FFmpeg  4.2.1
vp3.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2003-2004 The FFmpeg project
3  * Copyright (C) 2019 Peter Ross
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * On2 VP3/VP4 Video Decoder
25  *
26  * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
27  * For more information about the VP3 coding process, visit:
28  * http://wiki.multimedia.cx/index.php?title=On2_VP3
29  *
30  * Theora decoder by Alex Beregszaszi
31  */
32 
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 
37 #include "libavutil/imgutils.h"
38 
39 #include "avcodec.h"
40 #include "get_bits.h"
41 #include "hpeldsp.h"
42 #include "internal.h"
43 #include "mathops.h"
44 #include "thread.h"
45 #include "videodsp.h"
46 #include "vp3data.h"
47 #include "vp4data.h"
48 #include "vp3dsp.h"
49 #include "xiph.h"
50 
51 #define FRAGMENT_PIXELS 8
52 
53 // FIXME split things out into their own arrays
54 typedef struct Vp3Fragment {
55  int16_t dc;
58 } Vp3Fragment;
59 
60 #define SB_NOT_CODED 0
61 #define SB_PARTIALLY_CODED 1
62 #define SB_FULLY_CODED 2
63 
64 // This is the maximum length of a single long bit run that can be encoded
65 // for superblock coding or block qps. Theora special-cases this to read a
66 // bit instead of flipping the current bit to allow for runs longer than 4129.
67 #define MAXIMUM_LONG_BIT_RUN 4129
68 
69 #define MODE_INTER_NO_MV 0
70 #define MODE_INTRA 1
71 #define MODE_INTER_PLUS_MV 2
72 #define MODE_INTER_LAST_MV 3
73 #define MODE_INTER_PRIOR_LAST 4
74 #define MODE_USING_GOLDEN 5
75 #define MODE_GOLDEN_MV 6
76 #define MODE_INTER_FOURMV 7
77 #define CODING_MODE_COUNT 8
78 
79 /* special internal mode */
80 #define MODE_COPY 8
81 
82 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb);
83 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);
84 
85 
86 /* There are 6 preset schemes, plus a free-form scheme */
87 static const int ModeAlphabet[6][CODING_MODE_COUNT] = {
88  /* scheme 1: Last motion vector dominates */
93 
94  /* scheme 2 */
98  MODE_GOLDEN_MV, MODE_INTER_FOURMV },
99 
100  /* scheme 3 */
104  MODE_GOLDEN_MV, MODE_INTER_FOURMV },
105 
106  /* scheme 4 */
110  MODE_GOLDEN_MV, MODE_INTER_FOURMV },
111 
112  /* scheme 5: No motion vector dominates */
116  MODE_GOLDEN_MV, MODE_INTER_FOURMV },
117 
118  /* scheme 6 */
122  MODE_GOLDEN_MV, MODE_INTER_FOURMV },
123 };
124 
125 static const uint8_t hilbert_offset[16][2] = {
126  { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
127  { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 },
128  { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 },
129  { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 }
130 };
131 
132 enum {
138 };
139 
140 static const uint8_t vp4_pred_block_type_map[8] = {
149 };
150 
151 typedef struct {
152  int dc;
153  int type;
154 } VP4Predictor;
155 
156 #define MIN_DEQUANT_VAL 2
157 
158 typedef struct Vp3DecodeContext {
161  int version;
162  int width, height;
163  int chroma_x_shift, chroma_y_shift;
167  int keyframe;
168  uint8_t idct_permutation[64];
169  uint8_t idct_scantable[64];
173  DECLARE_ALIGNED(16, int16_t, block)[64];
177 
178  int qps[3];
179  int nqps;
180  int last_qps[3];
181 
191  unsigned char *superblock_coding;
192 
193  int macroblock_count; /* y macroblock count */
199  int yuv_macroblock_count; /* y+u+v macroblock count */
200 
202  int fragment_width[2];
203  int fragment_height[2];
204 
206  int fragment_start[3];
207  int data_offset[3];
211 
212  int8_t (*motion_val[2])[2];
213 
214  /* tables */
215  uint16_t coded_dc_scale_factor[2][64];
216  uint32_t coded_ac_scale_factor[64];
217  uint8_t base_matrix[384][64];
218  uint8_t qr_count[2][3];
219  uint8_t qr_size[2][3][64];
220  uint16_t qr_base[2][3][64];
221 
222  /**
223  * This is a list of all tokens in bitstream order. Reordering takes place
224  * by pulling from each level during IDCT. As a consequence, IDCT must be
225  * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32
226  * otherwise. The 32 different tokens with up to 12 bits of extradata are
227  * collapsed into 3 types, packed as follows:
228  * (from the low to high bits)
229  *
230  * 2 bits: type (0,1,2)
231  * 0: EOB run, 14 bits for run length (12 needed)
232  * 1: zero run, 7 bits for run length
233  * 7 bits for the next coefficient (3 needed)
234  * 2: coefficient, 14 bits (11 needed)
235  *
236  * Coefficients are signed, so are packed in the highest bits for automatic
237  * sign extension.
238  */
239  int16_t *dct_tokens[3][64];
240  int16_t *dct_tokens_base;
241 #define TOKEN_EOB(eob_run) ((eob_run) << 2)
242 #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) * 512) + ((zero_run) << 2) + 1)
243 #define TOKEN_COEFF(coeff) (((coeff) * 4) + 2)
244 
245  /**
246  * number of blocks that contain DCT coefficients at
247  * the given level or higher
248  */
249  int num_coded_frags[3][64];
251 
252  /* this is a list of indexes into the all_fragments array indicating
253  * which of the fragments are coded */
254  int *coded_fragment_list[3];
255 
258  int num_kf_coded_fragment[3];
259 
260  VLC dc_vlc[16];
261  VLC ac_vlc_1[16];
262  VLC ac_vlc_2[16];
263  VLC ac_vlc_3[16];
264  VLC ac_vlc_4[16];
265 
266  VLC superblock_run_length_vlc; /* version < 2 */
267  VLC fragment_run_length_vlc; /* version < 2 */
268  VLC block_pattern_vlc[2]; /* version >= 2*/
270  VLC motion_vector_vlc; /* version < 2 */
271  VLC vp4_mv_vlc[2][7]; /* version >=2 */
272 
273  /* these arrays need to be on 16-byte boundaries since SSE2 operations
274  * index into them */
275  DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; ///< qmat[qpi][is_inter][plane]
276 
277  /* This table contains superblock_count * 16 entries. Each set of 16
278  * numbers corresponds to the fragment indexes 0..15 of the superblock.
279  * An entry will be -1 to indicate that no entry corresponds to that
280  * index. */
282 
283  /* This is an array that indicates how a particular macroblock
284  * is coded. */
285  unsigned char *macroblock_coding;
286 
288 
289  /* Huffman decode */
290  int hti;
291  unsigned int hbits;
292  int entries;
294  uint32_t huffman_table[80][32][2];
295 
296  uint8_t filter_limit_values[64];
297  DECLARE_ALIGNED(8, int, bounding_values_array)[256 + 2];
298 
299  VP4Predictor * dc_pred_row; /* dc_pred_row[y_superblock_width * 4] */
301 
302 /************************************************************************
303  * VP3 specific functions
304  ************************************************************************/
305 
306 static av_cold void free_tables(AVCodecContext *avctx)
307 {
308  Vp3DecodeContext *s = avctx->priv_data;
309 
311  av_freep(&s->all_fragments);
317  av_freep(&s->dc_pred_row);
318  av_freep(&s->motion_val[0]);
319  av_freep(&s->motion_val[1]);
320 }
321 
322 static void vp3_decode_flush(AVCodecContext *avctx)
323 {
324  Vp3DecodeContext *s = avctx->priv_data;
325 
326  if (s->golden_frame.f)
328  if (s->last_frame.f)
330  if (s->current_frame.f)
332 }
333 
335 {
336  Vp3DecodeContext *s = avctx->priv_data;
337  int i, j;
338 
339  free_tables(avctx);
341 
342  s->theora_tables = 0;
343 
344  /* release all frames */
345  vp3_decode_flush(avctx);
349 
350  if (avctx->internal->is_copy)
351  return 0;
352 
353  for (i = 0; i < 16; i++) {
354  ff_free_vlc(&s->dc_vlc[i]);
355  ff_free_vlc(&s->ac_vlc_1[i]);
356  ff_free_vlc(&s->ac_vlc_2[i]);
357  ff_free_vlc(&s->ac_vlc_3[i]);
358  ff_free_vlc(&s->ac_vlc_4[i]);
359  }
360 
365 
366  for (j = 0; j < 2; j++)
367  for (i = 0; i < 7; i++)
368  ff_free_vlc(&s->vp4_mv_vlc[j][i]);
369 
370  for (i = 0; i < 2; i++)
372  return 0;
373 }
374 
375 /**
376  * This function sets up all of the various blocks mappings:
377  * superblocks <-> fragments, macroblocks <-> fragments,
378  * superblocks <-> macroblocks
379  *
380  * @return 0 is successful; returns 1 if *anything* went wrong.
381  */
383 {
384  int sb_x, sb_y, plane;
385  int x, y, i, j = 0;
386 
387  for (plane = 0; plane < 3; plane++) {
388  int sb_width = plane ? s->c_superblock_width
389  : s->y_superblock_width;
390  int sb_height = plane ? s->c_superblock_height
391  : s->y_superblock_height;
392  int frag_width = s->fragment_width[!!plane];
393  int frag_height = s->fragment_height[!!plane];
394 
395  for (sb_y = 0; sb_y < sb_height; sb_y++)
396  for (sb_x = 0; sb_x < sb_width; sb_x++)
397  for (i = 0; i < 16; i++) {
398  x = 4 * sb_x + hilbert_offset[i][0];
399  y = 4 * sb_y + hilbert_offset[i][1];
400 
401  if (x < frag_width && y < frag_height)
403  y * frag_width + x;
404  else
405  s->superblock_fragments[j++] = -1;
406  }
407  }
408 
409  return 0; /* successful path out */
410 }
411 
412 /*
413  * This function sets up the dequantization tables used for a particular
414  * frame.
415  */
417 {
418  int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
419  int i, plane, inter, qri, bmi, bmj, qistart;
420 
421  for (inter = 0; inter < 2; inter++) {
422  for (plane = 0; plane < 3; plane++) {
423  int dc_scale_factor = s->coded_dc_scale_factor[!!plane][s->qps[qpi]];
424  int sum = 0;
425  for (qri = 0; qri < s->qr_count[inter][plane]; qri++) {
426  sum += s->qr_size[inter][plane][qri];
427  if (s->qps[qpi] <= sum)
428  break;
429  }
430  qistart = sum - s->qr_size[inter][plane][qri];
431  bmi = s->qr_base[inter][plane][qri];
432  bmj = s->qr_base[inter][plane][qri + 1];
433  for (i = 0; i < 64; i++) {
434  int coeff = (2 * (sum - s->qps[qpi]) * s->base_matrix[bmi][i] -
435  2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] +
436  s->qr_size[inter][plane][qri]) /
437  (2 * s->qr_size[inter][plane][qri]);
438 
439  int qmin = 8 << (inter + !i);
440  int qscale = i ? ac_scale_factor : dc_scale_factor;
441  int qbias = (1 + inter) * 3;
442  s->qmat[qpi][inter][plane][s->idct_permutation[i]] =
443  (i == 0 || s->version < 2) ? av_clip((qscale * coeff) / 100 * 4, qmin, 4096)
444  : (qscale * (coeff - qbias) / 100 + qbias) * 4;
445  }
446  /* all DC coefficients use the same quant so as not to interfere
447  * with DC prediction */
448  s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
449  }
450  }
451 }
452 
453 /*
454  * This function initializes the loop filter boundary limits if the frame's
455  * quality index is different from the previous frame's.
456  *
457  * The filter_limit_values may not be larger than 127.
458  */
460 {
462 }
463 
464 /*
465  * This function unpacks all of the superblock/macroblock/fragment coding
466  * information from the bitstream.
467  */
469 {
470  int superblock_starts[3] = {
472  };
473  int bit = 0;
474  int current_superblock = 0;
475  int current_run = 0;
476  int num_partial_superblocks = 0;
477 
478  int i, j;
479  int current_fragment;
480  int plane;
481  int plane0_num_coded_frags = 0;
482 
483  if (s->keyframe) {
485  } else {
486  /* unpack the list of partially-coded superblocks */
487  bit = get_bits1(gb) ^ 1;
488  current_run = 0;
489 
490  while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
491  if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
492  bit = get_bits1(gb);
493  else
494  bit ^= 1;
495 
496  current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
497  6, 2) + 1;
498  if (current_run == 34)
499  current_run += get_bits(gb, 12);
500 
501  if (current_run > s->superblock_count - current_superblock) {
503  "Invalid partially coded superblock run length\n");
504  return -1;
505  }
506 
507  memset(s->superblock_coding + current_superblock, bit, current_run);
508 
509  current_superblock += current_run;
510  if (bit)
511  num_partial_superblocks += current_run;
512  }
513 
514  /* unpack the list of fully coded superblocks if any of the blocks were
515  * not marked as partially coded in the previous step */
516  if (num_partial_superblocks < s->superblock_count) {
517  int superblocks_decoded = 0;
518 
519  current_superblock = 0;
520  bit = get_bits1(gb) ^ 1;
521  current_run = 0;
522 
523  while (superblocks_decoded < s->superblock_count - num_partial_superblocks &&
524  get_bits_left(gb) > 0) {
525  if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
526  bit = get_bits1(gb);
527  else
528  bit ^= 1;
529 
530  current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
531  6, 2) + 1;
532  if (current_run == 34)
533  current_run += get_bits(gb, 12);
534 
535  for (j = 0; j < current_run; current_superblock++) {
536  if (current_superblock >= s->superblock_count) {
538  "Invalid fully coded superblock run length\n");
539  return -1;
540  }
541 
542  /* skip any superblocks already marked as partially coded */
543  if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
544  s->superblock_coding[current_superblock] = 2 * bit;
545  j++;
546  }
547  }
548  superblocks_decoded += current_run;
549  }
550  }
551 
552  /* if there were partial blocks, initialize bitstream for
553  * unpacking fragment codings */
554  if (num_partial_superblocks) {
555  current_run = 0;
556  bit = get_bits1(gb);
557  /* toggle the bit because as soon as the first run length is
558  * fetched the bit will be toggled again */
559  bit ^= 1;
560  }
561  }
562 
563  /* figure out which fragments are coded; iterate through each
564  * superblock (all planes) */
565  s->total_num_coded_frags = 0;
567 
570 
571  for (plane = 0; plane < 3; plane++) {
572  int sb_start = superblock_starts[plane];
573  int sb_end = sb_start + (plane ? s->c_superblock_count
574  : s->y_superblock_count);
575  int num_coded_frags = 0;
576 
577  if (s->keyframe) {
578  if (s->num_kf_coded_fragment[plane] == -1) {
579  for (i = sb_start; i < sb_end; i++) {
580  /* iterate through all 16 fragments in a superblock */
581  for (j = 0; j < 16; j++) {
582  /* if the fragment is in bounds, check its coding status */
583  current_fragment = s->superblock_fragments[i * 16 + j];
584  if (current_fragment != -1) {
585  s->coded_fragment_list[plane][num_coded_frags++] =
586  current_fragment;
587  }
588  }
589  }
590  s->num_kf_coded_fragment[plane] = num_coded_frags;
591  } else
592  num_coded_frags = s->num_kf_coded_fragment[plane];
593  } else {
594  for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
595  if (get_bits_left(gb) < plane0_num_coded_frags >> 2) {
596  return AVERROR_INVALIDDATA;
597  }
598  /* iterate through all 16 fragments in a superblock */
599  for (j = 0; j < 16; j++) {
600  /* if the fragment is in bounds, check its coding status */
601  current_fragment = s->superblock_fragments[i * 16 + j];
602  if (current_fragment != -1) {
603  int coded = s->superblock_coding[i];
604 
605  if (coded == SB_PARTIALLY_CODED) {
606  /* fragment may or may not be coded; this is the case
607  * that cares about the fragment coding runs */
608  if (current_run-- == 0) {
609  bit ^= 1;
610  current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2);
611  }
612  coded = bit;
613  }
614 
615  if (coded) {
616  /* default mode; actual mode will be decoded in
617  * the next phase */
618  s->all_fragments[current_fragment].coding_method =
620  s->coded_fragment_list[plane][num_coded_frags++] =
621  current_fragment;
622  } else {
623  /* not coded; copy this fragment from the prior frame */
624  s->all_fragments[current_fragment].coding_method =
625  MODE_COPY;
626  }
627  }
628  }
629  }
630  }
631  if (!plane)
632  plane0_num_coded_frags = num_coded_frags;
633  s->total_num_coded_frags += num_coded_frags;
634  for (i = 0; i < 64; i++)
635  s->num_coded_frags[plane][i] = num_coded_frags;
636  if (plane < 2)
637  s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] +
638  num_coded_frags;
639  }
640  return 0;
641 }
642 
643 #define BLOCK_X (2 * mb_x + (k & 1))
644 #define BLOCK_Y (2 * mb_y + (k >> 1))
645 
646 #if CONFIG_VP4_DECODER
647 /**
648  * @return number of blocks, or > yuv_macroblock_count on error.
