FFmpeg  4.2.1
utils.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "config.h"
22 
23 #define _DEFAULT_SOURCE
24 #define _SVID_SOURCE // needed for MAP_ANONYMOUS
25 #define _DARWIN_C_SOURCE // needed for MAP_ANON
26 #include <inttypes.h>
27 #include <math.h>
28 #include <stdio.h>
29 #include <string.h>
30 #if HAVE_MMAP
31 #include <sys/mman.h>
32 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
33 #define MAP_ANONYMOUS MAP_ANON
34 #endif
35 #endif
36 #if HAVE_VIRTUALALLOC
37 #define WIN32_LEAN_AND_MEAN
38 #include <windows.h>
39 #endif
40 
41 #include "libavutil/attributes.h"
42 #include "libavutil/avassert.h"
43 #include "libavutil/avutil.h"
44 #include "libavutil/bswap.h"
45 #include "libavutil/cpu.h"
46 #include "libavutil/imgutils.h"
47 #include "libavutil/intreadwrite.h"
48 #include "libavutil/libm.h"
49 #include "libavutil/mathematics.h"
50 #include "libavutil/opt.h"
51 #include "libavutil/pixdesc.h"
52 #include "libavutil/aarch64/cpu.h"
53 #include "libavutil/ppc/cpu.h"
54 #include "libavutil/x86/asm.h"
55 #include "libavutil/x86/cpu.h"
56 
57 // We have to implement deprecated functions until they are removed, this is the
58 // simplest way to prevent warnings
59 #undef attribute_deprecated
60 #define attribute_deprecated
61 
62 #include "rgb2rgb.h"
63 #include "swscale.h"
64 #include "swscale_internal.h"
65 
66 #if !FF_API_SWS_VECTOR
67 static SwsVector *sws_getIdentityVec(void);
68 static void sws_addVec(SwsVector *a, SwsVector *b);
69 static void sws_shiftVec(SwsVector *a, int shift);
70 static void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level);
71 #endif
72 
73 static void handle_formats(SwsContext *c);
74 
75 unsigned swscale_version(void)
76 {
79 }
80 
81 const char *swscale_configuration(void)
82 {
83  return FFMPEG_CONFIGURATION;
84 }
85 
86 const char *swscale_license(void)
87 {
88 #define LICENSE_PREFIX "libswscale license: "
89  return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
90 }
91 
92 typedef struct FormatEntry {
96 } FormatEntry;
97 
99  [AV_PIX_FMT_YUV420P] = { 1, 1 },
100  [AV_PIX_FMT_YUYV422] = { 1, 1 },
101  [AV_PIX_FMT_RGB24] = { 1, 1 },
102  [AV_PIX_FMT_BGR24] = { 1, 1 },
103  [AV_PIX_FMT_YUV422P] = { 1, 1 },
104  [AV_PIX_FMT_YUV444P] = { 1, 1 },
105  [AV_PIX_FMT_YUV410P] = { 1, 1 },
106  [AV_PIX_FMT_YUV411P] = { 1, 1 },
107  [AV_PIX_FMT_GRAY8] = { 1, 1 },
108  [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
109  [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
110  [AV_PIX_FMT_PAL8] = { 1, 0 },
111  [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
112  [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
113  [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
114  [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
115  [AV_PIX_FMT_YVYU422] = { 1, 1 },
116  [AV_PIX_FMT_UYVY422] = { 1, 1 },
117  [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
118  [AV_PIX_FMT_BGR8] = { 1, 1 },
119  [AV_PIX_FMT_BGR4] = { 0, 1 },
120  [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
121  [AV_PIX_FMT_RGB8] = { 1, 1 },
122  [AV_PIX_FMT_RGB4] = { 0, 1 },
123  [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
124  [AV_PIX_FMT_NV12] = { 1, 1 },
125  [AV_PIX_FMT_NV21] = { 1, 1 },
126  [AV_PIX_FMT_ARGB] = { 1, 1 },
127  [AV_PIX_FMT_RGBA] = { 1, 1 },
128  [AV_PIX_FMT_ABGR] = { 1, 1 },
129  [AV_PIX_FMT_BGRA] = { 1, 1 },
130  [AV_PIX_FMT_0RGB] = { 1, 1 },
131  [AV_PIX_FMT_RGB0] = { 1, 1 },
132  [AV_PIX_FMT_0BGR] = { 1, 1 },
133  [AV_PIX_FMT_BGR0] = { 1, 1 },
134  [AV_PIX_FMT_GRAY9BE] = { 1, 1 },
135  [AV_PIX_FMT_GRAY9LE] = { 1, 1 },
136  [AV_PIX_FMT_GRAY10BE] = { 1, 1 },
137  [AV_PIX_FMT_GRAY10LE] = { 1, 1 },
138  [AV_PIX_FMT_GRAY12BE] = { 1, 1 },
139  [AV_PIX_FMT_GRAY12LE] = { 1, 1 },
140  [AV_PIX_FMT_GRAY14BE] = { 1, 1 },
141  [AV_PIX_FMT_GRAY14LE] = { 1, 1 },
142  [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
143  [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
144  [AV_PIX_FMT_YUV440P] = { 1, 1 },
145  [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
146  [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
147  [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
148  [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
149  [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
150  [AV_PIX_FMT_YUVA420P] = { 1, 1 },
151  [AV_PIX_FMT_YUVA422P] = { 1, 1 },
152  [AV_PIX_FMT_YUVA444P] = { 1, 1 },
153  [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
154  [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
155  [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
156  [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
157  [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
158  [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
159  [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
160  [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
161  [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
162  [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
163  [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
164  [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
165  [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
166  [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
167  [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
168  [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
169  [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
170  [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
171  [AV_PIX_FMT_RGB48BE] = { 1, 1 },
172  [AV_PIX_FMT_RGB48LE] = { 1, 1 },
173  [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
174  [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
175  [AV_PIX_FMT_RGB565BE] = { 1, 1 },
176  [AV_PIX_FMT_RGB565LE] = { 1, 1 },
177  [AV_PIX_FMT_RGB555BE] = { 1, 1 },
178  [AV_PIX_FMT_RGB555LE] = { 1, 1 },
179  [AV_PIX_FMT_BGR565BE] = { 1, 1 },
180  [AV_PIX_FMT_BGR565LE] = { 1, 1 },
181  [AV_PIX_FMT_BGR555BE] = { 1, 1 },
182  [AV_PIX_FMT_BGR555LE] = { 1, 1 },
183  [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
184  [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
185  [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
186  [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
187  [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
188  [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
189  [AV_PIX_FMT_RGB444LE] = { 1, 1 },
190  [AV_PIX_FMT_RGB444BE] = { 1, 1 },
191  [AV_PIX_FMT_BGR444LE] = { 1, 1 },
192  [AV_PIX_FMT_BGR444BE] = { 1, 1 },
193  [AV_PIX_FMT_YA8] = { 1, 1 },
194  [AV_PIX_FMT_YA16BE] = { 1, 1 },
195  [AV_PIX_FMT_YA16LE] = { 1, 1 },
196  [AV_PIX_FMT_BGR48BE] = { 1, 1 },
197  [AV_PIX_FMT_BGR48LE] = { 1, 1 },
198  [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
199  [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
200  [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
201  [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
202  [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
203  [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
204  [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
205  [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
206  [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
207  [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
208  [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
209  [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
210  [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
211  [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
212  [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
213  [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
214  [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
215  [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
216  [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
217  [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
218  [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
219  [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
220  [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
221  [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
222  [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
223  [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
224  [AV_PIX_FMT_GBRP] = { 1, 1 },
225  [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
226  [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
227  [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
228  [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
229  [AV_PIX_FMT_GBRAP10LE] = { 1, 1 },
230  [AV_PIX_FMT_GBRAP10BE] = { 1, 1 },
231  [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
232  [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
233  [AV_PIX_FMT_GBRAP12LE] = { 1, 1 },
234  [AV_PIX_FMT_GBRAP12BE] = { 1, 1 },
235  [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
236  [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
237  [AV_PIX_FMT_GBRP16LE] = { 1, 1 },
238  [AV_PIX_FMT_GBRP16BE] = { 1, 1 },
239  [AV_PIX_FMT_GBRAP] = { 1, 1 },
240  [AV_PIX_FMT_GBRAP16LE] = { 1, 1 },
241  [AV_PIX_FMT_GBRAP16BE] = { 1, 1 },
242  [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
243  [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
244  [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
245  [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
246  [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
247  [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
248  [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
249  [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
250  [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
251  [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
252  [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
253  [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
254  [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
255  [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
256  [AV_PIX_FMT_AYUV64LE] = { 1, 1},
257  [AV_PIX_FMT_P010LE] = { 1, 1 },
258  [AV_PIX_FMT_P010BE] = { 1, 1 },
259  [AV_PIX_FMT_P016LE] = { 1, 1 },
260  [AV_PIX_FMT_P016BE] = { 1, 1 },
261  [AV_PIX_FMT_GRAYF32LE] = { 1, 1 },
262  [AV_PIX_FMT_GRAYF32BE] = { 1, 1 },
263  [AV_PIX_FMT_YUVA422P12BE] = { 1, 1 },
264  [AV_PIX_FMT_YUVA422P12LE] = { 1, 1 },
265  [AV_PIX_FMT_YUVA444P12BE] = { 1, 1 },
266  [AV_PIX_FMT_YUVA444P12LE] = { 1, 1 },
267  [AV_PIX_FMT_NV24] = { 1, 1 },
268  [AV_PIX_FMT_NV42] = { 1, 1 },
269 };
270 
272 {
273  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
274  format_entries[pix_fmt].is_supported_in : 0;
275 }
276 
278 {
279  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
280  format_entries[pix_fmt].is_supported_out : 0;
281 }
282 
284 {
285  return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
286  format_entries[pix_fmt].is_supported_endianness : 0;
287 }
288 
289 static double getSplineCoeff(double a, double b, double c, double d,
290  double dist)
291 {
292  if (dist <= 1.0)
293  return ((d * dist + c) * dist + b) * dist + a;
294  else
295  return getSplineCoeff(0.0,
296  b + 2.0 * c + 3.0 * d,
297  c + 3.0 * d,
298  -b - 3.0 * c - 6.0 * d,
299  dist - 1.0);
300 }
301 
302 static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
303 {
304  if (pos == -1 || pos <= -513) {
305  pos = (128 << chr_subsample) - 128;
306  }
307  pos += 128; // relative to ideal left edge
308  return pos >> chr_subsample;
309 }
310 
311 typedef struct {
312  int flag; ///< flag associated to the algorithm
313  const char *description; ///< human-readable description
314  int size_factor; ///< size factor used when initing the filters
316 
318  { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
319  { SWS_BICUBIC, "bicubic", 4 },
320  { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
321  { SWS_BILINEAR, "bilinear", 2 },
322  { SWS_FAST_BILINEAR, "fast bilinear", -1 },
323  { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
324  { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
325  { SWS_POINT, "nearest neighbor / point", -1 },
326  { SWS_SINC, "sinc", 20 /* infinite ;) */ },
327  { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
328  { SWS_X, "experimental", 8 },
329 };
330 
331 static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
332  int *outFilterSize, int xInc, int srcW,
333  int dstW, int filterAlign, int one,
334  int flags, int cpu_flags,
335  SwsVector *srcFilter, SwsVector *dstFilter,
336  double param[2], int srcPos, int dstPos)
337 {
338  int i;
339  int filterSize;
340  int filter2Size;
341  int minFilterSize;
342  int64_t *filter = NULL;
343  int64_t *filter2 = NULL;
344  const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
345  int ret = -1;
346 
347  emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
