FFmpeg  4.2.1
alsdec.c
Go to the documentation of this file.
1 /*
2  * MPEG-4 ALS decoder
3  * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * MPEG-4 ALS decoder
25  * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
26  */
27 
28 #include <inttypes.h>
29 
30 #include "avcodec.h"
31 #include "get_bits.h"
32 #include "unary.h"
33 #include "mpeg4audio.h"
34 #include "bgmc.h"
35 #include "bswapdsp.h"
36 #include "internal.h"
37 #include "mlz.h"
38 #include "libavutil/samplefmt.h"
39 #include "libavutil/crc.h"
41 #include "libavutil/intfloat.h"
42 #include "libavutil/intreadwrite.h"
43 
44 #include <stdint.h>
45 
46 /** Rice parameters and corresponding index offsets for decoding the
47  * indices of scaled PARCOR values. The table chosen is set globally
48  * by the encoder and stored in ALSSpecificConfig.
49  */
50 static const int8_t parcor_rice_table[3][20][2] = {
51  { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
52  { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
53  { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
54  { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
55  { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
56  { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
57  {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
58  { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
59  { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
60  { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
61  {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
62  { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
63 };
64 
65 
66 /** Scaled PARCOR values used for the first two PARCOR coefficients.
67  * To be indexed by the Rice coded indices.
68  * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
69  * Actual values are divided by 32 in order to be stored in 16 bits.
70  */
71 static const int16_t parcor_scaled_values[] = {
72  -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
73  -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
74  -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
75  -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
76  -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
77  -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
78  -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
79  -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
80  -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
81  -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
82  -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
83  -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
84  -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
85  -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
86  -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
87  -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
88  -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
89  -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
90  -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
91  -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
92  -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
93  -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
94  -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
95  46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
96  143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
97  244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
98  349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
99  458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
100  571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
101  688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
102  810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
103  935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
104 };
105 
106 
107 /** Gain values of p(0) for long-term prediction.
108  * To be indexed by the Rice coded indices.
109  */
110 static const uint8_t ltp_gain_values [4][4] = {
111  { 0, 8, 16, 24},
112  {32, 40, 48, 56},
113  {64, 70, 76, 82},
114  {88, 92, 96, 100}
115 };
116 
117 
118 /** Inter-channel weighting factors for multi-channel correlation.
119  * To be indexed by the Rice coded indices.
120  */
121 static const int16_t mcc_weightings[] = {
122  204, 192, 179, 166, 153, 140, 128, 115,
123  102, 89, 76, 64, 51, 38, 25, 12,
124  0, -12, -25, -38, -51, -64, -76, -89,
125  -102, -115, -128, -140, -153, -166, -179, -192
126 };
127 
128 
129 /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
130  */
131 static const uint8_t tail_code[16][6] = {
132  { 74, 44, 25, 13, 7, 3},
133  { 68, 42, 24, 13, 7, 3},
134  { 58, 39, 23, 13, 7, 3},
135  {126, 70, 37, 19, 10, 5},
136  {132, 70, 37, 20, 10, 5},
137  {124, 70, 38, 20, 10, 5},
138  {120, 69, 37, 20, 11, 5},
139  {116, 67, 37, 20, 11, 5},
140  {108, 66, 36, 20, 10, 5},
141  {102, 62, 36, 20, 10, 5},
142  { 88, 58, 34, 19, 10, 5},
143  {162, 89, 49, 25, 13, 7},
144  {156, 87, 49, 26, 14, 7},
145  {150, 86, 47, 26, 14, 7},
146  {142, 84, 47, 26, 14, 7},
147  {131, 79, 46, 26, 14, 7}
148 };
149 
150 
151 enum RA_Flag {
155 };
156 
157 
158 typedef struct ALSSpecificConfig {
159  uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
160  int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
161  int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
162  int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
163  int frame_length; ///< frame length for each frame (last frame may differ)
164  int ra_distance; ///< distance between RA frames (in frames, 0...255)
165  enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
166  int adapt_order; ///< adaptive order: 1 = on, 0 = off
167  int coef_table; ///< table index of Rice code parameters
168  int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
169  int max_order; ///< maximum prediction order (0..1023)
170  int block_switching; ///< number of block switching levels
171  int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
172  int sb_part; ///< sub-block partition
173  int joint_stereo; ///< joint stereo: 1 = on, 0 = off
174  int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
175  int chan_config; ///< indicates that a chan_config_info field is present
176  int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
177  int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
178  int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
179  int *chan_pos; ///< original channel positions
180  int crc_enabled; ///< enable Cyclic Redundancy Checksum
182 
183 
184 typedef struct ALSChannelData {
190  int weighting[6];
192 
193 
194 typedef struct ALSDecContext {
199  const AVCRC *crc_table;
200  uint32_t crc_org; ///< CRC value of the original input data
201  uint32_t crc; ///< CRC value calculated from decoded data
202  unsigned int cur_frame_length; ///< length of the current frame to decode
203  unsigned int frame_id; ///< the frame ID / number of the current frame
204  unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
205  unsigned int cs_switch; ///< if true, channel rearrangement is done
206  unsigned int num_blocks; ///< number of blocks used in the current frame
207  unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
208  uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
209  int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
210  int ltp_lag_length; ///< number of bits used for ltp lag value
211  int *const_block; ///< contains const_block flags for all channels
212  unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
213  unsigned int *opt_order; ///< contains opt_order flags for all channels
214  int *store_prev_samples; ///< contains store_prev_samples flags for all channels
215  int *use_ltp; ///< contains use_ltp flags for all channels
216  int *ltp_lag; ///< contains ltp lag values for all channels
217  int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
218  int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
219  int32_t **quant_cof; ///< quantized parcor coefficients for a channel
220  int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
221  int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
222  int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
223  int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
224  ALSChannelData **chan_data; ///< channel data for multi-channel correlation
225  ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
226  int *reverted_channels; ///< stores a flag for each reverted channel
227  int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
228  int32_t **raw_samples; ///< decoded raw samples for each channel
229  int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
230  uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
231  MLZ* mlz; ///< masked lz decompression structure
232  SoftFloat_IEEE754 *acf; ///< contains common multiplier for all channels
233  int *last_acf_mantissa; ///< contains the last acf mantissa data of common multiplier for all channels
234  int *shift_value; ///< value by which the binary point is to be shifted for all channels
235  int *last_shift_value; ///< contains last shift value for all channels
236  int **raw_mantissa; ///< decoded mantissa bits of the difference signal
237  unsigned char *larray; ///< buffer to store the output of masked lz decompression
238  int *nbits; ///< contains the number of bits to read for masked lz decompression for all samples
239 } ALSDecContext;
240 
241 
242 typedef struct ALSBlockData {
243  unsigned int block_length; ///< number of samples within the block
244  unsigned int ra_block; ///< if true, this is a random access block
245  int *const_block; ///< if true, this is a constant value block
246  int js_blocks; ///< true if this block contains a difference signal
247  unsigned int *shift_lsbs; ///< shift of values for this block
248  unsigned int *opt_order; ///< prediction order of this block
249  int *store_prev_samples;///< if true, carryover samples have to be stored
250  int *use_ltp; ///< if true, long-term prediction is used
251  int *ltp_lag; ///< lag value for long-term prediction
252  int *ltp_gain; ///< gain values for ltp 5-tap filter
253  int32_t *quant_cof; ///< quantized parcor coefficients
254  int32_t *lpc_cof; ///< coefficients of the direct form prediction
255  int32_t *raw_samples; ///< decoded raw samples / residuals for this block
256  int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
257  int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
258 } ALSBlockData;
259 
260 
262 {
263 #ifdef DEBUG
264  AVCodecContext *avctx = ctx->avctx;
265  ALSSpecificConfig *sconf = &ctx->sconf;
266 
267  ff_dlog(avctx, "resolution = %i\n", sconf->resolution);
268  ff_dlog(avctx, "floating = %i\n", sconf->floating);
269  ff_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
270  ff_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
271  ff_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
272  ff_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
273  ff_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
274  ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
275  ff_dlog(avctx, "max_order = %i\n", sconf->max_order);
276  ff_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
277  ff_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
278  ff_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
279  ff_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
280  ff_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
281  ff_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
282  ff_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
283  ff_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
284  ff_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
285 #endif
286 }
287 
288 
289 /** Read an ALSSpecificConfig from a buffer into the output struct.
290  */
292 {
293  GetBitContext gb;
294  uint64_t ht_size;
295  int i, config_offset;
296  MPEG4AudioConfig m4ac = {0};
297  ALSSpecificConfig *sconf = &ctx->sconf;
298  AVCodecContext *avctx = ctx->avctx;
299  uint32_t als_id, header_size, trailer_size;
300  int ret;
301 
302  if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
303  return ret;
304 
305  config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
306  avctx->extradata_size * 8, 1);
307 
308  if (config_offset < 0)
309  return AVERROR_INVALIDDATA;
310 
311  skip_bits_long(&gb, config_offset);
312 
313  if (get_bits_left(&gb) < (30 << 3))
314  return AVERROR_INVALIDDATA;
315 
316  // read the fixed items
317  als_id = get_bits_long(&gb, 32);
318  avctx->sample_rate = m4ac.sample_rate;
319  skip_bits_long(&gb, 32); // sample rate already known
320  sconf->samples = get_bits_long(&gb, 32);
321  avctx->channels = m4ac.channels;
322  skip_bits(&gb, 16); // number of channels already known
323  skip_bits(&gb, 3); // skip file_type
324  sconf->resolution = get_bits(&gb, 3);
325  sconf->floating = get_bits1(&gb);
326  sconf->msb_first = get_bits1(&gb);
327  sconf->frame_length = get_bits(&gb, 16) + 1;
328  sconf->ra_distance = get_bits(&gb, 8);
329  sconf->ra_flag = get_bits(&gb, 2);
330  sconf->adapt_order = get_bits1(&gb);
331  sconf->coef_table = get_bits(&gb, 2);
332  sconf->long_term_prediction = get_bits1(&gb);
333  sconf->max_order = get_bits(&gb, 10);
334  sconf->block_switching = get_bits(&gb, 2);
335  sconf->bgmc = get_bits1(&gb);
336  sconf->sb_part = get_bits1(&gb);
337  sconf->joint_stereo = get_bits1(&gb);
338  sconf->mc_coding = get_bits1(&gb);
339  sconf->chan_config = get_bits1(&gb);
340  sconf->chan_sort = get_bits1(&gb);
341  sconf->crc_enabled = get_bits1(&gb);
342  sconf->rlslms = get_bits1(&gb);
343  skip_bits(&gb, 5); // skip 5 reserved bits
344  skip_bits1(&gb); // skip aux_data_enabled
345 
346 
347  // check for ALSSpecificConfig struct
348  if (als_id != MKBETAG('A','L','S','\0'))
349  return AVERROR_INVALIDDATA;
350 
351  if (avctx->channels > FF_SANE_NB_CHANNELS) {
352  avpriv_request_sample(avctx, "Huge number of channels\n");
353  return AVERROR_PATCHWELCOME;
354  }
355 
356  ctx->cur_frame_length = sconf->frame_length;
357 
358  // read channel config
359  if (sconf->chan_config)
360  sconf->chan_config_info = get_bits(&gb, 16);
361  // TODO: use this to set avctx->channel_layout
362 
363 
364  // read channel sorting
365  if (sconf->chan_sort && avctx->channels > 1) {
366  int chan_pos_bits = av_ceil_log2(avctx->channels);
367  int bits_needed = avctx->channels * chan_pos_bits + 7;
368  if (get_bits_left(&gb) < bits_needed)
369  return AVERROR_INVALIDDATA;
370 
371  if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
372  return AVERROR(ENOMEM);
373 
374  ctx->cs_switch = 1;
375 
376  for (i = 0; i < avctx->channels; i++) {
377  sconf->chan_pos[i] = -1;
378  }
379 
380  for (i = 0; i < avctx->channels; i++) {
381  int idx;
382 
383  idx = get_bits(&gb, chan_pos_bits);
384  if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
385  av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
386  ctx->cs_switch = 0;
387  break;
388  }
389  sconf->chan_pos[idx] = i;
390  }
391 
392  align_get_bits(&gb);
393  }
394 
395 
396  // read fixed header and trailer sizes,
397  // if size = 0xFFFFFFFF then there is no data field!
