FFmpeg  4.1.4
alsdec.c
Go to the documentation of this file.
1 /*
2  * MPEG-4 ALS decoder
3  * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * MPEG-4 ALS decoder
25  * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
26  */
27 
28 #include <inttypes.h>
29 
30 #include "avcodec.h"
31 #include "get_bits.h"
32 #include "unary.h"
33 #include "mpeg4audio.h"
34 #include "bgmc.h"
35 #include "bswapdsp.h"
36 #include "internal.h"
37 #include "mlz.h"
38 #include "libavutil/samplefmt.h"
39 #include "libavutil/crc.h"
41 #include "libavutil/intfloat.h"
42 #include "libavutil/intreadwrite.h"
43 
44 #include <stdint.h>
45 
46 /** Rice parameters and corresponding index offsets for decoding the
47  * indices of scaled PARCOR values. The table chosen is set globally
48  * by the encoder and stored in ALSSpecificConfig.
49  */
50 static const int8_t parcor_rice_table[3][20][2] = {
51  { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
52  { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
53  { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
54  { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
55  { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
56  { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
57  {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
58  { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
59  { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
60  { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
61  {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
62  { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
63 };
64 
65 
66 /** Scaled PARCOR values used for the first two PARCOR coefficients.
67  * To be indexed by the Rice coded indices.
68  * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
69  * Actual values are divided by 32 in order to be stored in 16 bits.
70  */
71 static const int16_t parcor_scaled_values[] = {
72  -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
73  -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
74  -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
75  -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
76  -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
77  -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
78  -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
79  -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
80  -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
81  -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
82  -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
83  -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
84  -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
85  -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
86  -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
87  -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
88  -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
89  -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
90  -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
91  -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
92  -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
93  -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
94  -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
95  46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
96  143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
97  244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
98  349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
99  458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
100  571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
101  688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
102  810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
103  935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
104 };
105 
106 
107 /** Gain values of p(0) for long-term prediction.
108  * To be indexed by the Rice coded indices.
109  */
110 static const uint8_t ltp_gain_values [4][4] = {
111  { 0, 8, 16, 24},
112  {32, 40, 48, 56},
113  {64, 70, 76, 82},
114  {88, 92, 96, 100}
115 };
116 
117 
118 /** Inter-channel weighting factors for multi-channel correlation.
119  * To be indexed by the Rice coded indices.
120  */
121 static const int16_t mcc_weightings[] = {
122  204, 192, 179, 166, 153, 140, 128, 115,
123  102, 89, 76, 64, 51, 38, 25, 12,
124  0, -12, -25, -38, -51, -64, -76, -89,
125  -102, -115, -128, -140, -153, -166, -179, -192
126 };
127 
128 
129 /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
130  */
131 static const uint8_t tail_code[16][6] = {
132  { 74, 44, 25, 13, 7, 3},
133  { 68, 42, 24, 13, 7, 3},
134  { 58, 39, 23, 13, 7, 3},
135  {126, 70, 37, 19, 10, 5},
136  {132, 70, 37, 20, 10, 5},
137  {124, 70, 38, 20, 10, 5},
138  {120, 69, 37, 20, 11, 5},
139  {116, 67, 37, 20, 11, 5},
140  {108, 66, 36, 20, 10, 5},
141  {102, 62, 36, 20, 10, 5},
142  { 88, 58, 34, 19, 10, 5},
143  {162, 89, 49, 25, 13, 7},
144  {156, 87, 49, 26, 14, 7},
145  {150, 86, 47, 26, 14, 7},
146  {142, 84, 47, 26, 14, 7},
147  {131, 79, 46, 26, 14, 7}
148 };
149 
150 
151 enum RA_Flag {
155 };
156 
157 
158 typedef struct ALSSpecificConfig {
159  uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
160  int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
161  int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
162  int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
163  int frame_length; ///< frame length for each frame (last frame may differ)
164  int ra_distance; ///< distance between RA frames (in frames, 0...255)
165  enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
166  int adapt_order; ///< adaptive order: 1 = on, 0 = off
167  int coef_table; ///< table index of Rice code parameters
168  int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
169  int max_order; ///< maximum prediction order (0..1023)
170  int block_switching; ///< number of block switching levels
171  int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
172  int sb_part; ///< sub-block partition
173  int joint_stereo; ///< joint stereo: 1 = on, 0 = off
174  int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
