70 #if CONFIG_HALDCLUT_FILTER 84 #define OFFSET(x) offsetof(LUT3DContext, x) 85 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM 86 #define COMMON_OPTIONS \ 87 { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, NB_INTERP_MODE-1, FLAGS, "interp_mode" }, \ 88 { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_NEAREST}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \ 89 { "trilinear", "interpolate values using the 8 points defining a cube", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TRILINEAR}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \ 90 { "tetrahedral", "interpolate values using a tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TETRAHEDRAL}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \ 93 static inline float lerpf(
float v0,
float v1,
float f)
95 return v0 + (v1 -
v0) * f;
106 #define NEAR(x) ((int)((x) + .5)) 107 #define PREV(x) ((int)(x)) 108 #define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1)) 128 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
129 const struct rgbvec c000 = lut3d->lut[prev[0]][prev[1]][prev[2]];
130 const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]];
131 const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]];
132 const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]];
133 const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]];
134 const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]];
135 const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]];
136 const struct rgbvec c111 = lut3d->lut[next[0]][next[1]][next[2]];
156 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
157 const struct rgbvec c000 = lut3d->lut[prev[0]][prev[1]][prev[2]];
158 const struct rgbvec c111 = lut3d->lut[next[0]][next[1]][next[2]];
162 const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]];
163 const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]];
164 c.
r = (1-d.
r) * c000.
r + (d.
r-d.
g) * c100.
r + (d.
g-d.
b) * c110.
r + (d.
b) * c111.
r;
165 c.
g = (1-d.
r) * c000.
g + (d.
r-d.
g) * c100.
g + (d.
g-d.
b) * c110.
g + (d.
b) * c111.
g;
166 c.
b = (1-d.
r) * c000.
b + (d.
r-d.
g) * c100.
b + (d.
g-d.
b) * c110.
b + (d.
b) * c111.
b;
167 }
else if (d.
r > d.
b) {
168 const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]];
169 const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]];
170 c.
r = (1-d.
r) * c000.
r + (d.
r-d.
b) * c100.
r + (d.
b-d.
g) * c101.
r + (d.
g) * c111.
r;
171 c.
g = (1-d.
r) * c000.
g + (d.
r-d.
b) * c100.
g + (d.
b-d.
g) * c101.
g + (d.
g) * c111.
g;
172 c.
b = (1-d.
r) * c000.
b + (d.
r-d.
b) * c100.
b + (d.
b-d.
g) * c101.
b + (d.
g) * c111.
b;
174 const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]];
175 const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]];
176 c.
r = (1-d.
b) * c000.
r + (d.
b-d.
r) * c001.
r + (d.
r-d.
g) * c101.
r + (d.
g) * c111.
r;
177 c.
g = (1-d.
b) * c000.
g + (d.
b-d.
r) * c001.
g + (d.
r-d.
g) * c101.
g + (d.
g) * c111.
g;
178 c.
b = (1-d.
b) * c000.
b + (d.
b-d.
r) * c001.
b + (d.
r-d.
g) * c101.
b + (d.
g) * c111.
b;
182 const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]];
183 const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]];
184 c.
r = (1-d.
b) * c000.
r + (d.
b-d.
g) * c001.
r + (d.
g-d.
r) * c011.
r + (d.
r) * c111.
r;
185 c.
g = (1-d.
b) * c000.
g + (d.
b-d.
g) * c001.
g + (d.
g-d.
r) * c011.
g + (d.
r) * c111.
g;
186 c.
b = (1-d.
b) * c000.
b + (d.
b-d.
g) * c001.
b + (d.
g-d.
r) * c011.
b + (d.
r) * c111.
b;
187 }
else if (d.
b > d.
r) {
188 const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]];
189 const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]];
190 c.
r = (1-d.
g) * c000.
r + (d.
g-d.
b) * c010.
r + (d.
b-d.
r) * c011.
r + (d.
r) * c111.
r;
191 c.
g = (1-d.
g) * c000.
g + (d.
g-d.
b) * c010.
g + (d.
b-d.
r) * c011.
g + (d.
r) * c111.
g;
192 c.
b = (1-d.
g) * c000.
b + (d.
g-d.
b) * c010.
b + (d.
b-d.
r) * c011.
b + (d.
r) * c111.
b;
194 const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]];
195 const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]];
196 c.
r = (1-d.
g) * c000.
r + (d.
g-d.
r) * c010.
r + (d.
r-d.
b) * c110.
r + (d.
b) * c111.
r;
197 c.
g = (1-d.
g) * c000.
g + (d.
g-d.
r) * c010.
g + (d.
r-d.
b) * c110.
g + (d.
b) * c111.
g;
198 c.
b = (1-d.
g) * c000.
b + (d.
g-d.
r) * c010.
b + (d.
r-d.
b) * c110.
b + (d.
b) * c111.
