SEEK_SET);
1698  }
1699  break;
1700  case AV_CODEC_ID_ADPCM_PSX:
1701  for (channel = 0; channel < avctx->channels; channel++) {
1702  samples = samples_p[channel];
1703 
1704  /* Read in every sample for this channel. */
1705  for (i = 0; i < nb_samples / 28; i++) {
1706  int filter, shift, flag, byte;
1707 
1708  filter = bytestream2_get_byteu(&gb);
1709  shift = filter & 0xf;
1710  filter = filter >> 4;
1711  if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table))
1712  return AVERROR_INVALIDDATA;
1713  flag = bytestream2_get_byteu(&gb);
1714 
1715  /* Decode 28 samples. */
1716  for (n = 0; n < 28; n++) {
1717  int sample = 0, scale;
1718 
1719  if (flag < 0x07) {
1720  if (n & 1) {
1721  scale = sign_extend(byte >> 4, 4);
1722  } else {
1723  byte = bytestream2_get_byteu(&gb);
1724  scale = sign_extend(byte, 4);
1725  }
1726 
1727  scale = scale << 12;
1728  sample = (int)((scale >> shift) + (c->status[channel].sample1 * xa_adpcm_table[filter][0] + c->status[channel].sample2 * xa_adpcm_table[filter][1]) / 64);
1729  }
1730  *samples++ = av_clip_int16(sample);
1732  c->status[channel].sample1 = sample;
1733  }
1734  }
1735  }
1736  break;
1737 
1738  default:
1739  av_assert0(0); // unsupported codec_id should not happen
1740  }
1741 
1742  if (avpkt->size && bytestream2_tell(&gb) == 0) {
1743  av_log(avctx, AV_LOG_ERROR, "Nothing consumed\n");
1744  return AVERROR_INVALIDDATA;
1745  }
1746 
1747  *got_frame_ptr = 1;
1748 
1749  if (avpkt->size < bytestream2_tell(&gb)) {
1750  av_log(avctx, AV_LOG_ERROR, "Overread of %d < %d\n", avpkt->size, bytestream2_tell(&gb));
1751  return avpkt->size;
1752  }
1753 
1754  return bytestream2_tell(&gb);
1755 }
1756 
1757 static void adpcm_flush(AVCodecContext *avctx)
1758 {
1759  ADPCMDecodeContext *c = avctx->priv_data;
1760  c->has_status = 0;
1761 }
1762 
1763 
1771 
1772 #define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
1773 AVCodec ff_ ## name_ ## _decoder = { \
1774  .name = #name_, \
1775  .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1776  .type = AVMEDIA_TYPE_AUDIO, \
1777  .id = id_, \
1778  .priv_data_size = sizeof(ADPCMDecodeContext), \
1779  .init = adpcm_decode_init, \
1780  .decode = adpcm_decode_frame, \
1781  .flush = adpcm_flush, \
1782  .capabilities = AV_CODEC_CAP_DR1, \
1783  .sample_fmts = sample_fmts_, \
1784 }
1785 
1786 /* Note: Do not forget to add new entries to the Makefile as well. */
1787 ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM, sample_fmts_s16p, adpcm_4xm, "ADPCM 4X Movie");
1788 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AFC, sample_fmts_s16p, adpcm_afc, "ADPCM Nintendo Gamecube AFC");
1789 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AGM, sample_fmts_s16, adpcm_agm, "ADPCM AmuseGraphics Movie");
1790 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AICA, sample_fmts_s16p, adpcm_aica, "ADPCM Yamaha AICA");
1791 ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT, sample_fmts_s16, adpcm_ct, "ADPCM Creative Technology");
1792 ADPCM_DECODER(AV_CODEC_ID_ADPCM_DTK, sample_fmts_s16p, adpcm_dtk, "ADPCM Nintendo Gamecube DTK");
1793 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA, sample_fmts_s16, adpcm_ea, "ADPCM Electronic Arts");
1794 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1795 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1, sample_fmts_s16p, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1796 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2, sample_fmts_s16p, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1797 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3, sample_fmts_s16p, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1798 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS, sample_fmts_s16p, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1799 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV, sample_fmts_s16, adpcm_ima_amv, "ADPCM IMA AMV");
1800 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC, sample_fmts_s16, adpcm_ima_apc, "ADPCM IMA CRYO APC");
1801 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DAT4, sample_fmts_s16, adpcm_ima_dat4, "ADPCM IMA Eurocom DAT4");
1802 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3, sample_fmts_s16, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1803 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4, sample_fmts_s16, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1804 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1805 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1806 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS, sample_fmts_s16, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1807 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_OKI, sample_fmts_s16, adpcm_ima_oki, "ADPCM IMA Dialogic OKI");
1808 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT, sample_fmts_s16p, adpcm_ima_qt, "ADPCM IMA QuickTime");
1809 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_RAD, sample_fmts_s16, adpcm_ima_rad, "ADPCM IMA Radical");