175  int chan_config; ///< indicates that a chan_config_info field is present
176  int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
177  int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
178  int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
179  int *chan_pos; ///< original channel positions
180  int crc_enabled; ///< enable Cyclic Redundancy Checksum
182 
183 
184 typedef struct ALSChannelData {
190  int weighting[6];
192 
193 
194 typedef struct ALSDecContext {
199  const AVCRC *crc_table;
200  uint32_t crc_org; ///< CRC value of the original input data
201  uint32_t crc; ///< CRC value calculated from decoded data
202  unsigned int cur_frame_length; ///< length of the current frame to decode
203  unsigned int frame_id; ///< the frame ID / number of the current frame
204  unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
205  unsigned int cs_switch; ///< if true, channel rearrangement is done
206  unsigned int num_blocks; ///< number of blocks used in the current frame
207  unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
208  uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
209  int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
210  int ltp_lag_length; ///< number of bits used for ltp lag value
211  int *const_block; ///< contains const_block flags for all channels
212  unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
213  unsigned int *opt_order; ///< contains opt_order flags for all channels
214  int *store_prev_samples; ///< contains store_prev_samples flags for all channels
215  int *use_ltp; ///< contains use_ltp flags for all channels
216  int *ltp_lag; ///< contains ltp lag values for all channels
217  int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
218  int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
219  int32_t **quant_cof; ///< quantized parcor coefficients for a channel
220  int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
221  int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
222  int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
223  int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
224  ALSChannelData **chan_data; ///< channel data for multi-channel correlation
225  ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
226  int *reverted_channels; ///< stores a flag for each reverted channel
227  int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
228  int32_t **raw_samples; ///< decoded raw samples for each channel
229  int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
230  uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
231  MLZ* mlz; ///< masked lz decompression structure
232  SoftFloat_IEEE754 *acf; ///< contains common multiplier for all channels
233  int *last_acf_mantissa; ///< contains the last acf mantissa data of common multiplier for all channels
234  int *shift_value; ///< value by which the binary point is to be shifted for all channels
235  int *last_shift_value; ///< contains last shift value for all channels
236  int **raw_mantissa; ///< decoded mantissa bits of the difference signal
237  unsigned char *larray; ///< buffer to store the output of masked lz decompression
238  int *nbits; ///< contains the number of bits to read for masked lz decompression for all samples
239 } ALSDecContext;
240 
241 
242 typedef struct ALSBlockData {
243  unsigned int block_length; ///< number of samples within the block
244  unsigned int ra_block; ///< if true, this is a random access block
245  int *const_block; ///< if true, this is a constant value block
246  int js_blocks; ///< true if this block contains a difference signal
247  unsigned int *shift_lsbs; ///< shift of values for this block
248  unsigned int *opt_order; ///< prediction order of this block
249  int *store_prev_samples;///< if true, carryover samples have to be stored
250  int *use_ltp; ///< if true, long-term prediction is used
251  int *ltp_lag; ///< lag value for long-term prediction
252  int *ltp_gain; ///< gain values for ltp 5-tap filter
253  int32_t *quant_cof; ///< quantized parcor coefficients
254  int32_t *lpc_cof; ///< coefficients of the direct form prediction
255  int32_t *raw_samples; ///< decoded raw samples / residuals for this block
256  int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
257  int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
258 } ALSBlockData;
259 
260 
262 {
263 #ifdef DEBUG
264  AVCodecContext *avctx = ctx->avctx;
265  ALSSpecificConfig *sconf = &ctx->sconf;
266 
267  ff_dlog(avctx, "resolution = %i\n", sconf->resolution);
268  ff_dlog(avctx, "floating = %i\n", sconf->floating);
269  ff_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
270  ff_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
271  ff_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
272  ff_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
273  ff_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
274  ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
275  ff_dlog(avctx, "max_order = %i\n", sconf->max_order);
276  ff_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
277  ff_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
278  ff_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
279  ff_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
280  ff_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
281  ff_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
282  ff_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
283  ff_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
284  ff_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
285 #endif
286 }
287 
288 
289 /** Read an ALSSpecificConfig from a buffer into the output struct.
290  */
292 {
293  GetBitContext gb;
294  uint64_t ht_size;
295  int i, config_offset;
296  MPEG4AudioConfig m4ac = {0};
297  ALSSpecificConfig *sconf = &ctx->sconf;
298  AVCodecContext *avctx = ctx->avctx;
299  uint32_t als_id, header_size, trailer_size;
300  int ret;
301 
302  if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
303  return ret;
304 
305  config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