649  * return value is always >= 1.
650  */
651 static int vp4_get_mb_count(Vp3DecodeContext *s, GetBitContext *gb)
652 {
653  int v = 1;
654  int bits;
655  while ((bits = show_bits(gb, 9)) == 0x1ff) {
656  skip_bits(gb, 9);
657  v += 256;
658  if (v > s->yuv_macroblock_count) {
659  av_log(s->avctx, AV_LOG_ERROR, "Invalid run length\n");
660  return v;
661  }
662  }
663 #define body(n) { \
664  skip_bits(gb, 2 + n); \
665  v += (1 << n) + get_bits(gb, n); }
666 #define thresh(n) (0x200 - (0x80 >> n))
667 #define else_if(n) else if (bits < thresh(n)) body(n)
668  if (bits < 0x100) {
669  skip_bits(gb, 1);
670  } else if (bits < thresh(0)) {
671  skip_bits(gb, 2);
672  v += 1;
673  }
674  else_if(1)
675  else_if(2)
676  else_if(3)
677  else_if(4)
678  else_if(5)
679  else_if(6)
680  else body(7)
681 #undef body
682 #undef thresh
683 #undef else_if
684  return v;
685 }
686 
687 static int vp4_get_block_pattern(Vp3DecodeContext *s, GetBitContext *gb, int *next_block_pattern_table)
688 {
689  int v = get_vlc2(gb, s->block_pattern_vlc[*next_block_pattern_table].table, 3, 2);
690  if (v == -1) {
691  av_log(s->avctx, AV_LOG_ERROR, "Invalid block pattern\n");
692  *next_block_pattern_table = 0;
693  return 0;
694  }
695  *next_block_pattern_table = vp4_block_pattern_table_selector[v];
696  return v + 1;
697 }
698 
699 static int vp4_unpack_macroblocks(Vp3DecodeContext *s, GetBitContext *gb)
700 {
701  int plane, i, j, k, fragment;
702  int next_block_pattern_table;
703  int bit, current_run, has_partial;
704 
706 
707  if (s->keyframe)
708  return 0;
709 
710  has_partial = 0;
711  bit = get_bits1(gb);
712  for (i = 0; i < s->yuv_macroblock_count; i += current_run) {
713  if (get_bits_left(gb) <= 0)
714  return AVERROR_INVALIDDATA;
715  current_run = vp4_get_mb_count(s, gb);
716  if (current_run > s->yuv_macroblock_count - i)
717  return -1;
718  memset(s->superblock_coding + i, 2 * bit, current_run);
719  bit ^= 1;
720  has_partial |= bit;
721  }
722 
723  if (has_partial) {
724  if (get_bits_left(gb) <= 0)
725  return AVERROR_INVALIDDATA;
726  bit = get_bits1(gb);
727  current_run = vp4_get_mb_count(s, gb);
728  for (i = 0; i < s->yuv_macroblock_count; i++) {
729  if (!s->superblock_coding[i]) {
730  if (!current_run) {
731  bit ^= 1;
732  current_run = vp4_get_mb_count(s, gb);
733  }
734  s->superblock_coding[i] = bit;
735  current_run--;
736  }
737  }
738  if (current_run) /* handle situation when vp4_get_mb_count() fails */
739  return -1;
740  }
741 
742  next_block_pattern_table = 0;
743  i = 0;
744  for (plane = 0; plane < 3; plane++) {
745  int sb_x, sb_y;
746  int sb_width = plane ? s->c_superblock_width : s->y_superblock_width;
747  int sb_height = plane ? s->c_superblock_height : s->y_superblock_height;
748  int mb_width = plane ? s->c_macroblock_width : s->macroblock_width;
749  int mb_height = plane ? s->c_macroblock_height : s->macroblock_height;
750  int fragment_width = s->fragment_width[!!plane];
751  int fragment_height = s->fragment_height[!!plane];
752 
753  for (sb_y = 0; sb_y < sb_height; sb_y++) {
754  for (sb_x = 0; sb_x < sb_width; sb_x++) {
755  for (j = 0; j < 4; j++) {
756  int mb_x = 2 * sb_x + (j >> 1);
757  int mb_y = 2 * sb_y + (j >> 1) ^ (j & 1);
758  int mb_coded, pattern, coded;
759 
760  if (mb_x >= mb_width || mb_y >= mb_height)
761  continue;
762 
763  mb_coded = s->superblock_coding[i++];
764 
765  if (mb_coded == SB_FULLY_CODED)
766  pattern = 0xF;
767  else if (mb_coded == SB_PARTIALLY_CODED)
768  pattern = vp4_get_block_pattern(s, gb, &next_block_pattern_table);
769  else
770  pattern = 0;
771 
772  for (k = 0; k < 4; k++) {
773  if (BLOCK_X >= fragment_width || BLOCK_Y >= fragment_height)
774  continue;
775  fragment = s->fragment_start[plane] + BLOCK_Y * fragment_width + BLOCK_X;
776  coded = pattern & (8 >> k);
777  /* MODE_INTER_NO_MV is the default for coded fragments.
778  the actual method is decoded in the next phase. */
779  s->all_fragments[fragment].coding_method = coded ? MODE_INTER_NO_MV : MODE_COPY;
780  }
781  }
782  }
783  }
784  }
785  return 0;
786 }
787 #endif
788 
789 /*
790  * This function unpacks all the coding mode data for individual macroblocks
791  * from the bitstream.
792  */
794 {
795  int i, j, k, sb_x, sb_y;
796  int scheme;
797  int current_macroblock;
798  int current_fragment;
799  int coding_mode;
800  int custom_mode_alphabet[CODING_MODE_COUNT];
801  const int *alphabet;
802  Vp3Fragment *frag;
803 
804  if (s->keyframe) {
805  for (i = 0; i < s->fragment_count; i++)
807  } else {
808  /* fetch the mode coding scheme for this frame */
809  scheme = get_bits(gb, 3);
810 
811  /* is it a custom coding scheme? */
812  if (scheme == 0) {
813  for (i = 0; i < 8; i++)
814  custom_mode_alphabet[i] = MODE_INTER_NO_MV;
815  for (i = 0; i < 8; i++)
816  custom_mode_alphabet[get_bits(gb, 3)] = i;
817  alphabet = custom_mode_alphabet;
818  } else
819  alphabet = ModeAlphabet[scheme - 1];
820 
821  /* iterate through all of the macroblocks that contain 1 or more
822  * coded fragments */
823  for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
824  for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
825  if (get_bits_left(gb) <= 0)
826  return -1;
827 
828  for (j = 0; j < 4; j++) {
829  int mb_x = 2 * sb_x + (j >> 1);
830  int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
831  current_macroblock = mb_y * s->macroblock_width + mb_x;
832 
833  if (mb_x >= s->macroblock_width ||
834  mb_y >= s->macroblock_height)
835  continue;
836 
837  /* coding modes are only stored if the macroblock has
838  * at least one luma block coded, otherwise it must be
839  * INTER_NO_MV */
840  for (k = 0; k < 4; k++) {
841  current_fragment = BLOCK_Y *
842  s->fragment_width[0] + BLOCK_X;
843  if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
844  break;
845  }
846  if (k == 4) {
847  s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
848  continue;
849  }
850 
851  /* mode 7 means get 3 bits for each coding mode */
852  if (scheme == 7)
853  coding_mode = get_bits(gb, 3);
854  else
855  coding_mode = alphabet[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
856 
857  s->macroblock_coding[current_macroblock] = coding_mode;
858  for (k = 0; k < 4; k++) {
859  frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X;
860  if (frag->coding_method != MODE_COPY)
861  frag->coding_method = coding_mode;
862  }
863 
864 #define SET_CHROMA_MODES \
865  if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
866  frag[s->fragment_start[1]].coding_method = coding_mode; \
867  if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
868  frag[s->fragment_start[2]].coding_method = coding_mode;
869 
870  if (s->chroma_y_shift) {
871  frag = s->all_fragments + mb_y *
872  s->fragment_width[1] + mb_x;
874  } else if (s->chroma_x_shift) {
875  frag = s->all_fragments +
876  2 * mb_y * s->fragment_width[1] + mb_x;
877  for (k = 0; k < 2; k++) {
879  frag += s->fragment_width[1];
880  }
881  } else {
882  for (k = 0; k < 4; k++) {
883  frag = s->all_fragments +
884  BLOCK_Y * s->fragment_width[1] + BLOCK_X;
886  }
887  }
888  }
889  }
890  }
891  }
892 
893  return 0;
894 }
895 
896 static int vp4_get_mv(Vp3DecodeContext *s, GetBitContext *gb, int axis, int last_motion)
897 {
898  int v = get_vlc2(gb, s->vp4_mv_vlc[axis][vp4_mv_table_selector[FFABS(last_motion)]].table, 6, 2) - 31;
899  return last_motion < 0 ? -v : v;
900 }
901 
902 /*
903  * This function unpacks all the motion vectors for the individual
904  * macroblocks from the bitstream.
905  */
907 {
908  int j, k, sb_x, sb_y;
909  int coding_mode;
910  int motion_x[4];
911  int motion_y[4];
912  int last_motion_x = 0;
913  int last_motion_y = 0;
914  int prior_last_motion_x = 0;
915  int prior_last_motion_y = 0;
916  int last_gold_motion_x = 0;
917  int last_gold_motion_y = 0;
918  int current_macroblock;
919  int current_fragment;
920  int frag;
921 
922  if (s->keyframe)
923  return 0;
924 
925  /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme; 2 is VP4 code scheme */
926  coding_mode = s->version < 2 ? get_bits1(gb) : 2;
927 
928  /* iterate through all of the macroblocks that contain 1 or more
929  * coded fragments */
930  for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
931  for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
932  if (get_bits_left(gb) <= 0)
933  return -1;
934 
935  for (j = 0; j < 4; j++) {
936  int mb_x = 2 * sb_x + (j >> 1);
937  int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
938  current_macroblock = mb_y * s->macroblock_width + mb_x;
939 
940  if (mb_x >= s->macroblock_width ||
941  mb_y >= s->macroblock_height ||
942  s->macroblock_coding[current_macroblock] == MODE_COPY)
943  continue;
944 
945  switch (s->macroblock_coding[current_macroblock]) {
946  case MODE_GOLDEN_MV:
947  if (coding_mode == 2) { /* VP4 */
948  last_gold_motion_x = motion_x[0] = vp4_get_mv(s, gb, 0, last_gold_motion_x);
949  last_gold_motion_y = motion_y[0] = vp4_get_mv(s, gb, 1, last_gold_motion_y);
950  break;
951  } /* otherwise fall through */
952  case MODE_INTER_PLUS_MV:
953  /* all 6 fragments use the same motion vector */
954  if (coding_mode == 0) {
955  motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
956  motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
957  } else if (coding_mode == 1) {
958  motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
959  motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
960  } else { /* VP4 */
961  motion_x[0] = vp4_get_mv(s, gb, 0, last_motion_x);
962  motion_y[0] = vp4_get_mv(s, gb, 1, last_motion_y);
963  }
964 
965  /* vector maintenance, only on MODE_INTER_PLUS_MV */
966  if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) {
967  prior_last_motion_x = last_motion_x;
968  prior_last_motion_y = last_motion_y;
969  last_motion_x = motion_x[0];
970  last_motion_y = motion_y[0];
971  }
972  break;
973 
974  case MODE_INTER_FOURMV:
975  /* vector maintenance */
976  prior_last_motion_x = last_motion_x;
977  prior_last_motion_y = last_motion_y;
978 
979  /* fetch 4 vectors from the bitstream, one for each
980  * Y fragment, then average for the C fragment vectors */
981  for (k = 0; k < 4; k++) {
982  current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X;
983  if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
984  if (coding_mode == 0) {
985  motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
986  motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
987  } else if (coding_mode == 1) {
988  motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
989  motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
990  } else { /* VP4 */
991  motion_x[k] = vp4_get_mv(s, gb, 0, prior_last_motion_x);
992  motion_y[k] = vp4_get_mv(s, gb, 1, prior_last_motion_y);
993  }
994  last_motion_x = motion_x[k];
995  last_motion_y = motion_y[k];
996  } else {
997  motion_x[k] = 0;
998  motion_y[k] = 0;
999  }
1000  }
1001  break;
1002 
1003  case MODE_INTER_LAST_MV:
1004  /* all 6 fragments use the last motion vector */
1005  motion_x[0] = last_motion_x;
1006  motion_y[0] = last_motion_y;
1007 
1008  /* no vector maintenance (last vector remains the
1009  * last vector) */
1010  break;
1011 
1012  case MODE_INTER_PRIOR_LAST:
1013  /* all 6 fragments use the motion vector prior to the
1014  * last motion vector */
1015  motion_x[0] = prior_last_motion_x;
1016  motion_y[0] = prior_last_motion_y;
1017 
1018  /* vector maintenance */
1019  prior_last_motion_x = last_motion_x;
1020  prior_last_motion_y = last_motion_y;
1021  last_motion_x = motion_x[0];
1022  last_motion_y = motion_y[0];
1023  break;
1024 
1025  default:
1026  /* covers intra, inter without MV, golden without MV */
1027  motion_x[0] = 0;
1028  motion_y[0] = 0;
1029 
1030  /* no vector maintenance */
1031  break;
1032  }
1033 
1034  /* assign the motion vectors to the correct fragments */
1035  for (k = 0; k < 4; k++) {
1036  current_fragment =
1037  BLOCK_Y * s->fragment_width[0] + BLOCK_X;
1038  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
1039  s->motion_val[0][current_fragment][0] = motion_x[k];
1040  s->motion_val[0][current_fragment][1] = motion_y[k];
1041  } else {
1042  s->motion_val[0][current_fragment][0] = motion_x[0];
1043  s->motion_val[0][current_fragment][1] = motion_y[0];
1044  }
1045  }
1046 
1047  if (s->chroma_y_shift) {
1048  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
1049  motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] +
1050  motion_x[2] + motion_x[3], 2);
1051  motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] +
1052  motion_y[2] + motion_y[3], 2);
1053  }
1054  if (s->version <= 2) {
1055  motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
1056  motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1);
1057  }
1058  frag = mb_y * s->fragment_width[1] + mb_x;
1059  s->motion_val[1][frag][0] = motion_x[0];
1060  s->motion_val[1][frag][1] = motion_y[0];
1061  } else if (s->chroma_x_shift) {
1062  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
1063  motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
1064  motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
1065  motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
1066  motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
1067  } else {
1068  motion_x[1] = motion_x[0];
1069  motion_y[1] = motion_y[0];
1070  }
1071  if (s->version <= 2) {
1072  motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
1073  motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1);
1074  }
1075  frag = 2 * mb_y * s->fragment_width[1] + mb_x;
1076  for (k = 0; k < 2; k++) {
1077  s->motion_val[1][frag][0] = motion_x[k];
1078  s->motion_val[1][frag][1] = motion_y[k];
1079  frag += s->fragment_width[1];
1080  }
1081  } else {
1082  for (k = 0; k < 4; k++) {
1083  frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X;
1084  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
1085  s->motion_val[1][frag][0] = motion_x[k];
1086  s->motion_val[1][frag][1] = motion_y[k];
1087  } else {
1088  s->motion_val[1][frag][0] = motion_x[0];
1089  s->motion_val[1][frag][1] = motion_y[0];
1090  }
1091  }
1092  }
1093  }
1094  }
1095  }
1096 
1097  return 0;
1098 }
1099 
1101 {
1102  int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
1103  int num_blocks = s->total_num_coded_frags;
1104 
1105  for (qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) {
1106  i = blocks_decoded = num_blocks_at_qpi = 0;
1107 
1108  bit = get_bits1(gb) ^ 1;
1109  run_length = 0;
1110 
1111  do {
1112  if (run_length == MAXIMUM_LONG_BIT_RUN)
1113  bit = get_bits1(gb);
1114  else
1115  bit ^= 1;
1116 
1117  run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
1118  if (run_length == 34)
1119  run_length += get_bits(gb, 12);
1120  blocks_decoded += run_length;
1121 
1122  if (!bit)
1123  num_blocks_at_qpi += run_length;
1124 
1125  for (j = 0; j < run_length; i++) {
1126  if (i >= s->total_num_coded_frags)
1127  return -1;
1128 
1129  if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
1130  s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
1131  j++;
1132  }
1133  }
1134  } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
1135 
1136  num_blocks -= num_blocks_at_qpi;
1137  }
1138 
1139  return 0;
1140 }
1141 
1142 static inline int get_eob_run(GetBitContext *gb, int token)
1143 {
1144  int v = eob_run_table[token].base;
1145  if (eob_run_table[token].bits)
1146  v += get_bits(gb, eob_run_table[token].bits);
1147  return v;
1148 }
1149 
1150 static inline int get_coeff(GetBitContext *gb, int token, int16_t *coeff)
1151 {
1152  int bits_to_get, zero_run;
1153 
1154  bits_to_get = coeff_get_bits[token];
1155  if (bits_to_get)
1156  bits_to_get = get_bits(gb, bits_to_get);
1157  *coeff = coeff_tables[token][bits_to_get];
1158 
1159  zero_run = zero_run_base[token];
1160  if (zero_run_get_bits[token])
1161  zero_run += get_bits(gb, zero_run_get_bits[token]);
1162 
1163  return zero_run;
1164 }
1165 
1166 /*
1167  * This function is called by unpack_dct_coeffs() to extract the VLCs from
1168  * the bitstream. The VLCs encode tokens which are used to unpack DCT
1169  * data. This function unpacks all the VLCs for either the Y plane or both
1170  * C planes, and is called for DC coefficients or different AC coefficient
1171  * levels (since different coefficient types require different VLC tables.