348 
349  // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
350  FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
351 
352  if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
353  int i;
354  filterSize = 1;
356  dstW, sizeof(*filter) * filterSize, fail);
357 
358  for (i = 0; i < dstW; i++) {
359  filter[i * filterSize] = fone;
360  (*filterPos)[i] = i;
361  }
362  } else if (flags & SWS_POINT) { // lame looking point sampling mode
363  int i;
364  int64_t xDstInSrc;
365  filterSize = 1;
367  dstW, sizeof(*filter) * filterSize, fail);
368 
369  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
370  for (i = 0; i < dstW; i++) {
371  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
372 
373  (*filterPos)[i] = xx;
374  filter[i] = fone;
375  xDstInSrc += xInc;
376  }
377  } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
378  (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
379  int i;
380  int64_t xDstInSrc;
381  filterSize = 2;
383  dstW, sizeof(*filter) * filterSize, fail);
384 
385  xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
386  for (i = 0; i < dstW; i++) {
387  int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
388  int j;
389 
390  (*filterPos)[i] = xx;
391  // bilinear upscale / linear interpolate / area averaging
392  for (j = 0; j < filterSize; j++) {
393  int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
394  if (coeff < 0)
395  coeff = 0;
396  filter[i * filterSize + j] = coeff;
397  xx++;
398  }
399  xDstInSrc += xInc;
400  }
401  } else {
402  int64_t xDstInSrc;
403  int sizeFactor = -1;
404 
405  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
406  if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
407  sizeFactor = scale_algorithms[i].size_factor;
408  break;
409  }
410  }
411  if (flags & SWS_LANCZOS)
412  sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
413  av_assert0(sizeFactor > 0);
414 
415  if (xInc <= 1 << 16)
416  filterSize = 1 + sizeFactor; // upscale
417  else
418  filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
419 
420  filterSize = FFMIN(filterSize, srcW - 2);
421  filterSize = FFMAX(filterSize, 1);
422 
424  dstW, sizeof(*filter) * filterSize, fail);
425 
426  xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
427  for (i = 0; i < dstW; i++) {
428  int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
429  int j;
430  (*filterPos)[i] = xx;
431  for (j = 0; j < filterSize; j++) {
432  int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
433  double floatd;
434  int64_t coeff;
435 
436  if (xInc > 1 << 16)
437  d = d * dstW / srcW;
438  floatd = d * (1.0 / (1 << 30));
439 
440  if (flags & SWS_BICUBIC) {
441  int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
442  int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
443 
444  if (d >= 1LL << 31) {
445  coeff = 0.0;
446  } else {
447  int64_t dd = (d * d) >> 30;
448  int64_t ddd = (dd * d) >> 30;
449 
450  if (d < 1LL << 30)
451  coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
452  (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
453  (6 * (1 << 24) - 2 * B) * (1 << 30);
454  else
455  coeff = (-B - 6 * C) * ddd +
456  (6 * B + 30 * C) * dd +
457  (-12 * B - 48 * C) * d +
458  (8 * B + 24 * C) * (1 << 30);
459  }
460  coeff /= (1LL<<54)/fone;
461  } else if (flags & SWS_X) {
462  double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
463  double c;
464 
465  if (floatd < 1.0)
466  c = cos(floatd * M_PI);
467  else
468  c = -1.0;
469  if (c < 0.0)
470  c = -pow(-c, A);
471  else
472  c = pow(c, A);
473  coeff = (c * 0.5 + 0.5) * fone;
474  } else if (flags & SWS_AREA) {
475  int64_t d2 = d - (1 << 29);
476  if (d2 * xInc < -(1LL << (29 + 16)))
477  coeff = 1.0 * (1LL << (30 + 16));
478  else if (d2 * xInc < (1LL << (29 + 16)))
479  coeff = -d2 * xInc + (1LL << (29 + 16));
480  else
481  coeff = 0.0;
482  coeff *= fone >> (30 + 16);
483  } else if (flags & SWS_GAUSS) {
484  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
485  coeff = exp2(-p * floatd * floatd) * fone;
486  } else if (flags & SWS_SINC) {
487  coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
488  } else if (flags & SWS_LANCZOS) {
489  double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
490  coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
491  (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
492  if (floatd > p)
493  coeff = 0;
494  } else if (flags & SWS_BILINEAR) {
495  coeff = (1 << 30) - d;
496  if (coeff < 0)
497  coeff = 0;
498  coeff *= fone >> 30;
499  } else if (flags & SWS_SPLINE) {
500  double p = -2.196152422706632;
501  coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
502  } else {
503  av_assert0(0);
504  }
505 
506  filter[i * filterSize + j] = coeff;
507  xx++;
508  }
509  xDstInSrc += 2 * xInc;
510  }
511  }
512 
513  /* apply src & dst Filter to filter -> filter2
514  * av_free(filter);
515  */
516  av_assert0(filterSize > 0);
517  filter2Size = filterSize;
518  if (srcFilter)
519  filter2Size += srcFilter->length - 1;
520  if (dstFilter)
521  filter2Size += dstFilter->length - 1;
522  av_assert0(filter2Size > 0);
523  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
524 
525  for (i = 0; i < dstW; i++) {
526  int j, k;
527 
528  if (srcFilter) {
529  for (k = 0; k < srcFilter->length; k++) {
530  for (j = 0; j < filterSize; j++)
531  filter2[i * filter2Size + k + j] +=
532  srcFilter->coeff[k] * filter[i * filterSize + j];
533  }
534  } else {
535  for (j = 0; j < filterSize; j++)
536  filter2[i * filter2Size + j] = filter[i * filterSize + j];
537  }
538  // FIXME dstFilter
539 
540  (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
541  }
542  av_freep(&filter);
543 
544  /* try to reduce the filter-size (step1 find size and shift left) */
545  // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
546  minFilterSize = 0;
547  for (i = dstW - 1; i >= 0; i--) {
548  int min = filter2Size;
549  int j;
550  int64_t cutOff = 0.0;
551 
552  /* get rid of near zero elements on the left by shifting left */
553  for (j = 0; j < filter2Size; j++) {
554  int k;
555  cutOff += FFABS(filter2[i * filter2Size]);
556 
557  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
558  break;
559 
560  /* preserve monotonicity because the core can't handle the
561  * filter otherwise */
562  if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
563  break;
564 
565  // move filter coefficients left
566  for (k = 1; k < filter2Size; k++)
567  filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
568  filter2[i * filter2Size + k - 1] = 0;
569  (*filterPos)[i]++;
570  }
571 
572  cutOff = 0;
573  /* count near zeros on the right */
574  for (j = filter2Size - 1; j > 0; j--) {
575  cutOff += FFABS(filter2[i * filter2Size + j]);
576 
577  if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
578  break;
579  min--;
580  }
581 
582  if (min > minFilterSize)
583  minFilterSize = min;
584  }
585 
586  if (PPC_ALTIVEC(cpu_flags)) {
587  // we can handle the special case 4, so we don't want to go the full 8
588  if (minFilterSize < 5)
589  filterAlign = 4;
590 
591  /* We really don't want to waste our time doing useless computation, so
592  * fall back on the scalar C code for very small filters.
593  * Vectorizing is worth it only if you have a decent-sized vector. */
594  if (minFilterSize < 3)
595  filterAlign = 1;
596  }
597 
598  if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
599  // special case for unscaled vertical filtering
600  if (minFilterSize == 1 && filterAlign == 2)
601  filterAlign = 1;
602  }
603 
604  av_assert0(minFilterSize > 0);
605  filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
606  av_assert0(filterSize > 0);
607  filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
608  if (!filter)
609  goto fail;
610  if (filterSize >= MAX_FILTER_SIZE * 16 /
611  ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
612  ret = RETCODE_USE_CASCADE;
613  goto fail;
614  }
615  *outFilterSize = filterSize;
616 
617  if (flags & SWS_PRINT_INFO)
619  "SwScaler: reducing / aligning filtersize %d -> %d\n",
620  filter2Size, filterSize);
621  /* try to reduce the filter-size (step2 reduce it) */
622  for (i = 0; i < dstW; i++) {
623  int j;
624 
625  for (j = 0; j < filterSize; j++) {
626  if (j >= filter2Size)
627  filter[i * filterSize + j] = 0;
628  else
629  filter[i * filterSize + j] = filter2[i * filter2Size + j];
630  if ((flags & SWS_BITEXACT) && j >= minFilterSize)
631  filter[i * filterSize + j] = 0;
632  }
633  }
634 
635  // FIXME try to align filterPos if possible
636 
637  // fix borders
638  for (i = 0; i < dstW; i++) {
639  int j;
640  if ((*filterPos)[i] < 0) {
641  // move filter coefficients left to compensate for filterPos
642  for (j = 1; j < filterSize; j++) {
643  int left = FFMAX(j + (*filterPos)[i], 0);
644  filter[i * filterSize + left] += filter[i * filterSize + j];
645  filter[i * filterSize + j] = 0;
646  }
647  (*filterPos)[i]= 0;
648  }
649 
650  if ((*filterPos)[i] + filterSize > srcW) {
651  int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
652  int64_t acc = 0;
653 
654  for (j = filterSize - 1; j >= 0; j--) {
655  if ((*filterPos)[i] + j >= srcW) {
656  acc += filter[i * filterSize + j];
657  filter[i * filterSize + j] = 0;
658  }
659  }
660  for (j = filterSize - 1; j >= 0; j--) {
661  if (j < shift) {
662  filter[i * filterSize + j] = 0;
663  } else {
664  filter[i * filterSize + j] = filter[i * filterSize + j - shift];
665  }
666  }
667 
668  (*filterPos)[i]-= shift;
669  filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
670  }
671  av_assert0((*filterPos)[i] >= 0);
672  av_assert0((*filterPos)[i] < srcW);
673  if ((*filterPos)[i] + filterSize > srcW) {
674  for (j = 0; j < filterSize; j++) {
675  av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
676  }
677  }
678  }
679 
680  // Note the +1 is for the MMX scaler which reads over the end
681  /* align at 16 for AltiVec (needed by hScale_altivec_real) */
682  FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
683  (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
684 
685  /* normalize & store in outFilter */
686  for (i = 0; i < dstW; i++) {
687  int j;
688  int64_t error = 0;
689  int64_t sum = 0;
690 
691  for (j = 0; j < filterSize; j++) {
692  sum += filter[i * filterSize + j];
693  }
694  sum = (sum + one / 2) / one;
695  if (!sum) {
696  av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
697  sum = 1;
698  }
699  for (j = 0; j < *outFilterSize; j++) {
700  int64_t v = filter[i * filterSize + j] + error;
701  int intV = ROUNDED_DIV(v, sum);
702  (*outFilter)[i * (*outFilterSize) + j] = intV;
703  error = v - intV * sum;
704  }
705  }
706 
707  (*filterPos)[dstW + 0] =
708  (*filterPos)[dstW + 1] =
709  (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
710  * read over the end */
711  for (i = 0; i < *outFilterSize; i++) {
712  int k = (dstW - 1) * (*outFilterSize) + i;
713  (*outFilter)[k + 1 * (*outFilterSize)] =
714  (*outFilter)[k + 2 * (*outFilterSize)] =
715  (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
716  }
717 
718  ret = 0;
719 
720 fail:
721  if(ret < 0)
722  av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
723  av_free(filter);
724  av_free(filter2);
725  return ret;
726 }
727 
728 static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
729 {
730  int64_t W, V, Z, Cy, Cu, Cv;
731  int64_t vr = table[0];
732  int64_t ub = table[1];
733  int64_t ug = -table[2];
734  int64_t vg = -table[3];
735  int64_t ONE = 65536;
736  int64_t cy = ONE;
738  int i;
739  static const int8_t map[] = {
740  BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
741  RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
742  RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
743  BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
744  BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
745  RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
746  RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
747  BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
748  BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
749  RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
750  RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
751  BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
754  GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
755  -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
758  GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
759  -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
762  GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
763  -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