398  if (get_bits_left(&gb) < 64)
399  return AVERROR_INVALIDDATA;
400 
401  header_size = get_bits_long(&gb, 32);
402  trailer_size = get_bits_long(&gb, 32);
403  if (header_size == 0xFFFFFFFF)
404  header_size = 0;
405  if (trailer_size == 0xFFFFFFFF)
406  trailer_size = 0;
407 
408  ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
409 
410 
411  // skip the header and trailer data
412  if (get_bits_left(&gb) < ht_size)
413  return AVERROR_INVALIDDATA;
414 
415  if (ht_size > INT32_MAX)
416  return AVERROR_PATCHWELCOME;
417 
418  skip_bits_long(&gb, ht_size);
419 
420 
421  // initialize CRC calculation
422  if (sconf->crc_enabled) {
423  if (get_bits_left(&gb) < 32)
424  return AVERROR_INVALIDDATA;
425 
428  ctx->crc = 0xFFFFFFFF;
429  ctx->crc_org = ~get_bits_long(&gb, 32);
430  } else
431  skip_bits_long(&gb, 32);
432  }
433 
434 
435  // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
436 
438 
439  return 0;
440 }
441 
442 
443 /** Check the ALSSpecificConfig for unsupported features.
444  */
446 {
447  ALSSpecificConfig *sconf = &ctx->sconf;
448  int error = 0;
449 
450  // report unsupported feature and set error value
451  #define MISSING_ERR(cond, str, errval) \
452  { \
453  if (cond) { \
454  avpriv_report_missing_feature(ctx->avctx, \
455  str); \
456  error = errval; \
457  } \
458  }
459 
460  MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
461 
462  return error;
463 }
464 
465 
466 /** Parse the bs_info field to extract the block partitioning used in
467  * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
468  */
469 static void parse_bs_info(const uint32_t bs_info, unsigned int n,
470  unsigned int div, unsigned int **div_blocks,
471  unsigned int *num_blocks)
472 {
473  if (n < 31 && ((bs_info << n) & 0x40000000)) {
474  // if the level is valid and the investigated bit n is set
475  // then recursively check both children at bits (2n+1) and (2n+2)
476  n *= 2;
477  div += 1;
478  parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
479  parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
480  } else {
481  // else the bit is not set or the last level has been reached
482  // (bit implicitly not set)
483  **div_blocks = div;
484  (*div_blocks)++;
485  (*num_blocks)++;
486  }
487 }
488 
489 
490 /** Read and decode a Rice codeword.
491  */
492 static int32_t decode_rice(GetBitContext *gb, unsigned int k)
493 {
494  int max = get_bits_left(gb) - k;
495  unsigned q = get_unary(gb, 0, max);
496  int r = k ? get_bits1(gb) : !(q & 1);
497 
498  if (k > 1) {
499  q <<= (k - 1);
500  q += get_bits_long(gb, k - 1);
501  } else if (!k) {
502  q >>= 1;
503  }
504  return r ? q : ~q;
505 }
506 
507 
508 /** Convert PARCOR coefficient k to direct filter coefficient.
509  */
510 static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
511 {
512  int i, j;
513 
514  for (i = 0, j = k - 1; i < j; i++, j--) {
515  unsigned tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
516  cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
517  cof[i] += tmp1;
518  }
519  if (i == j)
520  cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
521 
522  cof[k] = par[k];
523 }
524 
525 
526 /** Read block switching field if necessary and set actual block sizes.
527  * Also assure that the block sizes of the last frame correspond to the
528  * actual number of samples.
529  */
530 static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
531  uint32_t *bs_info)
532 {
533  ALSSpecificConfig *sconf = &ctx->sconf;
534  GetBitContext *gb = &ctx->gb;
535  unsigned int *ptr_div_blocks = div_blocks;
536  unsigned int b;
537 
538  if (sconf->block_switching) {
539  unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
540  *bs_info = get_bits_long(gb, bs_info_len);
541  *bs_info <<= (32 - bs_info_len);
542  }
543 
544  ctx->num_blocks = 0;
545  parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
546 
547  // The last frame may have an overdetermined block structure given in
548  // the bitstream. In that case the defined block structure would need
549  // more samples than available to be consistent.
550  // The block structure is actually used but the block sizes are adapted
551  // to fit the actual number of available samples.
552  // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
553  // This results in the actual block sizes: 2 2 1 0.
554  // This is not specified in 14496-3 but actually done by the reference
555  // codec RM22 revision 2.
556  // This appears to happen in case of an odd number of samples in the last
557  // frame which is actually not allowed by the block length switching part
558  // of 14496-3.
559  // The ALS conformance files feature an odd number of samples in the last
560  // frame.
561 
562  for (b = 0; b < ctx->num_blocks; b++)
563  div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
564 
565  if (ctx->cur_frame_length != ctx->sconf.frame_length) {
566  unsigned int remaining = ctx->cur_frame_length;
567 
568  for (b = 0; b < ctx->num_blocks; b++) {
569  if (remaining <= div_blocks[b]) {
570  div_blocks[b] = remaining;
571  ctx->num_blocks = b + 1;
572  break;
573  }
574 
575  remaining -= div_blocks[b];
576  }
577  }
578 }
579 
580 
581 /** Read the block data for a constant block
582  */
584 {
585  ALSSpecificConfig *sconf = &ctx->sconf;
586  AVCodecContext *avctx = ctx->avctx;
587  GetBitContext *gb = &ctx->gb;
588 
589  if (bd->block_length <= 0)
590  return AVERROR_INVALIDDATA;
591 
592  *bd->raw_samples = 0;
593  *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
594  bd->js_blocks = get_bits1(gb);
595 
596  // skip 5 reserved bits
597  skip_bits(gb, 5);
598 
599  if (*bd->const_block) {
600  unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
601  *bd->raw_samples = get_sbits_long(gb, const_val_bits);
602  }
603 
604  // ensure constant block decoding by reusing this field
605  *bd->const_block = 1;
606 
607  return 0;
608 }
609 
610 
611 /** Decode the block data for a constant block
612  */
614 {
615  int smp = bd->block_length - 1;
616  int32_t val = *bd->raw_samples;
617  int32_t *dst = bd->raw_samples + 1;
618 
619  // write raw samples into buffer
620  for (; smp; smp--)
621  *dst++ = val;
622 }
623 
624 
625 /** Read the block data for a non-constant block
626  */
628 {
629  ALSSpecificConfig *sconf = &ctx->sconf;
630  AVCodecContext *avctx = ctx->avctx;
631  GetBitContext *gb = &ctx->gb;
632  unsigned int k;
633  unsigned int s[8];
634  unsigned int sx[8];
635  unsigned int sub_blocks, log2_sub_blocks, sb_length;
636  unsigned int start = 0;
637  unsigned int opt_order;
638  int sb;
639  int32_t *quant_cof = bd->quant_cof;
640  int32_t *current_res;
641 
642 
643  // ensure variable block decoding by reusing this field
644  *bd->const_block = 0;
645 
646  *bd->opt_order = 1;
647  bd->js_blocks = get_bits1(gb);
648 
649  opt_order = *bd->opt_order;
650 
651  // determine the number of subblocks for entropy decoding
652  if (!sconf->bgmc && !sconf->sb_part) {
653  log2_sub_blocks = 0;
654  } else {
655  if (sconf->bgmc && sconf->sb_part)
656  log2_sub_blocks = get_bits(gb, 2);
657  else
658  log2_sub_blocks = 2 * get_bits1(gb);
659  }
660 
661  sub_blocks = 1 << log2_sub_blocks;
662 
663  // do not continue in case of a damaged stream since
664  // block_length must be evenly divisible by sub_blocks
665  if (bd->block_length & (sub_blocks - 1) || bd->block_length <= 0) {
666  av_log(avctx, AV_LOG_WARNING,
667  "Block length is not evenly divisible by the number of subblocks.\n");
668  return AVERROR_INVALIDDATA;
669  }
670 
671  sb_length = bd->block_length >> log2_sub_blocks;
672 
673  if (sconf->bgmc) {
674  s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
675  for (k = 1; k < sub_blocks; k++)
676  s[k] = s[k - 1] + decode_rice(gb, 2);
677 
678  for (k = 0; k < sub_blocks; k++) {
679  sx[k] = s[k] & 0x0F;
680  s [k] >>= 4;
681  }
682  } else {
683  s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
684  for (k = 1; k < sub_blocks; k++)
685  s[k] = s[k - 1] + decode_rice(gb, 0);
686  }
687  for (k = 1; k < sub_blocks; k++)
688  if (s[k] > 32) {
689  av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
690  return AVERROR_INVALIDDATA;
691  }
692 
693  if (get_bits1(gb))
694  *bd->shift_lsbs = get_bits(gb, 4) + 1;
695 
696  *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
697 
698 
699  if (!sconf->rlslms) {
700  if (sconf->adapt_order && sconf->max_order) {
701  int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
702  2, sconf->max_order + 1));
703  *bd->opt_order = get_bits(gb, opt_order_length);
704  if (*bd->opt_order > sconf->max_order) {
705  *bd->opt_order = sconf->max_order;
706  av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
707  return AVERROR_INVALIDDATA;
708  }
709  } else {
710  *bd->opt_order = sconf->max_order;
711  }
712  opt_order = *bd->opt_order;
713 
714  if (opt_order) {
715  int add_base;
716 
717  if (sconf->coef_table == 3) {
718  add_base = 0x7F;
719 
720  // read coefficient 0
721  quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
722 
723  // read coefficient 1
724  if (opt_order > 1)
725  quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
726 