306  avctx->extradata_size * 8, 1);
307 
308  if (config_offset < 0)
309  return AVERROR_INVALIDDATA;
310 
311  skip_bits_long(&gb, config_offset);
312 
313  if (get_bits_left(&gb) < (30 << 3))
314  return AVERROR_INVALIDDATA;
315 
316  // read the fixed items
317  als_id = get_bits_long(&gb, 32);
318  avctx->sample_rate = m4ac.sample_rate;
319  skip_bits_long(&gb, 32); // sample rate already known
320  sconf->samples = get_bits_long(&gb, 32);
321  avctx->channels = m4ac.channels;
322  skip_bits(&gb, 16); // number of channels already known
323  skip_bits(&gb, 3); // skip file_type
324  sconf->resolution = get_bits(&gb, 3);
325  sconf->floating = get_bits1(&gb);
326  sconf->msb_first = get_bits1(&gb);
327  sconf->frame_length = get_bits(&gb, 16) + 1;
328  sconf->ra_distance = get_bits(&gb, 8);
329  sconf->ra_flag = get_bits(&gb, 2);
330  sconf->adapt_order = get_bits1(&gb);
331  sconf->coef_table = get_bits(&gb, 2);
332  sconf->long_term_prediction = get_bits1(&gb);
333  sconf->max_order = get_bits(&gb, 10);
334  sconf->block_switching = get_bits(&gb, 2);
335  sconf->bgmc = get_bits1(&gb);
336  sconf->sb_part = get_bits1(&gb);
337  sconf->joint_stereo = get_bits1(&gb);
338  sconf->mc_coding = get_bits1(&gb);
339  sconf->chan_config = get_bits1(&gb);
340  sconf->chan_sort = get_bits1(&gb);
341  sconf->crc_enabled = get_bits1(&gb);
342  sconf->rlslms = get_bits1(&gb);
343  skip_bits(&gb, 5); // skip 5 reserved bits
344  skip_bits1(&gb); // skip aux_data_enabled
345 
346 
347  // check for ALSSpecificConfig struct
348  if (als_id != MKBETAG('A','L','S','\0'))
349  return AVERROR_INVALIDDATA;
350 
351  ctx->cur_frame_length = sconf->frame_length;
352 
353  // read channel config
354  if (sconf->chan_config)
355  sconf->chan_config_info = get_bits(&gb, 16);
356  // TODO: use this to set avctx->channel_layout
357 
358 
359  // read channel sorting
360  if (sconf->chan_sort && avctx->channels > 1) {
361  int chan_pos_bits = av_ceil_log2(avctx->channels);
362  int bits_needed = avctx->channels * chan_pos_bits + 7;
363  if (get_bits_left(&gb) < bits_needed)
364  return AVERROR_INVALIDDATA;
365 
366  if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
367  return AVERROR(ENOMEM);
368 
369  ctx->cs_switch = 1;
370 
371  for (i = 0; i < avctx->channels; i++) {
372  sconf->chan_pos[i] = -1;
373  }
374 
375  for (i = 0; i < avctx->channels; i++) {
376  int idx;
377 
378  idx = get_bits(&gb, chan_pos_bits);
379  if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
380  av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
381  ctx->cs_switch = 0;
382  break;
383  }
384  sconf->chan_pos[idx] = i;
385  }
386 
387  align_get_bits(&gb);
388  }
389 
390 
391  // read fixed header and trailer sizes,
392  // if size = 0xFFFFFFFF then there is no data field!
393  if (get_bits_left(&gb) < 64)
394  return AVERROR_INVALIDDATA;
395 
396  header_size = get_bits_long(&gb, 32);
397  trailer_size = get_bits_long(&gb, 32);
398  if (header_size == 0xFFFFFFFF)
399  header_size = 0;
400  if (trailer_size == 0xFFFFFFFF)
401  trailer_size = 0;
402 
403  ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
404 
405 
406  // skip the header and trailer data
407  if (get_bits_left(&gb) < ht_size)
408  return AVERROR_INVALIDDATA;
409 
410  if (ht_size > INT32_MAX)
411  return AVERROR_PATCHWELCOME;
412 
413  skip_bits_long(&gb, ht_size);
414 
415 
416  // initialize CRC calculation
417  if (sconf->crc_enabled) {
418  if (get_bits_left(&gb) < 32)
419  return AVERROR_INVALIDDATA;
420 
423  ctx->crc = 0xFFFFFFFF;
424  ctx->crc_org = ~get_bits_long(&gb, 32);
425  } else
426  skip_bits_long(&gb, 32);
427  }
428 
429 
430  // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
431 
433 
434  return 0;
435 }
436 
437 
438 /** Check the ALSSpecificConfig for unsupported features.
439  */
441 {
442  ALSSpecificConfig *sconf = &ctx->sconf;
443  int error = 0;
444 
445  // report unsupported feature and set error value
446  #define MISSING_ERR(cond, str, errval) \
447  { \
448  if (cond) { \
449  avpriv_report_missing_feature(ctx->avctx, \
450  str); \
451  error = errval; \
452  } \
453  }
454 
455  MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
456 
457  return error;
458 }
459 
460 
461 /** Parse the bs_info field to extract the block partitioning used in
462  * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
463  */
464 static void parse_bs_info(const uint32_t bs_info, unsigned int n,
465  unsigned int div, unsigned int **div_blocks,
466  unsigned int *num_blocks)
467 {
468  if (n < 31 && ((bs_info << n) & 0x40000000)) {
469  // if the level is valid and the investigated bit n is set
470  // then recursively check both children at bits (2n+1) and (2n+2)
471  n *= 2;
472  div += 1;
473  parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
474  parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
475  } else {
476  // else the bit is not set or the last level has been reached
477  // (bit implicitly not set)
478  **div_blocks = div;
479  (*div_blocks)++;
480  (*num_blocks)++;
481  }
482 }
483 
484 
485 /** Read and decode a Rice codeword.
486  */
487 static int32_t decode_rice(GetBitContext *gb, unsigned int k)
488 {
489  int max = get_bits_left(gb) - k;
490  unsigned q = get_unary(gb, 0, max);
491  int r = k ? get_bits1(gb) : !(q & 1);
492 
493  if (k > 1) {
494  q <<= (k - 1);
495  q += get_bits_long(gb, k - 1);
496  } else if (!k) {
497  q >>= 1;
498  }
499  return r ? q : ~q;
500 }
501 
502 
503 /** Convert PARCOR coefficient k to direct filter coefficient.
504  */
505 static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
506 {
507  int i, j;
508 
509  for (i = 0, j = k - 1; i < j; i++, j--) {
510  int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
511  cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
512  cof[i] += tmp1;
513  }
514  if (i == j)
515  cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
516 
517  cof[k] = par[k];
518 }
519 
520 
521 /** Read block switching field if necessary and set actual block sizes.
522  * Also assure that the block sizes of the last frame correspond to the
523  * actual number of samples.