1172  *
1173  * This function returns a residual eob run. E.g, if a particular token gave
1174  * instructions to EOB the next 5 fragments and there were only 2 fragments
1175  * left in the current fragment range, 3 would be returned so that it could
1176  * be passed into the next call to this same function.
1177  */
1179  VLC *table, int coeff_index,
1180  int plane,
1181  int eob_run)
1182 {
1183  int i, j = 0;
1184  int token;
1185  int zero_run = 0;
1186  int16_t coeff = 0;
1187  int blocks_ended;
1188  int coeff_i = 0;
1189  int num_coeffs = s->num_coded_frags[plane][coeff_index];
1190  int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
1191 
1192  /* local references to structure members to avoid repeated dereferences */
1193  int *coded_fragment_list = s->coded_fragment_list[plane];
1194  Vp3Fragment *all_fragments = s->all_fragments;
1195  VLC_TYPE(*vlc_table)[2] = table->table;
1196 
1197  if (num_coeffs < 0) {
1199  "Invalid number of coefficients at level %d\n", coeff_index);
1200  return AVERROR_INVALIDDATA;
1201  }
1202 
1203  if (eob_run > num_coeffs) {
1204  coeff_i =
1205  blocks_ended = num_coeffs;
1206  eob_run -= num_coeffs;
1207  } else {
1208  coeff_i =
1209  blocks_ended = eob_run;
1210  eob_run = 0;
1211  }
1212 
1213  // insert fake EOB token to cover the split between planes or zzi
1214  if (blocks_ended)
1215  dct_tokens[j++] = blocks_ended << 2;
1216 
1217  while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
1218  /* decode a VLC into a token */
1219  token = get_vlc2(gb, vlc_table, 11, 3);
1220  /* use the token to get a zero run, a coefficient, and an eob run */
1221  if ((unsigned) token <= 6U) {
1222  eob_run = get_eob_run(gb, token);
1223  if (!eob_run)
1224  eob_run = INT_MAX;
1225 
1226  // record only the number of blocks ended in this plane,
1227  // any spill will be recorded in the next plane.
1228  if (eob_run > num_coeffs - coeff_i) {
1229  dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
1230  blocks_ended += num_coeffs - coeff_i;
1231  eob_run -= num_coeffs - coeff_i;
1232  coeff_i = num_coeffs;
1233  } else {
1234  dct_tokens[j++] = TOKEN_EOB(eob_run);
1235  blocks_ended += eob_run;
1236  coeff_i += eob_run;
1237  eob_run = 0;
1238  }
1239  } else if (token >= 0) {
1240  zero_run = get_coeff(gb, token, &coeff);
1241 
1242  if (zero_run) {
1243  dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
1244  } else {
1245  // Save DC into the fragment structure. DC prediction is
1246  // done in raster order, so the actual DC can't be in with
1247  // other tokens. We still need the token in dct_tokens[]
1248  // however, or else the structure collapses on itself.
1249  if (!coeff_index)
1250  all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
1251 
1252  dct_tokens[j++] = TOKEN_COEFF(coeff);
1253  }
1254 
1255  if (coeff_index + zero_run > 64) {
1257  "Invalid zero run of %d with %d coeffs left\n",
1258  zero_run, 64 - coeff_index);
1259  zero_run = 64 - coeff_index;
1260  }
1261 
1262  // zero runs code multiple coefficients,
1263  // so don't try to decode coeffs for those higher levels
1264  for (i = coeff_index + 1; i <= coeff_index + zero_run; i++)
1265  s->num_coded_frags[plane][i]--;
1266  coeff_i++;
1267  } else {
1268  av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
1269  return -1;
1270  }
1271  }
1272 
1273  if (blocks_ended > s->num_coded_frags[plane][coeff_index])
1274  av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
1275 
1276  // decrement the number of blocks that have higher coefficients for each
1277  // EOB run at this level
1278  if (blocks_ended)
1279  for (i = coeff_index + 1; i < 64; i++)
1280  s->num_coded_frags[plane][i] -= blocks_ended;
1281 
1282  // setup the next buffer
1283  if (plane < 2)
1284  s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j;
1285  else if (coeff_index < 63)
1286  s->dct_tokens[0][coeff_index + 1] = dct_tokens + j;
1287 
1288  return eob_run;
1289 }
1290 
1292  int first_fragment,
1293  int fragment_width,
1294  int fragment_height);
1295 /*
1296  * This function unpacks all of the DCT coefficient data from the
1297  * bitstream.
1298  */
1300 {
1301  int i;
1302  int dc_y_table;
1303  int dc_c_table;
1304  int ac_y_table;
1305  int ac_c_table;
1306  int residual_eob_run = 0;
1307  VLC *y_tables[64];
1308  VLC *c_tables[64];
1309 
1310  s->dct_tokens[0][0] = s->dct_tokens_base;
1311 
1312  if (get_bits_left(gb) < 16)
1313  return AVERROR_INVALIDDATA;
1314 
1315  /* fetch the DC table indexes */
1316  dc_y_table = get_bits(gb, 4);
1317  dc_c_table = get_bits(gb, 4);
1318 
1319  /* unpack the Y plane DC coefficients */
1320  residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1321  0, residual_eob_run);
1322  if (residual_eob_run < 0)
1323  return residual_eob_run;
1324  if (get_bits_left(gb) < 8)
1325  return AVERROR_INVALIDDATA;
1326 
1327  /* reverse prediction of the Y-plane DC coefficients */
1329 
1330  /* unpack the C plane DC coefficients */
1331  residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1332  1, residual_eob_run);
1333  if (residual_eob_run < 0)
1334  return residual_eob_run;
1335  residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1336  2, residual_eob_run);
1337  if (residual_eob_run < 0)
1338  return residual_eob_run;
1339 
1340  /* reverse prediction of the C-plane DC coefficients */
1341  if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
1343  s->fragment_width[1], s->fragment_height[1]);
1345  s->fragment_width[1], s->fragment_height[1]);
1346  }
1347 
1348  if (get_bits_left(gb) < 8)
1349  return AVERROR_INVALIDDATA;
1350  /* fetch the AC table indexes */
1351  ac_y_table = get_bits(gb, 4);
1352  ac_c_table = get_bits(gb, 4);
1353 
1354  /* build tables of AC VLC tables */
1355  for (i = 1; i <= 5; i++) {
1356  y_tables[i] = &s->ac_vlc_1[ac_y_table];
1357  c_tables[i] = &s->ac_vlc_1[ac_c_table];
1358  }
1359  for (i = 6; i <= 14; i++) {
1360  y_tables[i] = &s->ac_vlc_2[ac_y_table];
1361  c_tables[i] = &s->ac_vlc_2[ac_c_table];
1362  }
1363  for (i = 15; i <= 27; i++) {
1364  y_tables[i] = &s->ac_vlc_3[ac_y_table];
1365  c_tables[i] = &s->ac_vlc_3[ac_c_table];
1366  }
1367  for (i = 28; i <= 63; i++) {
1368  y_tables[i] = &s->ac_vlc_4[ac_y_table];
1369  c_tables[i] = &s->ac_vlc_4[ac_c_table];
1370  }
1371 
1372  /* decode all AC coefficients */
1373  for (i = 1; i <= 63; i++) {
1374  residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1375  0, residual_eob_run);
1376  if (residual_eob_run < 0)
1377  return residual_eob_run;
1378 
1379  residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1380  1, residual_eob_run);
1381  if (residual_eob_run < 0)
1382  return residual_eob_run;
1383  residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1384  2, residual_eob_run);
1385  if (residual_eob_run < 0)
1386  return residual_eob_run;
1387  }
1388 
1389  return 0;
1390 }
1391 
1392 #if CONFIG_VP4_DECODER
1393 /**
1394  * eob_tracker[] is instead of TOKEN_EOB(value)
1395  * a dummy TOKEN_EOB(0) value is used to make vp3_dequant work
1396  *
1397  * @return < 0 on error
1398  */
1399 static int vp4_unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
1400  VLC *vlc_tables[64],
1401  int plane, int eob_tracker[64], int fragment)
1402 {
1403  int token;
1404  int zero_run = 0;
1405  int16_t coeff = 0;
1406  int coeff_i = 0;
1407  int eob_run;
1408 
1409  while (!eob_tracker[coeff_i]) {
1410  if (get_bits_left(gb) < 1)
1411  return AVERROR_INVALIDDATA;
1412 
1413  token = get_vlc2(gb, vlc_tables[coeff_i]->table, 11, 3);
1414 
1415  /* use the token to get a zero run, a coefficient, and an eob run */
1416  if ((unsigned) token <= 6U) {
1417  eob_run = get_eob_run(gb, token);
1418  *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0);
1419  eob_tracker[coeff_i] = eob_run - 1;
1420  return 0;
1421  } else if (token >= 0) {
1422  zero_run = get_coeff(gb, token, &coeff);
1423 
1424  if (zero_run) {
1425  if (coeff_i + zero_run > 64) {
1427  "Invalid zero run of %d with %d coeffs left\n",
1428  zero_run, 64 - coeff_i);
1429  zero_run = 64 - coeff_i;
1430  }
1431  *s->dct_tokens[plane][coeff_i]++ = TOKEN_ZERO_RUN(coeff, zero_run);
1432  coeff_i += zero_run;
1433  } else {
1434  if (!coeff_i)
1435  s->all_fragments[fragment].dc = coeff;
1436 
1437  *s->dct_tokens[plane][coeff_i]++ = TOKEN_COEFF(coeff);
1438  }
1439  coeff_i++;
1440  if (coeff_i >= 64) /* > 64 occurs when there is a zero_run overflow */
1441  return 0; /* stop */
1442  } else {
1443  av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
1444  return -1;
1445  }
1446  }
1447  *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0);
1448  eob_tracker[coeff_i]--;
1449  return 0;
1450 }
1451 
1452 static void vp4_dc_predictor_reset(VP4Predictor *p)
1453 {
1454  p->dc = 0;
1455  p->type = VP4_DC_UNDEFINED;
1456 }
1457 
1458 static void vp4_dc_pred_before(const Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x)
1459 {
1460  int i, j;
1461 
1462  for (i = 0; i < 4; i++)
1463  dc_pred[0][i + 1] = s->dc_pred_row[sb_x * 4 + i];
1464 
1465  for (j = 1; j < 5; j++)
1466  for (i = 0; i < 4; i++)
1467  vp4_dc_predictor_reset(&dc_pred[j][i + 1]);
1468 }
1469 
1470 static void vp4_dc_pred_after(Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x)
1471 {
1472  int i;
1473 
1474  for (i = 0; i < 4; i++)
1475  s->dc_pred_row[sb_x * 4 + i] = dc_pred[4][i + 1];
1476 
1477  for (i = 1; i < 5; i++)
1478  dc_pred[i][0] = dc_pred[i][4];
1479 }
1480 
1481 /* note: dc_pred points to the current block */
1482 static int vp4_dc_pred(const Vp3DecodeContext *s, const VP4Predictor * dc_pred, const int * last_dc, int type, int plane)
1483 {
1484  int count = 0;
1485  int dc = 0;
1486 
1487  if (dc_pred[-6].type == type) {
1488  dc += dc_pred[-6].dc;
1489  count++;
1490  }
1491 
1492  if (dc_pred[6].type == type) {
1493  dc += dc_pred[6].dc;
1494  count++;
1495  }
1496 
1497  if (count != 2 && dc_pred[-1].type == type) {
1498  dc += dc_pred[-1].dc;
1499  count++;
1500  }
1501 
1502  if (count != 2 && dc_pred[1].type == type) {
1503  dc += dc_pred[1].dc;
1504  count++;
1505  }
1506 
1507  /* using division instead of shift to correctly handle negative values */
1508  return count == 2 ? dc / 2 : last_dc[type];
1509 }
1510 
1511 static void vp4_set_tokens_base(Vp3DecodeContext *s)
1512 {
1513  int plane, i;
1514  int16_t *base = s->dct_tokens_base;
1515  for (plane = 0; plane < 3; plane++) {
1516  for (i = 0; i < 64; i++) {
1517  s->dct_tokens[plane][i] = base;
1518  base += s->fragment_width[!!plane] * s->fragment_height[!!plane];
1519  }
1520  }
1521 }
1522 
1523 static int vp4_unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1524 {
1525  int i, j;
1526  int dc_y_table;
1527  int dc_c_table;
1528  int ac_y_table;
1529  int ac_c_table;
1530  VLC *tables[2][64];
1531  int plane, sb_y, sb_x;
1532  int eob_tracker[64];
1533  VP4Predictor dc_pred[6][6];
1534  int last_dc[NB_VP4_DC_TYPES];
1535 
1536  if (get_bits_left(gb) < 16)
1537  return AVERROR_INVALIDDATA;
1538 
1539  /* fetch the DC table indexes */
1540  dc_y_table = get_bits(gb, 4);
1541  dc_c_table = get_bits(gb, 4);
1542 
1543  ac_y_table = get_bits(gb, 4);
1544  ac_c_table = get_bits(gb, 4);
1545 
1546  /* build tables of DC/AC VLC tables */
1547 
1548  tables[0][0] = &s->dc_vlc[dc_y_table];
1549  tables[1][0] = &s->dc_vlc[dc_c_table];
1550  for (i = 1; i <= 5; i++) {
1551  tables[0][i] = &s->ac_vlc_1[ac_y_table];
1552  tables[1][i] = &s->ac_vlc_1[ac_c_table];
1553  }
1554  for (i = 6; i <= 14; i++) {
1555  tables[0][i] = &s->ac_vlc_2[ac_y_table];
1556  tables[1][i] = &s->ac_vlc_2[ac_c_table];
1557  }
1558  for (i = 15; i <= 27; i++) {
1559  tables[0][i] = &s->ac_vlc_3[ac_y_table];
1560  tables[1][i] = &s->ac_vlc_3[ac_c_table];
1561  }
1562  for (i = 28; i <= 63; i++) {
1563  tables[0][i] = &s->ac_vlc_4[ac_y_table];
1564  tables[1][i] = &s->ac_vlc_4[ac_c_table];
1565  }
1566 
1567  vp4_set_tokens_base(s);
1568 
1569  memset(last_dc, 0, sizeof(last_dc));
1570 
1571  for (plane = 0; plane < ((s->avctx->flags & AV_CODEC_FLAG_GRAY) ? 1 : 3); plane++) {
1572  memset(eob_tracker, 0, sizeof(eob_tracker));
1573 
1574  /* initialise dc prediction */
1575  for (i = 0; i < s->fragment_width[!!plane]; i++)
1576  vp4_dc_predictor_reset(&s->dc_pred_row[i]);
1577 
1578  for (j = 0; j < 6; j++)
1579  for (i = 0; i < 6; i++)
1580  vp4_dc_predictor_reset(&dc_pred[j][i]);
1581 
1582  for (sb_y = 0; sb_y * 4 < s->fragment_height[!!plane]; sb_y++) {
1583  for (sb_x = 0; sb_x *4 < s->fragment_width[!!plane]; sb_x++) {
1584  vp4_dc_pred_before(s, dc_pred, sb_x);
1585  for (j = 0; j < 16; j++) {
1586  int hx = hilbert_offset[j][0];
1587  int hy = hilbert_offset[j][1];
1588  int x = 4 * sb_x + hx;
1589  int y = 4 * sb_y + hy;
1590  VP4Predictor *this_dc_pred = &dc_pred[hy + 1][hx + 1];
1591  int fragment, dc_block_type;
1592 
1593  if (x >= s->fragment_width[!!plane] || y >= s->fragment_height[!!plane])
1594  continue;
1595 
1596  fragment = s->fragment_start[plane] + y * s->fragment_width[!!plane] + x;
1597 
1598  if (s->all_fragments[fragment].coding_method == MODE_COPY)
1599  continue;
1600 
1601  if (vp4_unpack_vlcs(s, gb, tables[!!plane], plane, eob_tracker, fragment) < 0)
1602  return -1;
1603 
1604  dc_block_type = vp4_pred_block_type_map[s->all_fragments[fragment].coding_method];
1605 
1606  s->all_fragments[fragment].dc +=
1607  vp4_dc_pred(s, this_dc_pred, last_dc, dc_block_type, plane);
1608 
1609  this_dc_pred->type = dc_block_type,
1610  this_dc_pred->dc = last_dc[dc_block_type] = s->all_fragments[fragment].dc;
1611  }
1612  vp4_dc_pred_after(s, dc_pred, sb_x);
1613  }
1614  }
1615  }
1616 
1617  vp4_set_tokens_base(s);
1618 
1619  return 0;
1620 }
1621 #endif
1622 
1623 /*
1624  * This function reverses the DC prediction for each coded fragment in
1625  * the frame. Much of this function is adapted directly from the original
1626  * VP3 source code.