727  // read coefficients 2 to opt_order
728  for (k = 2; k < opt_order; k++)
729  quant_cof[k] = get_bits(gb, 7);
730  } else {
731  int k_max;
732  add_base = 1;
733 
734  // read coefficient 0 to 19
735  k_max = FFMIN(opt_order, 20);
736  for (k = 0; k < k_max; k++) {
737  int rice_param = parcor_rice_table[sconf->coef_table][k][1];
738  int offset = parcor_rice_table[sconf->coef_table][k][0];
739  quant_cof[k] = decode_rice(gb, rice_param) + offset;
740  if (quant_cof[k] < -64 || quant_cof[k] > 63) {
741  av_log(avctx, AV_LOG_ERROR,
742  "quant_cof %"PRId32" is out of range.\n",
743  quant_cof[k]);
744  return AVERROR_INVALIDDATA;
745  }
746  }
747 
748  // read coefficients 20 to 126
749  k_max = FFMIN(opt_order, 127);
750  for (; k < k_max; k++)
751  quant_cof[k] = decode_rice(gb, 2) + (k & 1);
752 
753  // read coefficients 127 to opt_order
754  for (; k < opt_order; k++)
755  quant_cof[k] = decode_rice(gb, 1);
756 
757  quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
758 
759  if (opt_order > 1)
760  quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
761  }
762 
763  for (k = 2; k < opt_order; k++)
764  quant_cof[k] = (quant_cof[k] * (1 << 14)) + (add_base << 13);
765  }
766  }
767 
768  // read LTP gain and lag values
769  if (sconf->long_term_prediction) {
770  *bd->use_ltp = get_bits1(gb);
771 
772  if (*bd->use_ltp) {
773  int r, c;
774 
775  bd->ltp_gain[0] = decode_rice(gb, 1) * 8;
776  bd->ltp_gain[1] = decode_rice(gb, 2) * 8;
777 
778  r = get_unary(gb, 0, 4);
779  c = get_bits(gb, 2);
780  if (r >= 4) {
781  av_log(avctx, AV_LOG_ERROR, "r overflow\n");
782  return AVERROR_INVALIDDATA;
783  }
784 
785  bd->ltp_gain[2] = ltp_gain_values[r][c];
786 
787  bd->ltp_gain[3] = decode_rice(gb, 2) * 8;
788  bd->ltp_gain[4] = decode_rice(gb, 1) * 8;
789 
790  *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
791  *bd->ltp_lag += FFMAX(4, opt_order + 1);
792  }
793  }
794 
795  // read first value and residuals in case of a random access block
796  if (bd->ra_block) {
797  start = FFMIN(opt_order, 3);
798  av_assert0(sb_length <= sconf->frame_length);
799  if (sb_length <= start) {
800  // opt_order or sb_length may be corrupted, either way this is unsupported and not well defined in the specification
801  av_log(avctx, AV_LOG_ERROR, "Sub block length smaller or equal start\n");
802  return AVERROR_PATCHWELCOME;
803  }
804 
805  if (opt_order)
806  bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
807  if (opt_order > 1)
808  bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
809  if (opt_order > 2)
810  bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
811  }
812 
813  // read all residuals
814  if (sconf->bgmc) {
815  int delta[8];
816  unsigned int k [8];
817  unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
818 
819  // read most significant bits
820  unsigned int high;
821  unsigned int low;
822  unsigned int value;
823 
824  int ret = ff_bgmc_decode_init(gb, &high, &low, &value);
825  if (ret < 0)
826  return ret;
827 
828  current_res = bd->raw_samples + start;
829 
830  for (sb = 0; sb < sub_blocks; sb++) {
831  unsigned int sb_len = sb_length - (sb ? 0 : start);
832 
833  k [sb] = s[sb] > b ? s[sb] - b : 0;
834  delta[sb] = 5 - s[sb] + k[sb];
835 
836  ff_bgmc_decode(gb, sb_len, current_res,
837  delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
838 
839  current_res += sb_len;
840  }
841 
842  ff_bgmc_decode_end(gb);
843 
844 
845  // read least significant bits and tails
846  current_res = bd->raw_samples + start;
847 
848  for (sb = 0; sb < sub_blocks; sb++, start = 0) {
849  unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
850  unsigned int cur_k = k[sb];
851  unsigned int cur_s = s[sb];
852 
853  for (; start < sb_length; start++) {
854  int32_t res = *current_res;
855 
856  if (res == cur_tail_code) {
857  unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
858  << (5 - delta[sb]);
859 
860  res = decode_rice(gb, cur_s);
861 
862  if (res >= 0) {
863  res += (max_msb ) << cur_k;
864  } else {
865  res -= (max_msb - 1) << cur_k;
866  }
867  } else {
868  if (res > cur_tail_code)
869  res--;
870 
871  if (res & 1)
872  res = -res;
873 
874  res >>= 1;
875 
876  if (cur_k) {
877  res *= 1U << cur_k;
878  res |= get_bits_long(gb, cur_k);
879  }
880  }
881 
882  *current_res++ = res;
883  }
884  }
885  } else {
886  current_res = bd->raw_samples + start;
887 
888  for (sb = 0; sb < sub_blocks; sb++, start = 0)
889  for (; start < sb_length; start++)
890  *current_res++ = decode_rice(gb, s[sb]);
891  }
892 
893  return 0;
894 }
895 
896 
897 /** Decode the block data for a non-constant block
898  */
900 {
901  ALSSpecificConfig *sconf = &ctx->sconf;
902  unsigned int block_length = bd->block_length;
903  unsigned int smp = 0;
904  unsigned int k;
905  int opt_order = *bd->opt_order;
906  int sb;
907  int64_t y;
908  int32_t *quant_cof = bd->quant_cof;
909  int32_t *lpc_cof = bd->lpc_cof;
910  int32_t *raw_samples = bd->raw_samples;
911  int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
912  int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
913 
914  // reverse long-term prediction
915  if (*bd->use_ltp) {
916  int ltp_smp;
917 
918  for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
919  int center = ltp_smp - *bd->ltp_lag;
920  int begin = FFMAX(0, center - 2);
921  int end = center + 3;
922  int tab = 5 - (end - begin);
923  int base;
924 
925  y = 1 << 6;
926 
927  for (base = begin; base < end; base++, tab++)
928  y += (uint64_t)MUL64(bd->ltp_gain[tab], raw_samples[base]);
929 
930  raw_samples[ltp_smp] += y >> 7;
931  }
932  }
933 
934  // reconstruct all samples from residuals
935  if (bd->ra_block) {
936  for (smp = 0; smp < FFMIN(opt_order, block_length); smp++) {
937  y = 1 << 19;
938 
939  for (sb = 0; sb < smp; sb++)
940  y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
941 
942  *raw_samples++ -= y >> 20;
943  parcor_to_lpc(smp, quant_cof, lpc_cof);
944  }
945  } else {
946  for (k = 0; k < opt_order; k++)
947  parcor_to_lpc(k, quant_cof, lpc_cof);
948 
949  // store previous samples in case that they have to be altered
950  if (*bd->store_prev_samples)
951  memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
952  sizeof(*bd->prev_raw_samples) * sconf->max_order);
953 
954  // reconstruct difference signal for prediction (joint-stereo)
955  if (bd->js_blocks && bd->raw_other) {
956  uint32_t *left, *right;
957 
958  if (bd->raw_other > raw_samples) { // D = R - L
959  left = raw_samples;
960  right = bd->raw_other;
961  } else { // D = R - L
962  left = bd->raw_other;
963  right = raw_samples;
964  }
965 
966  for (sb = -1; sb >= -sconf->max_order; sb--)
967  raw_samples[sb] = right[sb] - left[sb];
968  }
969 
970  // reconstruct shifted signal
971  if (*bd->shift_lsbs)
972  for (sb = -1; sb >= -sconf->max_order; sb--)
973  raw_samples[sb] >>= *bd->shift_lsbs;
974  }
975 
976  // reverse linear prediction coefficients for efficiency
977  lpc_cof = lpc_cof + opt_order;
978 
979  for (sb = 0; sb < opt_order; sb++)
980  lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
981 
982  // reconstruct raw samples
983  raw_samples = bd->raw_samples + smp;
984  lpc_cof = lpc_cof_reversed + opt_order;
985 
986  for (; raw_samples < raw_samples_end; raw_samples++) {
987  y = 1 << 19;
988 
989  for (sb = -opt_order; sb < 0; sb++)
990  y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[sb]);
991 
992  *raw_samples -= y >> 20;
993  }
994 
995  raw_samples = bd->raw_samples;
996 
997  // restore previous samples in case that they have been altered
998  if (*bd->store_prev_samples)
999  memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
1000  sizeof(*raw_samples) * sconf->max_order);
1001 
1002  return 0;
1003 }
1004 
1005 
1006 /** Read the block data.
1007  */
1009 {
1010  int ret;
1011  GetBitContext *gb = &ctx->gb;
1012  ALSSpecificConfig *sconf = &ctx->sconf;
1013 
1014  *bd->shift_lsbs = 0;
1015  // read block type flag and read the samples accordingly
1016  if (get_bits1(gb)) {
1017  ret = read_var_block_data(ctx, bd);
1018  } else {
1019  ret = read_const_block_data(ctx, bd);
1020  }
1021 
1022  if (!sconf->mc_coding || ctx->js_switch)
1023  align_get_bits(gb);
1024 
1025  return ret;
1026 }
1027 
1028 
1029 /** Decode the block data.
1030  */
1032 {
1033  unsigned int smp;
1034  int ret = 0;
1035 
1036  // read block type flag and read the samples accordingly
1037  if (*bd->const_block)
1038  decode_const_block_data(ctx, bd);
1039  else
1040  ret = decode_var_block_data(ctx, bd); // always return 0
1041 
1042  if (ret < 0)
1043  return ret;
1044 
1045  // TODO: read RLSLMS extension data
1046 
1047  if (*bd->shift_lsbs)
1048  for (smp = 0; smp < bd->block_length; smp++)
1049  bd->raw_samples[smp] = (unsigned)bd->raw_samples[smp] << *bd->shift_lsbs;
1050 
1051  return 0;
1052 }
1053 
1054 
1055 /** Read and decode block data successively.
1056  */
1058 {
1059  int ret;
1060 
1061  if ((ret = read_block(ctx, bd)) < 0)
1062  return ret;
1063 
1064  return decode_block(ctx, bd);
1065 }
1066 
1067 
1068 /** Compute the number of samples left to decode for the current frame and
1069  * sets these samples to zero.