524  */
525 static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
526  uint32_t *bs_info)
527 {
528  ALSSpecificConfig *sconf = &ctx->sconf;
529  GetBitContext *gb = &ctx->gb;
530  unsigned int *ptr_div_blocks = div_blocks;
531  unsigned int b;
532 
533  if (sconf->block_switching) {
534  unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
535  *bs_info = get_bits_long(gb, bs_info_len);
536  *bs_info <<= (32 - bs_info_len);
537  }
538 
539  ctx->num_blocks = 0;
540  parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
541 
542  // The last frame may have an overdetermined block structure given in
543  // the bitstream. In that case the defined block structure would need
544  // more samples than available to be consistent.
545  // The block structure is actually used but the block sizes are adapted
546  // to fit the actual number of available samples.
547  // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
548  // This results in the actual block sizes: 2 2 1 0.
549  // This is not specified in 14496-3 but actually done by the reference
550  // codec RM22 revision 2.
551  // This appears to happen in case of an odd number of samples in the last
552  // frame which is actually not allowed by the block length switching part
553  // of 14496-3.
554  // The ALS conformance files feature an odd number of samples in the last
555  // frame.
556 
557  for (b = 0; b < ctx->num_blocks; b++)
558  div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
559 
560  if (ctx->cur_frame_length != ctx->sconf.frame_length) {
561  unsigned int remaining = ctx->cur_frame_length;
562 
563  for (b = 0; b < ctx->num_blocks; b++) {
564  if (remaining <= div_blocks[b]) {
565  div_blocks[b] = remaining;
566  ctx->num_blocks = b + 1;
567  break;
568  }
569 
570  remaining -= div_blocks[b];
571  }
572  }
573 }
574 
575 
576 /** Read the block data for a constant block
577  */
579 {
580  ALSSpecificConfig *sconf = &ctx->sconf;
581  AVCodecContext *avctx = ctx->avctx;
582  GetBitContext *gb = &ctx->gb;
583 
584  if (bd->block_length <= 0)
585  return AVERROR_INVALIDDATA;
586 
587  *bd->raw_samples = 0;
588  *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
589  bd->js_blocks = get_bits1(gb);
590 
591  // skip 5 reserved bits
592  skip_bits(gb, 5);
593 
594  if (*bd->const_block) {
595  unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
596  *bd->raw_samples = get_sbits_long(gb, const_val_bits);
597  }
598 
599  // ensure constant block decoding by reusing this field
600  *bd->const_block = 1;
601 
602  return 0;
603 }
604 
605 
606 /** Decode the block data for a constant block
607  */
609 {
610  int smp = bd->block_length - 1;
611  int32_t val = *bd->raw_samples;
612  int32_t *dst = bd->raw_samples + 1;
613 
614  // write raw samples into buffer
615  for (; smp; smp--)
616  *dst++ = val;
617 }
618 
619 
620 /** Read the block data for a non-constant block
621  */
623 {
624  ALSSpecificConfig *sconf = &ctx->sconf;
625  AVCodecContext *avctx = ctx->avctx;
626  GetBitContext *gb = &ctx->gb;
627  unsigned int k;
628  unsigned int s[8];
629  unsigned int sx[8];
630  unsigned int sub_blocks, log2_sub_blocks, sb_length;
631  unsigned int start = 0;
632  unsigned int opt_order;
633  int sb;
634  int32_t *quant_cof = bd->quant_cof;
635  int32_t *current_res;
636 
637 
638  // ensure variable block decoding by reusing this field
639  *bd->const_block = 0;
640 
641  *bd->opt_order = 1;
642  bd->js_blocks = get_bits1(gb);
643 
644  opt_order = *bd->opt_order;
645 
646  // determine the number of subblocks for entropy decoding
647  if (!sconf->bgmc && !sconf->sb_part) {
648  log2_sub_blocks = 0;
649  } else {
650  if (sconf->bgmc && sconf->sb_part)
651  log2_sub_blocks = get_bits(gb, 2);
652  else
653  log2_sub_blocks = 2 * get_bits1(gb);
654  }
655 
656  sub_blocks = 1 << log2_sub_blocks;
657 
658  // do not continue in case of a damaged stream since
659  // block_length must be evenly divisible by sub_blocks
660  if (bd->block_length & (sub_blocks - 1)) {
661  av_log(avctx, AV_LOG_WARNING,
662  "Block length is not evenly divisible by the number of subblocks.\n");
663  return AVERROR_INVALIDDATA;
664  }
665 
666  sb_length = bd->block_length >> log2_sub_blocks;
667 
668  if (sconf->bgmc) {
669  s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
670  for (k = 1; k < sub_blocks; k++)
671  s[k] = s[k - 1] + decode_rice(gb, 2);
672 
673  for (k = 0; k < sub_blocks; k++) {
674  sx[k] = s[k] & 0x0F;
675  s [k] >>= 4;
676  }
677  } else {
678  s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
679  for (k = 1; k < sub_blocks; k++)
680  s[k] = s[k - 1] + decode_rice(gb, 0);
681  }