1627  */
1628 #define COMPATIBLE_FRAME(x) \
1629  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1630 #define DC_COEFF(u) s->all_fragments[u].dc
1631 
1633  int first_fragment,
1634  int fragment_width,
1635  int fragment_height)
1636 {
1637 #define PUL 8
1638 #define PU 4
1639 #define PUR 2
1640 #define PL 1
1641 
1642  int x, y;
1643  int i = first_fragment;
1644 
1645  int predicted_dc;
1646 
1647  /* DC values for the left, up-left, up, and up-right fragments */
1648  int vl, vul, vu, vur;
1649 
1650  /* indexes for the left, up-left, up, and up-right fragments */
1651  int l, ul, u, ur;
1652 
1653  /*
1654  * The 6 fields mean:
1655  * 0: up-left multiplier
1656  * 1: up multiplier
1657  * 2: up-right multiplier
1658  * 3: left multiplier
1659  */
1660  static const int predictor_transform[16][4] = {
1661  { 0, 0, 0, 0 },
1662  { 0, 0, 0, 128 }, // PL
1663  { 0, 0, 128, 0 }, // PUR
1664  { 0, 0, 53, 75 }, // PUR|PL
1665  { 0, 128, 0, 0 }, // PU
1666  { 0, 64, 0, 64 }, // PU |PL
1667  { 0, 128, 0, 0 }, // PU |PUR
1668  { 0, 0, 53, 75 }, // PU |PUR|PL
1669  { 128, 0, 0, 0 }, // PUL
1670  { 0, 0, 0, 128 }, // PUL|PL
1671  { 64, 0, 64, 0 }, // PUL|PUR
1672  { 0, 0, 53, 75 }, // PUL|PUR|PL
1673  { 0, 128, 0, 0 }, // PUL|PU
1674  { -104, 116, 0, 116 }, // PUL|PU |PL
1675  { 24, 80, 24, 0 }, // PUL|PU |PUR
1676  { -104, 116, 0, 116 } // PUL|PU |PUR|PL
1677  };
1678 
1679  /* This table shows which types of blocks can use other blocks for
1680  * prediction. For example, INTRA is the only mode in this table to
1681  * have a frame number of 0. That means INTRA blocks can only predict
1682  * from other INTRA blocks. There are 2 golden frame coding types;
1683  * blocks encoding in these modes can only predict from other blocks
1684  * that were encoded with these 1 of these 2 modes. */
1685  static const unsigned char compatible_frame[9] = {
1686  1, /* MODE_INTER_NO_MV */
1687  0, /* MODE_INTRA */
1688  1, /* MODE_INTER_PLUS_MV */
1689  1, /* MODE_INTER_LAST_MV */
1690  1, /* MODE_INTER_PRIOR_MV */
1691  2, /* MODE_USING_GOLDEN */
1692  2, /* MODE_GOLDEN_MV */
1693  1, /* MODE_INTER_FOUR_MV */
1694  3 /* MODE_COPY */
1695  };
1696  int current_frame_type;
1697 
1698  /* there is a last DC predictor for each of the 3 frame types */
1699  short last_dc[3];
1700 
1701  int transform = 0;
1702 
1703  vul =
1704  vu =
1705  vur =
1706  vl = 0;
1707  last_dc[0] =
1708  last_dc[1] =
1709  last_dc[2] = 0;
1710 
1711  /* for each fragment row... */
1712  for (y = 0; y < fragment_height; y++) {
1713  /* for each fragment in a row... */
1714  for (x = 0; x < fragment_width; x++, i++) {
1715 
1716  /* reverse prediction if this block was coded */
1717  if (s->all_fragments[i].coding_method != MODE_COPY) {
1718  current_frame_type =
1719  compatible_frame[s->all_fragments[i].coding_method];
1720 
1721  transform = 0;
1722  if (x) {
1723  l = i - 1;
1724  vl = DC_COEFF(l);
1725  if (COMPATIBLE_FRAME(l))
1726  transform |= PL;
1727  }
1728  if (y) {
1729  u = i - fragment_width;
1730  vu = DC_COEFF(u);
1731  if (COMPATIBLE_FRAME(u))
1732  transform |= PU;
1733  if (x) {
1734  ul = i - fragment_width - 1;
1735  vul = DC_COEFF(ul);
1736  if (COMPATIBLE_FRAME(ul))
1737  transform |= PUL;
1738  }
1739  if (x + 1 < fragment_width) {
1740  ur = i - fragment_width + 1;
1741  vur = DC_COEFF(ur);
1742  if (COMPATIBLE_FRAME(ur))
1743  transform |= PUR;
1744  }
1745  }
1746 
1747  if (transform == 0) {
1748  /* if there were no fragments to predict from, use last
1749  * DC saved */
1750  predicted_dc = last_dc[current_frame_type];
1751  } else {
1752  /* apply the appropriate predictor transform */
1753  predicted_dc =
1754  (predictor_transform[transform][0] * vul) +
1755  (predictor_transform[transform][1] * vu) +
1756  (predictor_transform[transform][2] * vur) +
1757  (predictor_transform[transform][3] * vl);
1758 
1759  predicted_dc /= 128;
1760 
1761  /* check for outranging on the [ul u l] and
1762  * [ul u ur l] predictors */
1763  if ((transform == 15) || (transform == 13)) {
1764  if (FFABS(predicted_dc - vu) > 128)
1765  predicted_dc = vu;
1766  else if (FFABS(predicted_dc - vl) > 128)
1767  predicted_dc = vl;
1768  else if (FFABS(predicted_dc - vul) > 128)
1769  predicted_dc = vul;
1770  }
1771  }
1772 
1773  /* at long last, apply the predictor */
1774  DC_COEFF(i) += predicted_dc;
1775  /* save the DC */
1776  last_dc[current_frame_type] = DC_COEFF(i);
1777  }
1778  }
1779  }
1780 }
1781 
1783  int ystart, int yend)
1784 {
1785  int x, y;
1786  int *bounding_values = s->bounding_values_array + 127;
1787 
1788  int width = s->fragment_width[!!plane];
1789  int height = s->fragment_height[!!plane];
1790  int fragment = s->fragment_start[plane] + ystart * width;
1791  ptrdiff_t stride = s->current_frame.f->linesize[plane];
1792  uint8_t *plane_data = s->current_frame.f->data[plane];
1793  if (!s->flipped_image)
1794  stride = -stride;
1795  plane_data += s->data_offset[plane] + 8 * ystart * stride;
1796 
1797  for (y = ystart; y < yend; y++) {
1798  for (x = 0; x < width; x++) {
1799  /* This code basically just deblocks on the edges of coded blocks.
1800  * However, it has to be much more complicated because of the
1801  * brain damaged deblock ordering used in VP3/Theora. Order matters
1802  * because some pixels get filtered twice. */
1803  if (s->all_fragments[fragment].coding_method != MODE_COPY) {
1804  /* do not perform left edge filter for left columns frags */
1805  if (x > 0) {
1806  s->vp3dsp.h_loop_filter(
1807  plane_data + 8 * x,
1808  stride, bounding_values);
1809  }
1810 
1811  /* do not perform top edge filter for top row fragments */
1812  if (y > 0) {
1813  s->vp3dsp.v_loop_filter(
1814  plane_data + 8 * x,
1815  stride, bounding_values);
1816  }
1817 
1818  /* do not perform right edge filter for right column
1819  * fragments or if right fragment neighbor is also coded
1820  * in this frame (it will be filtered in next iteration) */
1821  if ((x < width - 1) &&
1822  (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1823  s->vp3dsp.h_loop_filter(
1824  plane_data + 8 * x + 8,
1825  stride, bounding_values);
1826  }
1827 
1828  /* do not perform bottom edge filter for bottom row
1829  * fragments or if bottom fragment neighbor is also coded
1830  * in this frame (it will be filtered in the next row) */
1831  if ((y < height - 1) &&
1832  (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1833  s->vp3dsp.v_loop_filter(
1834  plane_data + 8 * x + 8 * stride,
1835  stride, bounding_values);
1836  }
1837  }
1838 
1839  fragment++;
1840  }
1841  plane_data += 8 * stride;
1842  }
1843 }
1844 
1845 /**
1846  * Pull DCT tokens from the 64 levels to decode and dequant the coefficients
1847  * for the next block in coding order
1848  */
1849 static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1850  int plane, int inter, int16_t block[64])
1851 {
1852  int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1853  uint8_t *perm = s->idct_scantable;
1854  int i = 0;
1855 
1856  do {
1857  int token = *s->dct_tokens[plane][i];
1858  switch (token & 3) {
1859  case 0: // EOB
1860  if (--token < 4) // 0-3 are token types so the EOB run must now be 0
1861  s->dct_tokens[plane][i]++;
1862  else
1863  *s->dct_tokens[plane][i] = token & ~3;
1864  goto end;
1865  case 1: // zero run
1866  s->dct_tokens[plane][i]++;
1867  i += (token >> 2) & 0x7f;
1868  if (i > 63) {
1869  av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
1870  return i;
1871  }
1872  block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1873  i++;
1874  break;
1875  case 2: // coeff
1876  block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1877  s->dct_tokens[plane][i++]++;
1878  break;
1879  default: // shouldn't happen
1880  return i;
1881  }
1882  } while (i < 64);
1883  // return value is expected to be a valid level
1884  i--;
1885 end:
1886  // the actual DC+prediction is in the fragment structure
1887  block[0] = frag->dc * s->qmat[0][inter][plane][0];
1888  return i;
1889 }
1890 
1891 /**
1892  * called when all pixels up to row y are complete
1893  */
1895 {
1896  int h, cy, i;
1898 
1900  int y_flipped = s->flipped_image ? s->height - y : y;
1901 
1902  /* At the end of the frame, report INT_MAX instead of the height of
1903  * the frame. This makes the other threads' ff_thread_await_progress()
1904  * calls cheaper, because they don't have to clip their values. */
1906  y_flipped == s->height ? INT_MAX
1907  : y_flipped - 1,
1908  0);
1909  }
1910 
1911  if (!s->avctx->draw_horiz_band)
1912  return;
1913 
1914  h = y - s->last_slice_end;
1915  s->last_slice_end = y;
1916  y -= h;
1917 
1918  if (!s->flipped_image)
1919  y = s->height - y - h;
1920 
1921  cy = y >> s->chroma_y_shift;
1922  offset[0] = s->current_frame.f->linesize[0] * y;
1923  offset[1] = s->current_frame.f->linesize[1] * cy;
1924  offset[2] = s->current_frame.f->linesize[2] * cy;
1925  for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
1926  offset[i] = 0;
1927 
1928  emms_c();
1929  s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h);
1930 }
1931 
1932 /**
1933  * Wait for the reference frame of the current fragment.
1934  * The progress value is in luma pixel rows.
1935  */
1937  int motion_y, int y)
1938 {
1939  ThreadFrame *ref_frame;
1940  int ref_row;
1941  int border = motion_y & 1;
1942 
1943  if (fragment->coding_method == MODE_USING_GOLDEN ||
1944  fragment->coding_method == MODE_GOLDEN_MV)
1945  ref_frame = &s->golden_frame;
1946  else
1947  ref_frame = &s->last_frame;
1948 
1949  ref_row = y + (motion_y >> 1);
1950  ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
1951 
1952  ff_thread_await_progress(ref_frame, ref_row, 0);
1953 }
1954 
1955 #if CONFIG_VP4_DECODER
1956 /**
1957  * @return non-zero if temp (edge_emu_buffer) was populated
1958  */
1959 static int vp4_mc_loop_filter(Vp3DecodeContext *s, int plane, int motion_x, int motion_y, int bx, int by,
1960  uint8_t * motion_source, int stride, int src_x, int src_y, uint8_t *temp)
1961 {
1962  int motion_shift = plane ? 4 : 2;
1963  int subpel_mask = plane ? 3 : 1;
1964  int *bounding_values = s->bounding_values_array + 127;
1965 
1966  int i;
1967  int x, y;
1968  int x2, y2;
1969  int x_subpel, y_subpel;
1970  int x_offset, y_offset;
1971 
1972  int block_width = plane ? 8 : 16;
1973  int plane_width = s->width >> (plane && s->chroma_x_shift);
1974  int plane_height = s->height >> (plane && s->chroma_y_shift);
1975 
1976 #define loop_stride 12
1977  uint8_t loop[12 * loop_stride];
1978 
1979  /* using division instead of shift to correctly handle negative values */
1980  x = 8 * bx + motion_x / motion_shift;
1981  y = 8 * by + motion_y / motion_shift;
1982 
1983  x_subpel = motion_x & subpel_mask;
1984  y_subpel = motion_y & subpel_mask;
1985 
1986  if (x_subpel || y_subpel) {
1987  x--;
1988  y--;
1989 
1990  if (x_subpel)
1991  x = FFMIN(x, x + FFSIGN(motion_x));
1992 
1993  if (y_subpel)
1994  y = FFMIN(y, y + FFSIGN(motion_y));
1995 
1996  x2 = x + block_width;
1997  y2 = y + block_width;
1998 
1999  if (x2 < 0 || x2 >= plane_width || y2 < 0 || y2 >= plane_height)
2000  return 0;
2001 
2002  x_offset = (-(x + 2) & 7) + 2;
2003  y_offset = (-(y + 2) & 7) + 2;
2004 
2005  if (x_offset > 8 + x_subpel && y_offset > 8 + y_subpel)
2006  return 0;
2007 
2008  s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1,
2009  loop_stride, stride,
2010  12, 12, src_x - 1, src_y - 1,
2011  plane_width,
2012  plane_height);
2013 
2014  if (x_offset <= 8 + x_subpel)
2015  ff_vp3dsp_h_loop_filter_12(loop + x_offset, loop_stride, bounding_values);
2016 
2017  if (y_offset <= 8 + y_subpel)
2018  ff_vp3dsp_v_loop_filter_12(loop + y_offset*loop_stride, loop_stride, bounding_values);
2019 
2020  } else {
2021 
2022  x_offset = -x & 7;
2023  y_offset = -y & 7;
2024 
2025  if (!x_offset && !y_offset)
2026  return 0;
2027 
2028  s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1,
2029  loop_stride, stride,
2030  12, 12, src_x - 1, src_y - 1,
2031  plane_width,
2032  plane_height);
2033 
2034  if (x_offset)
2035  s->vp3dsp.h_loop_filter(loop + loop_stride + x_offset + 1, loop_stride, bounding_values);
2036 
2037  if (y_offset)
2038  s->vp3dsp.v_loop_filter(loop + (y_offset + 1)*loop_stride + 1, loop_stride, bounding_values);
2039  }
2040 
2041  for (i = 0; i < 9; i++)
2042  memcpy(temp + i*stride, loop + (i + 1) * loop_stride + 1, 9);
2043 
2044  return 1;
2045 }
2046 #endif
2047 
2048 /*
2049  * Perform the final rendering for a particular slice of data.