1070  */
1071 static void zero_remaining(unsigned int b, unsigned int b_max,
1072  const unsigned int *div_blocks, int32_t *buf)
1073 {
1074  unsigned int count = 0;
1075 
1076  while (b < b_max)
1077  count += div_blocks[b++];
1078 
1079  if (count)
1080  memset(buf, 0, sizeof(*buf) * count);
1081 }
1082 
1083 
1084 /** Decode blocks independently.
1085  */
1086 static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1087  unsigned int c, const unsigned int *div_blocks,
1088  unsigned int *js_blocks)
1089 {
1090  int ret;
1091  unsigned int b;
1092  ALSBlockData bd = { 0 };
1093 
1094  bd.ra_block = ra_frame;
1095  bd.const_block = ctx->const_block;
1096  bd.shift_lsbs = ctx->shift_lsbs;
1097  bd.opt_order = ctx->opt_order;
1099  bd.use_ltp = ctx->use_ltp;
1100  bd.ltp_lag = ctx->ltp_lag;
1101  bd.ltp_gain = ctx->ltp_gain[0];
1102  bd.quant_cof = ctx->quant_cof[0];
1103  bd.lpc_cof = ctx->lpc_cof[0];
1105  bd.raw_samples = ctx->raw_samples[c];
1106 
1107 
1108  for (b = 0; b < ctx->num_blocks; b++) {
1109  bd.block_length = div_blocks[b];
1110 
1111  if ((ret = read_decode_block(ctx, &bd)) < 0) {
1112  // damaged block, write zero for the rest of the frame
1113  zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1114  return ret;
1115  }
1116  bd.raw_samples += div_blocks[b];
1117  bd.ra_block = 0;
1118  }
1119 
1120  return 0;
1121 }
1122 
1123 
1124 /** Decode blocks dependently.
1125  */
1126 static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1127  unsigned int c, const unsigned int *div_blocks,
1128  unsigned int *js_blocks)
1129 {
1130  ALSSpecificConfig *sconf = &ctx->sconf;
1131  unsigned int offset = 0;
1132  unsigned int b;
1133  int ret;
1134  ALSBlockData bd[2] = { { 0 } };
1135 
1136  bd[0].ra_block = ra_frame;
1137  bd[0].const_block = ctx->const_block;
1138  bd[0].shift_lsbs = ctx->shift_lsbs;
1139  bd[0].opt_order = ctx->opt_order;
1141  bd[0].use_ltp = ctx->use_ltp;
1142  bd[0].ltp_lag = ctx->ltp_lag;
1143  bd[0].ltp_gain = ctx->ltp_gain[0];
1144  bd[0].quant_cof = ctx->quant_cof[0];
1145  bd[0].lpc_cof = ctx->lpc_cof[0];
1146  bd[0].prev_raw_samples = ctx->prev_raw_samples;
1147  bd[0].js_blocks = *js_blocks;
1148 
1149  bd[1].ra_block = ra_frame;
1150  bd[1].const_block = ctx->const_block;
1151  bd[1].shift_lsbs = ctx->shift_lsbs;
1152  bd[1].opt_order = ctx->opt_order;
1154  bd[1].use_ltp = ctx->use_ltp;
1155  bd[1].ltp_lag = ctx->ltp_lag;
1156  bd[1].ltp_gain = ctx->ltp_gain[0];
1157  bd[1].quant_cof = ctx->quant_cof[0];
1158  bd[1].lpc_cof = ctx->lpc_cof[0];
1159  bd[1].prev_raw_samples = ctx->prev_raw_samples;
1160  bd[1].js_blocks = *(js_blocks + 1);
1161 
1162  // decode all blocks
1163  for (b = 0; b < ctx->num_blocks; b++) {
1164  unsigned int s;
1165 
1166  bd[0].block_length = div_blocks[b];
1167  bd[1].block_length = div_blocks[b];
1168 
1169  bd[0].raw_samples = ctx->raw_samples[c ] + offset;
1170  bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
1171 
1172  bd[0].raw_other = bd[1].raw_samples;
1173  bd[1].raw_other = bd[0].raw_samples;
1174 
1175  if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
1176  (ret = read_decode_block(ctx, &bd[1])) < 0)
1177  goto fail;
1178 
1179  // reconstruct joint-stereo blocks
1180  if (bd[0].js_blocks) {
1181  if (bd[1].js_blocks)
1182  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
1183 
1184  for (s = 0; s < div_blocks[b]; s++)
1185  bd[0].raw_samples[s] = bd[1].raw_samples[s] - (unsigned)bd[0].raw_samples[s];
1186  } else if (bd[1].js_blocks) {
1187  for (s = 0; s < div_blocks[b]; s++)
1188  bd[1].raw_samples[s] = bd[1].raw_samples[s] + (unsigned)bd[0].raw_samples[s];
1189  }
1190 
1191  offset += div_blocks[b];
1192  bd[0].ra_block = 0;
1193  bd[1].ra_block = 0;
1194  }
1195 
1196  // store carryover raw samples,
1197  // the others channel raw samples are stored by the calling function.
1198  memmove(ctx->raw_samples[c] - sconf->max_order,
1199  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1200  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1201 
1202  return 0;
1203 fail:
1204  // damaged block, write zero for the rest of the frame
1205  zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1206  zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1207  return ret;
1208 }
1209 
1210 static inline int als_weighting(GetBitContext *gb, int k, int off)
1211 {
1212  int idx = av_clip(decode_rice(gb, k) + off,
1213  0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
1214  return mcc_weightings[idx];
1215 }
1216 
1217 /** Read the channel data.
1218  */
1220 {
1221  GetBitContext *gb = &ctx->gb;
1222  ALSChannelData *current = cd;
1223  unsigned int channels = ctx->avctx->channels;
1224  int entries = 0;
1225 
1226  while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1227  current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1228 
1229  if (current->master_channel >= channels) {
1230  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
1231  return AVERROR_INVALIDDATA;
1232  }
1233 
1234  if (current->master_channel != c) {
1235  current->time_diff_flag = get_bits1(gb);
1236  current->weighting[0] = als_weighting(gb, 1, 16);
1237  current->weighting[1] = als_weighting(gb, 2, 14);
1238  current->weighting[2] = als_weighting(gb, 1, 16);
1239 
1240  if (current->time_diff_flag) {
1241  current->weighting[3] = als_weighting(gb, 1, 16);
1242  current->weighting[4] = als_weighting(gb, 1, 16);
1243  current->weighting[5] = als_weighting(gb, 1, 16);
1244 
1245  current->time_diff_sign = get_bits1(gb);
1246  current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1247  }
1248  }
1249 
1250  current++;
1251  entries++;
1252  }
1253 
1254  if (entries == channels) {
1255  av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
1256  return AVERROR_INVALIDDATA;
1257  }
1258 
1259  align_get_bits(gb);
1260  return 0;
1261 }
1262 
1263 
1264 /** Recursively reverts the inter-channel correlation for a block.
1265  */
1267  ALSChannelData **cd, int *reverted,
1268  unsigned int offset, int c)
1269 {
1270  ALSChannelData *ch = cd[c];
1271  unsigned int dep = 0;
1272  unsigned int channels = ctx->avctx->channels;
1273  unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
1274 
1275  if (reverted[c])
1276  return 0;
1277 
1278  reverted[c] = 1;
1279 
1280  while (dep < channels && !ch[dep].stop_flag) {
1281  revert_channel_correlation(ctx, bd, cd, reverted, offset,
1282  ch[dep].master_channel);
1283 
1284  dep++;
1285  }
1286 
1287  if (dep == channels) {
1288  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
1289  return AVERROR_INVALIDDATA;
1290  }
1291 
1292  bd->const_block = ctx->const_block + c;
1293  bd->shift_lsbs = ctx->shift_lsbs + c;
1294  bd->opt_order = ctx->opt_order + c;
1296  bd->use_ltp = ctx->use_ltp + c;
1297  bd->ltp_lag = ctx->ltp_lag + c;
1298  bd->ltp_gain = ctx->ltp_gain[c];
1299  bd->lpc_cof = ctx->lpc_cof[c];
1300  bd->quant_cof = ctx->quant_cof[c];
1301  bd->raw_samples = ctx->raw_samples[c] + offset;
1302 
1303  for (dep = 0; !ch[dep].stop_flag; dep++) {
1304  ptrdiff_t smp;
1305  ptrdiff_t begin = 1;
1306  ptrdiff_t end = bd->block_length - 1;
1307  int64_t y;
1308  int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1309 
1310  if (ch[dep].master_channel == c)
1311  continue;
1312 
1313  if (ch[dep].time_diff_flag) {
1314  int t = ch[dep].time_diff_index;
1315 
1316  if (ch[dep].time_diff_sign) {
1317  t = -t;
1318  if (begin < t) {
1319  av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
1320  return AVERROR_INVALIDDATA;
1321  }
1322  begin -= t;
1323  } else {
1324  if (end < t) {
1325  av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
1326  return AVERROR_INVALIDDATA;
1327  }
1328  end -= t;
1329  }
1330 
1331  if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
1332  FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
1333  av_log(ctx->avctx, AV_LOG_ERROR,
1334  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1335  master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t),
1336  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1337  return AVERROR_INVALIDDATA;
1338  }
1339 
1340  for (smp = begin; smp < end; smp++) {
1341  y = (1 << 6) +
1342  MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
1343  MUL64(ch[dep].weighting[1], master[smp ]) +
1344  MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
1345  MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1346  MUL64(ch[dep].weighting[4], master[smp + t]) +
1347  MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1348 
1349  bd->raw_samples[smp] += y >> 7;
1350  }
1351  } else {
1352 
1353  if (begin - 1 < ctx->raw_buffer - master ||
1354  end + 1 > ctx->raw_buffer + channels * channel_size - master) {
1355  av_log(ctx->avctx, AV_LOG_ERROR,
1356  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1357  master + begin - 1, master + end + 1,
1358  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1359  return AVERROR_INVALIDDATA;
1360  }
1361 
1362  for (smp = begin; smp < end; smp++) {
1363  y = (1 << 6) +
1364  MUL64(ch[dep].weighting[0], master[smp - 1]) +
1365  MUL64(ch[dep].weighting[1], master[smp ]) +
1366  MUL64(ch[dep].weighting[2], master[smp + 1]);
1367 
1368  bd->raw_samples[smp] += y >> 7;
1369  }
1370  }
1371  }
1372 
1373  return 0;
1374 }
1375 
1376 
1377 /** multiply two softfloats and handle the rounding off
1378  */
1380  uint64_t mantissa_temp;
1381  uint64_t mask_64;
1382  int cutoff_bit_count;
1383  unsigned char last_2_bits;
1384  unsigned int mantissa;
1385  int32_t sign;
1386  uint32_t return_val = 0;
1387  int bit_count = 48;
1388 
1389  sign = a.sign ^ b.sign;
1390 
1391  // Multiply mantissa bits in a 64-bit register
1392  mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
1393  mask_64 = (uint64_t)0x1 << 47;
1394 
1395  if (!mantissa_temp)
1396  return FLOAT_0;
1397 
1398  // Count the valid bit count
1399  while (!(mantissa_temp & mask_64) && mask_64) {
1400  bit_count--;
1401  mask_64 >>= 1;
1402  }
1403 
1404  // Round off
1405  cutoff_bit_count = bit_count - 24;
1406  if (cutoff_bit_count > 0) {
1407  last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
1408  if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
1409  // Need to round up
1410  mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
1411  }
1412  }
1413 
1414  if (cutoff_bit_count >= 0) {
1415  mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
1416  } else {
1417  mantissa = (unsigned int)(mantissa_temp <<-cutoff_bit_count);
1418  }
1419 
1420  // Need one more shift?