b;
204 #define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth) \ 205 static int interp_##nbits##_##name##_p##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \ 208 const LUT3DContext *lut3d = ctx->priv; \ 209 const ThreadData *td = arg; \ 210 const AVFrame *in = td->in; \ 211 const AVFrame *out = td->out; \ 212 const int direct = out == in; \ 213 const int slice_start = (in->height * jobnr ) / nb_jobs; \ 214 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ 215 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \ 216 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \ 217 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \ 218 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \ 219 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \ 220 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \ 221 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \ 222 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \ 223 const float scale_r = (lut3d->scale.r / ((1<<depth) - 1)) * (lut3d->lutsize - 1); \ 224 const float scale_g = (lut3d->scale.g / ((1<<depth) - 1)) * (lut3d->lutsize - 1); \ 225 const float scale_b = (lut3d->scale.b / ((1<<depth) - 1)) * (lut3d->lutsize - 1); \ 227 for (y = slice_start; y < slice_end; y++) { \ 228 uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \ 229 uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \ 230 uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \ 231 uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \ 232 const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \ 233 const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \ 234 const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \ 235 const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \ 236 for (x = 0; x < in->width; x++) { \ 237 const struct rgbvec scaled_rgb = {srcr[x] * scale_r, \ 239 srcb[x] * scale_b}; \ 240 struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \ 241 dstr[x] = av_clip_uintp2(vec.r * (float)((1<<depth) - 1), depth); \ 242 dstg[x] = av_clip_uintp2(vec.g * (float)((1<<depth) - 1), depth); \ 243 dstb[x] = av_clip_uintp2(vec.b * (float)((1<<depth) - 1), depth); \ 244 if (!direct && in->linesize[3]) \ 247 grow += out->linesize[0]; \ 248 brow += out->linesize[1]; \ 249 rrow += out->linesize[2]; \ 250 arow += out->linesize[3]; \ 251 srcgrow += in->linesize[0]; \ 252 srcbrow += in->linesize[1]; \ 253 srcrrow += in->linesize[2]; \ 254 srcarow += in->linesize[3]; \ 283 #define DEFINE_INTERP_FUNC(name, nbits) \ 284 static int interp_##nbits##_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \ 287 const LUT3DContext *lut3d = ctx->priv; \ 288 const ThreadData *td = arg; \ 289 const AVFrame *in = td->in; \ 290 const AVFrame *out = td->out; \ 291 const int direct = out == in; \ 292 const int step = lut3d->step; \ 293 const uint8_t r = lut3d->rgba_map[R]; \ 294 const uint8_t g = lut3d->rgba_map[G]; \ 295 const uint8_t b = lut3d->rgba_map[B]; \ 296 const uint8_t a = lut3d->rgba_map[A]; \ 297 const int slice_start = (in->height * jobnr ) / nb_jobs; \ 298 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ 299 uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \ 300 const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \ 301 const float scale_r = (lut3d->scale.r / ((1<<nbits) - 1)) * (lut3d->lutsize - 1); \ 302 const float scale_g = (lut3d->scale.g / ((1<<nbits) - 1)) * (lut3d->lutsize - 1); \ 303 const float scale_b = (lut3d->scale.b / ((1<<nbits) - 1)) * (lut3d->lutsize - 1); \ 305 for (y = slice_start; y < slice_end; y++) { \ 306 uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \ 307 const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \ 308 for (x = 0; x < in->width * step; x += step) { \ 309 const struct rgbvec scaled_rgb = {src[x + r] * scale_r, \ 310 src[x + g] * scale_g, \ 311 src[x + b] * scale_b}; \ 312 struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \ 313 dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<<nbits) - 1)); \ 314 dst[x + g] = av_clip_uint##nbits(vec.g * (float)((1<<nbits) - 1)); \ 315 dst[x + b] = av_clip_uint##nbits(vec.b * (float)((1<<nbits) - 1)); \ 316 if (!direct && step == 4) \ 317 dst[x + a] = src[x + a]; \ 319 dstrow += out->linesize[0]; \ 320 srcrow += in ->linesize[0]; \ 333 #define MAX_LINE_SIZE 512 339 return !*p || *p ==
'#';
342 #define NEXT_LINE(loop_cond) do { \ 343 if (!fgets(line, sizeof(line), f)) { \ 344 av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \ 345 return AVERROR_INVALIDDATA; \ 360 if (!strncmp(line,
"3DLUTSIZE ", 10)) {
361 size = strtol(line + 10,
NULL, 0);
369 for (k = 0; k <
size; k++) {
370 for (j = 0; j <
size; j++) {
371 for (i = 0; i <
size; i++) {
373 if (k != 0 || j != 0 || i != 0)
375 if (
av_sscanf(line,
"%f %f %f", &vec->
r, &vec->
g, &vec->
b) != 3)
388 float min[3] = {0.0, 0.0, 0.0};
389 float max[3] = {1.0, 1.0, 1.0};
391 while (fgets(line,
sizeof(line), f)) {
392 if (!strncmp(line,
"LUT_3D_SIZE", 11)) {
394 const int size = strtol(line + 12,
NULL, 0);
401 for (k = 0; k <
size; k++) {
402 for (j = 0; j <
size; j++) {
403 for (i = 0; i <
size; i++) {
409 if (!strncmp(line,
"DOMAIN_", 7)) {
411 if (!strncmp(line + 7,
"MIN ", 4)) vals =
min;
412 else if (!strncmp(line + 7,
"MAX ", 4)) vals =
max;
415 av_sscanf(line + 11,
"%f %f %f", vals, vals + 1, vals + 2);
417 min[0], min[1], min[2], max[0], max[1], max[2]);
419 }
else if (!strncmp(line,
"TITLE", 5)) {
423 if (
av_sscanf(line,
"%f %f %f", &vec->
r, &vec->
g, &vec->
b) != 3)
432 lut3d->
scale.