764  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
765  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
766  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
767  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
768  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
769  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
770  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
771  -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
772  BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
773  BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
774  BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
775  };
776 
777  dstRange = 0; //FIXME range = 1 is handled elsewhere
778 
779  if (!dstRange) {
780  cy = cy * 255 / 219;
781  } else {
782  vr = vr * 224 / 255;
783  ub = ub * 224 / 255;
784  ug = ug * 224 / 255;
785  vg = vg * 224 / 255;
786  }
787  W = ROUNDED_DIV(ONE*ONE*ug, ub);
788  V = ROUNDED_DIV(ONE*ONE*vg, vr);
789  Z = ONE*ONE-W-V;
790 
791  Cy = ROUNDED_DIV(cy*Z, ONE);
792  Cu = ROUNDED_DIV(ub*Z, ONE);
793  Cv = ROUNDED_DIV(vr*Z, ONE);
794 
795  c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
796  c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
797  c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
798 
799  c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
800  c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
801  c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
802 
803  c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
804  c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
805  c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
806 
807  if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
808  c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
809  c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
810  c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
811  c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
812  c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
813  c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
814  c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
815  c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
816  c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
817  }
818  for(i=0; i<FF_ARRAY_ELEMS(map); i++)
819  AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
820 }
821 
822 static void fill_xyztables(struct SwsContext *c)
823 {
824  int i;
825  double xyzgamma = XYZ_GAMMA;
826  double rgbgamma = 1.0 / RGB_GAMMA;
827  double xyzgammainv = 1.0 / XYZ_GAMMA;
828  double rgbgammainv = RGB_GAMMA;
829  static const int16_t xyz2rgb_matrix[3][4] = {
830  {13270, -6295, -2041},
831  {-3969, 7682, 170},
832  { 228, -835, 4329} };
833  static const int16_t rgb2xyz_matrix[3][4] = {
834  {1689, 1464, 739},
835  { 871, 2929, 296},
836  { 79, 488, 3891} };
837  static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
838 
839  memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
840  memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
841  c->xyzgamma = xyzgamma_tab;
842  c->rgbgamma = rgbgamma_tab;
843  c->xyzgammainv = xyzgammainv_tab;
844  c->rgbgammainv = rgbgammainv_tab;
845 
846  if (rgbgamma_tab[4095])
847  return;
848 
849  /* set gamma vectors */
850  for (i = 0; i < 4096; i++) {
851  xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
852  rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
853  xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
854  rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
855  }
856 }
857 
858 int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
859  int srcRange, const int table[4], int dstRange,
860  int brightness, int contrast, int saturation)
861 {
862  const AVPixFmtDescriptor *desc_dst;
863  const AVPixFmtDescriptor *desc_src;
864  int need_reinit = 0;
865 
866  handle_formats(c);
867  desc_dst = av_pix_fmt_desc_get(c->dstFormat);
868  desc_src = av_pix_fmt_desc_get(c->srcFormat);
869 
870  if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
871  dstRange = 0;
872  if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
873  srcRange = 0;
874 
875  if (c->srcRange != srcRange ||
876  c->dstRange != dstRange ||
877  c->brightness != brightness ||
878  c->contrast != contrast ||
879  c->saturation != saturation ||
880  memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
881  memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
882  )
883  need_reinit = 1;
884 
885  memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
886  memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
887 
888 
889 
890  c->brightness = brightness;
891  c->contrast = contrast;
892  c->saturation = saturation;
893  c->srcRange = srcRange;
894  c->dstRange = dstRange;
895 
896  //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
897  //and what we have in ticket 2939 looks better with this check
898  if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
900 
901  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
902  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
903 
905  return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
906 
907  if (!need_reinit)
908  return 0;
909 
910  if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
911  if (!c->cascaded_context[0] &&
912  memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
913  c->srcW && c->srcH && c->dstW && c->dstH) {
914  enum AVPixelFormat tmp_format;
915  int tmp_width, tmp_height;
916  int srcW = c->srcW;
917  int srcH = c->srcH;
918  int dstW = c->dstW;
919  int dstH = c->dstH;
920  int ret;
921  av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
922 
923  if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
924  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
925  tmp_format = AV_PIX_FMT_BGRA64;
926  } else {
927  tmp_format = AV_PIX_FMT_BGR48;
928  }
929  } else {
930  if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
931  tmp_format = AV_PIX_FMT_BGRA;
932  } else {
933  tmp_format = AV_PIX_FMT_BGR24;
934  }
935  }
936 
937  if (srcW*srcH > dstW*dstH) {
938  tmp_width = dstW;
939  tmp_height = dstH;
940  } else {
941  tmp_width = srcW;
942  tmp_height = srcH;
943  }
944 
946  tmp_width, tmp_height, tmp_format, 64);
947  if (ret < 0)
948  return ret;
949 
950  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
951  tmp_width, tmp_height, tmp_format,
952  c->flags, c->param);
953  if (!c->cascaded_context[0])
954  return -1;
955 
957  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
958  if (ret < 0)
959  return ret;
960  //we set both src and dst depending on that the RGB side will be ignored
962  srcRange, table, dstRange,
963  brightness, contrast, saturation);
964 
965  c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
966  dstW, dstH, c->dstFormat,
967  c->flags, NULL, NULL, c->param);
968  if (!c->cascaded_context[1])
969  return -1;
971  srcRange, table, dstRange,
972  0, 1 << 16, 1 << 16);
973  return 0;
974  }
975  return -1;
976  }
977 
978  if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
979  ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
980  contrast, saturation);
981  // FIXME factorize
982 
983  if (ARCH_PPC)
984  ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
985  contrast, saturation);
986  }
987 
988  fill_rgb2yuv_table(c, table, dstRange);
989 
990  return 0;
991 }
992 
993 int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
994  int *srcRange, int **table, int *dstRange,
995  int *brightness, int *contrast, int *saturation)
996 {
997  if (!c )
998  return -1;
999 
1000  *inv_table = c->srcColorspaceTable;
1001  *table = c->dstColorspaceTable;
1002  *srcRange = c->srcRange;
1003  *dstRange = c->dstRange;
1004  *brightness = c->brightness;
1005  *contrast = c->contrast;
1006  *saturation = c->saturation;
1007 
1008  return 0;
1009 }
1010 
1012 {
1013  switch (*format) {
1014  case AV_PIX_FMT_YUVJ420P:
1015  *format = AV_PIX_FMT_YUV420P;
1016  return 1;
1017  case AV_PIX_FMT_YUVJ411P:
1018  *format = AV_PIX_FMT_YUV411P;
1019  return 1;
1020  case AV_PIX_FMT_YUVJ422P:
1021  *format = AV_PIX_FMT_YUV422P;
1022  return 1;
1023  case AV_PIX_FMT_YUVJ444P:
1024  *format = AV_PIX_FMT_YUV444P;
1025  return 1;
1026  case AV_PIX_FMT_YUVJ440P:
1027  *format = AV_PIX_FMT_YUV440P;
1028  return 1;
1029  case AV_PIX_FMT_GRAY8:
1030  case AV_PIX_FMT_YA8:
1031  case AV_PIX_FMT_GRAY9LE:
1032  case AV_PIX_FMT_GRAY9BE:
1033  case AV_PIX_FMT_GRAY10LE:
1034  case AV_PIX_FMT_GRAY10BE:
1035  case AV_PIX_FMT_GRAY12LE:
1036  case AV_PIX_FMT_GRAY12BE:
1037  case AV_PIX_FMT_GRAY14LE:
1038  case AV_PIX_FMT_GRAY14BE:
1039  case AV_PIX_FMT_GRAY16LE:
1040  case AV_PIX_FMT_GRAY16BE:
1041  case AV_PIX_FMT_YA16BE:
1042  case AV_PIX_FMT_YA16LE:
1043  return 1;
1044  default:
1045  return 0;
1046  }
1047 }
1048 
1050 {
1051  switch (*format) {
1052  case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
1053  case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
1054  case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
1055  case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
1056  default: return 0;
1057  }
1058 }
1059 
1061 {
1062  switch (*format) {
1063  case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
1064  case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
1065  default: return 0;
1066  }
1067 }
1068 
1070 {
1071  c->src0Alpha |= handle_0alpha(&c->srcFormat);
1072  c->dst0Alpha |= handle_0alpha(&c->dstFormat);
1073  c->srcXYZ |= handle_xyz(&c->srcFormat);
1074  c->dstXYZ |= handle_xyz(&c->dstFormat);
1075  if (c->srcXYZ || c->dstXYZ)
1076  fill_xyztables(c);
1077 }
1078 
1080 {
1081  SwsContext *c = av_mallocz(sizeof(SwsContext));
1082 
1083  av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
1084 
1085  if (c) {
1088  }
1089 
1090  return c;
1091 }
1092 
1093 static uint16_t * alloc_gamma_tbl(double e)
1094 {
1095  int i = 0;
1096  uint16_t * tbl;
1097  tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
1098  if (!tbl)
1099  return NULL;
1100 
1101  for (i = 0; i < 65536; ++i) {
1102  tbl[i] = pow(i / 65535.0, e) * 65535.0;
1103  }
1104  return tbl;
1105 }
1106 
1108 {
1109  switch(fmt) {
1110  case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
1111  case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
1112  case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
1113  case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
1114  case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
1115 
1119 
1120  case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
1121 
1124 
1127 
1130 
1135 
1136  case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
1137  case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
1138 
1157 
1158 // case AV_PIX_FMT_AYUV64LE:
1159 // case AV_PIX_FMT_AYUV64BE:
1160 // case AV_PIX_FMT_PAL8:
1161  default: return AV_PIX_FMT_NONE;
1162  }
1163 }
1164 
1166  SwsFilter *dstFilter)
1167 {
1168  int i;
1169  int usesVFilter, usesHFilter;
1170  int unscaled;
1171  SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
1172  int srcW = c->srcW;
1173  int srcH = c->srcH;
1174  int dstW = c->dstW;
1175  int dstH = c->dstH;
1176  int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
1177  int flags, cpu_flags;
1178  enum AVPixelFormat srcFormat = c->srcFormat;
1179  enum AVPixelFormat dstFormat = c->dstFormat;
1180  const AVPixFmtDescriptor *desc_src;
1181  const AVPixFmtDescriptor *desc_dst;
1182  int ret = 0;
1183  enum AVPixelFormat tmpFmt;
1184  static const float float_mult = 1.0f / 255.0f;
1185 
1186  cpu_flags = av_get_cpu_flags();
1187  flags = c->flags;
1188  emms_c();
1189  if (!rgb15to16)
1191 
1192  unscaled = (srcW == dstW && srcH == dstH);
1193 
1194  c->srcRange |= handle_jpeg(&c->srcFormat);
1195  c->dstRange |= handle_jpeg(&c->dstFormat);
1196 
1197  if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
1198  av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
1199 
1200  if (!c->contrast && !c->saturation && !c->dstFormatBpp)
1201  sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
1202  ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
1203  c->dstRange, 0, 1 << 16, 1 << 16);
1204 
1205  handle_formats(c);
1206  srcFormat = c->srcFormat;
1207  dstFormat = c->dstFormat;
1208  desc_src = av_pix_fmt_desc_get(srcFormat);
1209  desc_dst = av_pix_fmt_desc_get(dstFormat);
1210 
1211  // If the source has no alpha then disable alpha blendaway
1212  if (c->src0Alpha)
1214 
1215  if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
1216  av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
1217  if (!sws_isSupportedInput(srcFormat)) {
1218  av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
1219  av_get_pix_fmt_name(srcFormat));
1220  return AVERROR(EINVAL);