1421  if (mantissa & 0x01000000ul) {
1422  bit_count++;
1423  mantissa >>= 1;
1424  }
1425 
1426  if (!sign) {
1427  return_val = 0x80000000U;
1428  }
1429 
1430  return_val |= ((unsigned)av_clip(a.exp + b.exp + bit_count - 47, -126, 127) << 23) & 0x7F800000;
1431  return_val |= mantissa;
1432  return av_bits2sf_ieee754(return_val);
1433 }
1434 
1435 
1436 /** Read and decode the floating point sample data
1437  */
1438 static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
1439  AVCodecContext *avctx = ctx->avctx;
1440  GetBitContext *gb = &ctx->gb;
1441  SoftFloat_IEEE754 *acf = ctx->acf;
1442  int *shift_value = ctx->shift_value;
1443  int *last_shift_value = ctx->last_shift_value;
1444  int *last_acf_mantissa = ctx->last_acf_mantissa;
1445  int **raw_mantissa = ctx->raw_mantissa;
1446  int *nbits = ctx->nbits;
1447  unsigned char *larray = ctx->larray;
1448  int frame_length = ctx->cur_frame_length;
1449  SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
1450  unsigned int partA_flag;
1451  unsigned int highest_byte;
1452  unsigned int shift_amp;
1453  uint32_t tmp_32;
1454  int use_acf;
1455  int nchars;
1456  int i;
1457  int c;
1458  long k;
1459  long nbits_aligned;
1460  unsigned long acc;
1461  unsigned long j;
1462  uint32_t sign;
1463  uint32_t e;
1464  uint32_t mantissa;
1465 
1466  skip_bits_long(gb, 32); //num_bytes_diff_float
1467  use_acf = get_bits1(gb);
1468 
1469  if (ra_frame) {
1470  memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa));
1471  memset(last_shift_value, 0, avctx->channels * sizeof(*last_shift_value) );
1472  ff_mlz_flush_dict(ctx->mlz);
1473  }
1474 
1475  for (c = 0; c < avctx->channels; ++c) {
1476  if (use_acf) {
1477  //acf_flag
1478  if (get_bits1(gb)) {
1479  tmp_32 = get_bits(gb, 23);
1480  last_acf_mantissa[c] = tmp_32;
1481  } else {
1482  tmp_32 = last_acf_mantissa[c];
1483  }
1484  acf[c] = av_bits2sf_ieee754(tmp_32);
1485  } else {
1486  acf[c] = FLOAT_1;
1487  }
1488 
1489  highest_byte = get_bits(gb, 2);
1490  partA_flag = get_bits1(gb);
1491  shift_amp = get_bits1(gb);
1492 
1493  if (shift_amp) {
1494  shift_value[c] = get_bits(gb, 8);
1495  last_shift_value[c] = shift_value[c];
1496  } else {
1497  shift_value[c] = last_shift_value[c];
1498  }
1499 
1500  if (partA_flag) {
1501  if (!get_bits1(gb)) { //uncompressed
1502  for (i = 0; i < frame_length; ++i) {
1503  if (ctx->raw_samples[c][i] == 0) {
1504  ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
1505  }
1506  }
1507  } else { //compressed
1508  nchars = 0;
1509  for (i = 0; i < frame_length; ++i) {
1510  if (ctx->raw_samples[c][i] == 0) {
1511  nchars += 4;
1512  }
1513  }
1514 
1515  tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1516  if(tmp_32 != nchars) {
1517  av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1518  return AVERROR_INVALIDDATA;
1519  }
1520 
1521  for (i = 0; i < frame_length; ++i) {
1522  ctx->raw_mantissa[c][i] = AV_RB32(larray);
1523  }
1524  }
1525  }
1526 
1527  //decode part B
1528  if (highest_byte) {
1529  for (i = 0; i < frame_length; ++i) {
1530  if (ctx->raw_samples[c][i] != 0) {
1531  //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
1532  if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1533  nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
1534  } else {
1535  nbits[i] = 23;
1536  }
1537  nbits[i] = FFMIN(nbits[i], highest_byte*8);
1538  }
1539  }
1540 
1541  if (!get_bits1(gb)) { //uncompressed
1542  for (i = 0; i < frame_length; ++i) {
1543  if (ctx->raw_samples[c][i] != 0) {
1544  raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
1545  }
1546  }
1547  } else { //compressed
1548  nchars = 0;
1549  for (i = 0; i < frame_length; ++i) {
1550  if (ctx->raw_samples[c][i]) {
1551  nchars += (int) nbits[i] / 8;
1552  if (nbits[i] & 7) {
1553  ++nchars;
1554  }
1555  }
1556  }
1557 
1558  tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1559  if(tmp_32 != nchars) {
1560  av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1561  return AVERROR_INVALIDDATA;
1562  }
1563 
1564  j = 0;
1565  for (i = 0; i < frame_length; ++i) {
1566  if (ctx->raw_samples[c][i]) {
1567  if (nbits[i] & 7) {
1568  nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
1569  } else {
1570  nbits_aligned = nbits[i];
1571  }
1572  acc = 0;
1573  for (k = 0; k < nbits_aligned/8; ++k) {
1574  acc = (acc << 8) + larray[j++];
1575  }
1576  acc >>= (nbits_aligned - nbits[i]);
1577  raw_mantissa[c][i] = acc;
1578  }
1579  }
1580  }
1581  }
1582 
1583  for (i = 0; i < frame_length; ++i) {
1584  SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
1585  pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
1586 
1587  if (ctx->raw_samples[c][i] != 0) {
1588  if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1589  pcm_sf = multiply(acf[c], pcm_sf);
1590  }
1591 
1592  sign = pcm_sf.sign;
1593  e = pcm_sf.exp;
1594  mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
1595 
1596  while(mantissa >= 0x1000000) {
1597  e++;
1598  mantissa >>= 1;
1599  }
1600 
1601  if (mantissa) e += (shift_value[c] - 127);
1602  mantissa &= 0x007fffffUL;
1603 
1604  tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
1605  ctx->raw_samples[c][i] = tmp_32;
1606  } else {
1607  ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
1608  }
1609  }
1610  align_get_bits(gb);
1611  }
1612  return 0;
1613 }
1614 
1615 
1616 /** Read the frame data.
1617  */
1618 static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1619 {
1620  ALSSpecificConfig *sconf = &ctx->sconf;
1621  AVCodecContext *avctx = ctx->avctx;
1622  GetBitContext *gb = &ctx->gb;
1623  unsigned int div_blocks[32]; ///< block sizes.
1624  unsigned int c;
1625  unsigned int js_blocks[2];
1626  uint32_t bs_info = 0;
1627  int ret;
1628 
1629  // skip the size of the ra unit if present in the frame
1630  if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1631  skip_bits_long(gb, 32);
1632 
1633  if (sconf->mc_coding && sconf->joint_stereo) {
1634  ctx->js_switch = get_bits1(gb);
1635  align_get_bits(gb);
1636  }
1637 
1638  if (!sconf->mc_coding || ctx->js_switch) {
1639  int independent_bs = !sconf->joint_stereo;
1640 
1641  for (c = 0; c < avctx->channels; c++) {
1642  js_blocks[0] = 0;
1643  js_blocks[1] = 0;
1644 
1645  get_block_sizes(ctx, div_blocks, &bs_info);
1646 
1647  // if joint_stereo and block_switching is set, independent decoding
1648  // is signaled via the first bit of bs_info
1649  if (sconf->joint_stereo && sconf->block_switching)
1650  if (bs_info >> 31)
1651  independent_bs = 2;
1652 
1653  // if this is the last channel, it has to be decoded independently
1654  if (c == avctx->channels - 1 || (c & 1))
1655  independent_bs = 1;
1656 
1657  if (independent_bs) {
1658  ret = decode_blocks_ind(ctx, ra_frame, c,
1659  div_blocks, js_blocks);
1660  if (ret < 0)
1661  return ret;
1662  independent_bs--;
1663  } else {
1664  ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
1665  if (ret < 0)
1666  return ret;
1667 
1668  c++;
1669  }
1670 
1671  // store carryover raw samples
1672  memmove(ctx->raw_samples[c] - sconf->max_order,
1673  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1674  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1675  }
1676  } else { // multi-channel coding
1677  ALSBlockData bd = { 0 };
1678  int b, ret;
1679  int *reverted_channels = ctx->reverted_channels;
1680  unsigned int offset = 0;
1681 
1682  for (c = 0; c < avctx->channels; c++)
1683  if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1684  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
1685  return AVERROR_INVALIDDATA;
1686  }
1687 
1688  memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
1689 
1690  bd.ra_block = ra_frame;
1692 
1693  get_block_sizes(ctx, div_blocks, &bs_info);
1694 
1695  for (b = 0; b < ctx->num_blocks; b++) {
1696  bd.block_length = div_blocks[b];
1697  if (bd.block_length <= 0) {
1698  av_log(ctx->avctx, AV_LOG_WARNING,
1699  "Invalid block length %u in channel data!\n",
1700  bd.block_length);
1701  continue;
1702  }
1703 
1704  for (c = 0; c < avctx->channels; c++) {
1705  bd.const_block = ctx->const_block + c;
1706  bd.shift_lsbs = ctx->shift_lsbs + c;
1707  bd.opt_order = ctx->opt_order + c;
1709  bd.use_ltp = ctx->use_ltp + c;
1710  bd.ltp_lag = ctx->ltp_lag + c;
1711  bd.ltp_gain = ctx->ltp_gain[c];
1712  bd.lpc_cof = ctx->lpc_cof[c];
1713  bd.quant_cof = ctx->quant_cof[c];
1714  bd.raw_samples = ctx->raw_samples[c] + offset;
1715  bd.raw_other = NULL;
1716 
1717  if ((ret = read_block(ctx, &bd)) < 0)
1718  return ret;
1719  if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
1720  return ret;
1721  }
1722 
1723  for (c = 0; c < avctx->channels; c++) {
1724  ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
1725  reverted_channels, offset, c);
1726  if (ret < 0)
1727  return ret;
1728  }
1729  for (c = 0; c < avctx->channels; c++) {
1730  bd.const_block = ctx->const_block + c;
1731  bd.shift_lsbs = ctx->shift_lsbs + c;
1732  bd.opt_order = ctx->opt_order + c;
1734  bd.use_ltp = ctx->use_ltp + c;
1735  bd.ltp_lag = ctx->ltp_lag + c;
1736  bd.ltp_gain = ctx->ltp_gain[c];
1737  bd.lpc_cof = ctx->lpc_cof[c];
1738  bd.quant_cof = ctx->quant_cof[c];
1739  bd.raw_samples = ctx->raw_samples[c] + offset;
1740 
1741  if ((ret = decode_block(ctx, &bd)) < 0)
1742  return ret;
1743  }
1744 
1745  memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
1746  offset += div_blocks[b];
1747  bd.ra_block = 0;
1748  }
1749 
1750  // store carryover raw samples
1751  for (c = 0; c < avctx->channels; c++)
1752  memmove(ctx->raw_samples[c] - sconf->max_order,
1753  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1754  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1755  }
1756 
1757  if (sconf->floating) {
1758  read_diff_float_data(ctx, ra_frame);
1759  }
1760 
1761  if (get_bits_left(gb) < 0) {
1762  av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
1763  return AVERROR_INVALIDDATA;
1764  }
1765 
1766  return 0;
1767 }
1768 
1769 
1770 /** Decode an ALS frame.