1810 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG, sample_fmts_s16, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1811 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV, sample_fmts_s16p, adpcm_ima_wav, "ADPCM IMA WAV");
1812 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS, sample_fmts_both, adpcm_ima_ws, "ADPCM IMA Westwood");
1813 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS, sample_fmts_s16, adpcm_ms, "ADPCM Microsoft");
1814 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MTAF, sample_fmts_s16p, adpcm_mtaf, "ADPCM MTAF");
1815 ADPCM_DECODER(AV_CODEC_ID_ADPCM_PSX, sample_fmts_s16p, adpcm_psx, "ADPCM Playstation");
1816 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2, sample_fmts_s16, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1817 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3, sample_fmts_s16, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1818 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4, sample_fmts_s16, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1819 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF, sample_fmts_s16, adpcm_swf, "ADPCM Shockwave Flash");
1820 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP_LE, sample_fmts_s16p, adpcm_thp_le, "ADPCM Nintendo THP (little-endian)");
1821 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP, sample_fmts_s16p, adpcm_thp, "ADPCM Nintendo THP");
1822 ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA, sample_fmts_s16p, adpcm_xa, "ADPCM CDROM XA");
1823 ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA, sample_fmts_s16, adpcm_yamaha, "ADPCM Yamaha");
#define NULL
Definition: coverity.c:32
const struct AVCodec * codec
Definition: avcodec.h:1574
const char const char void * val
Definition: avisynth_c.h:863
static const int16_t ea_adpcm_table[]
Definition: adpcm.c:68
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static int shift(int a, int b)
Definition: sonic.c:82
int size
This structure describes decoded (raw) audio or video data.
Definition: frame.h:295
static int16_t adpcm_mtaf_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
Definition: adpcm.c:394
#define THP_GET16(g)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
else temp
Definition: vf_mcdeint.c:256
const char * g
Definition: vf_curves.c:115
#define avpriv_request_sample(...)
channels
Definition: aptx.c:30
int size
Definition: avcodec.h:1478
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
Definition: bytestream.h:133
#define AV_RL16
Definition: intreadwrite.h:42
static enum AVSampleFormat sample_fmts_s16[]
Definition: adpcm.c:1764
#define sample
int block_align
number of bytes per packet if constant and known or 0 Used by some WAV based audio codecs...
Definition: avcodec.h:2262
static int get_sbits(GetBitContext *s, int n)
Definition: get_bits.h:359
static int16_t adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
Definition: adpcm.c:299
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
static void filter(int16_t *output, ptrdiff_t out_stride, int16_t *low, ptrdiff_t low_stride, int16_t *high, ptrdiff_t high_stride, int len, int clip)
Definition: cfhd.c:153
const uint8_t ff_adpcm_AdaptCoeff1[]
Divided by 4 to fit in 8-bit integers.
Definition: adpcm_data.c:90
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:2233
uint8_t
#define av_cold
Definition: attributes.h:82
static av_cold int adpcm_decode_init(AVCodecContext *avctx)
Definition: adpcm.c:92
float delta
static void adpcm_flush(AVCodecContext *avctx)
Definition: adpcm.c:1757
static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
Definition: adpcm.c:483
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1666
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:252
ADPCM tables.
static AVFrame * frame
const char data[16]
Definition: mxf.c:91
uint8_t * data
Definition: avcodec.h:1477
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb, int buf_size, int *coded_samples, int *approx_nb_samples)
Get the number of samples that will be decoded from the packet.
Definition: adpcm.c:551
static av_always_inline void bytestream2_skipu(GetByteContext *g, unsigned int size)
Definition: bytestream.h:170
bitstream reader API header.
static const uint8_t header[24]
Definition: sdr2.c:67
int bits_per_coded_sample
bits per sample/pixel from the demuxer (needed for huffyuv).
Definition: avcodec.h:2789
#define av_log(a,...)
static const uint16_t table[]
Definition: prosumer.c:206
enum AVCodecID id
Definition: avcodec.h:3495
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:259
static const int8_t xa_adpcm_table[5][2]
Definition: adpcm.c:60
const uint16_t ff_adpcm_afc_coeffs[2][16]
Definition: adpcm_data.c:109
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
ADPCM encoder/decoder common header.
static av_always_inline void update(SilenceDetectContext *s, AVFrame *insamples, int is_silence, int current_sample, int64_t nb_samples_notify, AVRational time_base)
#define AVERROR(e)
Definition: error.h:43
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
Definition: bytestream.h:164
const int8_t *const ff_adpcm_index_tables[4]
Definition: adpcm_data.c:50
const int16_t ff_adpcm_step_table[89]
This is the step table.