1221  }
1222  if (!sws_isSupportedOutput(dstFormat)) {
1223  av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
1224  av_get_pix_fmt_name(dstFormat));
1225  return AVERROR(EINVAL);
1226  }
1227  }
1228  av_assert2(desc_src && desc_dst);
1229 
1230  i = flags & (SWS_POINT |
1231  SWS_AREA |
1232  SWS_BILINEAR |
1234  SWS_BICUBIC |
1235  SWS_X |
1236  SWS_GAUSS |
1237  SWS_LANCZOS |
1238  SWS_SINC |
1239  SWS_SPLINE |
1240  SWS_BICUBLIN);
1241 
1242  /* provide a default scaler if not set by caller */
1243  if (!i) {
1244  if (dstW < srcW && dstH < srcH)
1245  flags |= SWS_BICUBIC;
1246  else if (dstW > srcW && dstH > srcH)
1247  flags |= SWS_BICUBIC;
1248  else
1249  flags |= SWS_BICUBIC;
1250  c->flags = flags;
1251  } else if (i & (i - 1)) {
1252  av_log(c, AV_LOG_ERROR,
1253  "Exactly one scaler algorithm must be chosen, got %X\n", i);
1254  return AVERROR(EINVAL);
1255  }
1256  /* sanity check */
1257  if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
1258  /* FIXME check if these are enough and try to lower them after
1259  * fixing the relevant parts of the code */
1260  av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
1261  srcW, srcH, dstW, dstH);
1262  return AVERROR(EINVAL);
1263  }
1264  if (flags & SWS_FAST_BILINEAR) {
1265  if (srcW < 8 || dstW < 8) {
1266  flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
1267  c->flags = flags;
1268  }
1269  }
1270 
1271  if (!dstFilter)
1272  dstFilter = &dummyFilter;
1273  if (!srcFilter)
1274  srcFilter = &dummyFilter;
1275 
1276  c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
1277  c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
1278  c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
1279  c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
1280  c->vRounder = 4 * 0x0001000100010001ULL;
1281 
1282  usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
1283  (srcFilter->chrV && srcFilter->chrV->length > 1) ||
1284  (dstFilter->lumV && dstFilter->lumV->length > 1) ||
1285  (dstFilter->chrV && dstFilter->chrV->length > 1);
1286  usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
1287  (srcFilter->chrH && srcFilter->chrH->length > 1) ||
1288  (dstFilter->lumH && dstFilter->lumH->length > 1) ||
1289  (dstFilter->chrH && dstFilter->chrH->length > 1);
1290 
1293 
1294  if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
1295  if (dstW&1) {
1296  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
1297  flags |= SWS_FULL_CHR_H_INT;
1298  c->flags = flags;
1299  }
1300 
1301  if ( c->chrSrcHSubSample == 0
1302  && c->chrSrcVSubSample == 0
1303  && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
1304  && !(c->flags & SWS_FAST_BILINEAR)
1305  ) {
1306  av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
1307  flags |= SWS_FULL_CHR_H_INT;
1308  c->flags = flags;
1309  }
1310  }
1311 
1312  if (c->dither == SWS_DITHER_AUTO) {
1313  if (flags & SWS_ERROR_DIFFUSION)
1314  c->dither = SWS_DITHER_ED;
1315  }
1316 
1317  if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
1318  dstFormat == AV_PIX_FMT_RGB4_BYTE ||
1319  dstFormat == AV_PIX_FMT_BGR8 ||
1320  dstFormat == AV_PIX_FMT_RGB8) {
1321  if (c->dither == SWS_DITHER_AUTO)
1323  if (!(flags & SWS_FULL_CHR_H_INT)) {
1325  av_log(c, AV_LOG_DEBUG,
1326  "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
1327  av_get_pix_fmt_name(dstFormat));
1328  flags |= SWS_FULL_CHR_H_INT;
1329  c->flags = flags;
1330  }
1331  }
1332  if (flags & SWS_FULL_CHR_H_INT) {
1333  if (c->dither == SWS_DITHER_BAYER) {
1334  av_log(c, AV_LOG_DEBUG,
1335  "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
1336  av_get_pix_fmt_name(dstFormat));
1337  c->dither = SWS_DITHER_ED;
1338  }
1339  }
1340  }
1341  if (isPlanarRGB(dstFormat)) {
1342  if (!(flags & SWS_FULL_CHR_H_INT)) {
1343  av_log(c, AV_LOG_DEBUG,
1344  "%s output is not supported with half chroma resolution, switching to full\n",
1345  av_get_pix_fmt_name(dstFormat));
1346  flags |= SWS_FULL_CHR_H_INT;
1347  c->flags = flags;
1348  }
1349  }
1350 
1351  /* reuse chroma for 2 pixels RGB/BGR unless user wants full
1352  * chroma interpolation */
1353  if (flags & SWS_FULL_CHR_H_INT &&
1354  isAnyRGB(dstFormat) &&
1355  !isPlanarRGB(dstFormat) &&
1356  dstFormat != AV_PIX_FMT_RGBA64LE &&
1357  dstFormat != AV_PIX_FMT_RGBA64BE &&
1358  dstFormat != AV_PIX_FMT_BGRA64LE &&
1359  dstFormat != AV_PIX_FMT_BGRA64BE &&
1360  dstFormat != AV_PIX_FMT_RGB48LE &&
1361  dstFormat != AV_PIX_FMT_RGB48BE &&
1362  dstFormat != AV_PIX_FMT_BGR48LE &&
1363  dstFormat != AV_PIX_FMT_BGR48BE &&
1364  dstFormat != AV_PIX_FMT_RGBA &&
1365  dstFormat != AV_PIX_FMT_ARGB &&
1366  dstFormat != AV_PIX_FMT_BGRA &&
1367  dstFormat != AV_PIX_FMT_ABGR &&
1368  dstFormat != AV_PIX_FMT_RGB24 &&
1369  dstFormat != AV_PIX_FMT_BGR24 &&
1370  dstFormat != AV_PIX_FMT_BGR4_BYTE &&
1371  dstFormat != AV_PIX_FMT_RGB4_BYTE &&
1372  dstFormat != AV_PIX_FMT_BGR8 &&
1373  dstFormat != AV_PIX_FMT_RGB8
1374  ) {
1376  "full chroma interpolation for destination format '%s' not yet implemented\n",
1377  av_get_pix_fmt_name(dstFormat));
1378  flags &= ~SWS_FULL_CHR_H_INT;
1379  c->flags = flags;
1380  }
1381  if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
1382  c->chrDstHSubSample = 1;
1383 
1384  // drop some chroma lines if the user wants it
1385  c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
1387  c->chrSrcVSubSample += c->vChrDrop;
1388 
1389  /* drop every other pixel for chroma calculation unless user
1390  * wants full chroma */
1391  if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
1392  srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
1393  srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
1394  srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
1395  srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
1396  srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
1397  srcFormat != AV_PIX_FMT_GBRAP10BE && srcFormat != AV_PIX_FMT_GBRAP10LE &&
1398  srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
1399  srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
1400  srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
1401  srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
1402  srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
1403  ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
1404  (flags & SWS_FAST_BILINEAR)))
1405  c->chrSrcHSubSample = 1;
1406 
1407  // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
1408  c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
1409  c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
1410  c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
1411  c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
1412 
1413  FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
1414 
1415  c->srcBpc = desc_src->comp[0].depth;
1416  if (c->srcBpc < 8)
1417  c->srcBpc = 8;
1418  c->dstBpc = desc_dst->comp[0].depth;
1419  if (c->dstBpc < 8)
1420  c->dstBpc = 8;
1421  if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
1422  c->srcBpc = 16;
1423  if (c->dstBpc == 16)
1424  dst_stride <<= 1;
1425 
1426  if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
1427  c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
1428  c->chrDstW >= c->chrSrcW &&
1429  (srcW & 15) == 0;
1430  if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
1431 
1432  && (flags & SWS_FAST_BILINEAR)) {
1433  if (flags & SWS_PRINT_INFO)
1434  av_log(c, AV_LOG_INFO,
1435  "output width is not a multiple of 32 -> no MMXEXT scaler\n");
1436  }
1437  if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
1438  c->canMMXEXTBeUsed = 0;
1439  } else
1440  c->canMMXEXTBeUsed = 0;
1441 
1442  c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
1443  c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
1444 
1445  /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
1446  * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
1447  * correct scaling.
1448  * n-2 is the last chrominance sample available.
1449  * This is not perfect, but no one should notice the difference, the more
1450  * correct variant would be like the vertical one, but that would require
1451  * some special code for the first and last pixel */
1452  if (flags & SWS_FAST_BILINEAR) {
1453  if (c->canMMXEXTBeUsed) {
1454  c->lumXInc += 20;
1455  c->chrXInc += 20;
1456  }
1457  // we don't use the x86 asm scaler if MMX is available
1458  else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
1459  c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
1460  c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
1461  }
1462  }
1463 
1464  // hardcoded for now
1465  c->gamma_value = 2.2;
1466  tmpFmt = AV_PIX_FMT_RGBA64LE;
1467 
1468 
1469  if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
1470  SwsContext *c2;
1471  c->cascaded_context[0] = NULL;
1472 
1474  srcW, srcH, tmpFmt, 64);
1475  if (ret < 0)
1476  return ret;
1477 
1478  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1479  srcW, srcH, tmpFmt,
1480  flags, NULL, NULL, c->param);
1481  if (!c->cascaded_context[0]) {
1482  return -1;
1483  }
1484 
1485  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
1486  dstW, dstH, tmpFmt,
1487  flags, srcFilter, dstFilter, c->param);
1488 
1489  if (!c->cascaded_context[1])
1490  return -1;
1491 
1492  c2 = c->cascaded_context[1];
1493  c2->is_internal_gamma = 1;
1494  c2->gamma = alloc_gamma_tbl( c->gamma_value);
1495  c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
1496  if (!c2->gamma || !c2->inv_gamma)
1497  return AVERROR(ENOMEM);
1498 
1499  // is_internal_flag is set after creating the context
1500  // to properly create the gamma convert FilterDescriptor
1501  // we have to re-initialize it
1502  ff_free_filters(c2);
1503  if (ff_init_filters(c2) < 0) {
1504  sws_freeContext(c2);
1505  return -1;
1506  }
1507 
1508  c->cascaded_context[2] = NULL;
1509  if (dstFormat != tmpFmt) {
1511  dstW, dstH, tmpFmt, 64);
1512  if (ret < 0)
1513  return ret;
1514 
1515  c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
1516  dstW, dstH, dstFormat,
1517  flags, NULL, NULL, c->param);
1518  if (!c->cascaded_context[2])
1519  return -1;
1520  }
1521  return 0;
1522  }
1523 
1524  if (isBayer(srcFormat)) {
1525  if (!unscaled ||
1526  (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
1527  enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
1528 
1530  srcW, srcH, tmpFormat, 64);
1531  if (ret < 0)
1532  return ret;
1533 
1534  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1535  srcW, srcH, tmpFormat,
1536  flags, srcFilter, NULL, c->param);
1537  if (!c->cascaded_context[0])
1538  return -1;
1539 
1540  c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
1541  dstW, dstH, dstFormat,
1542  flags, NULL, dstFilter, c->param);
1543  if (!c->cascaded_context[1])
1544  return -1;
1545  return 0;
1546  }
1547  }
1548 
1549  if (unscaled && c->srcBpc == 8 && dstFormat == AV_PIX_FMT_GRAYF32){
1550  for (i = 0; i < 256; ++i){
1551  c->uint2float_lut[i] = (float)i * float_mult;
1552  }
1553  }
1554 
1555  // float will be converted to uint16_t
1556  if ((srcFormat == AV_PIX_FMT_GRAYF32BE || srcFormat == AV_PIX_FMT_GRAYF32LE) &&
1557  (!unscaled || unscaled && dstFormat != srcFormat && (srcFormat != AV_PIX_FMT_GRAYF32 ||
1558  dstFormat != AV_PIX_FMT_GRAY8))){
1559  c->srcBpc = 16;
1560  }
1561 
1562  if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
1563  enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
1564 
1565  if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
1566  if (!unscaled ||
1567  dstFormat != tmpFormat ||
1568  usesHFilter || usesVFilter ||
1569  c->srcRange != c->dstRange
1570  ) {
1571  c->cascaded_mainindex = 1;
1573  srcW, srcH, tmpFormat, 64);
1574  if (ret < 0)
1575  return ret;
1576 
1577  c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
1578  srcW, srcH, tmpFormat,
1579  flags, c->param);
1580  if (!c->cascaded_context[0])
1581  return -1;
1583  ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
1584  if (ret < 0)
1585  return ret;
1586 
1587  c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
1588  dstW, dstH, dstFormat,
1589  flags, c->param);
1590  if (!c->cascaded_context[1])
1591  return -1;
1592 
1593  c->cascaded_context[1]->srcRange = c->srcRange;
1594  c->cascaded_context[1]->dstRange = c->dstRange;
1595  ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
1596  if (ret < 0)
1597  return ret;
1598 
1599  return 0;
1600  }
1601  }
1602 
1603 #if HAVE_MMAP && HAVE_MPROTECT && defined(MAP_ANONYMOUS)
1604 #define USE_MMAP 1
1605 #else
1606 #define USE_MMAP 0
1607 #endif
1608 
1609  /* precalculate horizontal scaler filter coefficients */
1610  {
1611 #if HAVE_MMXEXT_INLINE
1612 // can't downscale !!!