682  for (k = 1; k < sub_blocks; k++)
683  if (s[k] > 32) {
684  av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
685  return AVERROR_INVALIDDATA;
686  }
687 
688  if (get_bits1(gb))
689  *bd->shift_lsbs = get_bits(gb, 4) + 1;
690 
691  *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
692 
693 
694  if (!sconf->rlslms) {
695  if (sconf->adapt_order && sconf->max_order) {
696  int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
697  2, sconf->max_order + 1));
698  *bd->opt_order = get_bits(gb, opt_order_length);
699  if (*bd->opt_order > sconf->max_order) {
700  *bd->opt_order = sconf->max_order;
701  av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
702  return AVERROR_INVALIDDATA;
703  }
704  } else {
705  *bd->opt_order = sconf->max_order;
706  }
707  opt_order = *bd->opt_order;
708 
709  if (opt_order) {
710  int add_base;
711 
712  if (sconf->coef_table == 3) {
713  add_base = 0x7F;
714 
715  // read coefficient 0
716  quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
717 
718  // read coefficient 1
719  if (opt_order > 1)
720  quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
721 
722  // read coefficients 2 to opt_order
723  for (k = 2; k < opt_order; k++)
724  quant_cof[k] = get_bits(gb, 7);
725  } else {
726  int k_max;
727  add_base = 1;
728 
729  // read coefficient 0 to 19
730  k_max = FFMIN(opt_order, 20);
731  for (k = 0; k < k_max; k++) {
732  int rice_param = parcor_rice_table[sconf->coef_table][k][1];
733  int offset = parcor_rice_table[sconf->coef_table][k][0];
734  quant_cof[k] = decode_rice(gb, rice_param) + offset;
735  if (quant_cof[k] < -64 || quant_cof[k] > 63) {
736  av_log(avctx, AV_LOG_ERROR,
737  "quant_cof %"PRId32" is out of range.\n",
738  quant_cof[k]);
739  return AVERROR_INVALIDDATA;
740  }
741  }
742 
743  // read coefficients 20 to 126
744  k_max = FFMIN(opt_order, 127);
745  for (; k < k_max; k++)
746  quant_cof[k] = decode_rice(gb, 2) + (k & 1);
747 
748  // read coefficients 127 to opt_order
749  for (; k < opt_order; k++)
750  quant_cof[k] = decode_rice(gb, 1);
751 
752  quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
753 
754  if (opt_order > 1)
755  quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
756  }
757 
758  for (k = 2; k < opt_order; k++)
759  quant_cof[k] = (quant_cof[k] * (1 << 14)) + (add_base << 13);
760  }
761  }
762 
763  // read LTP gain and lag values
764  if (sconf->long_term_prediction) {
765  *bd->use_ltp = get_bits1(gb);
766 
767  if (*bd->use_ltp) {
768  int r, c;
769 
770  bd->ltp_gain[0] = decode_rice(gb, 1) * 8;
771  bd->ltp_gain[1] = decode_rice(gb, 2) * 8;
772 
773  r = get_unary(gb, 0, 4);
774  c = get_bits(gb, 2);
775  if (r >= 4) {
776  av_log(avctx, AV_LOG_ERROR, "r overflow\n");
777  return AVERROR_INVALIDDATA;
778  }
779 
780  bd->ltp_gain[2] = ltp_gain_values[r][c];
781 
782  bd->ltp_gain[3] = decode_rice(gb, 2) * 8;
783  bd->ltp_gain[4] = decode_rice(gb, 1) * 8;
784 
785  *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
786  *bd->ltp_lag += FFMAX(4, opt_order + 1);
787  }
788  }
789 
790  // read first value and residuals in case of a random access block
791  if (bd->ra_block) {
792  start = FFMIN(opt_order, 3);
793  av_assert0(sb_length <= sconf->frame_length);
794  if (sb_length <= start) {
795  // opt_order or sb_length may be corrupted, either way this is unsupported and not well defined in the specification
796  av_log(avctx, AV_LOG_ERROR, "Sub block length smaller or equal start\n");
797  return AVERROR_PATCHWELCOME;
798  }
799 
800  if (opt_order)
801  bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
802  if (opt_order > 1)
803  bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
804  if (opt_order > 2)
805  bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
806  }
807 
808  // read all residuals
809  if (sconf->bgmc) {
810  int delta[8];
811  unsigned int k [8];
812  unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
813 
814  // read most significant bits
815  unsigned int high;
816  unsigned int low;
817  unsigned int value;
818 
819  ff_bgmc_decode_init(gb, &high, &low, &value);
820 
821  current_res = bd->raw_samples + start;
822 
823  for (sb = 0; sb < sub_blocks; sb++) {
824  unsigned int sb_len = sb_length - (sb ? 0 : start);
825 
826  k [sb] = s[sb] > b ? s[sb] - b : 0;
827  delta[sb] = 5 - s[sb] + k[sb];
828 
829  ff_bgmc_decode(gb, sb_len, current_res,
830  delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
831 
832  current_res += sb_len;
833  }
834 
835  ff_bgmc_decode_end(gb);
836 
837 
838  // read least significant bits and tails
839  current_res = bd->raw_samples + start;
840 
841  for (sb = 0; sb < sub_blocks; sb++, start = 0) {