2050  * The slice number ranges from 0..(c_superblock_height - 1).
2051  */
2052 static void render_slice(Vp3DecodeContext *s, int slice)
2053 {
2054  int x, y, i, j, fragment;
2055  int16_t *block = s->block;
2056  int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
2057  int motion_halfpel_index;
2058  uint8_t *motion_source;
2059  int plane, first_pixel;
2060 
2061  if (slice >= s->c_superblock_height)
2062  return;
2063 
2064  for (plane = 0; plane < 3; plane++) {
2066  s->data_offset[plane];
2067  uint8_t *last_plane = s->last_frame.f->data[plane] +
2068  s->data_offset[plane];
2069  uint8_t *golden_plane = s->golden_frame.f->data[plane] +
2070  s->data_offset[plane];
2071  ptrdiff_t stride = s->current_frame.f->linesize[plane];
2072  int plane_width = s->width >> (plane && s->chroma_x_shift);
2073  int plane_height = s->height >> (plane && s->chroma_y_shift);
2074  int8_t(*motion_val)[2] = s->motion_val[!!plane];
2075 
2076  int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
2077  int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
2078  int slice_width = plane ? s->c_superblock_width
2079  : s->y_superblock_width;
2080 
2081  int fragment_width = s->fragment_width[!!plane];
2082  int fragment_height = s->fragment_height[!!plane];
2083  int fragment_start = s->fragment_start[plane];
2084 
2085  int do_await = !plane && HAVE_THREADS &&
2087 
2088  if (!s->flipped_image)
2089  stride = -stride;
2090  if (CONFIG_GRAY && plane && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
2091  continue;
2092 
2093  /* for each superblock row in the slice (both of them)... */
2094  for (; sb_y < slice_height; sb_y++) {
2095  /* for each superblock in a row... */
2096  for (sb_x = 0; sb_x < slice_width; sb_x++) {
2097  /* for each block in a superblock... */
2098  for (j = 0; j < 16; j++) {
2099  x = 4 * sb_x + hilbert_offset[j][0];
2100  y = 4 * sb_y + hilbert_offset[j][1];
2101  fragment = y * fragment_width + x;
2102 
2103  i = fragment_start + fragment;
2104 
2105  // bounds check
2106  if (x >= fragment_width || y >= fragment_height)
2107  continue;
2108 
2109  first_pixel = 8 * y * stride + 8 * x;
2110 
2111  if (do_await &&
2114  motion_val[fragment][1],
2115  (16 * y) >> s->chroma_y_shift);
2116 
2117  /* transform if this block was coded */
2118  if (s->all_fragments[i].coding_method != MODE_COPY) {
2121  motion_source = golden_plane;
2122  else
2123  motion_source = last_plane;
2124 
2125  motion_source += first_pixel;
2126  motion_halfpel_index = 0;
2127 
2128  /* sort out the motion vector if this fragment is coded
2129  * using a motion vector method */
2130  if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
2132  int src_x, src_y;
2133  int standard_mc = 1;
2134  motion_x = motion_val[fragment][0];
2135  motion_y = motion_val[fragment][1];
2136 #if CONFIG_VP4_DECODER
2137  if (plane && s->version >= 2) {
2138  motion_x = (motion_x >> 1) | (motion_x & 1);
2139  motion_y = (motion_y >> 1) | (motion_y & 1);
2140  }
2141 #endif
2142 
2143  src_x = (motion_x >> 1) + 8 * x;
2144  src_y = (motion_y >> 1) + 8 * y;
2145 
2146  motion_halfpel_index = motion_x & 0x01;
2147  motion_source += (motion_x >> 1);
2148 
2149  motion_halfpel_index |= (motion_y & 0x01) << 1;
2150  motion_source += ((motion_y >> 1) * stride);
2151 
2152 #if CONFIG_VP4_DECODER
2153  if (s->version >= 2) {
2155  if (stride < 0)
2156  temp -= 8 * stride;
2157  if (vp4_mc_loop_filter(s, plane, motion_val[fragment][0], motion_val[fragment][1], x, y, motion_source, stride, src_x, src_y, temp)) {
2158  motion_source = temp;
2159  standard_mc = 0;
2160  }
2161  }
2162 #endif
2163 
2164  if (standard_mc && (
2165  src_x < 0 || src_y < 0 ||
2166  src_x + 9 >= plane_width ||
2167  src_y + 9 >= plane_height)) {
2169  if (stride < 0)
2170  temp -= 8 * stride;
2171 
2172  s->vdsp.emulated_edge_mc(temp, motion_source,
2173  stride, stride,
2174  9, 9, src_x, src_y,
2175  plane_width,
2176  plane_height);
2177  motion_source = temp;
2178  }
2179  }
2180 
2181  /* first, take care of copying a block from either the
2182  * previous or the golden frame */
2183  if (s->all_fragments[i].coding_method != MODE_INTRA) {
2184  /* Note, it is possible to implement all MC cases
2185  * with put_no_rnd_pixels_l2 which would look more
2186  * like the VP3 source but this would be slower as
2187  * put_no_rnd_pixels_tab is better optimized */
2188  if (motion_halfpel_index != 3) {
2189  s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
2190  output_plane + first_pixel,
2191  motion_source, stride, 8);
2192  } else {
2193  /* d is 0 if motion_x and _y have the same sign,
2194  * else -1 */
2195  int d = (motion_x ^ motion_y) >> 31;
2196  s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel,
2197  motion_source - d,
2198  motion_source + stride + 1 + d,
2199  stride, 8);
2200  }
2201  }
2202 
2203  /* invert DCT and place (or add) in final output */
2204 
2205  if (s->all_fragments[i].coding_method == MODE_INTRA) {
2206  vp3_dequant(s, s->all_fragments + i,
2207  plane, 0, block);
2208  s->vp3dsp.idct_put(output_plane + first_pixel,
2209  stride,
2210  block);
2211  } else {
2212  if (vp3_dequant(s, s->all_fragments + i,
2213  plane, 1, block)) {
2214  s->vp3dsp.idct_add(output_plane + first_pixel,
2215  stride,
2216  block);
2217  } else {
2218  s->vp3dsp.idct_dc_add(output_plane + first_pixel,
2219  stride, block);
2220  }
2221  }
2222  } else {
2223  /* copy directly from the previous frame */
2224  s->hdsp.put_pixels_tab[1][0](
2225  output_plane + first_pixel,
2226  last_plane + first_pixel,
2227  stride, 8);
2228  }
2229  }
2230  }
2231 
2232  // Filter up to the last row in the superblock row
2233  if (s->version < 2 && !s->skip_loop_filter)
2234  apply_loop_filter(s, plane, 4 * sb_y - !!sb_y,
2235  FFMIN(4 * sb_y + 3, fragment_height - 1));
2236  }
2237  }
2238 
2239  /* this looks like a good place for slice dispatch... */
2240  /* algorithm:
2241  * if (slice == s->macroblock_height - 1)
2242  * dispatch (both last slice & 2nd-to-last slice);
2243  * else if (slice > 0)
2244  * dispatch (slice - 1);
2245  */
2246 
2247  vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16,
2248  s->height - 16));
2249 }
2250 
2251 /// Allocate tables for per-frame data in Vp3DecodeContext
2253 {
2254  Vp3DecodeContext *s = avctx->priv_data;
2255  int y_fragment_count, c_fragment_count;
2256 
2257  free_tables(avctx);
2258 
2259  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
2260  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
2261 
2262  /* superblock_coding is used by unpack_superblocks (VP3/Theora) and vp4_unpack_macroblocks (VP4) */
2265 
2266  s-> kf_coded_fragment_list = av_mallocz_array(s->fragment_count, sizeof(int));
2268  memset(s-> num_kf_coded_fragment, -1, sizeof(s-> num_kf_coded_fragment));
2269 
2271  64 * sizeof(*s->dct_tokens_base));
2272  s->motion_val[0] = av_mallocz_array(y_fragment_count, sizeof(*s->motion_val[0]));
2273  s->motion_val[1] = av_mallocz_array(c_fragment_count, sizeof(*s->motion_val[1]));
2274 
2275  /* work out the block mapping tables */
2276  s->superblock_fragments = av_mallocz_array(s->superblock_count, 16 * sizeof(int));
2278 
2279  s->dc_pred_row = av_malloc_array(s->y_superblock_width * 4, sizeof(*s->dc_pred_row));
2280 
2281  if (!s->superblock_coding || !s->all_fragments ||
2285  !s->dc_pred_row ||
2286  !s->motion_val[0] || !s->motion_val[1]) {
2287  vp3_decode_end(avctx);
2288  return -1;
2289  }
2290 
2291  init_block_mapping(s);
2292 
2293  return 0;
2294 }
2295 
2297 {
2299  s->last_frame.f = av_frame_alloc();
2300  s->golden_frame.f = av_frame_alloc();
2301 
2302  if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f) {
2304  av_frame_free(&s->last_frame.f);
2306  return AVERROR(ENOMEM);
2307  }
2308 
2309  return 0;
2310 }
2311 
2313 {
2314  Vp3DecodeContext *s = avctx->priv_data;
2315  int i, inter, plane, ret;
2316  int c_width;
2317  int c_height;
2318  int y_fragment_count, c_fragment_count;
2319 #if CONFIG_VP4_DECODER
2320  int j;
2321 #endif
2322 
2323  ret = init_frames(s);
2324  if (ret < 0)
2325  return ret;
2326 
2327  avctx->internal->allocate_progress = 1;
2328 
2329  if (avctx->codec_tag == MKTAG('V', 'P', '4', '0'))
2330  s->version = 3;
2331  else if (avctx->codec_tag == MKTAG('V', 'P', '3', '0'))
2332  s->version = 0;
2333  else
2334  s->version = 1;
2335 
2336  s->avctx = avctx;
2337  s->width = FFALIGN(avctx->coded_width, 16);
2338  s->height = FFALIGN(avctx->coded_height, 16);
2339  if (avctx->codec_id != AV_CODEC_ID_THEORA)
2340  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
2343  ff_videodsp_init(&s->vdsp, 8);
2344  ff_vp3dsp_init(&s->vp3dsp, avctx->flags);
2345 
2346  for (i = 0; i < 64; i++) {
2347 #define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3))
2348  s->idct_permutation[i] = TRANSPOSE(i);
2350 #undef TRANSPOSE
2351  }
2352 
2353  /* initialize to an impossible value which will force a recalculation
2354  * in the first frame decode */
2355  for (i = 0; i < 3; i++)
2356  s->qps[i] = -1;
2357 
2359  if (ret)
2360  return ret;
2361 
2362  s->y_superblock_width = (s->width + 31) / 32;
2363  s->y_superblock_height = (s->height + 31) / 32;
2365 
2366  /* work out the dimensions for the C planes */
2367  c_width = s->width >> s->chroma_x_shift;
2368  c_height = s->height >> s->chroma_y_shift;
2369  s->c_superblock_width = (c_width + 31) / 32;
2370  s->c_superblock_height = (c_height + 31) / 32;
2372 
2376 
2377  s->macroblock_width = (s->width + 15) / 16;
2378  s->macroblock_height = (s->height + 15) / 16;
2380  s->c_macroblock_width = (c_width + 15) / 16;
2381  s->c_macroblock_height = (c_height + 15) / 16;
2384 
2385  s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
2386  s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
2387  s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift;
2388  s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
2389 
2390  /* fragment count covers all 8x8 blocks for all 3 planes */
2391  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
2392  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
2393  s->fragment_count = y_fragment_count + 2 * c_fragment_count;
2394  s->fragment_start[1] = y_fragment_count;
2395  s->fragment_start[2] = y_fragment_count + c_fragment_count;
2396 
2397  if (!s->theora_tables) {
2398  for (i = 0; i < 64; i++) {
2406  }
2407 
2408  for (inter = 0; inter < 2; inter++) {
2409  for (plane = 0; plane < 3; plane++) {
2410  s->qr_count[inter][plane] = 1;
2411  s->qr_size[inter][plane][0] = 63;
2412  s->qr_base[inter][plane][0] =
2413  s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter;
2414  }
2415  }
2416 
2417  /* init VLC tables */
2418  if (s->version < 2) {
2419  for (i = 0; i < 16; i++) {
2420  /* DC histograms */
2421  init_vlc(&s->dc_vlc[i], 11, 32,
2422  &dc_bias[i][0][1], 4, 2,
2423  &dc_bias[i][0][0], 4, 2, 0);
2424 
2425  /* group 1 AC histograms */
2426  init_vlc(&s->ac_vlc_1[i], 11, 32,
2427  &ac_bias_0[i][0][1], 4, 2,
2428  &ac_bias_0[i][0][0], 4, 2, 0);
2429 
2430  /* group 2 AC histograms */
2431  init_vlc(&s->ac_vlc_2[i], 11, 32,
2432  &ac_bias_1[i][0][1], 4, 2,
2433  &ac_bias_1[i][0][0], 4, 2, 0);
2434 
2435  /* group 3 AC histograms */
2436  init_vlc(&s->ac_vlc_3[i], 11, 32,
2437  &ac_bias_2[i][0][1], 4, 2,
2438  &ac_bias_2[i][0][0], 4, 2, 0);
2439 
2440  /* group 4 AC histograms */
2441  init_vlc(&s->ac_vlc_4[i], 11, 32,
2442  &ac_bias_3[i][0][1], 4, 2,
2443  &ac_bias_3[i][0][0], 4, 2, 0);
2444  }
2445 #if CONFIG_VP4_DECODER
2446  } else { /* version >= 2 */
2447  for (i = 0; i < 16; i++) {
2448  /* DC histograms */
2449  init_vlc(&s->dc_vlc[i], 11, 32,
2450  &vp4_dc_bias[i][0][1], 4, 2,
2451  &vp4_dc_bias[i][0][0], 4, 2, 0);
2452 
2453  /* group 1 AC histograms */
2454  init_vlc(&s->ac_vlc_1[i], 11, 32,
2455  &vp4_ac_bias_0[i][0][1], 4, 2,
2456  &vp4_ac_bias_0[i][0][0], 4, 2, 0);
2457 
2458  /* group 2 AC histograms */
2459  init_vlc(&s->ac_vlc_2[i], 11, 32,
2460  &vp4_ac_bias_1[i][0][1], 4, 2,
2461  &vp4_ac_bias_1[i][0][0], 4, 2, 0);
2462 
2463  /* group 3 AC histograms */
2464  init_vlc(&s->ac_vlc_3[i], 11, 32,
2465  &vp4_ac_bias_2[i][0][1], 4, 2,
2466  &vp4_ac_bias_2[i][0][0], 4, 2, 0);
2467 
2468  /* group 4 AC histograms */
2469  init_vlc(&s->ac_vlc_4[i], 11, 32,
2470  &vp4_ac_bias_3[i][0][1], 4, 2,
2471  &vp4_ac_bias_3[i][0][0], 4, 2, 0);
2472  }
2473 #endif
2474  }
2475  } else {
2476  for (i = 0; i < 16; i++) {
2477  /* DC histograms */
2478  if (init_vlc(&s->dc_vlc[i], 11, 32,
2479  &s->huffman_table[i][0][1], 8, 4,
2480  &s->huffman_table[i][0][0], 8, 4, 0) < 0)
2481  goto vlc_fail;
2482 
2483  /* group 1 AC histograms */
2484  if (init_vlc(&s->ac_vlc_1[i], 11, 32,
2485  &s->huffman_table[i + 16][0][1], 8, 4,
2486  &s->huffman_table[i + 16][0][0], 8, 4, 0) < 0)
2487  goto vlc_fail;
2488 
2489  /* group 2 AC histograms */
2490  if (init_vlc(&s->ac_vlc_2[i], 11, 32,
2491  &s->huffman_table[i + 16 * 2][0][1], 8, 4,
2492  &s->huffman_table[i + 16 * 2][0][0], 8, 4, 0) < 0)
2493  goto vlc_fail;
2494 
2495  /* group 3 AC histograms */
2496  if (init_vlc(&s->ac_vlc_3[i], 11, 32,
2497  &s->huffman_table[i + 16 * 3][0][1], 8, 4,
2498  &s->huffman_table[i + 16 * 3][0][0], 8, 4, 0) < 0)
2499  goto vlc_fail;
2500 
2501  /* group 4 AC histograms */
2502  if (init_vlc(&s->ac_vlc_4[i], 11, 32,
2503  &s->huffman_table[i + 16 * 4][0][1], 8, 4,
2504  &s->huffman_table[i + 16 * 4][0][0], 8, 4, 0) < 0)
2505  goto vlc_fail;
2506  }
2507  }
2508 
2510  &superblock_run_length_vlc_table[0][1], 4, 2,
2511  &superblock_run_length_vlc_table[0][0], 4, 2, 0);
2512 
2513  init_vlc(&s->fragment_run_length_vlc, 5, 30,
2514  &fragment_run_length_vlc_table[0][1], 4, 2,
2515  &fragment_run_length_vlc_table[0][0], 4, 2, 0);
2516 
2517  init_vlc(&s->mode_code_vlc, 3, 8,
2518  &mode_code_vlc_table[0][1], 2, 1,
2519  &mode_code_vlc_table[0][0], 2, 1, 0);