r = av_clipf(1. / (max[0] - min[0]), 0.f, 1.f);
433 lut3d->
scale.
g = av_clipf(1. / (max[1] - min[1]), 0.f, 1.f);
434 lut3d->
scale.
b = av_clipf(1. / (max[2] - min[2]), 0.f, 1.f);
447 const float scale = 16*16*16;
451 for (k = 0; k <
size; k++) {
452 for (j = 0; j <
size; j++) {
453 for (i = 0; i <
size; i++) {
458 if (
av_sscanf(line,
"%d %d %d", &r, &g, &b) != 3)
476 uint8_t rgb_map[3] = {0, 1, 2};
478 while (fgets(line,
sizeof(line), f)) {
479 if (!strncmp(line,
"in", 2)) in = strtol(line + 2,
NULL, 0);
480 else if (!strncmp(line,
"out", 3))
out = strtol(line + 3,
NULL, 0);
481 else if (!strncmp(line,
"values", 6)) {
482 const char *p = line + 6;
483 #define SET_COLOR(id) do { \ 484 while (av_isspace(*p)) \ 487 case 'r': rgb_map[id] = 0; break; \ 488 case 'g': rgb_map[id] = 1; break; \ 489 case 'b': rgb_map[id] = 2; break; \ 491 while (*p && !av_isspace(*p)) \ 501 if (in == -1 ||
out == -1) {
505 if (in < 2 ||
out < 2 ||
511 for (size = 1; size*size*size <
in; size++);
513 scale = 1. / (
out - 1);
515 for (k = 0; k <
size; k++) {
516 for (j = 0; j <
size; j++) {
517 for (i = 0; i <
size; i++) {
522 if (
av_sscanf(line,
"%f %f %f", val, val + 1, val + 2) != 3)
524 vec->
r = val[rgb_map[0]] * scale;
525 vec->
g = val[rgb_map[1]] * scale;
526 vec->
b = val[rgb_map[2]] * scale;
537 float in_min[3] = {0.0, 0.0, 0.0};
538 float in_max[3] = {1.0, 1.0, 1.0};
539 float out_min[3] = {0.0, 0.0, 0.0};
540 float out_max[3] = {1.0, 1.0, 1.0};
541 int inside_metadata = 0,
size;
544 if (strncmp(line,
"CSPLUTV100", 10)) {
550 if (strncmp(line,
"3D", 2)) {
558 if (!strncmp(line,
"BEGIN METADATA", 14)) {
562 if (!strncmp(line,
"END METADATA", 12)) {
566 if (inside_metadata == 0) {
567 int size_r, size_g, size_b;
569 for (
int i = 0;
i < 3;
i++) {
570 int npoints = strtol(line,
NULL, 0);
578 if (
av_sscanf(line,
"%f %f", &in_min[
i], &in_max[i]) != 2)
581 if (
av_sscanf(line,
"%f %f", &out_min[i], &out_max[i]) != 2)
586 if (
av_sscanf(line,
"%d %d %d", &size_r, &size_g, &size_b) != 3)
588 if (size_r != size_g || size_r != size_b) {
589 av_log(ctx,
AV_LOG_ERROR,
"Unsupported size combination: %dx%dx%d.\n", size_r, size_g, size_b);
601 for (
int k = 0; k <
size; k++) {
602 for (
int j = 0; j <
size; j++) {
603 for (
int i = 0;
i <
size;
i++) {
605 if (k != 0 || j != 0 ||
i != 0)
607 if (
av_sscanf(line,
"%f %f %f", &vec->
r, &vec->
g, &vec->
b) != 3)
609 vec->
r *= out_max[0] - out_min[0];
610 vec->
g *= out_max[1] - out_min[1];
611 vec->
b *= out_max[2] - out_min[2];
620 lut3d->
scale.
r = av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f);
621 lut3d->
scale.
g = av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f);
622 lut3d->
scale.