842  unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
843  unsigned int cur_k = k[sb];
844  unsigned int cur_s = s[sb];
845 
846  for (; start < sb_length; start++) {
847  int32_t res = *current_res;
848 
849  if (res == cur_tail_code) {
850  unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
851  << (5 - delta[sb]);
852 
853  res = decode_rice(gb, cur_s);
854 
855  if (res >= 0) {
856  res += (max_msb ) << cur_k;
857  } else {
858  res -= (max_msb - 1) << cur_k;
859  }
860  } else {
861  if (res > cur_tail_code)
862  res--;
863 
864  if (res & 1)
865  res = -res;
866 
867  res >>= 1;
868 
869  if (cur_k) {
870  res *= 1U << cur_k;
871  res |= get_bits_long(gb, cur_k);
872  }
873  }
874 
875  *current_res++ = res;
876  }
877  }
878  } else {
879  current_res = bd->raw_samples + start;
880 
881  for (sb = 0; sb < sub_blocks; sb++, start = 0)
882  for (; start < sb_length; start++)
883  *current_res++ = decode_rice(gb, s[sb]);
884  }
885 
886  return 0;
887 }
888 
889 
890 /** Decode the block data for a non-constant block
891  */
893 {
894  ALSSpecificConfig *sconf = &ctx->sconf;
895  unsigned int block_length = bd->block_length;
896  unsigned int smp = 0;
897  unsigned int k;
898  int opt_order = *bd->opt_order;
899  int sb;
900  int64_t y;
901  int32_t *quant_cof = bd->quant_cof;
902  int32_t *lpc_cof = bd->lpc_cof;
903  int32_t *raw_samples = bd->raw_samples;
904  int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
905  int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
906 
907  // reverse long-term prediction
908  if (*bd->use_ltp) {
909  int ltp_smp;
910 
911  for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
912  int center = ltp_smp - *bd->ltp_lag;
913  int begin = FFMAX(0, center - 2);
914  int end = center + 3;
915  int tab = 5 - (end - begin);
916  int base;
917 
918  y = 1 << 6;
919 
920  for (base = begin; base < end; base++, tab++)
921  y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
922 
923  raw_samples[ltp_smp] += y >> 7;
924  }
925  }
926 
927  // reconstruct all samples from residuals
928  if (bd->ra_block) {
929  for (smp = 0; smp < FFMIN(opt_order, block_length); smp++) {
930  y = 1 << 19;
931 
932  for (sb = 0; sb < smp; sb++)
933  y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
934 
935  *raw_samples++ -= y >> 20;
936  parcor_to_lpc(smp, quant_cof, lpc_cof);
937  }
938  } else {
939  for (k = 0; k < opt_order; k++)
940  parcor_to_lpc(k, quant_cof, lpc_cof);
941 
942  // store previous samples in case that they have to be altered
943  if (*bd->store_prev_samples)
944  memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
945  sizeof(*bd->prev_raw_samples) * sconf->max_order);
946 
947  // reconstruct difference signal for prediction (joint-stereo)
948  if (bd->js_blocks && bd->raw_other) {
949  int32_t *left, *right;
950 
951  if (bd->raw_other > raw_samples) { // D = R - L
952  left = raw_samples;
953  right = bd->raw_other;
954  } else { // D = R - L
955  left = bd->raw_other;
956  right = raw_samples;
957  }
958 
959  for (sb = -1; sb >= -sconf->max_order; sb--)
960  raw_samples[sb] = right[sb] - left[sb];
961  }
962 
963  // reconstruct shifted signal
964  if (*bd->shift_lsbs)
965  for (sb = -1; sb >= -sconf->max_order; sb--)
966  raw_samples[sb] >>= *bd->shift_lsbs;
967  }
968 
969  // reverse linear prediction coefficients for efficiency
970  lpc_cof = lpc_cof + opt_order;
971 
972  for (sb = 0; sb < opt_order; sb++)
973  lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
974 
975  // reconstruct raw samples
976  raw_samples = bd->raw_samples + smp;
977  lpc_cof = lpc_cof_reversed + opt_order;
978 
979  for (; raw_samples < raw_samples_end; raw_samples++) {
980  y = 1 << 19;
981 
982  for (sb = -opt_order; sb < 0; sb++)
983  y += MUL64(lpc_cof[sb], raw_samples[sb]);
984 
985  *raw_samples -= y >> 20;
986  }
987 
988  raw_samples = bd->raw_samples;
989 
990  // restore previous samples in case that they have been altered
991  if (*bd->store_prev_samples)
992  memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
993  sizeof(*raw_samples) * sconf->max_order);
994 
995  return 0;
996 }
997 
998 
999 /** Read the block data.
1000  */
1002 {
1003  int ret;
1004  GetBitContext *gb = &ctx->gb;
1005  ALSSpecificConfig *sconf = &ctx->sconf;
1006 
1007  *bd->shift_lsbs = 0;
1008  // read block type flag and read the samples accordingly
1009  if (get_bits1(gb)) {
1010  ret = read_var_block_data(ctx, bd);
1011  } else {
1012  ret = read_const_block_data(ctx, bd);
1013  }
1014 
1015  if (!sconf->mc_coding || ctx->js_switch)
1016  align_get_bits(gb);
1017 
1018  return ret;
1019 }
1020 
1021 
1022 /** Decode the block data.