2520 
2521  init_vlc(&s->motion_vector_vlc, 6, 63,
2522  &motion_vector_vlc_table[0][1], 2, 1,
2523  &motion_vector_vlc_table[0][0], 2, 1, 0);
2524 
2525 #if CONFIG_VP4_DECODER
2526  for (j = 0; j < 2; j++)
2527  for (i = 0; i < 7; i++)
2528  init_vlc(&s->vp4_mv_vlc[j][i], 6, 63,
2529  &vp4_mv_vlc[j][i][0][1], 4, 2,
2530  &vp4_mv_vlc[j][i][0][0], 4, 2, 0);
2531 
2532  /* version >= 2 */
2533  for (i = 0; i < 2; i++)
2534  init_vlc(&s->block_pattern_vlc[i], 3, 14,
2535  &vp4_block_pattern_vlc[i][0][1], 2, 1,
2536  &vp4_block_pattern_vlc[i][0][0], 2, 1, 0);
2537 #endif
2538 
2539  return allocate_tables(avctx);
2540 
2541 vlc_fail:
2542  av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
2543  return -1;
2544 }
2545 
2546 /// Release and shuffle frames after decode finishes
2547 static int update_frames(AVCodecContext *avctx)
2548 {
2549  Vp3DecodeContext *s = avctx->priv_data;
2550  int ret = 0;
2551 
2552  /* shuffle frames (last = current) */
2555  if (ret < 0)
2556  goto fail;
2557 
2558  if (s->keyframe) {
2561  }
2562 
2563 fail:
2565  return ret;
2566 }
2567 
2568 #if HAVE_THREADS
2569 static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src)
2570 {
2572  if (src->f->data[0])
2573  return ff_thread_ref_frame(dst, src);
2574  return 0;
2575 }
2576 
2577 static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src)
2578 {
2579  int ret;
2580  if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 ||
2581  (ret = ref_frame(dst, &dst->golden_frame, &src->golden_frame)) < 0 ||
2582  (ret = ref_frame(dst, &dst->last_frame, &src->last_frame)) < 0)
2583  return ret;
2584  return 0;
2585 }
2586 
2587 static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
2588 {
2589  Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
2590  int qps_changed = 0, i, err;
2591 
2592 #define copy_fields(to, from, start_field, end_field) \
2593  memcpy(&to->start_field, &from->start_field, \
2594  (char *) &to->end_field - (char *) &to->start_field)
2595 
2596  if (!s1->current_frame.f->data[0] ||
2597  s->width != s1->width || s->height != s1->height) {
2598  if (s != s1)
2599  ref_frames(s, s1);
2600  return -1;
2601  }
2602 
2603  if (s != s1) {
2604  if (!s->current_frame.f)
2605  return AVERROR(ENOMEM);
2606  // init tables if the first frame hasn't been decoded
2607  if (!s->current_frame.f->data[0]) {
2608  int y_fragment_count, c_fragment_count;
2609  s->avctx = dst;
2610  err = allocate_tables(dst);
2611  if (err)
2612  return err;
2613  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
2614  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
2615  memcpy(s->motion_val[0], s1->motion_val[0],
2616  y_fragment_count * sizeof(*s->motion_val[0]));
2617  memcpy(s->motion_val[1], s1->motion_val[1],
2618  c_fragment_count * sizeof(*s->motion_val[1]));
2619  }
2620 
2621  // copy previous frame data
2622  if ((err = ref_frames(s, s1)) < 0)
2623  return err;
2624 
2625  s->keyframe = s1->keyframe;
2626 
2627  // copy qscale data if necessary
2628  for (i = 0; i < 3; i++) {
2629  if (s->qps[i] != s1->qps[1]) {
2630  qps_changed = 1;
2631  memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
2632  }
2633  }
2634 
2635  if (s->qps[0] != s1->qps[0])
2636  memcpy(&s->bounding_values_array, &s1->bounding_values_array,
2637  sizeof(s->bounding_values_array));
2638 
2639  if (qps_changed)
2640  copy_fields(s, s1, qps, superblock_count);
2641 #undef copy_fields
2642  }
2643 
2644  return update_frames(dst);
2645 }
2646 #endif
2647 
2649  void *data, int *got_frame,
2650  AVPacket *avpkt)
2651 {
2652  AVFrame *frame = data;
2653  const uint8_t *buf = avpkt->data;
2654  int buf_size = avpkt->size;
2655  Vp3DecodeContext *s = avctx->priv_data;
2656  GetBitContext gb;
2657  int i, ret;
2658 
2659  if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0)
2660  return ret;
2661 
2662 #if CONFIG_THEORA_DECODER
2663  if (s->theora && get_bits1(&gb)) {
2664  int type = get_bits(&gb, 7);
2665  skip_bits_long(&gb, 6*8); /* "theora" */
2666 
2668  av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n");
2669  return AVERROR_PATCHWELCOME;
2670  }
2671  if (type == 0) {
2672  vp3_decode_end(avctx);
2673  ret = theora_decode_header(avctx, &gb);
2674 
2675  if (ret >= 0)
2676  ret = vp3_decode_init(avctx);
2677  if (ret < 0) {
2678  vp3_decode_end(avctx);
2679  return ret;
2680  }
2681  return buf_size;
2682  } else if (type == 2) {
2683  vp3_decode_end(avctx);
2684  ret = theora_decode_tables(avctx, &gb);
2685  if (ret >= 0)
2686  ret = vp3_decode_init(avctx);
2687  if (ret < 0) {
2688  vp3_decode_end(avctx);
2689  return ret;
2690  }
2691  return buf_size;
2692  }
2693 
2694  av_log(avctx, AV_LOG_ERROR,
2695  "Header packet passed to frame decoder, skipping\n");
2696  return -1;
2697  }
2698 #endif
2699 
2700  s->keyframe = !get_bits1(&gb);
2701  if (!s->all_fragments) {
2702  av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n");
2703  return -1;
2704  }
2705  if (!s->theora)
2706  skip_bits(&gb, 1);
2707  for (i = 0; i < 3; i++)
2708  s->last_qps[i] = s->qps[i];
2709 
2710  s->nqps = 0;
2711  do {
2712  s->qps[s->nqps++] = get_bits(&gb, 6);
2713  } while (s->theora >= 0x030200 && s->nqps < 3 && get_bits1(&gb));
2714  for (i = s->nqps; i < 3; i++)
2715  s->qps[i] = -1;
2716 
2717  if (s->avctx->debug & FF_DEBUG_PICT_INFO)
2718  av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
2719  s->keyframe ? "key" : "", avctx->frame_number + 1, s->qps[0]);
2720 
2721  s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
2722  avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL
2723  : AVDISCARD_NONKEY);
2724 
2725  if (s->qps[0] != s->last_qps[0])
2726  init_loop_filter(s);
2727 
2728  for (i = 0; i < s->nqps; i++)
2729  // reinit all dequantizers if the first one changed, because
2730  // the DC of the first quantizer must be used for all matrices
2731  if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
2732  init_dequantizer(s, i);
2733 
2734  if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
2735  return buf_size;
2736 
2739  s->current_frame.f->key_frame = s->keyframe;
2741  goto error;
2742 
2743  if (!s->edge_emu_buffer)
2745 
2746  if (s->keyframe) {
2747  if (!s->theora) {
2748  skip_bits(&gb, 4); /* width code */
2749  skip_bits(&gb, 4); /* height code */
2750  if (s->version) {
2751  s->version = get_bits(&gb, 5);
2752  if (avctx->frame_number == 0)
2754  "VP version: %d\n", s->version);
2755  }
2756  }
2757  if (s->version || s->theora) {
2758  if (get_bits1(&gb))
2760  "Warning, unsupported keyframe coding type?!\n");
2761  skip_bits(&gb, 2); /* reserved? */
2762 
2763 #if CONFIG_VP4_DECODER
2764  if (s->version >= 2) {
2765  int mb_height, mb_width;
2766  int mb_width_mul, mb_width_div, mb_height_mul, mb_height_div;
2767 
2768  mb_height = get_bits(&gb, 8);
2769  mb_width = get_bits(&gb, 8);
2770  if (mb_height != s->macroblock_height ||
2771  mb_width != s->macroblock_width)
2772  avpriv_request_sample(s->avctx, "macroblock dimension mismatch");
2773 
2774  mb_width_mul = get_bits(&gb, 5);
2775  mb_width_div = get_bits(&gb, 3);
2776  mb_height_mul = get_bits(&gb, 5);
2777  mb_height_div = get_bits(&gb, 3);
2778  if (mb_width_mul != 1 || mb_width_div != 1 || mb_height_mul != 1 || mb_height_div != 1)
2779  avpriv_request_sample(s->avctx, "unexpected macroblock dimension multipler/divider");
2780 
2781  if (get_bits(&gb, 2))
2782  avpriv_request_sample(s->avctx, "unknown bits");
2783  }
2784 #endif
2785  }
2786  } else {
2787  if (!s->golden_frame.f->data[0]) {
2789  "vp3: first frame not a keyframe\n");
2790 
2792  if (ff_thread_get_buffer(avctx, &s->golden_frame,
2794  goto error;
2796  if ((ret = ff_thread_ref_frame(&s->last_frame,
2797  &s->golden_frame)) < 0)
2798  goto error;
2799  ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
2800  }
2801  }
2802 
2803  memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
2804  ff_thread_finish_setup(avctx);
2805 
2806  if (s->version < 2) {
2807  if (unpack_superblocks(s, &gb)) {
2808  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2809  goto error;
2810  }
2811 #if CONFIG_VP4_DECODER
2812  } else {
2813  if (vp4_unpack_macroblocks(s, &gb)) {
2814  av_log(s->avctx, AV_LOG_ERROR, "error in vp4_unpack_macroblocks\n");
2815  goto error;
2816  }
2817 #endif
2818  }
2819  if (unpack_modes(s, &gb)) {
2820  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2821  goto error;
2822  }
2823  if (unpack_vectors(s, &gb)) {
2824  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2825  goto error;
2826  }
2827  if (unpack_block_qpis(s, &gb)) {
2828  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
2829  goto error;
2830  }
2831 
2832  if (s->version < 2) {
2833  if (unpack_dct_coeffs(s, &gb)) {
2834  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2835  goto error;
2836  }
2837 #if CONFIG_VP4_DECODER
2838  } else {
2839  if (vp4_unpack_dct_coeffs(s, &gb)) {
2840  av_log(s->avctx, AV_LOG_ERROR, "error in vp4_unpack_dct_coeffs\n");
2841  goto error;
2842  }
2843 #endif
2844  }
2845 
2846  for (i = 0; i < 3; i++) {
2847  int height = s->height >> (i && s->chroma_y_shift);
2848  if (s->flipped_image)
2849  s->data_offset[i] = 0;
2850  else
2851  s->data_offset[i] = (height - 1) * s->current_frame.f->linesize[i];
2852  }
2853 
2854  s->last_slice_end = 0;
2855  for (i = 0; i < s->c_superblock_height; i++)
2856  render_slice(s, i);
2857 
2858  // filter the last row
2859  if (s->version < 2)
2860  for (i = 0; i < 3; i++) {
2861  int row = (s->height >> (3 + (i && s->chroma_y_shift))) - 1;
2862  apply_loop_filter(s, i, row, row + 1);
2863  }
2864  vp3_draw_horiz_band(s, s->height);
2865 
2866  /* output frame, offset as needed */
2867  if ((ret = av_frame_ref(data, s->current_frame.f)) < 0)
2868  return ret;
2869 
2870  frame->crop_left = s->offset_x;
2871  frame->crop_right = avctx->coded_width - avctx->width - s->offset_x;
2872  frame->crop_top = s->offset_y;
2873  frame->crop_bottom = avctx->coded_height - avctx->height - s->offset_y;
2874 
2875  *got_frame = 1;
2876 
2878  ret = update_frames(avctx);
2879  if (ret < 0)
2880  return ret;
2881  }
2882 
2883  return buf_size;
2884 
2885 error:
2886  ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
2887 
2890 
2891  return -1;
2892 }
2893 
2895 {
2896  Vp3DecodeContext *s = avctx->priv_data;
2897 
2898  if (get_bits1(gb)) {
2899  int token;
2900  if (s->entries >= 32) { /* overflow */
2901  av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2902  return -1;
2903  }
2904  token = get_bits(gb, 5);
2905  ff_dlog(avctx, "hti %d hbits %x token %d entry : %d size %d\n",
2906  s->hti, s->hbits, token, s->entries, s->huff_code_size);
2907  s->huffman_table[s->hti][token][0] = s->hbits;
2908  s->huffman_table[s->hti][token][1] = s->huff_code_size;
2909  s->entries++;
2910  } else {
2911  if (s->huff_code_size >= 32) { /* overflow */
2912  av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2913  return -1;
2914  }
2915  s->huff_code_size++;
2916  s->hbits <<= 1;
2917  if (read_huffman_tree(avctx, gb))
2918  return -1;
2919  s->hbits |= 1;
2920  if (read_huffman_tree(avctx, gb))
2921  return -1;
2922  s->hbits >>= 1;
2923  s->huff_code_size--;
2924  }
2925  return 0;
2926 }
2927 
2928 #if HAVE_THREADS
2929 static int vp3_init_thread_copy(AVCodecContext *avctx)
2930 {
2931  Vp3DecodeContext *s = avctx->priv_data;
2932 
2933  s->superblock_coding = NULL;
2934  s->all_fragments = NULL;
2935  s->coded_fragment_list[0] = NULL;
2936  s-> kf_coded_fragment_list= NULL;
2938  s->dct_tokens_base = NULL;
2940  s->macroblock_coding = NULL;
2941  s->motion_val[0] = NULL;
2942  s->motion_val[1] = NULL;
2943  s->edge_emu_buffer = NULL;
2944  s->dc_pred_row = NULL;
2945 
2946  return init_frames(s);
2947 }
2948 #endif
2949 
2950 #if CONFIG_THEORA_DECODER
2951 static const enum AVPixelFormat theora_pix_fmts[4] = {
2953 };
2954 
2955 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2956 {
2957  Vp3DecodeContext *s = avctx->priv_data;
2958  int visible_width, visible_height, colorspace;
2959  uint8_t offset_x = 0, offset_y = 0;
2960  int ret;
2961  AVRational fps, aspect;
2962 
2963  s->theora_header = 0;
2964  s->theora = get_bits_long(gb, 24);
2965  av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2966  if (!s->theora) {
2967  s->theora = 1;
2968  avpriv_request_sample(s->avctx, "theora 0");
2969  }
2970 
2971  /* 3.2.0 aka alpha3 has the same frame orientation as original vp3
2972  * but previous versions have the image flipped relative to vp3 */
2973  if (s->theora < 0x030200) {
2974  s->flipped_image = 1;
2975  av_log(avctx, AV_LOG_DEBUG,
2976  "Old (<alpha3) Theora bitstream, flipped image\n");
2977  }
2978 
2979  visible_width =
2980  s->width = get_bits(gb, 16) << 4;
2981  visible_height =
2982  s->height = get_bits(gb, 16) << 4;
2983 
2984  if (s->theora >= 0x030200) {
2985  visible_width = get_bits_long(gb, 24);
2986  visible_height = get_bits_long(gb, 24);
2987 
2988  offset_x = get_bits(gb, 8); /* offset x */
2989  offset_y = get_bits(gb, 8); /* offset y, from bottom */
2990  }
2991 
2992  /* sanity check */
2993  if (av_image_check_size(visible_width, visible_height, 0, avctx) < 0 ||
2994  visible_width + offset_x > s->width ||
2995  visible_height + offset_y > s->height) {
2996  av_log(avctx, AV_LOG_ERROR,
2997  "Invalid frame dimensions - w:%d h:%d x:%d y:%d (%dx%d).\n",
2998  visible_width, visible_height, offset_x, offset_y,
2999  s->width, s->height);
3000  return AVERROR_INVALIDDATA;
3001  }
3002 
3003  fps.num = get_bits_long(gb, 32);
3004  fps.den = get_bits_long(gb, 32);
3005  if (fps.num && fps.den) {
3006  if (fps.num < 0 || fps.den < 0) {
3007  av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n");
3008  return AVERROR_INVALIDDATA;
3009  }
3010  av_reduce(&avctx->framerate.den, &avctx->framerate.num,
3011  fps.den, fps.num, 1 << 30);
3012  }