b = av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f);
630 const float c = 1. / (size - 1);
633 for (k = 0; k <
size; k++) {
634 for (j = 0; j <
size; j++) {
635 for (i = 0; i <
size; i++) {
671 int depth, is16bit = 0,
planar = 0;
702 #define SET_FUNC(name) do { \ 705 case 8: lut3d->interp = interp_8_##name##_p8; break; \ 706 case 9: lut3d->interp = interp_16_##name##_p9; break; \ 707 case 10: lut3d->interp = interp_16_##name##_p10; break; \ 708 case 12: lut3d->interp = interp_16_##name##_p12; break; \ 709 case 14: lut3d->interp = interp_16_##name##_p14; break; \ 710 case 16: lut3d->interp = interp_16_##name##_p16; break; \ 712 } else if (is16bit) { lut3d->interp = interp_16_##name; \ 713 } else { lut3d->interp = interp_8_##name; } \ 765 #if CONFIG_LUT3D_FILTER 766 static const AVOption lut3d_options[] = {
787 f = fopen(lut3d->
file,
"r");
794 ext = strrchr(lut3d->
file,
'.');
853 .priv_class = &lut3d_class,
858 #if CONFIG_HALDCLUT_FILTER 863 const int linesize = frame->
linesize[0];
864 const int w = lut3d->clut_width;
865 const int step = lut3d->clut_step;
866 const uint8_t *rgba_map = lut3d->clut_rgba_map;
869 #define LOAD_CLUT(nbits) do { \ 870 int i, j, k, x = 0, y = 0; \ 872 for (k = 0; k < level; k++) { \ 873 for (j = 0; j < level; j++) { \ 874 for (i = 0; i < level; i++) { \ 875 const uint##nbits##_t *src = (const uint##nbits##_t *) \ 876 (data + y*linesize + x*step); \ 877 struct rgbvec *vec = &lut3d->lut[i][j][k]; \ 878 vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \ 879 vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \ 880 vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \ 890 switch (lut3d->clut_bits) {
891 case 8: LOAD_CLUT(8);
break;
892 case 16: LOAD_CLUT(16);
break;
901 const int glinesize = frame->
linesize[0];
902 const int blinesize = frame->
linesize[1];
903 const int rlinesize = frame->
linesize[2];
904 const int w = lut3d->clut_width;
907 #define LOAD_CLUT_PLANAR(nbits, depth) do { \ 908 int i, j, k, x = 0, y = 0; \ 910 for (k = 0; k < level; k++) { \ 911 for (j = 0; j < level; j++) { \ 912 for (i = 0; i < level; i++) { \ 913 const uint##nbits##_t *gsrc = (const uint##nbits##_t *) \ 914 (datag + y*glinesize); \ 915 const uint##nbits##_t *bsrc = (const uint##nbits##_t *) \ 916 (datab + y*blinesize); \ 917 const uint##nbits##_t *rsrc = (const uint##nbits##_t *) \ 918 (datar + y*rlinesize); \ 919 struct rgbvec *vec = &lut3d->lut[i][j][k]; \ 920 vec->r = gsrc[x] / (float)((1<<(depth)) - 1); \ 921 vec->g = bsrc[x] / (float)((1<<(depth)) - 1); \ 922 vec->b = rsrc[x] / (float)((1<<(depth)) - 1); \ 932 switch (lut3d->clut_bits) {
933 case 8: LOAD_CLUT_PLANAR(8, 8);
break;
934 case 9: LOAD_CLUT_PLANAR(16, 9);
break;
935 case 10: LOAD_CLUT_PLANAR(16, 10);
break;
936 case 12: LOAD_CLUT_PLANAR(16, 12);
break;
937 case 14: LOAD_CLUT_PLANAR(16, 14);
break;
938 case 16: LOAD_CLUT_PLANAR(16, 16);
break;
980 if (inlink->
w > inlink->
h)
982 "Hald CLUT will be ignored\n", inlink->
w - inlink->
h);
983 else if (inlink->
w < inlink->
h)
985 "Hald CLUT will be ignored\n", inlink->
h - inlink->
w);
986 lut3d->clut_width = w = h =
FFMIN(inlink->
w, inlink->
h);
988 for (level = 1; level*level*level <
w; level++);
989 size = level*level*
level;
997 const int max_clut_level = sqrt(
MAX_LEVEL);
998 const int max_clut_size = max_clut_level*max_clut_level*max_clut_level;
1000 "(maximum level is %d, or %dx%d CLUT)\n",
1001 max_clut_level, max_clut_size, max_clut_size);
1022 if (lut3d->clut_planar)
1023 update_clut_planar(ctx->
priv, second);
1025 update_clut_packed(ctx->
priv, second);
1034 lut3d->fs.on_event = update_apply_clut;
1044 static const AVOption haldclut_options[] = {
1058 .config_props = config_clut,
1076 .preinit = haldclut_framesync_preinit,
1077 .
init = haldclut_init,
1078 .
uninit = haldclut_uninit,
1081 .