1613  if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
1615  NULL, NULL, 8);
1617  NULL, NULL, NULL, 4);
1618 
1619 #if USE_MMAP
1620  c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
1621  PROT_READ | PROT_WRITE,
1622  MAP_PRIVATE | MAP_ANONYMOUS,
1623  -1, 0);
1624  c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
1625  PROT_READ | PROT_WRITE,
1626  MAP_PRIVATE | MAP_ANONYMOUS,
1627  -1, 0);
1628 #elif HAVE_VIRTUALALLOC
1629  c->lumMmxextFilterCode = VirtualAlloc(NULL,
1631  MEM_COMMIT,
1632  PAGE_EXECUTE_READWRITE);
1633  c->chrMmxextFilterCode = VirtualAlloc(NULL,
1635  MEM_COMMIT,
1636  PAGE_EXECUTE_READWRITE);
1637 #else
1640 #endif
1641 
1642 #ifdef MAP_ANONYMOUS
1643  if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
1644 #else
1646 #endif
1647  {
1648  av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
1649  return AVERROR(ENOMEM);
1650  }
1651 
1652  FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
1653  FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
1654  FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
1655  FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
1656 
1658  c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
1660  c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
1661 
1662 #if USE_MMAP
1663  if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
1664  || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
1665  av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
1666  goto fail;
1667  }
1668 #endif
1669  } else
1670 #endif /* HAVE_MMXEXT_INLINE */
1671  {
1672  const int filterAlign = X86_MMX(cpu_flags) ? 4 :
1673  PPC_ALTIVEC(cpu_flags) ? 8 :
1674  have_neon(cpu_flags) ? 8 : 1;
1675 
1676  if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
1677  &c->hLumFilterSize, c->lumXInc,
1678  srcW, dstW, filterAlign, 1 << 14,
1679  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1680  cpu_flags, srcFilter->lumH, dstFilter->lumH,
1681  c->param,
1682  get_local_pos(c, 0, 0, 0),
1683  get_local_pos(c, 0, 0, 0))) < 0)
1684  goto fail;
1685  if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
1686  &c->hChrFilterSize, c->chrXInc,
1687  c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
1688  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1689  cpu_flags, srcFilter->chrH, dstFilter->chrH,
1690  c->param,
1692  get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
1693  goto fail;
1694  }
1695  } // initialize horizontal stuff
1696 
1697  /* precalculate vertical scaler filter coefficients */
1698  {
1699  const int filterAlign = X86_MMX(cpu_flags) ? 2 :
1700  PPC_ALTIVEC(cpu_flags) ? 8 :
1701  have_neon(cpu_flags) ? 2 : 1;
1702 
1703  if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
1704  c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
1705  (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1706  cpu_flags, srcFilter->lumV, dstFilter->lumV,
1707  c->param,
1708  get_local_pos(c, 0, 0, 1),
1709  get_local_pos(c, 0, 0, 1))) < 0)
1710  goto fail;
1711  if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
1712  c->chrYInc, c->chrSrcH, c->chrDstH,
1713  filterAlign, (1 << 12),
1714  (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1715  cpu_flags, srcFilter->chrV, dstFilter->chrV,
1716  c->param,
1718  get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
1719 
1720  goto fail;
1721 
1722 #if HAVE_ALTIVEC
1723  FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
1724  FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
1725 
1726  for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
1727  int j;
1728  short *p = (short *)&c->vYCoeffsBank[i];
1729  for (j = 0; j < 8; j++)
1730  p[j] = c->vLumFilter[i];
1731  }
1732 
1733  for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
1734  int j;
1735  short *p = (short *)&c->vCCoeffsBank[i];
1736  for (j = 0; j < 8; j++)
1737  p[j] = c->vChrFilter[i];
1738  }
1739 #endif
1740  }
1741 
1742  for (i = 0; i < 4; i++)
1743  FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
1744 
1745  c->needAlpha = (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) ? 1 : 0;
1746 
1747  // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
1748  c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
1749  c->uv_offx2 = dst_stride + 16;
1750 
1751  av_assert0(c->chrDstH <= dstH);
1752 
1753  if (flags & SWS_PRINT_INFO) {
1754  const char *scaler = NULL, *cpucaps;
1755 
1756  for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
1757  if (flags & scale_algorithms[i].flag) {
1758  scaler = scale_algorithms[i].description;
1759  break;
1760  }
1761  }
1762  if (!scaler)
1763  scaler = "ehh flags invalid?!";
1764  av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
1765  scaler,
1766  av_get_pix_fmt_name(srcFormat),
1767 #ifdef DITHER1XBPP
1768  dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
1769  dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
1770  dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
1771  "dithered " : "",
1772 #else
1773  "",
1774 #endif
1775  av_get_pix_fmt_name(dstFormat));
1776 
1777  if (INLINE_MMXEXT(cpu_flags))
1778  cpucaps = "MMXEXT";
1779  else if (INLINE_AMD3DNOW(cpu_flags))
1780  cpucaps = "3DNOW";
1781  else if (INLINE_MMX(cpu_flags))
1782  cpucaps = "MMX";
1783  else if (PPC_ALTIVEC(cpu_flags))
1784  cpucaps = "AltiVec";
1785  else
1786  cpucaps = "C";
1787 
1788  av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
1789 
1790  av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1791  av_log(c, AV_LOG_DEBUG,
1792  "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1793  c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1794  av_log(c, AV_LOG_DEBUG,
1795  "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1796  c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
1797  c->chrXInc, c->chrYInc);
1798  }
1799 
1800  /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
1801  if (unscaled && !usesHFilter && !usesVFilter &&
1803  isALPHA(srcFormat) &&
1804  (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
1805  alphaless_fmt(srcFormat) == dstFormat
1806  ) {
1808 
1809  if (flags & SWS_PRINT_INFO)
1810  av_log(c, AV_LOG_INFO,
1811  "using alpha blendaway %s -> %s special converter\n",
1812  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1813  return 0;
1814  }
1815 
1816  /* unscaled special cases */
1817  if (unscaled && !usesHFilter && !usesVFilter &&
1818  (c->srcRange == c->dstRange || isAnyRGB(dstFormat) ||
1819  isFloat(srcFormat) || isFloat(dstFormat))){
1821 
1822  if (c->swscale) {
1823  if (flags & SWS_PRINT_INFO)
1824  av_log(c, AV_LOG_INFO,
1825  "using unscaled %s -> %s special converter\n",
1826  av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
1827  return 0;
1828  }
1829  }
1830 
1831  c->swscale = ff_getSwsFunc(c);
1832  return ff_init_filters(c);
1833 fail: // FIXME replace things by appropriate error codes
1834  if (ret == RETCODE_USE_CASCADE) {
1835  int tmpW = sqrt(srcW * (int64_t)dstW);
1836  int tmpH = sqrt(srcH * (int64_t)dstH);
1837  enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
1838 
1839  if (isALPHA(srcFormat))
1840  tmpFormat = AV_PIX_FMT_YUVA420P;
1841 
1842  if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
1843  return AVERROR(EINVAL);
1844 
1846  tmpW, tmpH, tmpFormat, 64);
1847  if (ret < 0)
1848  return ret;
1849 
1850  c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
1851  tmpW, tmpH, tmpFormat,
1852  flags, srcFilter, NULL, c->param);
1853  if (!c->cascaded_context[0])
1854  return -1;
1855 
1856  c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
1857  dstW, dstH, dstFormat,
1858  flags, NULL, dstFilter, c->param);
1859  if (!c->cascaded_context[1])
1860  return -1;
1861  return 0;
1862  }
1863  return -1;
1864 }
1865 
1866 SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
1867  int dstW, int dstH, enum AVPixelFormat dstFormat,
1868  int flags, const double *param)
1869 {
1870  SwsContext *c;
1871 
1872  if (!(c = sws_alloc_context()))
1873  return NULL;
1874 
1875  c->flags = flags;
1876  c->srcW = srcW;
1877  c->srcH = srcH;
1878  c->dstW = dstW;
1879  c->dstH = dstH;
1880  c->srcFormat = srcFormat;
1881  c->dstFormat = dstFormat;
1882 
1883  if (param) {
1884  c->param[0] = param[0];
1885  c->param[1] = param[1];
1886  }
1887 
1888  return c;
1889 }
1890 
1891 SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
1892  int dstW, int dstH, enum AVPixelFormat dstFormat,
1893  int flags, SwsFilter *srcFilter,
1894  SwsFilter *dstFilter, const double *param)
1895 {
1896  SwsContext *c;
1897 
1898  c = sws_alloc_set_opts(srcW, srcH, srcFormat,
1899  dstW, dstH, dstFormat,
1900  flags, param);
1901  if (!c)
1902  return NULL;
1903 
1904  if (sws_init_context(c, srcFilter, dstFilter) < 0) {
1905  sws_freeContext(c);
1906  return NULL;
1907  }
1908 
1909  return c;
1910 }
1911 
1912 static int isnan_vec(SwsVector *a)
1913 {
1914  int i;
1915  for (i=0; i<a->length; i++)
1916  if (isnan(a->coeff[i]))
1917  return 1;
1918  return 0;
1919 }
1920 
1921 static void makenan_vec(SwsVector *a)
1922 {
1923  int i;
1924  for (i=0; i<a->length; i++)
1925  a->coeff[i] = NAN;
1926 }
1927 
1928 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1929  float lumaSharpen, float chromaSharpen,
1930  float chromaHShift, float chromaVShift,
1931  int verbose)
1932 {
1933  SwsFilter *filter = av_malloc(sizeof(SwsFilter));
1934  if (!filter)
1935  return NULL;
1936 
1937  if (lumaGBlur != 0.0) {
1938  filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
1939  filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
1940  } else {
1941  filter->lumH = sws_getIdentityVec();
1942  filter->lumV = sws_getIdentityVec();
1943  }
1944 
1945  if (chromaGBlur != 0.0) {
1946  filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
1947  filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
1948  } else {
1949  filter->chrH = sws_getIdentityVec();
1950  filter->chrV = sws_getIdentityVec();
1951  }
1952 
1953  if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
1954  goto fail;
1955 
1956  if (chromaSharpen != 0.0) {
1957  SwsVector *id = sws_getIdentityVec();
1958  if (!id)
1959  goto fail;
1960  sws_scaleVec(filter->chrH, -chromaSharpen);
1961  sws_scaleVec(filter->chrV, -chromaSharpen);
1962  sws_addVec(filter->chrH, id);
1963  sws_addVec(filter->chrV, id);
1964  sws_freeVec(id);
1965  }
1966 
1967  if (lumaSharpen != 0.0) {
1968  SwsVector *id = sws_getIdentityVec();
1969  if (!id)
1970  goto fail;
1971  sws_scaleVec(filter->lumH, -lumaSharpen);
1972  sws_scaleVec(filter->lumV, -lumaSharpen);
1973  sws_addVec(filter->lumH, id);
1974  sws_addVec(filter->lumV, id);
1975  sws_freeVec(id);
1976  }
1977 
1978  if (chromaHShift != 0.0)
1979  sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
1980 
1981  if (chromaVShift != 0.0)
1982  sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
1983 
1984  sws_normalizeVec(filter->chrH, 1.0);
1985  sws_normalizeVec(filter->chrV, 1.0);
1986  sws_normalizeVec(filter->lumH, 1.0);
1987  sws_normalizeVec(filter->lumV, 1.0);
1988 
1989  if (isnan_vec(filter->chrH) ||
1990  isnan_vec(filter->chrV) ||
1991  isnan_vec(filter->lumH) ||
1992  isnan_vec(filter->lumV))
1993  goto fail;
1994 
1995  if (verbose)
1996  sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
1997  if (verbose)
1998  sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
1999 
2000  return filter;
2001 
2002 fail:
2003  sws_freeVec(filter->lumH);
2004  sws_freeVec(filter->lumV);
2005  sws_freeVec(filter->chrH);
2006  sws_freeVec(filter->chrV);
2007  av_freep(&filter);
2008  return NULL;
2009 }
2010 
2012 {
2013  SwsVector *vec;
2014 
2015  if(length <= 0 || length > INT_MAX/ sizeof(double))
2016  return NULL;
2017 
2018  vec = av_malloc(sizeof(SwsVector));
2019  if (!vec)
2020  return NULL;
2021  vec->length = length;
2022  vec->coeff = av_malloc(sizeof(double) * length);
2023  if (!vec->coeff)
2024  av_freep(&vec);
2025  return vec;
2026 }
2027 
2028 SwsVector *sws_getGaussianVec(double variance, double quality)
2029 {
2030  const int length = (int)(variance * quality + 0.5) | 1;
2031  int i;
2032  double middle = (length - 1) * 0.5;
2033  SwsVector *vec;
2034 
2035  if(variance < 0 || quality < 0)
2036  return NULL;
2037 
2038  vec = sws_allocVec(length);
2039 
2040  if (!vec)
2041  return NULL;
2042 
2043  for (i = 0; i < length; i++) {
2044  double dist = i - middle;
2045  vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
2046  sqrt(2 * variance * M_PI);
2047  }
2048 
2049  sws_normalizeVec(vec, 1.0);
2050 
2051  return vec;
2052 }
2053 
2054 /**
2055  * Allocate and return a vector with length coefficients, all
2056  * with the same value c.
2057  */
2058 #if !FF_API_SWS_VECTOR
2059 static
2060 #endif
2062 {
2063  int i;
2064  SwsVector *vec = sws_allocVec(length);
2065 
2066  if (!vec)
2067  return NULL;
2068 
2069  for (i = 0; i < length; i++)
2070  vec->coeff[i] = c;
2071 
2072  return vec;
2073 }
2074 
2075 /**
2076  * Allocate and return a vector with just one coefficient, with
2077  * value 1.0.