3013 
3014  aspect.num = get_bits_long(gb, 24);
3015  aspect.den = get_bits_long(gb, 24);
3016  if (aspect.num && aspect.den) {
3018  &avctx->sample_aspect_ratio.den,
3019  aspect.num, aspect.den, 1 << 30);
3020  ff_set_sar(avctx, avctx->sample_aspect_ratio);
3021  }
3022 
3023  if (s->theora < 0x030200)
3024  skip_bits(gb, 5); /* keyframe frequency force */
3025  colorspace = get_bits(gb, 8);
3026  skip_bits(gb, 24); /* bitrate */
3027 
3028  skip_bits(gb, 6); /* quality hint */
3029 
3030  if (s->theora >= 0x030200) {
3031  skip_bits(gb, 5); /* keyframe frequency force */
3032  avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
3033  if (avctx->pix_fmt == AV_PIX_FMT_NONE) {
3034  av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n");
3035  return AVERROR_INVALIDDATA;
3036  }
3037  skip_bits(gb, 3); /* reserved */
3038  } else
3039  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
3040 
3041  ret = ff_set_dimensions(avctx, s->width, s->height);
3042  if (ret < 0)
3043  return ret;
3044  if (!(avctx->flags2 & AV_CODEC_FLAG2_IGNORE_CROP)) {
3045  avctx->width = visible_width;
3046  avctx->height = visible_height;
3047  // translate offsets from theora axis ([0,0] lower left)
3048  // to normal axis ([0,0] upper left)
3049  s->offset_x = offset_x;
3050  s->offset_y = s->height - visible_height - offset_y;
3051  }
3052 
3053  if (colorspace == 1)
3055  else if (colorspace == 2)
3057 
3058  if (colorspace == 1 || colorspace == 2) {
3059  avctx->colorspace = AVCOL_SPC_BT470BG;
3060  avctx->color_trc = AVCOL_TRC_BT709;
3061  }
3062 
3063  s->theora_header = 1;
3064  return 0;
3065 }
3066 
3067 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
3068 {
3069  Vp3DecodeContext *s = avctx->priv_data;
3070  int i, n, matrices, inter, plane;
3071 
3072  if (!s->theora_header)
3073  return AVERROR_INVALIDDATA;
3074 
3075  if (s->theora >= 0x030200) {
3076  n = get_bits(gb, 3);
3077  /* loop filter limit values table */
3078  if (n)
3079  for (i = 0; i < 64; i++)
3080  s->filter_limit_values[i] = get_bits(gb, n);
3081  }
3082 
3083  if (s->theora >= 0x030200)
3084  n = get_bits(gb, 4) + 1;
3085  else
3086  n = 16;
3087  /* quality threshold table */
3088  for (i = 0; i < 64; i++)
3089  s->coded_ac_scale_factor[i] = get_bits(gb, n);
3090 
3091  if (s->theora >= 0x030200)
3092  n = get_bits(gb, 4) + 1;
3093  else
3094  n = 16;
3095  /* dc scale factor table */
3096  for (i = 0; i < 64; i++)
3097  s->coded_dc_scale_factor[0][i] =
3098  s->coded_dc_scale_factor[1][i] = get_bits(gb, n);
3099 
3100  if (s->theora >= 0x030200)
3101  matrices = get_bits(gb, 9) + 1;
3102  else
3103  matrices = 3;
3104 
3105  if (matrices > 384) {
3106  av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
3107  return -1;
3108  }
3109 
3110  for (n = 0; n < matrices; n++)
3111  for (i = 0; i < 64; i++)
3112  s->base_matrix[n][i] = get_bits(gb, 8);
3113 
3114  for (inter = 0; inter <= 1; inter++) {
3115  for (plane = 0; plane <= 2; plane++) {
3116  int newqr = 1;
3117  if (inter || plane > 0)
3118  newqr = get_bits1(gb);
3119  if (!newqr) {
3120  int qtj, plj;
3121  if (inter && get_bits1(gb)) {
3122  qtj = 0;
3123  plj = plane;
3124  } else {
3125  qtj = (3 * inter + plane - 1) / 3;
3126  plj = (plane + 2) % 3;
3127  }
3128  s->qr_count[inter][plane] = s->qr_count[qtj][plj];
3129  memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj],
3130  sizeof(s->qr_size[0][0]));
3131  memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj],
3132  sizeof(s->qr_base[0][0]));
3133  } else {
3134  int qri = 0;
3135  int qi = 0;
3136 
3137  for (;;) {
3138  i = get_bits(gb, av_log2(matrices - 1) + 1);
3139  if (i >= matrices) {
3140  av_log(avctx, AV_LOG_ERROR,
3141  "invalid base matrix index\n");
3142  return -1;
3143  }
3144  s->qr_base[inter][plane][qri] = i;
3145  if (qi >= 63)
3146  break;
3147  i = get_bits(gb, av_log2(63 - qi) + 1) + 1;
3148  s->qr_size[inter][plane][qri++] = i;
3149  qi += i;
3150  }
3151 
3152  if (qi > 63) {
3153  av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
3154  return -1;
3155  }
3156  s->qr_count[inter][plane] = qri;
3157  }
3158  }
3159  }
3160 
3161  /* Huffman tables */
3162  for (s->hti = 0; s->hti < 80; s->hti++) {
3163  s->entries = 0;
3164  s->huff_code_size = 1;
3165  if (!get_bits1(gb)) {
3166  s->hbits = 0;
3167  if (read_huffman_tree(avctx, gb))
3168  return -1;
3169  s->hbits = 1;
3170  if (read_huffman_tree(avctx, gb))
3171  return -1;
3172  }
3173  }
3174 
3175  s->theora_tables = 1;
3176 
3177  return 0;
3178 }
3179 
3180 static av_cold int theora_decode_init(AVCodecContext *avctx)
3181 {
3182  Vp3DecodeContext *s = avctx->priv_data;
3183  GetBitContext gb;
3184  int ptype;
3185  const uint8_t *header_start[3];
3186  int header_len[3];
3187  int i;
3188  int ret;
3189 
3190  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
3191 
3192  s->theora = 1;
3193 
3194  if (!avctx->extradata_size) {
3195  av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
3196  return -1;
3197  }
3198 
3200  42, header_start, header_len) < 0) {
3201  av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
3202  return -1;
3203  }
3204 
3205  for (i = 0; i < 3; i++) {
3206  if (header_len[i] <= 0)
3207  continue;
3208  ret = init_get_bits8(&gb, header_start[i], header_len[i]);
3209  if (ret < 0)
3210  return ret;
3211 
3212  ptype = get_bits(&gb, 8);
3213 
3214  if (!(ptype & 0x80)) {
3215  av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
3216 // return -1;
3217  }
3218 
3219  // FIXME: Check for this as well.
3220  skip_bits_long(&gb, 6 * 8); /* "theora" */
3221 
3222  switch (ptype) {
3223  case 0x80:
3224  if (theora_decode_header(avctx, &gb) < 0)
3225  return -1;
3226  break;
3227  case 0x81:
3228 // FIXME: is this needed? it breaks sometimes
3229 // theora_decode_comments(avctx, gb);
3230  break;
3231  case 0x82:
3232  if (theora_decode_tables(avctx, &gb))
3233  return -1;
3234  break;
3235  default:
3236  av_log(avctx, AV_LOG_ERROR,
3237  "Unknown Theora config packet: %d\n", ptype & ~0x80);
3238  break;
3239  }
3240  if (ptype != 0x81 && 8 * header_len[i] != get_bits_count(&gb))
3241  av_log(avctx, AV_LOG_WARNING,
3242  "%d bits left in packet %X\n",
3243  8 * header_len[i] - get_bits_count(&gb), ptype);
3244  if (s->theora < 0x030200)
3245  break;
3246  }
3247 
3248  return vp3_decode_init(avctx);
3249 }
3250 
3252  .name = "theora",
3253  .long_name = NULL_IF_CONFIG_SMALL("Theora"),
3254  .type = AVMEDIA_TYPE_VIDEO,
3255  .id = AV_CODEC_ID_THEORA,
3256  .priv_data_size = sizeof(Vp3DecodeContext),
3257  .init = theora_decode_init,
3258  .close = vp3_decode_end,
3263  .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
3264  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
3265  .caps_internal = FF_CODEC_CAP_EXPORTS_CROPPING,
3266 };
3267 #endif
3268 
3270  .name = "vp3",
3271  .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
3272  .type = AVMEDIA_TYPE_VIDEO,
3273  .id = AV_CODEC_ID_VP3,
3274  .priv_data_size = sizeof(Vp3DecodeContext),
3275  .init = vp3_decode_init,
3276  .close = vp3_decode_end,
3281  .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
3282  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
3283 };
3284 
3285 #if CONFIG_VP4_DECODER
3287  .name = "vp4",
3288  .long_name = NULL_IF_CONFIG_SMALL("On2 VP4"),
3289  .type = AVMEDIA_TYPE_VIDEO,
3290  .id = AV_CODEC_ID_VP4,
3291  .priv_data_size = sizeof(Vp3DecodeContext),
3292  .init = vp3_decode_init,
3293  .close = vp3_decode_end,
3298  .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
3299  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
3300 };
3301 #endif
int plane
Definition: avisynth_c.h:384
#define BLOCK_Y
Definition: vp3.c:644
AVCodec ff_vp4_decoder
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
int last_slice_end
Definition: vp3.c:175
#define NULL
Definition: coverity.c:32
uint8_t idct_scantable[64]
Definition: vp3.c:169
AVRational framerate
Definition: avcodec.h:3105
discard all frames except keyframes
Definition: avcodec.h:810
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
#define AV_NUM_DATA_POINTERS
Definition: frame.h:296
int16_t qmat[3][2][3][64]
qmat[qpi][is_inter][plane]
Definition: vp3.c:275
static int init_block_mapping(Vp3DecodeContext *s)
This function sets up all of the various blocks mappings: superblocks <-> fragments, macroblocks <-> fragments, superblocks <-> macroblocks.
Definition: vp3.c:382
#define SB_NOT_CODED
Definition: vp3.c:60
#define copy_fields(s, e)
This structure describes decoded (raw) audio or video data.
Definition: frame.h:295
#define TOKEN_EOB(eob_run)
Definition: vp3.c:241
static void render_slice(Vp3DecodeContext *s, int slice)
Definition: vp3.c:2052
static const uint16_t vp4_dc_bias[16][32][2]
Definition: vp4data.h:371
#define PUR
int y_superblock_count
Definition: vp3.c:185
static void flush(AVCodecContext *avctx)
int bounding_values_array[256+2]
Definition: vp3.c:297
int coded_width
Bitstream width / height, may be different from width/height e.g.
Definition: avcodec.h:1753
void(* put_no_rnd_pixels_l2)(uint8_t *dst, const uint8_t *a, const uint8_t *b, ptrdiff_t stride, int h)
Copy 8xH pixels from source to destination buffer using a bilinear filter with no rounding (i...
Definition: vp3dsp.h:36
static const int8_t vp31_intra_c_dequant[64]
Definition: vp3data.h:42
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
misc image utilities
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static int init_thread_copy(AVCodecContext *avctx)
Definition: tta.c:392
static int get_coeff(GetBitContext *gb, int token, int16_t *coeff)
Definition: vp3.c:1150
uint16_t qr_base[2][3][64]
Definition: vp3.c:220
AVFrame * f
Definition: thread.h:35
else temp
Definition: vf_mcdeint.c:256
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:104
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:291
VLC mode_code_vlc
Definition: vp3.c:269
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
int y_superblock_width
Definition: vp3.c:183
static const uint16_t fragment_run_length_vlc_table[30][2]
Definition: vp3data.h:119
HpelDSPContext hdsp
Definition: vp3.c:170
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601 ...
Definition: pixfmt.h:502
#define avpriv_request_sample(...)
#define MODE_INTER_PLUS_MV
Definition: vp3.c:71
int num
Numerator.
Definition: rational.h:59
int size
Definition: avcodec.h:1478
static const int8_t vp31_intra_y_dequant[64]
Definition: vp3data.h:29
static av_cold int init_frames(Vp3DecodeContext *s)
Definition: vp3.c:2296
int u_superblock_start
Definition: vp3.c:189
#define BLOCK_X
Definition: vp3.c:643
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel...
Definition: avcodec.h:1944
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:793
static const uint8_t zero_run_base[32]
Definition: vp3data.h:207
void(* v_loop_filter)(uint8_t *src, ptrdiff_t stride, int *bounding_values)
Definition: vp3dsp.h:44
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1775
uint8_t coding_method
Definition: vp3.c:56
static av_cold int vp3_decode_init(AVCodecContext *avctx)
Definition: vp3.c:2312
static const uint8_t coeff_get_bits[32]
Definition: vp3data.h:222
int num_kf_coded_fragment[3]
Definition: vp3.c:258
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:468
static const uint16_t vp4_ac_scale_factor[64]
Definition: vp4data.h:64
static void reverse_dc_prediction(Vp3DecodeContext *s, int first_fragment, int fragment_width, int fragment_height)
Definition: vp3.c:1632
discard all
Definition: avcodec.h:811
VLC ac_vlc_4[16]
Definition: vp3.c:264
size_t crop_bottom
Definition: frame.h:656
VLC motion_vector_vlc
Definition: vp3.c:270
static av_cold int vp3_decode_end(AVCodecContext *avctx)
Definition: vp3.c:334
#define init_vlc(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, codes, codes_wrap, codes_size, flags)
Definition: vlc.h:38
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
int huff_code_size
Definition: vp3.c:293
#define src
Definition: vp8dsp.c:254
static const uint16_t vp4_ac_bias_0[16][32][2]
Definition: vp4data.h:534
int * superblock_fragments
Definition: vp3.c:281
VLC superblock_run_length_vlc
Definition: vp3.c:266
int stride
Definition: mace.c:144
AVCodec.
Definition: avcodec.h:3481
#define MAXIMUM_LONG_BIT_RUN
Definition: vp3.c:67
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:42
static const uint16_t ac_bias_3[16][32][2]
Definition: vp3data.h:2633
void(* draw_horiz_band)(struct AVCodecContext *s, const AVFrame *src, int offset[AV_NUM_DATA_POINTERS], int y, int type, int height)
If non NULL, &#39;draw_horiz_band&#39; is called by the libavcodec decoder to draw a horizontal band...
Definition: avcodec.h:1800
static const uint16_t dc_bias[16][32][2]
Definition: vp3data.h:445
Vp3Fragment * all_fragments
Definition: vp3.c:205
static void init_loop_filter(Vp3DecodeContext *s)
Definition: vp3.c:459
uint8_t base
Definition: vp3data.h:202
#define COMPATIBLE_FRAME(x)
Definition: vp3.c:1628
static int16_t block[64]
Definition: dct.c:115
int dc
Definition: vp3.c:152
void(* emulated_edge_mc)(uint8_t *dst, const uint8_t *src, ptrdiff_t dst_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:63
uint8_t offset_y
Definition: vp3.c:209
int y_superblock_height
Definition: vp3.c:184
#define TRANSPOSE(x)
uint8_t
#define av_cold
Definition: attributes.h:82
#define av_malloc(s)
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:906
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:189
VLC ac_vlc_1[16]
Definition: vp3.c:261
#define TOKEN_ZERO_RUN(coeff, zero_run)
Definition: vp3.c:242
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:2651
size_t crop_left
Definition: frame.h:657
static int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag, int plane, int inter, int16_t block[64])
Pull DCT tokens from the 64 levels to decode and dequant the coefficients for the next block in codin...