inputs = haldclut_inputs,
1083 .priv_class = &haldclut_class,
1088 #if CONFIG_LUT1D_FILTER 1090 enum interp_1d_mode {
1091 INTERPOLATE_1D_NEAREST,
1092 INTERPOLATE_1D_LINEAR,
1093 INTERPOLATE_1D_CUBIC,
1094 INTERPOLATE_1D_COSINE,
1095 INTERPOLATE_1D_SPLINE,
1099 #define MAX_1D_LEVEL 65536 1101 typedef struct LUT1DContext {
1108 float lut[3][MAX_1D_LEVEL];
1114 #define OFFSET(x) offsetof(LUT1DContext, x) 1116 static void set_identity_matrix_1d(LUT1DContext *lut1d,
int size)
1118 const float c = 1. / (size - 1);
1121 lut1d->lutsize =
size;
1122 for (i = 0; i <
size; i++) {
1123 lut1d->lut[0][
i] = i *
c;
1124 lut1d->lut[1][
i] = i *
c;
1125 lut1d->lut[2][
i] = i *
c;
1131 LUT1DContext *lut1d = ctx->
priv;
1133 float in_min[3] = {0.0, 0.0, 0.0};
1134 float in_max[3] = {1.0, 1.0, 1.0};
1135 float out_min[3] = {0.0, 0.0, 0.0};
1136 float out_max[3] = {1.0, 1.0, 1.0};
1137 int inside_metadata = 0,
size;
1140 if (strncmp(line,
"CSPLUTV100", 10)) {
1146 if (strncmp(line,
"1D", 2)) {
1154 if (!strncmp(line,
"BEGIN METADATA", 14)) {
1155 inside_metadata = 1;
1158 if (!strncmp(line,
"END METADATA", 12)) {
1159 inside_metadata = 0;
1162 if (inside_metadata == 0) {
1163 for (
int i = 0;
i < 3;
i++) {
1164 int npoints = strtol(line,
NULL, 0);
1172 if (
av_sscanf(line,
"%f %f", &in_min[
i], &in_max[i]) != 2)
1175 if (
av_sscanf(line,
"%f %f", &out_min[i], &out_max[i]) != 2)
1180 size = strtol(line,
NULL, 0);
1182 if (size < 2 || size > MAX_1D_LEVEL) {
1187 lut1d->lutsize =
size;
1189 for (
int i = 0;
i <
size;
i++) {
1191 if (
av_sscanf(line,
"%f %f %f", &lut1d->lut[0][
i], &lut1d->lut[1][
i], &lut1d->lut[2][
i]) != 3)
1193 lut1d->lut[0][
i] *= out_max[0] - out_min[0];
1194 lut1d->lut[1][
i] *= out_max[1] - out_min[1];
1195 lut1d->lut[2][
i] *= out_max[2] - out_min[2];
1202 lut1d->scale.r = av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f);
1203 lut1d->scale.g = av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f);
1204 lut1d->scale.b = av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f);
1211 LUT1DContext *lut1d = ctx->
priv;
1213 float min[3] = {0.0, 0.0, 0.0};
1214 float max[3] = {1.0, 1.0, 1.0};
1216 while (fgets(line,
sizeof(line), f)) {
1217 if (!strncmp(line,
"LUT_1D_SIZE", 11)) {
1218 const int size = strtol(line + 12,
NULL, 0);
1221 if (size < 2 || size > MAX_1D_LEVEL) {
1225 lut1d->lutsize =
size;
1226 for (i = 0; i <
size; i++) {
1230 if (!strncmp(line,
"DOMAIN_", 7)) {
1232 if (!strncmp(line + 7,
"MIN ", 4)) vals =
min;
1233 else if (!strncmp(line + 7,
"MAX ", 4)) vals =
max;
1236 av_sscanf(line + 11,
"%f %f %f", vals, vals + 1, vals + 2);
1238 min[0], min[1], min[2], max[0], max[1], max[2]);
1240 }
else if (!strncmp(line,
"LUT_1D_INPUT_RANGE ", 19)) {
1241 av_sscanf(line + 19,
"%f %f", min, max);
1242 min[1] = min[2] = min[0];
1243 max[1] = max[2] = max[0];
1245 }
else if (!strncmp(line,
"TITLE", 5)) {
1249 if (
av_sscanf(line,
"%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3)
1256 lut1d->scale.r = av_clipf(1. / (max[0] - min[0]), 0.f, 1.f);
1257 lut1d->scale.g = av_clipf(1. / (max[1] - min[1]), 0.f, 1.f);
1258 lut1d->scale.b = av_clipf(1. / (max[2] - min[2]), 0.f, 1.f);
1263 static const AVOption lut1d_options[] = {
1266 {
"nearest",
"use values from the nearest defined points", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_NEAREST}, INT_MIN, INT_MAX,
FLAGS,
"interp_mode" },
1267 {
"linear",
"use values from the linear interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_LINEAR}, INT_MIN, INT_MAX,
FLAGS,
"interp_mode" },
1268 {
"cosine",
"use values from the cosine interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_COSINE}, INT_MIN, INT_MAX,
FLAGS,
"interp_mode" },
1269 {
"cubic",
"use values from the cubic interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_CUBIC}, INT_MIN, INT_MAX,
FLAGS,
"interp_mode" },
1270 {
"spline",
"use values from the spline interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_SPLINE}, INT_MIN, INT_MAX,
FLAGS,
"interp_mode" },
1276 static inline float interp_1d_nearest(
const LUT1DContext *lut1d,
1277 int idx,
const float s)
1279 return lut1d->lut[idx][
NEAR(s)];
1282 #define NEXT1D(x) (FFMIN((int)(x) + 1, lut1d->lutsize - 1)) 1284 static inline float interp_1d_linear(
const LUT1DContext *lut1d,
1285 int idx,
const float s)
1287 const int prev =
PREV(s);
1288 const int next = NEXT1D(s);
1289 const float d = s - prev;
1290 const float p = lut1d->lut[idx][prev];
1291 const float n = lut1d->lut[idx][next];
1293 return lerpf(p, n, d);
1296 static inline float interp_1d_cosine(
const LUT1DContext *lut1d,
1297 int idx,
const float s)
1299 const int prev =
PREV(s);
1300 const int next = NEXT1D(s);
1301 const float d = s - prev;
1302 const float p = lut1d->lut[idx][prev];
1303 const float n = lut1d->lut[idx][next];
1304 const float m = (1.f -
cosf(d *
M_PI)) * .5f;