1023  */
1025 {
1026  unsigned int smp;
1027  int ret = 0;
1028 
1029  // read block type flag and read the samples accordingly
1030  if (*bd->const_block)
1031  decode_const_block_data(ctx, bd);
1032  else
1033  ret = decode_var_block_data(ctx, bd); // always return 0
1034 
1035  if (ret < 0)
1036  return ret;
1037 
1038  // TODO: read RLSLMS extension data
1039 
1040  if (*bd->shift_lsbs)
1041  for (smp = 0; smp < bd->block_length; smp++)
1042  bd->raw_samples[smp] = (unsigned)bd->raw_samples[smp] << *bd->shift_lsbs;
1043 
1044  return 0;
1045 }
1046 
1047 
1048 /** Read and decode block data successively.
1049  */
1051 {
1052  int ret;
1053 
1054  if ((ret = read_block(ctx, bd)) < 0)
1055  return ret;
1056 
1057  return decode_block(ctx, bd);
1058 }
1059 
1060 
1061 /** Compute the number of samples left to decode for the current frame and
1062  * sets these samples to zero.
1063  */
1064 static void zero_remaining(unsigned int b, unsigned int b_max,
1065  const unsigned int *div_blocks, int32_t *buf)
1066 {
1067  unsigned int count = 0;
1068 
1069  while (b < b_max)
1070  count += div_blocks[b++];
1071 
1072  if (count)
1073  memset(buf, 0, sizeof(*buf) * count);
1074 }
1075 
1076 
1077 /** Decode blocks independently.
1078  */
1079 static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1080  unsigned int c, const unsigned int *div_blocks,
1081  unsigned int *js_blocks)
1082 {
1083  int ret;
1084  unsigned int b;
1085  ALSBlockData bd = { 0 };
1086 
1087  bd.ra_block = ra_frame;
1088  bd.const_block = ctx->const_block;
1089  bd.shift_lsbs = ctx->shift_lsbs;
1090  bd.opt_order = ctx->opt_order;
1092  bd.use_ltp = ctx->use_ltp;
1093  bd.ltp_lag = ctx->ltp_lag;
1094  bd.ltp_gain = ctx->ltp_gain[0];
1095  bd.quant_cof = ctx->quant_cof[0];
1096  bd.lpc_cof = ctx->lpc_cof[0];
1098  bd.raw_samples = ctx->raw_samples[c];
1099 
1100 
1101  for (b = 0; b < ctx->num_blocks; b++) {
1102  bd.block_length = div_blocks[b];
1103 
1104  if ((ret = read_decode_block(ctx, &bd)) < 0) {
1105  // damaged block, write zero for the rest of the frame
1106  zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1107  return ret;
1108  }
1109  bd.raw_samples += div_blocks[b];
1110  bd.ra_block = 0;
1111  }
1112 
1113  return 0;
1114 }
1115 
1116 
1117 /** Decode blocks dependently.
1118  */
1119 static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1120  unsigned int c, const unsigned int *div_blocks,
1121  unsigned int *js_blocks)
1122 {
1123  ALSSpecificConfig *sconf = &ctx->sconf;
1124  unsigned int offset = 0;
1125  unsigned int b;
1126  int ret;
1127  ALSBlockData bd[2] = { { 0 } };
1128 
1129  bd[0].ra_block = ra_frame;
1130  bd[0].const_block = ctx->const_block;
1131  bd[0].shift_lsbs = ctx->shift_lsbs;
1132  bd[0].opt_order = ctx->opt_order;
1134  bd[0].use_ltp = ctx->use_ltp;
1135  bd[0].ltp_lag = ctx->ltp_lag;
1136  bd[0].ltp_gain = ctx->ltp_gain[0];
1137  bd[0].quant_cof = ctx->quant_cof[0];
1138  bd[0].lpc_cof = ctx->lpc_cof[0];
1139  bd[0].prev_raw_samples = ctx->prev_raw_samples;
1140  bd[0].js_blocks = *js_blocks;
1141 
1142  bd[1].ra_block = ra_frame;
1143  bd[1].const_block = ctx->const_block;
1144  bd[1].shift_lsbs = ctx->shift_lsbs;
1145  bd[1].opt_order = ctx->opt_order;
1147  bd[1].use_ltp = ctx->use_ltp;
1148  bd[1].ltp_lag = ctx->ltp_lag;
1149  bd[1].ltp_gain = ctx->ltp_gain[0];
1150  bd[1].quant_cof = ctx->quant_cof[0];
1151  bd[1].lpc_cof = ctx->lpc_cof[0];
1152  bd[1].prev_raw_samples = ctx->prev_raw_samples;
1153  bd[1].js_blocks = *(js_blocks + 1);
1154 
1155  // decode all blocks
1156  for (b = 0; b < ctx->num_blocks; b++) {
1157  unsigned int s;
1158 
1159  bd[0].block_length = div_blocks[b];
1160  bd[1].block_length = div_blocks[b];
1161 
1162  bd[0].raw_samples = ctx->raw_samples[c ] + offset;
1163  bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
1164 
1165  bd[0].raw_other = bd[1].raw_samples;
1166  bd[1].raw_other = bd[0].raw_samples;
1167 
1168  if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
1169  (ret = read_decode_block(ctx, &bd[1])) < 0)
1170  goto fail;
1171 
1172  // reconstruct joint-stereo blocks
1173  if (bd[0].js_blocks) {
1174  if (bd[1].js_blocks)
1175  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
1176 
1177  for (s = 0; s < div_blocks[b]; s++)
1178  bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
1179  } else if (bd[1].js_blocks) {
1180  for (s = 0; s < div_blocks[b]; s++)
1181  bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
1182  }
1183 
1184  offset += div_blocks[b];
1185  bd[0].ra_block = 0;
1186  bd[1].ra_block = 0;
1187  }
1188 
1189  // store carryover raw samples,
1190  // the others channel raw samples are stored by the calling function.