Definition: vp3.c:1849
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
static int FUNC() huffman_table(CodedBitstreamContext *ctx, RWContext *rw, JPEGRawHuffmanTable *current)
unsigned int hbits
Definition: vp3.c:291
Multithreading support functions.
int macroblock_width
Definition: vp3.c:194
uint8_t idct_permutation[64]
Definition: vp3.c:168
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:443
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
Definition: vp3.c:416
#define emms_c()
Definition: internal.h:55
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1666
static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, ptrdiff_t dst_pitch, int dst_height)
Convert and output the current plane.
Definition: indeo3.c:1027
uint8_t qpi
Definition: vp3.c:57
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:252
static void vp3_decode_flush(AVCodecContext *avctx)
Definition: vp3.c:322
static AVFrame * frame
#define DC_COEFF(u)
Definition: vp3.c:1630
const char data[16]
Definition: mxf.c:91
#define DECLARE_ALIGNED(n, t, v)
Declare a variable that is aligned in memory.
Definition: mem.h:112
#define height
uint8_t * data
Definition: avcodec.h:1477
uint8_t filter_limit_values[64]
Definition: vp3.c:296
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
int ff_thread_ref_frame(ThreadFrame *dst, ThreadFrame *src)
Definition: utils.c:1802
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:119
#define ff_dlog(a,...)
bitstream reader API header.
VLC ac_vlc_2[16]
Definition: vp3.c:262
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
void ff_thread_finish_setup(AVCodecContext *avctx)
If the codec defines update_thread_context(), call this when they are ready for the next thread to st...
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:883
static const uint8_t mode_code_vlc_table[8][2]
Definition: vp3data.h:144
enum AVChromaLocation chroma_sample_location
This defines the location of chroma samples.
Definition: avcodec.h:2207
#define FFALIGN(x, a)
Definition: macros.h:48
#define MODE_INTRA
Definition: vp3.c:70
#define av_log(a,...)
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:1299
static const uint16_t table[]
Definition: prosumer.c:206
static void body(uint32_t ABCD[4], const uint8_t *src, int nblocks)
Definition: md5.c:101
static const uint16_t ac_bias_1[16][32][2]
Definition: vp3data.h:1539
int height
Definition: vp3.c:162
static const uint8_t vp4_pred_block_type_map[8]
Definition: vp3.c:140
#define U(x)
Definition: vp56_arith.h:37
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
static int vp3_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
Definition: vp3.c:2648
static const uint8_t motion_vector_vlc_table[63][2]
Definition: vp3data.h:151
also FCC Title 47 Code of Federal Regulations 73.682 (a)(20)
Definition: pixfmt.h:448
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:259
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define AV_CODEC_FLAG2_IGNORE_CROP
Discard cropping information from SPS.
Definition: avcodec.h:946
VP3DSPContext vp3dsp
Definition: vp3.c:172
void ff_thread_release_buffer(AVCodecContext *avctx, ThreadFrame *f)
Wrapper around release_buffer() frame-for multithreaded codecs.
int c_superblock_width
Definition: vp3.c:186
uint8_t qr_count[2][3]
Definition: vp3.c:218
int fragment_height[2]
Definition: vp3.c:203
int is_copy
Whether the parent AVCodecContext is a copy of the context which had init() called on it...
Definition: internal.h:136
#define AVERROR(e)
Definition: error.h:43
static const struct @180 eob_run_table[7]
VLC ac_vlc_3[16]
Definition: vp3.c:263
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:202
#define CODING_MODE_COUNT
Definition: vp3.c:77
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2550
void(* idct_add)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vp3dsp.h:42
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:2843
static const int8_t fixed_motion_vector_table[64]
Definition: vp3data.h:189
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:1645
void(* h_loop_filter)(uint8_t *src, ptrdiff_t stride, int *bounding_values)
Definition: vp3dsp.h:45
AVCodec ff_theora_decoder
int theora
Definition: vp3.c:160
static av_cold void free_tables(AVCodecContext *avctx)
Definition: vp3.c:306
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:236
const char * name
Name of the codec implementation.
Definition: avcodec.h:3488
uint8_t bits
Definition: vp3data.h:202
int theora_header
Definition: vp3.c:160
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
#define FFMAX(a, b)
Definition: common.h:94
uint16_t coded_dc_scale_factor[2][64]
Definition: vp3.c:215
int qps[3]
Definition: vp3.c:178
#define fail()
Definition: checkasm.h:120
static const int ModeAlphabet[6][CODING_MODE_COUNT]
Definition: vp3.c:87
#define AV_CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: avcodec.h:1037
#define FF_CODEC_CAP_EXPORTS_CROPPING
The decoder sets the cropping fields in the output frames manually.
Definition: internal.h:66
Definition: vlc.h:26
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
#define ONLY_IF_THREADS_ENABLED(x)
Define a function with only the non-default version specified.
Definition: internal.h:225
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
Definition: hpeldsp.c:338
static const int16_t *const coeff_tables[32]
Definition: vp3data.h:407
size_t crop_top
Definition: frame.h:655
int chroma_y_shift
Definition: vp3.c:163
int flipped_image
Definition: vp3.c:174
unsigned char * macroblock_coding
Definition: vp3.c:285
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
Definition: imgutils.c:282
Half-pel DSP context.
Definition: hpeldsp.h:45
int fragment_width[2]
Definition: vp3.c:202
#define AV_CODEC_CAP_DRAW_HORIZ_BAND
Decoder can use draw_horiz_band callback.
Definition: avcodec.h:975
int type
Definition: vp3.c:153
#define SET_CHROMA_MODES
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:378
#define AV_CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
Definition: avcodec.h:908
VLC block_pattern_vlc[2]
Definition: vp3.c:268
#define FF_THREAD_FRAME
Decode more than one frame at once.
Definition: avcodec.h:2835
#define FFMIN(a, b)
Definition: common.h:96
VLC fragment_run_length_vlc
Definition: vp3.c:267
VLC vp4_mv_vlc[2][7]
Definition: vp3.c:271
#define PU
#define width
#define FFSIGN(a)
Definition: common.h:73
int macroblock_height
Definition: vp3.c:195
int width
picture width / height.
Definition: avcodec.h:1738
#define SB_PARTIALLY_CODED
Definition: vp3.c:61
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, VLC *table, int coeff_index, int plane, int eob_run)
Definition: vp3.c:1178
int yuv_macroblock_count
Definition: vp3.c:199
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM
Definition: pixfmt.h:450
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
uint8_t * edge_emu_buffer
Definition: vp3.c:287
static const uint8_t vp4_mv_table_selector[32]
Definition: vp4data.h:105
static const uint16_t vp4_ac_bias_3[16][32][2]
Definition: vp4data.h:1023
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:2179
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
Definition: get_bits.h:446
static const uint16_t vp31_ac_scale_factor[64]
Definition: vp3data.h:76
perm
Definition: f_perms.c:74
static const int8_t motion_vector_table[63]
Definition: vp3data.h:179
#define MODE_COPY
Definition: vp3.c:80
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
int avpriv_split_xiph_headers(const uint8_t *extradata, int extradata_size, int first_header_size, const uint8_t *header_start[3], int header_len[3])
Split a single extradata buffer into the three headers that most Xiph codecs use. ...
Definition: xiph.c:24
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:797
#define CONFIG_GRAY
Definition: config.h:538
static const uint16_t ac_bias_2[16][32][2]
Definition: vp3data.h:2086
int n
Definition: avisynth_c.h:760
static const uint8_t hilbert_offset[16][2]
Definition: vp3.c:125
static const uint8_t vp4_y_dc_scale_factor[64]
Definition: vp4data.h:42
int macroblock_count
Definition: vp3.c:193
int c_superblock_height
Definition: vp3.c:187
if(ret< 0)
Definition: vf_mcdeint.c:279
void ff_vp3dsp_h_loop_filter_12(uint8_t *first_pixel, ptrdiff_t stride, int *bounding_values)
static void error(const char *err)
int offset_x_warned
Definition: vp3.c:210
int total_num_coded_frags
Definition: vp3.c:250
void(* idct_dc_add)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vp3dsp.h:43
int c_superblock_count
Definition: vp3.c:188
#define av_log2
Definition: intmath.h:83
AVCodec ff_vp3_decoder
Definition: vp3.c:3269
VP4 video decoder.
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
Definition: vp3.c:1782
static const int8_t transform[32][32]
Definition: hevcdsp.c:27
also ITU-R BT1361
Definition: pixfmt.h:469
static const uint8_t vp4_filter_limit_values[64]
Definition: vp4data.h:75
Half-pel DSP functions.
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
int superblock_count
Definition: vp3.c:182
static const uint8_t vp4_block_pattern_table_selector[14]
Definition: vp4data.h:86
Libavcodec external API header.
int entries
Definition: vp3.c:292
static const uint16_t ac_bias_0[16][32][2]
Definition: vp3data.h:992
enum AVCodecID codec_id
Definition: avcodec.h:1575
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:326
int16_t * dct_tokens[3][64]
This is a list of all tokens in bitstream order.
Definition: vp3.c:239
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:677
int skip_loop_filter
Definition: vp3.c:176
static int loop
Definition: ffplay.c:340
int debug
debug
Definition: avcodec.h:2650
int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
ThreadFrame current_frame
Definition: vp3.c:166
main external API structure.
Definition: avcodec.h:1565
#define RSHIFT(a, b)
Definition: common.h:54
int last_qps[3]
Definition: vp3.c:180
static const uint8_t vp4_generic_dequant[64]
Definition: vp4data.h:31
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> (&#39;D&#39;<<24) + (&#39;C&#39;<<16) + (&#39;B&#39;<<8) + &#39;A&#39;).
Definition: avcodec.h:1590
uint8_t qr_size[2][3][64]
Definition: vp3.c:219
op_pixels_func put_pixels_tab[4][4]
Halfpel motion compensation with rounding (a+b+1)>>1.
Definition: hpeldsp.h:56
#define PUL
static av_cold int allocate_tables(AVCodecContext *avctx)
Allocate tables for per-frame data in Vp3DecodeContext.
Definition: vp3.c:2252
int data_offset[3]
Definition: vp3.c:207
void * buf
Definition: avisynth_c.h:766
size_t crop_right
Definition: frame.h:658
int extradata_size
Definition: avcodec.h:1667
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:498
int coded_height
Definition: avcodec.h:1753
op_pixels_func put_no_rnd_pixels_tab[4][4]
Halfpel motion compensation with no rounding (a+b)>>1.
Definition: hpeldsp.h:82
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:467
#define SB_FULLY_CODED
Definition: vp3.c:62
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:2193
Rational number (pair of numerator and denominator).
Definition: rational.h:58
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:2186
cl_device_type type
int * nkf_coded_fragment_list
Definition: vp3.c:257
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
int num_coded_frags[3][64]
number of blocks that contain DCT coefficients at the given level or higher
Definition: vp3.c:249
int keyframe
Definition: vp3.c:167
#define TOKEN_COEFF(coeff)
Definition: vp3.c:243
#define s1
Definition: regdef.h:38
static int vp4_get_mv(Vp3DecodeContext *s, GetBitContext *gb, int axis, int last_motion)
Definition: vp3.c:896
static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2]
Definition: imc.c:120
#define MODE_GOLDEN_MV
Definition: vp3.c:75
static const uint8_t vp31_dc_scale_factor[64]
Definition: vp3data.h:65
int allocate_progress
Whether to allocate progress for frame threading.
Definition: internal.h:151
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:546
#define FRAGMENT_PIXELS
Definition: vp3.c:51
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
Definition: vp3.c:2894
static int update_frames(AVCodecContext *avctx)
Release and shuffle frames after decode finishes.
Definition: vp3.c:2547
static const uint16_t superblock_run_length_vlc_table[34][2]
Definition: vp3data.h:98
#define MODE_USING_GOLDEN
Definition: vp3.c:74
uint32_t huffman_table[80][32][2]
Definition: vp3.c:294
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
Definition: frame.c:553
#define MODE_INTER_FOURMV
Definition: vp3.c:76
static const uint8_t vp4_uv_dc_scale_factor[64]
Definition: vp4data.h:53
int16_t block[64]
Definition: vp3.c:173
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:309
int v_superblock_start
Definition: vp3.c:190
static const uint8_t vp4_block_pattern_vlc[2][14][2]
Definition: vp4data.h:90
static int theora_header(AVFormatContext *s, int idx)
int version
Definition: vp3.c:161
static const uint16_t vp4_ac_bias_2[16][32][2]
Definition: vp4data.h:860
void ff_vp3dsp_v_loop_filter_12(uint8_t *first_pixel, ptrdiff_t stride, int *bounding_values)
int * coded_fragment_list[3]
Definition: vp3.c:254
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
unsigned char * superblock_coding
Definition: vp3.c:191
common internal api header.
ThreadFrame last_frame
Definition: vp3.c:165
int16_t * dct_tokens_base
Definition: vp3.c:240
AVCodecContext * avctx
Definition: vp3.c:159
static const int8_t vp31_inter_dequant[64]
Definition: vp3data.h:54
static int get_eob_run(GetBitContext *gb, int token)
Definition: vp3.c:1142
VideoDSPContext vdsp
Definition: vp3.c:171
int c_macroblock_width
Definition: vp3.c:197
static const uint16_t vp4_ac_bias_1[16][32][2]
Definition: vp4data.h:697
int den
Denominator.
Definition: rational.h:60
int c_macroblock_count
Definition: vp3.c:196
Core video DSP helper functions.
uint8_t base_matrix[384][64]
Definition: vp3.c:217
void ff_vp3dsp_set_bounding_values(int *bounding_values_array, int filter_limit)
Definition: vp3dsp.c:473
int fragment_count
Definition: vp3.c:201
void * priv_data
Definition: avcodec.h:1592
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:1100
int * kf_coded_fragment_list
Definition: vp3.c:256
static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, int motion_y, int y)
Wait for the reference frame of the current fragment.
Definition: vp3.c:1936
struct AVCodecInternal * internal
Private context used for internal data.
Definition: avcodec.h:1600
VLC_TYPE(* table)[2]
code, bits
Definition: vlc.h:28
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:373
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
int c_macroblock_height
Definition: vp3.c:198
int flags2
AV_CODEC_FLAG2_*.
Definition: avcodec.h:1652
#define HAVE_THREADS
Definition: config.h:273
#define MODE_INTER_PRIOR_LAST
Definition: vp3.c:73
#define MODE_INTER_NO_MV
Definition: vp3.c:69
static ConstTables tables[2][NB_SUBBANDS]
Definition: aptx.c:396
VP4Predictor * dc_pred_row
Definition: vp3.c:299
int fragment_start[3]
Definition: vp3.c:206
int theora_tables
Definition: vp3.c:160
#define av_freep(p)
void INT64 INT64 count
Definition: avisynth_c.h:766
static const uint16_t vp4_mv_vlc[2][7][63][2]
Definition: vp4data.h:112
#define AV_LOG_FATAL
Something went wrong and recovery is not possible.
Definition: log.h:170
MPEG-1 4:2:0, JPEG 4:2:0, H.263 4:2:0.
Definition: pixfmt.h:544
#define VLC_TYPE
Definition: vlc.h:24
#define MODE_INTER_LAST_MV
Definition: vp3.c:72
#define av_malloc_array(a, b)
ThreadFrame golden_frame
Definition: vp3.c:164
int chroma_x_shift
Definition: vp3.c:163
void(* idct_put)(uint8_t *dest, ptrdiff_t stride, int16_t *block)
Definition: vp3dsp.h:41
av_cold void ff_vp3dsp_init(VP3DSPContext *c, int flags)
Definition: vp3dsp.c:445
static const uint8_t vp31_filter_limit_values[64]
Definition: vp3data.h:87
#define MKTAG(a, b, c, d)
Definition: common.h:366
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
This structure stores compressed data.
Definition: avcodec.h:1454
static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
called when all pixels up to row y are complete
Definition: vp3.c:1894
void ff_free_vlc(VLC *vlc)
Definition: bitstream.c:359
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:1176
int16_t dc
Definition: vp3.c:55
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:981
uint8_t offset_x
Definition: vp3.c:208
for(j=16;j >0;--j)
uint32_t coded_ac_scale_factor[64]
Definition: vp3.c:216
static const uint8_t zero_run_get_bits[32]
Definition: vp3data.h:214
Predicted.
Definition: avutil.h:275
VLC dc_vlc[16]
Definition: vp3.c:260
void * av_mallocz_array(size_t nmemb, size_t size)
Allocate a memory block for an array with av_mallocz().
Definition: mem.c:191
#define PL
int8_t(*[2] motion_val)[2]
Definition: vp3.c:212