1771  */
1772 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
1773  AVPacket *avpkt)
1774 {
1775  ALSDecContext *ctx = avctx->priv_data;
1776  AVFrame *frame = data;
1777  ALSSpecificConfig *sconf = &ctx->sconf;
1778  const uint8_t *buffer = avpkt->data;
1779  int buffer_size = avpkt->size;
1780  int invalid_frame, ret;
1781  unsigned int c, sample, ra_frame, bytes_read, shift;
1782 
1783  if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
1784  return ret;
1785 
1786  // In the case that the distance between random access frames is set to zero
1787  // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1788  // For the first frame, if prediction is used, all samples used from the
1789  // previous frame are assumed to be zero.
1790  ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1791 
1792  // the last frame to decode might have a different length
1793  if (sconf->samples != 0xFFFFFFFF)
1794  ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1795  sconf->frame_length);
1796  else
1797  ctx->cur_frame_length = sconf->frame_length;
1798 
1799  // decode the frame data
1800  if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1801  av_log(ctx->avctx, AV_LOG_WARNING,
1802  "Reading frame data failed. Skipping RA unit.\n");
1803 
1804  ctx->frame_id++;
1805 
1806  /* get output buffer */
1807  frame->nb_samples = ctx->cur_frame_length;
1808  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1809  return ret;
1810 
1811  // transform decoded frame into output format
1812  #define INTERLEAVE_OUTPUT(bps) \
1813  { \
1814  int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
1815  shift = bps - ctx->avctx->bits_per_raw_sample; \
1816  if (!ctx->cs_switch) { \
1817  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1818  for (c = 0; c < avctx->channels; c++) \
1819  *dest++ = ctx->raw_samples[c][sample] * (1U << shift); \
1820  } else { \
1821  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1822  for (c = 0; c < avctx->channels; c++) \
1823  *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] * (1U << shift); \
1824  } \
1825  }
1826 
1827  if (ctx->avctx->bits_per_raw_sample <= 16) {
1828  INTERLEAVE_OUTPUT(16)
1829  } else {
1830  INTERLEAVE_OUTPUT(32)
1831  }
1832 
1833  // update CRC
1834  if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1835  int swap = HAVE_BIGENDIAN != sconf->msb_first;
1836 
1837  if (ctx->avctx->bits_per_raw_sample == 24) {
1838  int32_t *src = (int32_t *)frame->data[0];
1839 
1840  for (sample = 0;
1841  sample < ctx->cur_frame_length * avctx->channels;
1842  sample++) {
1843  int32_t v;
1844 
1845  if (swap)
1846  v = av_bswap32(src[sample]);
1847  else
1848  v = src[sample];
1849  if (!HAVE_BIGENDIAN)
1850  v >>= 8;
1851 
1852  ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
1853  }
1854  } else {
1855  uint8_t *crc_source;
1856 
1857  if (swap) {
1858  if (ctx->avctx->bits_per_raw_sample <= 16) {
1859  int16_t *src = (int16_t*) frame->data[0];
1860  int16_t *dest = (int16_t*) ctx->crc_buffer;
1861  for (sample = 0;
1862  sample < ctx->cur_frame_length * avctx->channels;
1863  sample++)
1864  *dest++ = av_bswap16(src[sample]);
1865  } else {
1866  ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
1867  (uint32_t *) frame->data[0],
1868  ctx->cur_frame_length * avctx->channels);
1869  }
1870  crc_source = ctx->crc_buffer;
1871  } else {
1872  crc_source = frame->data[0];
1873  }
1874 
1875  ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
1876  ctx->cur_frame_length * avctx->channels *
1878  }
1879 
1880 
1881  // check CRC sums if this is the last frame
1882  if (ctx->cur_frame_length != sconf->frame_length &&
1883  ctx->crc_org != ctx->crc) {
1884  av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1885  if (avctx->err_recognition & AV_EF_EXPLODE)
1886  return AVERROR_INVALIDDATA;
1887  }
1888  }
1889 
1890  *got_frame_ptr = 1;
1891 
1892  bytes_read = invalid_frame ? buffer_size :
1893  (get_bits_count(&ctx->gb) + 7) >> 3;
1894 
1895  return bytes_read;
1896 }
1897 
1898 
1899 /** Uninitialize the ALS decoder.
1900  */
1902 {
1903  ALSDecContext *ctx = avctx->priv_data;
1904  int i;
1905 
1906  av_freep(&ctx->sconf.chan_pos);
1907 
1908  ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1909 
1910  av_freep(&ctx->const_block);
1911  av_freep(&ctx->shift_lsbs);
1912  av_freep(&ctx->opt_order);
1914  av_freep(&ctx->use_ltp);
1915  av_freep(&ctx->ltp_lag);
1916  av_freep(&ctx->ltp_gain);
1917  av_freep(&ctx->ltp_gain_buffer);
1918  av_freep(&ctx->quant_cof);
1919  av_freep(&ctx->lpc_cof);
1920  av_freep(&ctx->quant_cof_buffer);
1921  av_freep(&ctx->lpc_cof_buffer);
1923  av_freep(&ctx->prev_raw_samples);
1924  av_freep(&ctx->raw_samples);
1925  av_freep(&ctx->raw_buffer);
1926  av_freep(&ctx->chan_data);
1927  av_freep(&ctx->chan_data_buffer);
1928  av_freep(&ctx->reverted_channels);
1929  av_freep(&ctx->crc_buffer);
1930  if (ctx->mlz) {
1931  av_freep(&ctx->mlz->dict);
1932  av_freep(&ctx->mlz);
1933  }
1934  av_freep(&ctx->acf);
1935  av_freep(&ctx->last_acf_mantissa);
1936  av_freep(&ctx->shift_value);
1937  av_freep(&ctx->last_shift_value);
1938  if (ctx->raw_mantissa) {
1939  for (i = 0; i < avctx->channels; i++) {
1940  av_freep(&ctx->raw_mantissa[i]);
1941  }
1942  av_freep(&ctx->raw_mantissa);
1943  }
1944  av_freep(&ctx->larray);
1945  av_freep(&ctx->nbits);
1946 
1947  return 0;
1948 }
1949 
1950 
1951 /** Initialize the ALS decoder.
1952  */
1954 {
1955  unsigned int c;
1956  unsigned int channel_size;
1957  int num_buffers, ret;
1958  ALSDecContext *ctx = avctx->priv_data;
1959  ALSSpecificConfig *sconf = &ctx->sconf;
1960  ctx->avctx = avctx;
1961 
1962  if (!avctx->extradata) {
1963  av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1964  return AVERROR_INVALIDDATA;
1965  }
1966 
1967  if ((ret = read_specific_config(ctx)) < 0) {
1968  av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1969  goto fail;
1970  }
1971 
1972  if ((ret = check_specific_config(ctx)) < 0) {
1973  goto fail;
1974  }
1975 
1976  if (sconf->bgmc) {
1977  ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
1978  if (ret < 0)
1979  goto fail;
1980  }
1981  if (sconf->floating) {
1982  avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
1983  avctx->bits_per_raw_sample = 32;
1984  } else {
1985  avctx->sample_fmt = sconf->resolution > 1
1987  avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
1988  if (avctx->bits_per_raw_sample > 32) {
1989  av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
1990  avctx->bits_per_raw_sample);
1991  ret = AVERROR_INVALIDDATA;
1992  goto fail;
1993  }
1994  }
1995 
1996  // set maximum Rice parameter for progressive decoding based on resolution
1997  // This is not specified in 14496-3 but actually done by the reference
1998  // codec RM22 revision 2.