1306 return lerpf(p, n, m);
1309 static inline float interp_1d_cubic(
const LUT1DContext *lut1d,
1310 int idx,
const float s)
1312 const int prev =
PREV(s);
1313 const int next = NEXT1D(s);
1314 const float mu = s - prev;
1317 float y0 = lut1d->lut[idx][
FFMAX(prev - 1, 0)];
1318 float y1 = lut1d->lut[idx][prev];
1319 float y2 = lut1d->lut[idx][next];
1320 float y3 = lut1d->lut[idx][
FFMIN(next + 1, lut1d->lutsize - 1)];
1324 a0 = y3 - y2 - y0 + y1;
1329 return a0 * mu * mu2 + a1 * mu2 + a2 * mu +
a3;
1332 static inline float interp_1d_spline(
const LUT1DContext *lut1d,
1333 int idx,
const float s)
1335 const int prev =
PREV(s);
1336 const int next = NEXT1D(s);
1337 const float x = s - prev;
1338 float c0,
c1,
c2, c3;
1340 float y0 = lut1d->lut[idx][
FFMAX(prev - 1, 0)];
1341 float y1 = lut1d->lut[idx][prev];
1342 float y2 = lut1d->lut[idx][next];
1343 float y3 = lut1d->lut[idx][
FFMIN(next + 1, lut1d->lutsize - 1)];
1346 c1 = .5f * (y2 - y0);
1347 c2 = y0 - 2.5f * y1 + 2.f * y2 - .5f * y3;
1348 c3 = .5f * (y3 - y0) + 1.5f * (y1 - y2);
1350 return ((c3 * x + c2) * x +
c1) * x + c0;
1353 #define DEFINE_INTERP_FUNC_PLANAR_1D(name, nbits, depth) \ 1354 static int interp_1d_##nbits##_##name##_p##depth(AVFilterContext *ctx, \ 1355 void *arg, int jobnr, \ 1359 const LUT1DContext *lut1d = ctx->priv; \ 1360 const ThreadData *td = arg; \ 1361 const AVFrame *in = td->in; \ 1362 const AVFrame *out = td->out; \ 1363 const int direct = out == in; \ 1364 const int slice_start = (in->height * jobnr ) / nb_jobs; \ 1365 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ 1366 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \ 1367 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \ 1368 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \ 1369 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \ 1370 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \ 1371 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \ 1372 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \ 1373 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \ 1374 const float factor = (1 << depth) - 1; \ 1375 const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \ 1376 const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \ 1377 const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \ 1379 for (y = slice_start; y < slice_end; y++) { \ 1380 uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \ 1381 uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \ 1382 uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \ 1383 uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \ 1384 const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \ 1385 const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \ 1386 const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \ 1387 const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \ 1388 for (x = 0; x < in->width; x++) { \ 1389 float r = srcr[x] * scale_r; \ 1390 float g = srcg[x] * scale_g; \ 1391 float b = srcb[x] * scale_b; \ 1392 r = interp_1d_##name(lut1d, 0, r); \ 1393 g = interp_1d_##name(lut1d, 1, g); \ 1394 b = interp_1d_##name(lut1d, 2, b); \ 1395 dstr[x] = av_clip_uintp2(r * factor, depth); \ 1396 dstg[x] = av_clip_uintp2(g * factor, depth); \ 1397 dstb[x] = av_clip_uintp2(b * factor, depth); \ 1398 if (!direct && in->linesize[3]) \ 1399 dsta[x] = srca[x]; \ 1401 grow += out->linesize[0]; \ 1402 brow += out->linesize[1]; \ 1403 rrow += out->linesize[2]; \ 1404 arow += out->linesize[3]; \ 1405 srcgrow += in->linesize[0]; \ 1406 srcbrow += in->linesize[1]; \ 1407 srcrrow += in->linesize[2]; \ 1408 srcarow += in->linesize[3]; \ 1413 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 8, 8)
1414 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 8, 8)
1415 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 8, 8)
1416 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 8, 8)
1417 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 8, 8)
1419 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 9)
1420 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 9)
1421 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 9)
1422 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 9)
1423 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 9)
1425 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 10)
1426 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 10)
1427 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 10)
1428 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 10)
1429 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 10)
1431 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 12)
1432 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 12)
1433 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 12)
1434 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 12)