2078  */
2079 #if !FF_API_SWS_VECTOR
2080 static
2081 #endif
2083 {
2084  return sws_getConstVec(1.0, 1);
2085 }
2086 
2087 static double sws_dcVec(SwsVector *a)
2088 {
2089  int i;
2090  double sum = 0;
2091 
2092  for (i = 0; i < a->length; i++)
2093  sum += a->coeff[i];
2094 
2095  return sum;
2096 }
2097 
2098 void sws_scaleVec(SwsVector *a, double scalar)
2099 {
2100  int i;
2101 
2102  for (i = 0; i < a->length; i++)
2103  a->coeff[i] *= scalar;
2104 }
2105 
2107 {
2108  sws_scaleVec(a, height / sws_dcVec(a));
2109 }
2110 
2111 #if FF_API_SWS_VECTOR
2113 {
2114  int length = a->length + b->length - 1;
2115  int i, j;
2116  SwsVector *vec = sws_getConstVec(0.0, length);
2117 
2118  if (!vec)
2119  return NULL;
2120 
2121  for (i = 0; i < a->length; i++) {
2122  for (j = 0; j < b->length; j++) {
2123  vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
2124  }
2125  }
2126 
2127  return vec;
2128 }
2129 #endif
2130 
2132 {
2133  int length = FFMAX(a->length, b->length);
2134  int i;
2135  SwsVector *vec = sws_getConstVec(0.0, length);
2136 
2137  if (!vec)
2138  return NULL;
2139 
2140  for (i = 0; i < a->length; i++)
2141  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2142  for (i = 0; i < b->length; i++)
2143  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
2144 
2145  return vec;
2146 }
2147 
2148 #if FF_API_SWS_VECTOR
2150 {
2151  int length = FFMAX(a->length, b->length);
2152  int i;
2153  SwsVector *vec = sws_getConstVec(0.0, length);
2154 
2155  if (!vec)
2156  return NULL;
2157 
2158  for (i = 0; i < a->length; i++)
2159  vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
2160  for (i = 0; i < b->length; i++)
2161  vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
2162 
2163  return vec;
2164 }
2165 #endif
2166 
2167 /* shift left / or right if "shift" is negative */
2169 {
2170  int length = a->length + FFABS(shift) * 2;
2171  int i;
2172  SwsVector *vec = sws_getConstVec(0.0, length);
2173 
2174  if (!vec)
2175  return NULL;
2176 
2177  for (i = 0; i < a->length; i++) {
2178  vec->coeff[i + (length - 1) / 2 -
2179  (a->length - 1) / 2 - shift] = a->coeff[i];
2180  }
2181 
2182  return vec;
2183 }
2184 
2185 #if !FF_API_SWS_VECTOR
2186 static
2187 #endif
2189 {
2190  SwsVector *shifted = sws_getShiftedVec(a, shift);
2191  if (!shifted) {
2192  makenan_vec(a);
2193  return;
2194  }
2195  av_free(a->coeff);
2196  a->coeff = shifted->coeff;
2197  a->length = shifted->length;
2198  av_free(shifted);
2199 }
2200 
2201 #if !FF_API_SWS_VECTOR
2202 static
2203 #endif
2205 {
2206  SwsVector *sum = sws_sumVec(a, b);
2207  if (!sum) {
2208  makenan_vec(a);
2209  return;
2210  }
2211  av_free(a->coeff);
2212  a->coeff = sum->coeff;
2213  a->length = sum->length;
2214  av_free(sum);
2215 }
2216 
2217 #if FF_API_SWS_VECTOR
2219 {
2220  SwsVector *diff = sws_diffVec(a, b);
2221  if (!diff) {
2222  makenan_vec(a);
2223  return;
2224  }
2225  av_free(a->coeff);
2226  a->coeff = diff->coeff;
2227  a->length = diff->length;
2228  av_free(diff);
2229 }
2230 
2232 {
2233  SwsVector *conv = sws_getConvVec(a, b);
2234  if (!conv) {
2235  makenan_vec(a);
2236  return;
2237  }
2238  av_free(a->coeff);
2239  a->coeff = conv->coeff;
2240  a->length = conv->length;
2241  av_free(conv);
2242 }
2243 
2245 {
2246  SwsVector *vec = sws_allocVec(a->length);
2247 
2248  if (!vec)
2249  return NULL;
2250 
2251  memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
2252 
2253  return vec;
2254 }
2255 #endif
2256 
2257 /**
2258  * Print with av_log() a textual representation of the vector a
2259  * if log_level <= av_log_level.
2260  */
2261 #if !FF_API_SWS_VECTOR
2262 static
2263 #endif
2264 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
2265 {
2266  int i;
2267  double max = 0;
2268  double min = 0;
2269  double range;
2270 
2271  for (i = 0; i < a->length; i++)
2272  if (a->coeff[i] > max)
2273  max = a->coeff[i];
2274 
2275  for (i = 0; i < a->length; i++)
2276  if (a->coeff[i] < min)
2277  min = a->coeff[i];
2278 
2279  range = max - min;
2280 
2281  for (i = 0; i < a->length; i++) {
2282  int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
2283  av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
2284  for (; x > 0; x--)
2285  av_log(log_ctx, log_level, " ");
2286  av_log(log_ctx, log_level, "|\n");
2287  }
2288 }
2289 
2291 {
2292  if (!a)
2293  return;
2294  av_freep(&a->coeff);
2295  a->length = 0;
2296  av_free(a);
2297 }
2298 
2300 {
2301  if (!filter)
2302  return;
2303 
2304  sws_freeVec(filter->lumH);
2305  sws_freeVec(filter->lumV);
2306  sws_freeVec(filter->chrH);
2307  sws_freeVec(filter->chrV);
2308  av_free(filter);
2309 }
2310 
2312 {
2313  int i;
2314  if (!c)
2315  return;
2316 
2317  for (i = 0; i < 4; i++)
2318  av_freep(&c->dither_error[i]);
2319 
2320  av_freep(&c->vLumFilter);
2321  av_freep(&c->vChrFilter);
2322  av_freep(&c->hLumFilter);
2323  av_freep(&c->hChrFilter);
2324 #if HAVE_ALTIVEC
2325  av_freep(&c->vYCoeffsBank);
2326  av_freep(&c->vCCoeffsBank);
2327 #endif
2328 
2329  av_freep(&c->vLumFilterPos);
2330  av_freep(&c->vChrFilterPos);
2331  av_freep(&c->hLumFilterPos);
2332  av_freep(&c->hChrFilterPos);
2333 
2334 #if HAVE_MMX_INLINE
2335 #if USE_MMAP
2336  if (c->lumMmxextFilterCode)
2338  if (c->chrMmxextFilterCode)
2340 #elif HAVE_VIRTUALALLOC
2341  if (c->lumMmxextFilterCode)
2342  VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
2343  if (c->chrMmxextFilterCode)
2344  VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
2345 #else
2348 #endif
2351 #endif /* HAVE_MMX_INLINE */
2352 
2353  av_freep(&c->yuvTable);
2355 
2359  memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
2360  av_freep(&c->cascaded_tmp[0]);
2361  av_freep(&c->cascaded1_tmp[0]);
2362 
2363  av_freep(&c->gamma);
2364  av_freep(&c->inv_gamma);
2365 
2366  ff_free_filters(c);
2367 
2368  av_free(c);
2369 }
2370 
2371 struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
2372  int srcH, enum AVPixelFormat srcFormat,
2373  int dstW, int dstH,
2374  enum AVPixelFormat dstFormat, int flags,
2375  SwsFilter *srcFilter,
2376  SwsFilter *dstFilter,
2377  const double *param)
2378 {
2379  static const double default_param[2] = { SWS_PARAM_DEFAULT,
2381  int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
2382  src_v_chr_pos = -513, dst_v_chr_pos = -513;
2383 
2384  if (!param)
2385  param = default_param;
2386 
2387  if (context &&
2388  (context->srcW != srcW ||
2389  context->srcH != srcH ||
2390  context->srcFormat != srcFormat ||
2391  context->dstW != dstW ||
2392  context->dstH != dstH ||
2393  context->dstFormat != dstFormat ||
2394  context->flags != flags ||
2395  context->param[0] != param[0] ||
2396  context->param[1] != param[1])) {
2397 
2398  av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
2399  av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
2400  av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
2401  av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
2402  sws_freeContext(context);
2403  context = NULL;
2404  }
2405 
2406  if (!context) {
2407  if (!(context = sws_alloc_context()))
2408  return NULL;
2409  context->srcW = srcW;
2410  context->srcH = srcH;
2411  context->srcFormat = srcFormat;
2412  context->dstW = dstW;
2413  context->dstH = dstH;
2414  context->dstFormat = dstFormat;
2415  context->flags = flags;
2416  context->param[0] = param[0];
2417  context->param[1] = param[1];
2418 
2419  av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
2420  av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
2421  av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
2422  av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
2423 
2424  if (sws_init_context(context, srcFilter, dstFilter) < 0) {
2425  sws_freeContext(context);
2426  return NULL;
2427  }
2428  }
2429  return context;
2430 }
packed YUV 4:2:2, 16bpp, Cb Y0 Cr Y1
Definition: pixfmt.h:81
SwsVector * chrV
Definition: swscale.h:119
IEEE-754 single precision Y, 32bpp, big-endian.
Definition: pixfmt.h:340
uint8_t is_supported_out
Definition: utils.c:94
planar GBR 4:4:4:4 40bpp, little-endian
Definition: pixfmt.h:291
#define NULL
Definition: coverity.c:32
int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported output format, 0 otherwise.
Definition: utils.c:277
static const FormatEntry format_entries[AV_PIX_FMT_NB]
Definition: utils.c:98
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:166
static av_always_inline int isAnyRGB(enum AVPixelFormat pix_fmt)
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:275
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:252
static enum AVPixelFormat pix_fmt
static SwsVector * sws_sumVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2131
av_cold void ff_yuv2rgb_init_tables_ppc(SwsContext *c, const int inv_table[4], int brightness, int contrast, int saturation)
static int shift(int a, int b)
Definition: sonic.c:82
static int handle_0alpha(enum AVPixelFormat *format)
Definition: utils.c:1049
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:245
#define SWS_SRC_V_CHR_DROP_MASK
Definition: swscale.h:70
static const char * format[]
Definition: af_aiir.c:338
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2522
int chrSrcH
Height of source chroma planes.
#define FF_ALLOCZ_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:167
#define SWS_X
Definition: swscale.h:61
int ff_free_filters(SwsContext *c)
Definition: slice.c:377
static av_always_inline int isPlanarRGB(enum AVPixelFormat pix_fmt)
#define LIBSWSCALE_VERSION_MICRO
Definition: version.h:31
#define RV_IDX
#define SWS_BICUBIC
Definition: swscale.h:60
uint8_t * chrMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for chroma planes.
static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
Definition: utils.c:728
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:249
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:159
#define BV_IDX
static int conv(int samples, float **pcm, char *buf, int channels)
Definition: libvorbisdec.c:128
#define C
8 bits gray, 8 bits alpha
Definition: pixfmt.h:143
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:208
#define ARCH_PPC
Definition: config.h:29
uint8_t * lumMmxextFilterCode
Runtime-generated MMXEXT horizontal fast bilinear scaler code for luma/alpha planes.
const char * fmt
Definition: avisynth_c.h:861
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
misc image utilities
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
SwsVector * lumV
Definition: swscale.h:117
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), 12b alpha, little-endian ...
Definition: pixfmt.h:346
int16_t * rgbgamma
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
packed RGB 1:2:1 bitstream, 4bpp, (msb)1B 2G 1R(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:84
static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
Definition: utils.c:302
SwsAlphaBlend alphablend
int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
Definition: utils.c:993
int av_image_alloc(uint8_t *pointers[4], int linesizes[4], int w, int h, enum AVPixelFormat pix_fmt, int align)
Allocate an image with size w and h and pixel format pix_fmt, and fill pointers and linesizes accordi...
Definition: imgutils.c:192
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:162
int acc
Definition: yuv2rgb.c:554
int av_get_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel used by the pixel format described by pixdesc.
Definition: pixdesc.c:2474
SwsVector * sws_getGaussianVec(double variance, double quality)
Return a normalized Gaussian curve used to filter stuff quality = 3 is high quality, lower is lower quality.
Definition: utils.c:2028
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:250
bayer, GBGB..(odd line), RGRG..(even line), 8-bit samples */
Definition: pixfmt.h:262
void av_opt_set_defaults(void *s)
Set the values of all AVOption fields to their default values.
Definition: opt.c:1305
int vChrDrop
Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user...
bayer, GRGR..(odd line), BGBG..(even line), 8-bit samples */
Definition: pixfmt.h:263
int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
Definition: yuv2rgb.c:773
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:207
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:108
#define SWS_BICUBLIN
Definition: swscale.h:64
int16_t * rgbgammainv
const char * b
Definition: vf_curves.c:116
static double getSplineCoeff(double a, double b, double c, double d, double dist)
Definition: utils.c:289
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:403
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:270
#define GV_IDX
int dstFormatBpp
Number of bits per pixel of the destination pixel format.