1999  ctx->s_max = sconf->resolution > 1 ? 31 : 15;
2000 
2001  // set lag value for long-term prediction
2002  ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
2003  (avctx->sample_rate >= 192000);
2004 
2005  // allocate quantized parcor coefficient buffer
2006  num_buffers = sconf->mc_coding ? avctx->channels : 1;
2007  if (num_buffers * (uint64_t)num_buffers > INT_MAX) // protect chan_data_buffer allocation
2008  return AVERROR_INVALIDDATA;
2009 
2010  ctx->quant_cof = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
2011  ctx->lpc_cof = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
2012  ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
2013  sizeof(*ctx->quant_cof_buffer));
2014  ctx->lpc_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
2015  sizeof(*ctx->lpc_cof_buffer));
2017  sizeof(*ctx->lpc_cof_buffer));
2018 
2019  if (!ctx->quant_cof || !ctx->lpc_cof ||
2020  !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
2021  !ctx->lpc_cof_reversed_buffer) {
2022  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2023  ret = AVERROR(ENOMEM);
2024  goto fail;
2025  }
2026 
2027  // assign quantized parcor coefficient buffers
2028  for (c = 0; c < num_buffers; c++) {
2029  ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
2030  ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
2031  }
2032 
2033  // allocate and assign lag and gain data buffer for ltp mode
2034  ctx->const_block = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
2035  ctx->shift_lsbs = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
2036  ctx->opt_order = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
2037  ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
2038  ctx->use_ltp = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
2039  ctx->ltp_lag = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
2040  ctx->ltp_gain = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
2041  ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
2042 
2043  if (!ctx->const_block || !ctx->shift_lsbs ||
2044  !ctx->opt_order || !ctx->store_prev_samples ||
2045  !ctx->use_ltp || !ctx->ltp_lag ||
2046  !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
2047  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2048  ret = AVERROR(ENOMEM);
2049  goto fail;
2050  }
2051 
2052  for (c = 0; c < num_buffers; c++)
2053  ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
2054 
2055  // allocate and assign channel data buffer for mcc mode
2056  if (sconf->mc_coding) {
2057  ctx->chan_data_buffer = av_mallocz_array(num_buffers * num_buffers,
2058  sizeof(*ctx->chan_data_buffer));
2059  ctx->chan_data = av_mallocz_array(num_buffers,
2060  sizeof(*ctx->chan_data));
2061  ctx->reverted_channels = av_malloc_array(num_buffers,
2062  sizeof(*ctx->reverted_channels));
2063 
2064  if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
2065  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2066  ret = AVERROR(ENOMEM);
2067  goto fail;
2068  }
2069 
2070  for (c = 0; c < num_buffers; c++)
2071  ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
2072  } else {
2073  ctx->chan_data = NULL;
2074  ctx->chan_data_buffer = NULL;
2075  ctx->reverted_channels = NULL;
2076  }
2077 
2078  channel_size = sconf->frame_length + sconf->max_order;
2079 
2080  ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
2081  ctx->raw_buffer = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
2082  ctx->raw_samples = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
2083 
2084  if (sconf->floating) {
2085  ctx->acf = av_malloc_array(avctx->channels, sizeof(*ctx->acf));
2086  ctx->shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value));
2087  ctx->last_shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value));
2088  ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa));
2089  ctx->raw_mantissa = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa));
2090 
2091  ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
2092  ctx->nbits = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
2093  ctx->mlz = av_mallocz(sizeof(*ctx->mlz));
2094 
2095  if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
2096  || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
2097  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2098  ret = AVERROR(ENOMEM);
2099  goto fail;
2100  }
2101 
2102  ff_mlz_init_dict(avctx, ctx->mlz);
2103  ff_mlz_flush_dict(ctx->mlz);
2104 
2105  for (c = 0; c < avctx->channels; ++c) {
2106  ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
2107  }
2108  }
2109 
2110  // allocate previous raw sample buffer
2111  if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
2112  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2113  ret = AVERROR(ENOMEM);
2114  goto fail;
2115  }
2116 
2117  // assign raw samples buffers
2118  ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
2119  for (c = 1; c < avctx->channels; c++)
2120  ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
2121 
2122  // allocate crc buffer
2123  if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
2126  avctx->channels *
2128  sizeof(*ctx->crc_buffer));
2129  if (!ctx->crc_buffer) {
2130  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2131  ret = AVERROR(ENOMEM);
2132  goto fail;
2133  }
2134  }
2135 
2136  ff_bswapdsp_init(&ctx->bdsp);
2137 
2138  return 0;
2139 
2140 fail:
2141  return ret;
2142 }
2143 
2144 
2145 /** Flush (reset) the frame ID after seeking.
2146  */
2147 static av_cold void flush(AVCodecContext *avctx)
2148 {
2149  ALSDecContext *ctx = avctx->priv_data;
2150 
2151  ctx->frame_id = 0;
2152 }
2153 
2154 
2156  .name = "als",
2157  .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
2158  .type = AVMEDIA_TYPE_AUDIO,
2159  .id = AV_CODEC_ID_MP4ALS,
2160  .priv_data_size = sizeof(ALSDecContext),
2161  .init = decode_init,
2162  .close = decode_end,
2163  .decode = decode_frame,
2164  .flush = flush,
2165  .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
2166  .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
2167 };
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:48
#define MUL64(a, b)
Definition: mathops.h:54
#define FF_SANE_NB_CHANNELS
Definition: internal.h:86
AVCodec ff_als_decoder
Definition: alsdec.c:2155
static int als_weighting(GetBitContext *gb, int k, int off)
Definition: alsdec.c:1210
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a non-constant block.
Definition: alsdec.c:899
int msb_first
1 = original CRC calculated on big-endian system, 0 = little-endian
Definition: alsdec.c:162
#define NULL
Definition: coverity.c:32
const char const char void * val
Definition: avisynth_c.h:863
unsigned char * larray
buffer to store the output of masked lz decompression
Definition: alsdec.c:237
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static int shift(int a, int b)
Definition: sonic.c:82
This structure describes decoded (raw) audio or video data.
Definition: frame.h:295
int * use_ltp
contains use_ltp flags for all channels
Definition: alsdec.c:215
av_cold void ff_bgmc_end(uint8_t **cf_lut, int **cf_lut_status)
Release the lookup table arrays.
Definition: bgmc.c:480
MLZ * mlz
masked lz decompression structure
Definition: alsdec.c:231
int32_t ** raw_samples
decoded raw samples for each channel
Definition: alsdec.c:228
uint8_t * crc_buffer
buffer of byte order corrected samples used for CRC check
Definition: alsdec.c:230
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static const int16_t mcc_weightings[]
Inter-channel weighting factors for multi-channel correlation.
Definition: alsdec.c:121
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:291
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int acc
Definition: yuv2rgb.c:554
#define avpriv_request_sample(...)
int block_switching
number of block switching levels
Definition: alsdec.c:170
int rlslms
use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
Definition: alsdec.c:177
channels
Definition: aptx.c:30
int size
Definition: avcodec.h:1478
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
const char * b
Definition: vf_curves.c:116
static int check_specific_config(ALSDecContext *ctx)
Check the ALSSpecificConfig for unsupported features.
Definition: alsdec.c:445
#define av_bswap16
Definition: bswap.h:31
int adapt_order
adaptive order: 1 = on, 0 = off
Definition: alsdec.c:166
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
Read the frame data.
Definition: alsdec.c:1618
int32_t * lpc_cof_reversed_buffer
temporary buffer to set up a reversed versio of lpc_cof_buffer
Definition: alsdec.c:223
GetBitContext gb
Definition: alsdec.c:197
Block Gilbert-Moore decoder header.
int * nbits
contains the number of bits to read for masked lz decompression for all samples
Definition: alsdec.c:238
const char * master
Definition: vf_curves.c:117
unsigned int js_switch
if true, joint-stereo decoding is enforced
Definition: alsdec.c:204
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:2796
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Read and decode block data successively.
Definition: alsdec.c:1057
#define INTERLEAVE_OUTPUT(bps)
#define src
Definition: vp8dsp.c:254
#define sample
AVCodec.
Definition: avcodec.h:3481
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:42
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
Read and decode a Rice codeword.
Definition: alsdec.c:492
static int get_sbits_long(GetBitContext *s, int n)
Read 0-32 bits as a signed integer.
Definition: get_bits.h:590
uint8_t base
Definition: vp3data.h:202
int * ltp_lag
contains ltp lag values for all channels
Definition: alsdec.c:216
int * const_block
contains const_block flags for all channels
Definition: alsdec.c:211
static const uint8_t ltp_gain_values[4][4]
Gain values of p(0) for long-term prediction.
Definition: alsdec.c:110
static const SoftFloat FLOAT_0
0.0
Definition: softfloat.h:39
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
static av_cold int decode_init(AVCodecContext *avctx)
Initialize the ALS decoder.
Definition: alsdec.c:1953
BswapDSPContext bdsp
Definition: alsdec.c:198
static char buffer[20]
Definition: seek.c:32
int32_t * lpc_cof
coefficients of the direct form prediction
Definition: alsdec.c:254
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:2233
uint8_t
#define av_cold
Definition: attributes.h:82
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a constant block.
Definition: alsdec.c:613
float delta
void(* bswap_buf)(uint32_t *dst, const uint32_t *src, int w)
Definition: bswapdsp.h:25
#define AV_RB32
Definition: intreadwrite.h:130
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
int ** ltp_gain
gain values for ltp 5-tap filter for a channel
Definition: alsdec.c:217
static SoftFloat_IEEE754 av_bits2sf_ieee754(uint32_t n)
Make a softfloat out of the bitstream.
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1666
int chan_sort
channel rearrangement: 1 = on, 0 = off
Definition: alsdec.c:176
static AVFrame * frame
int joint_stereo
joint stereo: 1 = on, 0 = off
Definition: alsdec.c:173
Public header for CRC hash function implementation.
static SoftFloat_IEEE754 av_int2sf_ieee754(int64_t n, int e)
Convert integer to softfloat.
const char data[16]
Definition: mxf.c:91
uint8_t * data
Definition: avcodec.h:1477
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
#define ff_dlog(a,...)
bitstream reader API header.
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks independently.
Definition: alsdec.c:1086
unsigned int block_length
number of samples within the block
Definition: alsdec.c:243
static void zero_remaining(unsigned int b, unsigned int b_max, const unsigned int *div_blocks, int32_t *buf)
Compute the number of samples left to decode for the current frame and sets these samples to zero...
Definition: alsdec.c:1071
#define max(a, b)
Definition: cuda_runtime.h:33
int ra_distance
distance between RA frames (in frames, 0...255)
Definition: alsdec.c:164
int weighting[6]
Definition: alsdec.c:190
int32_t * quant_cof_buffer
contains all quantized parcor coefficients
Definition: alsdec.c:220
signed 32 bits
Definition: samplefmt.h:62
ALSChannelData * chan_data_buffer
contains channel data for all channels
Definition: alsdec.c:225
#define av_log(a,...)
int bgmc
"Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
Definition: alsdec.c:171
#define U(x)
Definition: vp56_arith.h:37
MLZDict * dict
Definition: mlz.h:54
unsigned int cs_switch
if true, channel rearrangement is done
Definition: alsdec.c:205
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
int * use_ltp
if true, long-term prediction is used
Definition: alsdec.c:250
enum RA_Flag ra_flag
indicates where the size of ra units is stored
Definition: alsdec.c:165
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:259
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int ltp_lag_length
number of bits used for ltp lag value
Definition: alsdec.c:210
#define PTRDIFF_SPECIFIER
Definition: internal.h:261
#define AVERROR(e)
Definition: error.h:43
static av_cold void dprint_specific_config(ALSDecContext *ctx)
Definition: alsdec.c:261
unsigned int * opt_order
prediction order of this block
Definition: alsdec.c:248
int * chan_pos
original channel positions
Definition: alsdec.c:179
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
AVCodecContext * avctx
Definition: alsdec.c:195
static const int16_t parcor_scaled_values[]
Scaled PARCOR values used for the first two PARCOR coefficients.
Definition: alsdec.c:71
static const SoftFloat FLOAT_1
1.0
Definition: softfloat.h:41
const char * r
Definition: vf_curves.c:114
static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
multiply two softfloats and handle the rounding off
Definition: alsdec.c:1379
int32_t ** lpc_cof
coefficients of the direct form prediction filter for a channel
Definition: alsdec.c:221
static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame)
Read and decode the floating point sample data.