1435 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 12)
1437 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 14)
1438 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 14)
1439 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 14)
1440 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 14)
1441 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 14)
1443 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 16)
1444 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 16)
1445 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 16)
1446 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 16)
1447 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 16)
1449 #define DEFINE_INTERP_FUNC_1D(name, nbits) \ 1450 static int interp_1d_##nbits##_##name(AVFilterContext *ctx, void *arg, \ 1451 int jobnr, int nb_jobs) \ 1454 const LUT1DContext *lut1d = ctx->priv; \ 1455 const ThreadData *td = arg; \ 1456 const AVFrame *in = td->in; \ 1457 const AVFrame *out = td->out; \ 1458 const int direct = out == in; \ 1459 const int step = lut1d->step; \ 1460 const uint8_t r = lut1d->rgba_map[R]; \ 1461 const uint8_t g = lut1d->rgba_map[G]; \ 1462 const uint8_t b = lut1d->rgba_map[B]; \ 1463 const uint8_t a = lut1d->rgba_map[A]; \ 1464 const int slice_start = (in->height * jobnr ) / nb_jobs; \ 1465 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ 1466 uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \ 1467 const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \ 1468 const float factor = (1 << nbits) - 1; \ 1469 const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \ 1470 const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \ 1471 const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \ 1473 for (y = slice_start; y < slice_end; y++) { \ 1474 uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \ 1475 const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \ 1476 for (x = 0; x < in->width * step; x += step) { \ 1477 float rr = src[x + r] * scale_r; \ 1478 float gg = src[x + g] * scale_g; \ 1479 float bb = src[x + b] * scale_b; \ 1480 rr = interp_1d_##name(lut1d, 0, rr); \ 1481 gg = interp_1d_##name(lut1d, 1, gg); \ 1482 bb = interp_1d_##name(lut1d, 2, bb); \ 1483 dst[x + r] = av_clip_uint##nbits(rr * factor); \ 1484 dst[x + g] = av_clip_uint##nbits(gg * factor); \ 1485 dst[x + b] = av_clip_uint##nbits(bb * factor); \ 1486 if (!direct && step == 4) \ 1487 dst[x + a] = src[x + a]; \ 1489 dstrow += out->linesize[0]; \ 1490 srcrow += in ->linesize[0]; \ 1495 DEFINE_INTERP_FUNC_1D(nearest, 8)
1496 DEFINE_INTERP_FUNC_1D(
linear, 8)
1497 DEFINE_INTERP_FUNC_1D(cosine, 8)
1498 DEFINE_INTERP_FUNC_1D(cubic, 8)
1499 DEFINE_INTERP_FUNC_1D(spline, 8)
1501 DEFINE_INTERP_FUNC_1D(nearest, 16)
1502 DEFINE_INTERP_FUNC_1D(
linear, 16)
1503 DEFINE_INTERP_FUNC_1D(cosine, 16)
1504 DEFINE_INTERP_FUNC_1D(cubic, 16)
1505 DEFINE_INTERP_FUNC_1D(spline, 16)
1509 int depth, is16bit = 0,
planar = 0;
1510 LUT1DContext *lut1d = inlink->
dst->
priv;
1515 switch (inlink->
format) {
1540 #define SET_FUNC_1D(name) do { \ 1543 case 8: lut1d->interp = interp_1d_8_##name##_p8; break; \ 1544 case 9: lut1d->interp = interp_1d_16_##name##_p9; break; \ 1545 case 10: lut1d->interp = interp_1d_16_##name##_p10; break; \ 1546 case 12: lut1d->interp = interp_1d_16_##name##_p12; break; \ 1547 case 14: lut1d->interp = interp_1d_16_##name##_p14; break; \ 1548 case 16: lut1d->interp = interp_1d_16_##name##_p16; break; \ 1550 } else if (is16bit) { lut1d->interp = interp_1d_16_##name; \ 1551 } else { lut1d->interp = interp_1d_8_##name; } \ 1554 switch (lut1d->interpolation) {
1555 case INTERPOLATE_1D_NEAREST: SET_FUNC_1D(nearest);
break;
1556 case INTERPOLATE_1D_LINEAR: SET_FUNC_1D(
linear);
break;
1557 case INTERPOLATE_1D_COSINE: SET_FUNC_1D(cosine);
break;
1558 case INTERPOLATE_1D_CUBIC: SET_FUNC_1D(cubic);
break;
1559 case INTERPOLATE_1D_SPLINE: SET_FUNC_1D(spline);
break;
1572 LUT1DContext *lut1d = ctx->
priv;
1574 lut1d->scale.r = lut1d->scale.g = lut1d->scale.b = 1.f;
1577 set_identity_matrix_1d(lut1d, 32);
1581 f = fopen(lut1d->file,
"r");
1588 ext = strrchr(lut1d->file,
'.');
1597 ret = parse_cube_1d(ctx, f);
1599 ret = parse_cinespace_1d(ctx, f);
1605 if (!ret && !lut1d->lutsize) {
1618 LUT1DContext *lut1d = ctx->
priv;
1657 .filter_frame = filter_frame_1d,
1658 .config_props = config_input_1d,
1674 .priv_size =
sizeof(LUT1DContext),
1679 .priv_class = &lut1d_class,
const char const char void * val
#define FRAMESYNC_DEFINE_CLASS(name, context, field)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static int config_input(AVFilterLink *inlink)
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
This structure describes decoded (raw) audio or video data.
static struct rgbvec interp_trilinear(const LUT3DContext *lut3d, const struct rgbvec *s)
Interpolate using the 8 vertices of a cube.