Definition: adpcm_data.c:61
static int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
Definition: adpcm.c:273
static av_always_inline unsigned int bytestream2_get_bytes_left(GetByteContext *g)
Definition: bytestream.h:154
static int16_t adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
Definition: adpcm.c:318
#define FFMAX(a, b)
Definition: common.h:94
static int16_t adpcm_ima_wav_expand_nibble(ADPCMChannelStatus *c, GetBitContext *gb, int bps)
Definition: adpcm.c:250
int8_t exp
Definition: eval.c:72
const int8_t ff_adpcm_index_table[16]
Definition: adpcm_data.c:40
static const int8_t swf_index_tables[4][16]
Definition: adpcm.c:77
const int16_t ff_adpcm_mtaf_stepsize[32][16]
Definition: adpcm_data.c:114
static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1, const uint8_t *in, ADPCMChannelStatus *left, ADPCMChannelStatus *right, int channels, int sample_offset)
Definition: adpcm.c:403
#define FFMIN(a, b)
Definition: common.h:96
const int8_t ff_adpcm_AdaptCoeff2[]
Divided by 4 to fit in 8-bit integers.
Definition: adpcm_data.c:95
int vqa_version
VQA version.
Definition: adpcm.c:88
int32_t
static const uint8_t ff_adpcm_ima_block_sizes[4]
Definition: adpcm_data.h:31
static enum AVSampleFormat sample_fmts_s16p[]
Definition: adpcm.c:1766
#define s(width, name)
Definition: cbs_vp9.c:257
#define AV_RL32
Definition: intreadwrite.h:146
int n
Definition: avisynth_c.h:760
const int16_t ff_adpcm_oki_step_table[49]
Definition: adpcm_data.c:73
#define FF_ARRAY_ELEMS(a)
static const float pred[4]
Definition: siprdata.h:259
static const uint8_t ff_adpcm_ima_block_samples[4]
Definition: adpcm_data.h:32
static av_always_inline int bytestream2_tell(GetByteContext *g)
Definition: bytestream.h:188
const int16_t ff_adpcm_AdaptationTable[]
Definition: adpcm_data.c:84
Libavcodec external API header.
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:677
main external API structure.
Definition: avcodec.h:1565
static int16_t adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
Definition: adpcm.c:380
#define DK3_GET_NEXT_NIBBLE()
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1964
static int16_t adpcm_ima_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift)
Definition: adpcm.c:224
void * buf
Definition: avisynth_c.h:766
int extradata_size
Definition: avcodec.h:1667
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
int index
Definition: gxfenc.c:89
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:659
static int16_t adpcm_agm_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
Definition: adpcm.c:180
ADPCMChannelStatus status[14]
Definition: adpcm.c:87
static av_const int sign_extend(int val, unsigned bits)
Definition: mathops.h:130
static int16_t adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int size, int shift)
Definition: adpcm.c:360
static unsigned int get_bits_le(GetBitContext *s, int n)
Definition: get_bits.h:420
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:309
uint8_t level
Definition: svq3.c:207
int
const int8_t ff_adpcm_yamaha_difflookup[]
Definition: adpcm_data.c:104
common internal api header.
const int16_t ff_adpcm_yamaha_indexscale[]
Definition: adpcm_data.c:99
static int adpcm_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Definition: adpcm.c:753
signed 16 bits
Definition: samplefmt.h:61
#define flag(name)
Definition: cbs_av1.c:553
static double c[64]
channel
Use these values when setting the channel map with ebur128_set_channel().
Definition: ebur128.h:39
unsigned bps
Definition: movenc.c:1497
#define AV_INPUT_BUFFER_PADDING_SIZE
Required number of additionally allocated bytes at the end of the input bitstream for decoding...
Definition: avcodec.h:790
void * priv_data
Definition: avcodec.h:1592
static av_always_inline int diff(const uint32_t a, const uint32_t b)
#define xf(width, name, var, range_min, range_max, subs,...)
Definition: cbs_av1.c:664
int channels
number of audio channels
Definition: avcodec.h:2226
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
static av_always_inline int bytestream2_seek(GetByteContext *g, int offset, int whence)
Definition: bytestream.h:208
static int16_t adpcm_ct_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
Definition: adpcm.c:339
static enum AVSampleFormat sample_fmts_both[]
Definition: adpcm.c:1768
void INT64 INT64 count
Definition: avisynth_c.h:766
int16_t step_index
Definition: adpcm.h:35
signed 16 bits, planar
Definition: samplefmt.h:67
uint8_t ** extended_data
pointers to the data planes/channels.
Definition: frame.h:342
This structure stores compressed data.
Definition: avcodec.h:1454
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:361
for(j=16;j >0;--j)
#define tb
Definition: regdef.h:68
#define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_)
Definition: adpcm.c:1772