Definition: alsdec.c:1438
int chan_config_info
mapping of channels to loudspeaker locations. Unused until setting channel configuration is implement...
Definition: alsdec.c:178
unsigned int num_blocks
number of blocks used in the current frame
Definition: alsdec.c:206
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:236
const char * name
Name of the codec implementation.
Definition: avcodec.h:3488
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:227
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks dependently.
Definition: alsdec.c:1126
void ff_bgmc_decode_end(GetBitContext *gb)
Finish decoding.
Definition: bgmc.c:503
const AVCRC * crc_table
Definition: alsdec.c:199
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
#define FFMAX(a, b)
Definition: common.h:94
int * bgmc_lut_status
pointer at lookup table status flags used for BGMC
Definition: alsdec.c:209
#define fail()
Definition: checkasm.h:120
ALSSpecificConfig sconf
Definition: alsdec.c:196
int * store_prev_samples
if true, carryover samples have to be stored
Definition: alsdec.c:249
unsigned int * shift_lsbs
contains shift_lsbs flags for all channels
Definition: alsdec.c:212
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:2694
#define FFMIN(a, b)
Definition: common.h:96
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a non-constant block.
Definition: alsdec.c:627
int ff_mlz_decompression(MLZ *mlz, GetBitContext *gb, int size, unsigned char *buff)
Run mlz decompression on the next size bits and the output will be stored in buff.
Definition: mlz.c:123
int chan_config
indicates that a chan_config_info field is present
Definition: alsdec.c:175
int32_t
AVFormatContext * ctx
Definition: movenc.c:48
#define EXP_BIAS
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
Definition: crc.c:392
int * last_shift_value
contains last shift value for all channels
Definition: alsdec.c:235
static int av_cmp_sf_ieee754(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
Compare a with b strictly.
#define s(width, name)
Definition: cbs_vp9.c:257
void ff_bgmc_decode(GetBitContext *gb, unsigned int num, int32_t *dst, int delta, unsigned int sx, unsigned int *h, unsigned int *l, unsigned int *v, uint8_t *cf_lut, int *cf_lut_status)
Read and decode a block Gilbert-Moore coded symbol.
Definition: bgmc.c:510
static av_cold int decode_end(AVCodecContext *avctx)
Uninitialize the ALS decoder.
Definition: alsdec.c:1901
int * const_block
if true, this is a constant value block
Definition: alsdec.c:245
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:2705
int n
Definition: avisynth_c.h:760
int floating
1 = IEEE 32-bit floating-point, 0 = integer
Definition: alsdec.c:161
int time_diff_flag
Definition: alsdec.c:187
SoftFloat_IEEE754 * acf
contains common multiplier for all channels
Definition: alsdec.c:232
int master_channel
Definition: alsdec.c:186
uint32_t crc
CRC value calculated from decoded data.
Definition: alsdec.c:201
int coef_table
table index of Rice code parameters
Definition: alsdec.c:167
if(ret< 0)
Definition: vf_mcdeint.c:279
static void error(const char *err)
static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a constant block.
Definition: alsdec.c:583
#define FF_ARRAY_ELEMS(a)
#define av_log2
Definition: intmath.h:83
int sb_part
sub-block partition
Definition: alsdec.c:172
MLZ data strucure.
Definition: mlz.h:47
int32_t * raw_other
decoded raw samples of the other channel of a channel pair
Definition: alsdec.c:257
uint8_t * bgmc_lut
pointer at lookup tables used for BGMC
Definition: alsdec.c:208
av_cold void ff_mlz_init_dict(void *context, MLZ *mlz)
Initialize the dictionary.
Definition: mlz.c:23
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int * ltp_gain
gain values for ltp 5-tap filter
Definition: alsdec.c:252
int js_blocks
true if this block contains a difference signal
Definition: alsdec.c:246
#define av_bswap32
Definition: bswap.h:33
unsigned int ra_block
if true, this is a random access block
Definition: alsdec.c:244
Libavcodec external API header.
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
Convert PARCOR coefficient k to direct filter coefficient.
Definition: alsdec.c:510
int * shift_value
value by which the binary point is to be shifted for all channels
Definition: alsdec.c:234
int sample_rate
samples per second
Definition: avcodec.h:2225
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:677
#define abs(x)
Definition: cuda_runtime.h:35
main external API structure.
Definition: avcodec.h:1565
ALSChannelData ** chan_data
channel data for multi-channel correlation
Definition: alsdec.c:224
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Decode an ALS frame.
Definition: alsdec.c:1772
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1964
#define MISSING_ERR(cond, str, errval)
void * buf
Definition: avisynth_c.h:766
int extradata_size
Definition: avcodec.h:1667
#define AV_EF_CAREFUL
consider things that violate the spec, are fast to calculate and have not been seen in the wild as er...
Definition: avcodec.h:2708
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:498
static void skip_bits1(GetBitContext *s)
Definition: get_bits.h:538
double value
Definition: eval.c:98
unsigned int s_max
maximum Rice parameter allowed in entropy coding
Definition: alsdec.c:207
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:467
#define AV_CODEC_CAP_SUBFRAMES
Codec can output multiple frames per AVPacket Normally demuxers return one frame at a time...
Definition: avcodec.h:1024
int * ltp_lag
lag value for long-term prediction
Definition: alsdec.c:251
int32_t * lpc_cof_buffer
contains all coefficients of the direct form prediction filter
Definition: alsdec.c:222
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data...
Definition: avcodec.h:2702
static const int8_t parcor_rice_table[3][20][2]
Rice parameters and corresponding index offsets for decoding the indices of scaled PARCOR values...
Definition: alsdec.c:50
RA_Flag
Definition: alsdec.c:151
static av_cold int read_specific_config(ALSDecContext *ctx)
Read an ALSSpecificConfig from a buffer into the output struct.
Definition: alsdec.c:291
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:546
int long_term_prediction
long term prediction (LTP): 1 = on, 0 = off
Definition: alsdec.c:168
int32_t * raw_samples
decoded raw samples / residuals for this block
Definition: alsdec.c:255
int * reverted_channels
stores a flag for each reverted channel
Definition: alsdec.c:226
int ff_bgmc_decode_init(GetBitContext *gb, unsigned int *h, unsigned int *l, unsigned int *v)
Initialize decoding and reads the first value.
Definition: bgmc.c:488
int * last_acf_mantissa
contains the last acf mantissa data of common multiplier for all channels
Definition: alsdec.c:233
unsigned int * opt_order
contains opt_order flags for all channels
Definition: alsdec.c:213
int32_t * raw_buffer
contains all decoded raw samples including carryover samples
Definition: alsdec.c:229
int max_order
maximum prediction order (0..1023)
Definition: alsdec.c:169
uint32_t samples
number of samples, 0xFFFFFFFF if unknown
Definition: alsdec.c:159
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:309
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
Definition: samplefmt.c:106
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
Definition: crc.c:374
int mc_coding
extended inter-channel coding (multi channel coding): 1 = on, 0 = off
Definition: alsdec.c:174
int
static const uint8_t tail_code[16][6]
Tail codes used in arithmetic coding using block Gilbert-Moore codes.
Definition: alsdec.c:131
common internal api header.
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:256
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
Definition: unary.h:46
av_cold void ff_mlz_flush_dict(MLZ *mlz)
Flush the dictionary.
Definition: mlz.c:35
static av_cold void flush(AVCodecContext *avctx)
Flush (reset) the frame ID after seeking.
Definition: alsdec.c:2147
signed 16 bits
Definition: samplefmt.h:61
static double c[64]
int time_diff_index
Definition: alsdec.c:189
int * ltp_gain_buffer
contains all gain values for ltp 5-tap filter
Definition: alsdec.c:218
int32_t * quant_cof
quantized parcor coefficients
Definition: alsdec.c:253
int avpriv_mpeg4audio_get_config(MPEG4AudioConfig *c, const uint8_t *buf, int bit_size, int sync_extension)
Parse MPEG-4 systems extradata from a raw buffer to retrieve audio configuration. ...
Definition: mpeg4audio.c:155
#define MKBETAG(a, b, c, d)
Definition: common.h:367
static void parse_bs_info(const uint32_t bs_info, unsigned int n, unsigned int div, unsigned int **div_blocks, unsigned int *num_blocks)
Parse the bs_info field to extract the block partitioning used in block switching mode...
Definition: alsdec.c:469
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
void * priv_data
Definition: avcodec.h:1592
int32_t ** quant_cof
quantized parcor coefficients for a channel
Definition: alsdec.c:219
int channels
number of audio channels
Definition: avcodec.h:2226
int crc_enabled
enable Cyclic Redundancy Checksum
Definition: alsdec.c:180
int ** raw_mantissa
decoded mantissa bits of the difference signal
Definition: alsdec.c:236
uint32_t crc_org
CRC value of the original input data.
Definition: alsdec.c:200
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data.
Definition: alsdec.c:1031
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data.
Definition: alsdec.c:1008
int frame_length
frame length for each frame (last frame may differ)
Definition: alsdec.c:163
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:693
int stop_flag
Definition: alsdec.c:185
static const struct twinvq_data tab
unsigned int * shift_lsbs
shift of values for this block
Definition: alsdec.c:247
#define av_freep(p)
void INT64 INT64 count
Definition: avisynth_c.h:766
void INT64 start
Definition: avisynth_c.h:766
av_cold int ff_bgmc_init(AVCodecContext *avctx, uint8_t **cf_lut, int **cf_lut_status)
Initialize the lookup table arrays.
Definition: bgmc.c:460
#define av_malloc_array(a, b)
#define HAVE_BIGENDIAN
Definition: config.h:199
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
Read the channel data.
Definition: alsdec.c:1219
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks, uint32_t *bs_info)
Read block switching field if necessary and set actual block sizes.
Definition: alsdec.c:530
int * store_prev_samples
contains store_prev_samples flags for all channels
Definition: alsdec.c:214
static SoftFloat_IEEE754 av_div_sf_ieee754(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
Divide a by b.
unsigned int frame_id
the frame ID / number of the current frame
Definition: alsdec.c:203
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd, ALSChannelData **cd, int *reverted, unsigned int offset, int c)
Recursively reverts the inter-channel correlation for a block.
Definition: alsdec.c:1266
This structure stores compressed data.
Definition: avcodec.h:1454
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:361
uint32_t AVCRC
Definition: crc.h:47
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:981
for(j=16;j >0;--j)
unsigned int cur_frame_length
length of the current frame to decode
Definition: alsdec.c:202
static av_always_inline int get_bitsz(GetBitContext *s, int n)
Read 0-25 bits.
Definition: get_bits.h:415
int resolution
000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
Definition: alsdec.c:160
void * av_mallocz_array(size_t nmemb, size_t size)
Allocate a memory block for an array with av_mallocz().
Definition: mem.c:191
int time_diff_sign
Definition: alsdec.c:188