#define AV_PIX_FMT_BGRA64
Definition: pixfmt.h:382
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:189
static av_always_inline int is16BPS(enum AVPixelFormat pix_fmt)
Convenience header that includes libavutil&#39;s core.
static int handle_jpeg(enum AVPixelFormat *format)
Definition: utils.c:1011
int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
Definition: utils.c:283
static int isnan_vec(SwsVector *a)
Definition: utils.c:1912
int16_t * xyzgammainv
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), little-endian
Definition: pixfmt.h:111
#define SWS_SRC_V_CHR_DROP_SHIFT
Definition: swscale.h:71
const char * swscale_configuration(void)
Return the libswscale build-time configuration.
Definition: utils.c:81
planar GBR 4:4:4 36bpp, little-endian
Definition: pixfmt.h:255
The following 12 formats have the disadvantage of needing 1 format for each bit depth.
Definition: pixfmt.h:156
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:140
static atomic_int cpu_flags
Definition: cpu.c:50
const int32_t ff_yuv2rgb_coeffs[11][4]
Definition: yuv2rgb.c:49
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Definition: pixfmt.h:239
int srcRange
0 = MPG YUV range, 1 = JPG YUV range (source image).
bayer, BGBG..(odd line), GRGR..(even line), 8-bit samples */
Definition: pixfmt.h:260
#define RGB_GAMMA
#define SWS_PRINT_INFO
Definition: swscale.h:75
Y , 12bpp, little-endian.
Definition: pixfmt.h:296
enum AVPixelFormat av_pix_fmt_swap_endianness(enum AVPixelFormat pix_fmt)
Utility function to swap the endianness of a pixel format.
Definition: pixdesc.c:2618
planar GBR 4:4:4 36bpp, big-endian
Definition: pixfmt.h:254
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:131
packed RGB 1:2:1 bitstream, 4bpp, (msb)1R 2G 1B(lsb), a byte contains two pixels, the first pixel in ...
Definition: pixfmt.h:87
#define FFMPEG_LICENSE
Definition: config.h:5
Macro definitions for various function/variable attributes.
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), little-endian
Definition: pixfmt.h:106
int srcH
Height of source luma/alpha planes.
packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb)
Definition: pixfmt.h:85
#define SWS_BILINEAR
Definition: swscale.h:59
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), little-endian ...
Definition: pixfmt.h:179
void sws_convVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2231
#define RU_IDX
planar GBRA 4:4:4:4 64bpp, big-endian
Definition: pixfmt.h:216
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:190
static void filter(int16_t *output, ptrdiff_t out_stride, int16_t *low, ptrdiff_t low_stride, int16_t *high, ptrdiff_t high_stride, int len, int clip)
Definition: cfhd.c:153
static uint16_t * alloc_gamma_tbl(double e)
Definition: utils.c:1093
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:101
int chrDstVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination i...
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), 12b alpha, little-endian ...
Definition: pixfmt.h:344
ptrdiff_t uv_off
offset (in pixels) between u and v planes
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
Definition: pixdesc.h:117
uint8_t
#define av_cold
Definition: attributes.h:82
#define av_malloc(s)
int length
number of coefficients in the vector
Definition: swscale.h:111
av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
Initialize the swscaler context sws_context.
Definition: utils.c:1165
#define SWS_LANCZOS
Definition: swscale.h:67
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
Definition: pixfmt.h:238
8 bits with AV_PIX_FMT_RGB32 palette
Definition: pixfmt.h:77
AVOptions.
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:103
SwsVector * sws_cloneVec(SwsVector *a)
Definition: utils.c:2244
int vChrFilterSize
Vertical filter size for chroma pixels.
#define f(width, name)
Definition: cbs_vp9.c:255
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:268
bayer, GBGB..(odd line), RGRG..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:269
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:205
packed RGB 4:4:4, 16bpp, (msb)4X 4R 4G 4B(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:139
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:251
#define emms_c()
Definition: internal.h:55
#define SWS_FULL_CHR_H_INT
Definition: swscale.h:79
int cascaded_tmpStride[4]
packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), big-endian
Definition: pixfmt.h:105
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:94
planar YUV 4:2:0 40bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:191
#define SWS_FAST_BILINEAR
Definition: swscale.h:58
SwsVector * sws_getConstVec(double c, int length)
Allocate and return a vector with length coefficients, all with the same value c. ...
Definition: utils.c:2061
planar YUV 4:4:0,20bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:276
planar GBR 4:4:4 48bpp, big-endian
Definition: pixfmt.h:174
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range...
Definition: pixfmt.h:100
Y , 9bpp, little-endian.
Definition: pixfmt.h:316
SwsContext * sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1891
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:79
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:194
#define AV_PIX_FMT_BGR48
Definition: pixfmt.h:378
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
int16_t rgb2xyz_matrix[3][4]
#define AV_PIX_FMT_YUV444P16
Definition: pixfmt.h:400
Y , 10bpp, little-endian.
Definition: pixfmt.h:298
#define max(a, b)
Definition: cuda_runtime.h:33
external API header
enum AVPixelFormat dstFormat
Destination pixel format.
#define isALPHA(x)
Definition: swscale.c:51
int ff_sws_alphablendaway(SwsContext *c, const uint8_t *src[], int srcStride[], int srcSliceY, int srcSliceH, uint8_t *dst[], int dstStride[])
Definition: alphablend.c:23
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), big-endian
Definition: pixfmt.h:278
uint16_t * inv_gamma
#define A(x)
Definition: vp56_arith.h:28
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:264
#define FFALIGN(x, a)
Definition: macros.h:48
int chrSrcHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source imag...
#define av_log(a,...)
static av_always_inline int isYUV(enum AVPixelFormat pix_fmt)
float uint2float_lut[256]
static SwsVector * sws_getShiftedVec(SwsVector *a, int shift)
Definition: utils.c:2168
static const uint16_t table[]
Definition: prosumer.c:206
uint64_t vRounder
#define ROUNDED_DIV(a, b)
Definition: common.h:56
int32_t * vChrFilterPos
Array of vertical filter starting positions for each dst[i] for chroma planes.
int dstH
Height of destination luma/alpha planes.
int * dither_error[4]
planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:157
SwsFilter * sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, float lumaSharpen, float chromaSharpen, float chromaHShift, float chromaVShift, int verbose)
Definition: utils.c:1928
planar GBR 4:4:4 27bpp, big-endian
Definition: pixfmt.h:170
#define INLINE_MMX(flags)
Definition: cpu.h:86
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:165
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:176
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:259
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
16 bits gray, 16 bits alpha (big-endian)
Definition: pixfmt.h:212
like NV12, with 16bpp per component, big-endian
Definition: pixfmt.h:301
int32_t * hChrFilterPos
Array of horizontal filter starting positions for each dst[i] for chroma planes.
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:136
#define AVERROR(e)
Definition: error.h:43
int hLumFilterSize
Horizontal filter size for luma/alpha pixels.
SwsFunc ff_getSwsFunc(SwsContext *c)
Return function pointer to fastest main scaler path function depending on architecture and available ...
Definition: swscale.c:598
const char * description
human-readable description
Definition: utils.c:313
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2550
#define B
Definition: huffyuvdsp.h:32
#define PPC_ALTIVEC(flags)
Definition: cpu.h:25
#define SWS_MAX_REDUCE_CUTOFF
Definition: swscale.h:87
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:95
void sws_subVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2218
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
Print with av_log() a textual representation of the vector a if log_level <= av_log_level.
Definition: utils.c:2264
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), big-endian
Definition: pixfmt.h:182
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:161
int av_opt_set_int(void *obj, const char *name, int64_t val, int search_flags)
Definition: opt.c:568
planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:89
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:373
simple assert() macros that are a bit more flexible than ISO C assert().
planar YUV 4:2:2,28bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:248
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:236
like NV12, with 16bpp per component, little-endian
Definition: pixfmt.h:300
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:134
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:390
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, big-endian
Definition: pixfmt.h:285
#define SWS_CS_DEFAULT
Definition: swscale.h:95
#define X86_MMX(flags)
Definition: cpu.h:30
planar YUV 4:4:4 36bpp, (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:183
#define FFMAX(a, b)
Definition: common.h:94
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:92
void sws_scaleVec(SwsVector *a, double scalar)
Scale all the coefficients of a by the scalar value.
Definition: utils.c:2098
int chrDstW
Width of destination chroma planes.
SwsVector * lumH
Definition: swscale.h:116
#define fail()
Definition: checkasm.h:120
int8_t exp
Definition: eval.c:72
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as lit...
Definition: pixfmt.h:149
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:93
uint8_t * cascaded1_tmp[4]
void sws_normalizeVec(SwsVector *a, double height)
Scale all the coefficients of a so that their sum equals height.
Definition: utils.c:2106
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, big-endian)
Definition: pixfmt.h:184
struct SwsContext * sws_getCachedContext(struct SwsContext *context, int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
Check if context can be reused, otherwise reallocate a new one.
Definition: utils.c:2371
#define LICENSE_PREFIX
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
#define RETCODE_USE_CASCADE
static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
Definition: utils.c:1107
int32_t * hLumFilterPos
Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
void sws_freeFilter(SwsFilter *filter)
Definition: utils.c:2299
int hChrFilterSize
Horizontal filter size for chroma pixels.
int16_t * xyzgamma
SwsVector * sws_allocVec(int length)
Allocate and return an uninitialized vector with length coefficients.
Definition: utils.c:2011
planar YUV 4:4:4, 24bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:348
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:385
as above, but U and V bytes are swapped
Definition: pixfmt.h:90
int dstRange
0 = MPG YUV range, 1 = JPG YUV range (destination image).
planar GBR 4:4:4:4 48bpp, big-endian
Definition: pixfmt.h:287
#define RGB2YUV_SHIFT
ptrdiff_t uv_offx2
offset (in bytes) between u and v planes
planar GBR 4:4:4:4 40bpp, big-endian
Definition: pixfmt.h:290
#define APCK_SIZE
#define have_neon(flags)
Definition: cpu.h:26
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:406
#define AV_PIX_FMT_GRAY16
Definition: pixfmt.h:371
#define NAN
Definition: mathematics.h:64
#define FFMIN(a, b)
Definition: common.h:96
packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb)
Definition: pixfmt.h:88
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:78
#define SWS_GAUSS
Definition: swscale.h:65
SwsVector * chrH
Definition: swscale.h:118
uint8_t * formatConvBuffer
#define INLINE_AMD3DNOW(flags)
Definition: cpu.h:84
static av_always_inline int isBayer(enum AVPixelFormat pix_fmt)
av_cold void ff_sws_rgb2rgb_init(void)
Definition: rgb2rgb.c:137
int32_t
#define RY_IDX
void sws_shiftVec(SwsVector *a, int shift)
Definition: utils.c:2188
void sws_freeContext(SwsContext *c)
Free the swscaler context swsContext.
Definition: utils.c:2311
planar YUV 4:4:4 40bpp, (1 Cr & Cb sample per 1x1 Y & A samples, big-endian)
Definition: pixfmt.h:188
packed YUV 4:2:2, 16bpp, Y0 Cr Y1 Cb
Definition: pixfmt.h:210
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define s(width, name)
Definition: cbs_vp9.c:257
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), big-endian
Definition: pixfmt.h:180
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:69
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian
Definition: pixfmt.h:243
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as big...
Definition: pixfmt.h:200
planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:158
av_cold void ff_sws_init_range_convert(SwsContext *c)
Definition: swscale.c:540
SwsContext * sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat, int dstW, int dstH, enum AVPixelFormat dstFormat, int flags, const double *param)
Allocate and return an SwsContext.
Definition: utils.c:1866
unsigned swscale_version(void)
Definition: utils.c:75
like NV12, with 10bpp per component, data in the high bits, zeros in the low bits, little-endian
Definition: pixfmt.h:284
double gamma_value
int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
Definition: utils.c:858
int srcColorspaceTable[4]
int dstW
Width of destination luma/alpha planes.