#define AV_PIX_FMT_GBRAP10
static int linear(InterplayACMContext *s, unsigned ind, unsigned col)
#define AV_LOG_WARNING
Something somehow does not look correct.
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
Main libavfilter public API header.
packed RGB 8:8:8, 24bpp, RGBRGB...
static av_cold int init(AVCodecContext *avctx)
#define AV_PIX_FMT_RGBA64
int h
agreed upon image height
static int skip_line(const char *p)
#define AV_PIX_FMT_GBRP10
static av_const int av_isspace(int c)
Locale-independent conversion of ASCII isspace.
#define AV_PIX_FMT_BGRA64
static int parse_cube(AVFilterContext *ctx, FILE *f)
int ff_framesync_configure(FFFrameSync *fs)
Configure a frame sync structure.
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
const char * name
Pad name.
AVFilterContext * parent
Parent filter context.
AVFilterLink ** inputs
array of pointers to input links
#define av_assert0(cond)
assert() equivalent, that is always enabled.
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch const uint8_t **in ch off *out planar
static float lerpf(float v0, float v1, float f)
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
static av_cold int uninit(AVCodecContext *avctx)
#define fs(width, name, subs,...)
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
int ff_framesync_init_dualinput(FFFrameSync *fs, AVFilterContext *parent)
Initialize a frame sync structure for dualinput.
static av_cold int end(AVCodecContext *avctx)
int ff_framesync_dualinput_get(FFFrameSync *fs, AVFrame **f0, AVFrame **f1)
static void set_identity_matrix(LUT3DContext *lut3d, int size)
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
static int parse_cinespace(AVFilterContext *ctx, FILE *f)
A filter pad used for either input or output.
A link between two filters.
#define i(width, name, range_min, range_max)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
void ff_framesync_uninit(FFFrameSync *fs)
Free all memory currently allocated.
#define DEFINE_INTERP_FUNC(name, nbits)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
void * priv
private data for use by the filter
int av_get_padded_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel for the pixel format described by pixdesc, including any padding ...
static struct rgbvec interp_nearest(const LUT3DContext *lut3d, const struct rgbvec *s)
Get the nearest defined point.
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static int config_output(AVFilterLink *outlink)
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link...
#define AV_PIX_FMT_GBRAP12
simple assert() macros that are a bit more flexible than ISO C assert().
int ff_framesync_activate(FFFrameSync *fs)
Examine the frames in the filter's input and try to produce output.
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
#define AV_PIX_FMT_GBRAP16
int av_sscanf(const char *string, const char *format,...)
See libc sscanf manual for more information.
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
int w
agreed upon image width
#define AV_PIX_FMT_GBRP16
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
int av_strcasecmp(const char *a, const char *b)
Locale-independent case-insensitive compare.
int() avfilter_action_func(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
A function pointer passed to the AVFilterGraph::execute callback to be executed multiple times...
static int interpolation(DeclickChannel *c, const double *src, int ar_order, double *acoefficients, int *index, int nb_errors, double *auxiliary, double *interpolated)
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
#define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth)
static int activate(AVFilterContext *ctx)
packed RGB 8:8:8, 24bpp, BGRBGR...
AVFilterContext * src
source filter
static const AVFilterPad inputs[]
#define AV_PIX_FMT_GBRP14
static AVFrame * apply_lut(AVFilterLink *inlink, AVFrame *in)
static const AVFilterPad outputs[]
int format
agreed upon media format
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
#define AV_LOG_INFO
Standard information.
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
Used for passing data between threads.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
int interpolation
interp_mode
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
Describe the class of an AVClass context structure.
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
const char * name
Filter name.
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
static struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d, const struct rgbvec *s)
Tetrahedral interpolation.
AVFilterLink ** outputs
array of pointers to output links
static enum AVPixelFormat pix_fmts[]
#define AV_PIX_FMT_GBRP12
#define flags(name, subs,...)
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
planar GBRA 4:4:4:4 32bpp
#define NEXT_LINE(loop_cond)
static int parse_m3d(AVFilterContext *ctx, FILE *f)
static int parse_3dl(AVFilterContext *ctx, FILE *f)
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
avfilter_execute_func * execute
static int parse_dat(AVFilterContext *ctx, FILE *f)
AVFilterContext * dst
dest filter
#define AVFILTER_DEFINE_CLASS(fname)
static int query_formats(AVFilterContext *ctx)
int depth
Number of bits in the component.
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
AVPixelFormat
Pixel format.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
avfilter_action_func * interp
struct rgbvec lut[MAX_LEVEL][MAX_LEVEL][MAX_LEVEL]