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:386
planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:167
packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:148
#define DITHER1XBPP
static void error(const char *err)
packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), big-endian
Definition: pixfmt.h:110
uint8_t * cascaded_tmp[4]
#define FF_ARRAY_ELEMS(a)
#define av_log2
Definition: intmath.h:83
static const ScaleAlgorithm scale_algorithms[]
Definition: utils.c:317
int cascaded1_tmpStride[4]
planar GBR 4:4:4:4 48bpp, little-endian
Definition: pixfmt.h:288
#define AV_PIX_FMT_YUV420P16
Definition: pixfmt.h:398
int32_t * vLumFilterPos
Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
#define isGray(x)
Definition: swscale.c:40
#define AV_PIX_FMT_BGR555
Definition: pixfmt.h:380
int av_opt_get_int(void *obj, const char *name, int search_flags, int64_t *out_val)
Definition: opt.c:888
packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb)
Definition: pixfmt.h:83
double * coeff
pointer to the list of coefficients
Definition: swscale.h:110
int flag
flag associated to the algorithm
Definition: utils.c:312
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:132
int dstColorspaceTable[4]
#define AV_PIX_FMT_GRAYF32
Definition: pixfmt.h:419
static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos, int *outFilterSize, int xInc, int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags, SwsVector *srcFilter, SwsVector *dstFilter, double param[2], int srcPos, int dstPos)
Definition: utils.c:331
const AVClass * av_class
info on struct for av_log
int16_t xyz2rgb_matrix[3][4]
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:177
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
#define DITHER32_INT
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:267
void sws_freeVec(SwsVector *a)
Definition: utils.c:2290
planar GBR 4:4:4 30bpp, big-endian
Definition: pixfmt.h:172
#define AV_CPU_FLAG_MMX
standard MMX
Definition: cpu.h:31
bayer, GRGR..(odd line), BGBG..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:271
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:192
int chrDstH
Height of destination chroma planes.
#define ub(width, name)
Definition: cbs_h2645.c:254
packed YUV 4:2:2, 16bpp, Y0 Cb Y1 Cr
Definition: pixfmt.h:67
planar YUV 4:4:0,24bpp, (1 Cr & Cb sample per 1x2 Y samples), little-endian
Definition: pixfmt.h:277
planar GBR 4:4:4 42bpp, little-endian
Definition: pixfmt.h:257
#define SWS_ERROR_DIFFUSION
Definition: swscale.h:85
Replacements for frequently missing libm functions.
#define SWS_AREA
Definition: swscale.h:63
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:387
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:72
planar YUV 4:2:2 48bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:193
static SwsVector * sws_diffVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2149
int lumMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for luma/alpha planes...
Describe the class of an AVClass context structure.
Definition: log.h:67
planar YUV 4:4:4 64bpp, (1 Cr & Cb sample per 1x1 Y & A samples, little-endian)
Definition: pixfmt.h:195
#define W(a, i, v)
Definition: jpegls.h:124
int ff_init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
Y , 16bpp, big-endian.
Definition: pixfmt.h:97
as above, but U and V bytes are swapped
Definition: pixfmt.h:349
#define isnan(x)
Definition: libm.h:340
int vLumFilterSize
Vertical filter size for luma/alpha pixels.
#define SWS_ACCURATE_RND
Definition: swscale.h:83
byte swapping routines
static void handle_formats(SwsContext *c)
Definition: utils.c:1069
planar YUV 4:2:0,21bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:244
planar YUV 4:4:4,36bpp, (1 Cr & Cb sample per 1x1 Y samples), 12b alpha, big-endian ...
Definition: pixfmt.h:345
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
Definition: pixfmt.h:240
int chrMmxextFilterCodeSize
Runtime-generated MMXEXT horizontal fast bilinear scaler code size for chroma planes.
Y , 9bpp, big-endian.
Definition: pixfmt.h:315
planar GBR 4:4:4 42bpp, big-endian
Definition: pixfmt.h:256
planar YUV 4:2:0 22.5bpp, (1 Cr & Cb sample per 2x2 Y & A samples), big-endian
Definition: pixfmt.h:178
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:384
const VDPAUPixFmtMap * map
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:113
int16_t * vChrFilter
Array of vertical filter coefficients for chroma planes.
int av_get_cpu_flags(void)
Return the flags which specify extensions supported by the CPU.
Definition: cpu.c:93
#define SWS_POINT
Definition: swscale.h:62
int ff_init_filters(SwsContext *c)
Definition: slice.c:249
Y , 14bpp, little-endian.
Definition: pixfmt.h:338
bayer, BGBG..(odd line), GRGR..(even line), 16-bit samples, big-endian */
Definition: pixfmt.h:265
int16_t * hLumFilter
Array of horizontal filter coefficients for luma/alpha planes.
SwsContext * sws_alloc_context(void)
Allocate an empty SwsContext.
Definition: utils.c:1079
#define GY_IDX
#define AV_PIX_FMT_BGR565
Definition: pixfmt.h:379
#define SWS_SPLINE
Definition: swscale.h:68
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:404
#define SWS_SINC
Definition: swscale.h:66
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, little-endian)
Definition: pixfmt.h:187
#define flags(name, subs,...)
Definition: cbs_av1.c:561
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:388
packed RGB 5:5:5, 16bpp, (msb)1X 5R 5G 5B(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:107
#define SWS_BITEXACT
Definition: swscale.h:84
bayer, RGRG..(odd line), GBGB..(even line), 16-bit samples, little-endian */
Definition: pixfmt.h:266
Y , 10bpp, big-endian.
Definition: pixfmt.h:297
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), big-endian, X=unused/undefined
Definition: pixfmt.h:142
planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:163
planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:135
static int handle_xyz(enum AVPixelFormat *format)
Definition: utils.c:1060
#define FF_ALLOC_ARRAY_OR_GOTO(ctx, p, nelem, elsize, label)
Definition: internal.h:158
Definition: vc1_parser.c:48
SwsDither dither
uint8_t is_supported_in
Definition: utils.c:93
Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:76
void sws_addVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2204
#define INLINE_MMXEXT(flags)
Definition: cpu.h:87
int
static double sws_dcVec(SwsVector *a)
Definition: utils.c:2087
#define CONFIG_SWSCALE_ALPHA
Definition: config.h:546
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:247
Y , 8bpp.
Definition: pixfmt.h:74
double param[2]
Input parameters for scaling algorithms that need them.
#define exp2(x)
Definition: libm.h:288
Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb...
Definition: pixfmt.h:75
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:215
#define FF_ALLOC_OR_GOTO(ctx, p, size, label)
Definition: internal.h:140
planar GBR 4:4:4 27bpp, little-endian
Definition: pixfmt.h:171
#define flag(name)
Definition: cbs_av1.c:553
static double c[64]
packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big...
Definition: pixfmt.h:102
#define AV_WL16(p, v)
Definition: intreadwrite.h:412
enum AVPixelFormat srcFormat
Source pixel format.
planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian
Definition: pixfmt.h:133
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:80
bayer, RGRG..(odd line), GBGB..(even line), 8-bit samples */
Definition: pixfmt.h:261
packed RGB 3:3:2, 8bpp, (msb)2R 3G 3B(lsb)
Definition: pixfmt.h:86
static const uint64_t c2
Definition: murmur3.c:50
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
Definition: pixfmt.h:73
#define XYZ_GAMMA
planar YUV 4:2:0 25bpp, (1 Cr & Cb sample per 2x2 Y & A samples, little-endian)
Definition: pixfmt.h:185
#define FFMPEG_CONFIGURATION
Definition: config.h:4
struct SwsContext * cascaded_context[3]
#define SWS_PARAM_DEFAULT
Definition: swscale.h:73
#define SWS_FULL_CHR_H_INP
Definition: swscale.h:81
uint16_t * gamma
SwsFunc swscale
Note that src, dst, srcStride, dstStride will be copied in the sws_scale() wrapper so they can be fre...
#define MAX_FILTER_SIZE
static av_always_inline int diff(const uint32_t a, const uint32_t b)
packed XYZ 4:4:4, 36 bpp, (msb) 12X, 12Y, 12Z (lsb), the 2-byte value for each X/Y/Z is stored as lit...
Definition: pixfmt.h:199
#define av_free(p)
int size_factor
size factor used when initing the filters
Definition: utils.c:314
planar YUV 4:4:4,42bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian
Definition: pixfmt.h:253
int srcFormatBpp
Number of bits per pixel of the source pixel format.
Y , 14bpp, big-endian.
Definition: pixfmt.h:337
const AVClass ff_sws_context_class
Definition: options.c:87
Y , 16bpp, little-endian.
Definition: pixfmt.h:98
uint8_t is_supported_endianness
Definition: utils.c:95
static const double coeff[2][5]
Definition: vf_owdenoise.c:72
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
Definition: pixfmt.h:258
#define lrint
Definition: tablegen.h:53
16 bits gray, 16 bits alpha (little-endian)
Definition: pixfmt.h:213
int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
Return a positive value if pix_fmt is a supported input format, 0 otherwise.
Definition: utils.c:271
SwsVector * sws_getIdentityVec(void)
Allocate and return a vector with just one coefficient, with value 1.0.
Definition: utils.c:2082
planar YUV 4:2:2 30bpp, (1 Cr & Cb sample per 2x1 Y & A samples, big-endian)
Definition: pixfmt.h:186
Y , 12bpp, big-endian.
Definition: pixfmt.h:295
static int height
Definition: utils.c:158
int32_t input_rgb2yuv_table[16+40 *4]
packed BGR 5:5:5, 16bpp, (msb)1X 5B 5G 5R(lsb), big-endian , X=unused/undefined
Definition: pixfmt.h:112
number of pixel formats, DO NOT USE THIS if you want to link with shared libav* because the number of...
Definition: pixfmt.h:351
int16_t * vLumFilter
Array of vertical filter coefficients for luma/alpha planes.
#define av_freep(p)
#define GU_IDX
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
Definition: pixfmt.h:99
#define M_PI
Definition: mathematics.h:52
planar GBR 4:4:4 48bpp, little-endian
Definition: pixfmt.h:175
static void makenan_vec(SwsVector *a)
Definition: utils.c:1921
int16_t * hChrFilter
Array of horizontal filter coefficients for chroma planes.
#define av_malloc_array(a, b)
packed BGR 4:4:4, 16bpp, (msb)4X 4B 4G 4R(lsb), little-endian, X=unused/undefined ...
Definition: pixfmt.h:141
const char int length
Definition: avisynth_c.h:860
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2438
planar YUV 4:2:2 27bpp, (1 Cr & Cb sample per 2x1 Y & A samples), little-endian
Definition: pixfmt.h:181
#define BY_IDX
int chrDstHSubSample
Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination...
int chrSrcW
Width of source chroma planes.
static av_always_inline int isFloat(enum AVPixelFormat pix_fmt)
int depth
Number of bits in the component.
Definition: pixdesc.h:58
IEEE-754 single precision Y, 32bpp, little-endian.
Definition: pixfmt.h:341
void ff_get_unscaled_swscale(SwsContext *c)
Set c->swscale to an unscaled converter if one exists for the specific source and destination formats...
planar GBRA 4:4:4:4 64bpp, little-endian
Definition: pixfmt.h:217
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
Definition: pixfmt.h:237
int srcW
Width of source luma/alpha planes.
packed YUV 4:1:1, 12bpp, Cb Y0 Y1 Cr Y2 Y3
Definition: pixfmt.h:82
static void fill_xyztables(struct SwsContext *c)
Definition: utils.c:822
float min
int chrSrcVSubSample
Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image...
int flags
Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
planar YUV 4:2:0,18bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian
Definition: pixfmt.h:242
void(* rgb15to16)(const uint8_t *src, uint8_t *dst, int src_size)
Definition: rgb2rgb.c:51
#define AV_PIX_FMT_YUV422P16
Definition: pixfmt.h:399
#define BU_IDX
planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian
Definition: pixfmt.h:164
for(j=16;j >0;--j)
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:246
static av_always_inline int isNBPS(enum AVPixelFormat pix_fmt)
#define FF_ALLOCZ_OR_GOTO(ctx, p, size, label)
Definition: internal.h:149
planar GBR 4:4:4 30bpp, little-endian
Definition: pixfmt.h:173
static SwsVector * sws_getConvVec(SwsVector *a, SwsVector *b)
Definition: utils.c:2112
packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is st...
Definition: pixfmt.h:206
#define HAVE_MMX
Definition: config.h:63
#define LIBSWSCALE_VERSION_INT
Definition: version.h:33
packed AYUV 4:4:4,64bpp (1 Cr & Cb sample per 1x1 Y & A samples), little-endian
Definition: pixfmt.h:279
#define V
Definition: avdct.c:30
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
planar YUV 4:2:2,24bpp, (1 Cr & Cb sample per 2x1 Y samples), 12b alpha, big-endian ...
Definition: pixfmt.h:343
planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian
Definition: pixfmt.h:160
const char * swscale_license(void)
Return the libswscale license.
Definition: utils.c:86