1191  memmove(ctx->raw_samples[c] - sconf->max_order,
1192  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1193  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1194 
1195  return 0;
1196 fail:
1197  // damaged block, write zero for the rest of the frame
1198  zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1199  zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1200  return ret;
1201 }
1202 
1203 static inline int als_weighting(GetBitContext *gb, int k, int off)
1204 {
1205  int idx = av_clip(decode_rice(gb, k) + off,
1206  0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
1207  return mcc_weightings[idx];
1208 }
1209 
1210 /** Read the channel data.
1211  */
1213 {
1214  GetBitContext *gb = &ctx->gb;
1215  ALSChannelData *current = cd;
1216  unsigned int channels = ctx->avctx->channels;
1217  int entries = 0;
1218 
1219  while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1220  current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1221 
1222  if (current->master_channel >= channels) {
1223  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
1224  return AVERROR_INVALIDDATA;
1225  }
1226 
1227  if (current->master_channel != c) {
1228  current->time_diff_flag = get_bits1(gb);
1229  current->weighting[0] = als_weighting(gb, 1, 16);
1230  current->weighting[1] = als_weighting(gb, 2, 14);
1231  current->weighting[2] = als_weighting(gb, 1, 16);
1232 
1233  if (current->time_diff_flag) {
1234  current->weighting[3] = als_weighting(gb, 1, 16);
1235  current->weighting[4] = als_weighting(gb, 1, 16);
1236  current->weighting[5] = als_weighting(gb, 1, 16);
1237 
1238  current->time_diff_sign = get_bits1(gb);
1239  current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1240  }
1241  }
1242 
1243  current++;
1244  entries++;
1245  }
1246 
1247  if (entries == channels) {
1248  av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
1249  return AVERROR_INVALIDDATA;
1250  }
1251 
1252  align_get_bits(gb);
1253  return 0;
1254 }
1255 
1256 
1257 /** Recursively reverts the inter-channel correlation for a block.
1258  */
1260  ALSChannelData **cd, int *reverted,
1261  unsigned int offset, int c)
1262 {
1263  ALSChannelData *ch = cd[c];
1264  unsigned int dep = 0;
1265  unsigned int channels = ctx->avctx->channels;
1266  unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
1267 
1268  if (reverted[c])
1269  return 0;
1270 
1271  reverted[c] = 1;
1272 
1273  while (dep < channels && !ch[dep].stop_flag) {
1274  revert_channel_correlation(ctx, bd, cd, reverted, offset,
1275  ch[dep].master_channel);
1276 
1277  dep++;
1278  }
1279 
1280  if (dep == channels) {
1281  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
1282  return AVERROR_INVALIDDATA;
1283  }
1284 
1285  bd->const_block = ctx->const_block + c;
1286  bd->shift_lsbs = ctx->shift_lsbs + c;
1287  bd->opt_order = ctx->opt_order + c;
1289  bd->use_ltp = ctx->use_ltp + c;
1290  bd->ltp_lag = ctx->ltp_lag + c;
1291  bd->ltp_gain = ctx->ltp_gain[c];
1292  bd->lpc_cof = ctx->lpc_cof[c];
1293  bd->quant_cof = ctx->quant_cof[c];
1294  bd->raw_samples = ctx->raw_samples[c] + offset;
1295 
1296  for (dep = 0; !ch[dep].stop_flag; dep++) {
1297  ptrdiff_t smp;
1298  ptrdiff_t begin = 1;
1299  ptrdiff_t end = bd->block_length - 1;
1300  int64_t y;
1301  int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1302 
1303  if (ch[dep].master_channel == c)
1304  continue;
1305 
1306  if (ch[dep].time_diff_flag) {
1307  int t = ch[dep].time_diff_index;
1308 
1309  if (ch[dep].time_diff_sign) {
1310  t = -t;
1311  if (begin < t) {
1312  av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
1313  return AVERROR_INVALIDDATA;
1314  }
1315  begin -= t;
1316  } else {
1317  if (end < t) {
1318  av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
1319  return AVERROR_INVALIDDATA;
1320  }
1321  end -= t;
1322  }
1323 
1324  if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
1325  FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
1326  av_log(ctx->avctx, AV_LOG_ERROR,
1327  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1328  master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t),
1329  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1330  return AVERROR_INVALIDDATA;
1331  }
1332 
1333  for (smp = begin; smp < end; smp++) {
1334  y = (1 << 6) +
1335  MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
1336  MUL64(ch[dep].weighting[1], master[smp ]) +
1337  MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
1338  MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1339  MUL64(ch[dep].weighting[4], master[smp + t]) +
1340  MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1341 
1342  bd->raw_samples[smp] += y >> 7;
1343  }
1344  } else {
1345 
1346  if (begin - 1 < ctx->raw_buffer - master ||
1347  end + 1 > ctx->raw_buffer + channels * channel_size - master) {
1348  av_log(ctx->avctx, AV_LOG_ERROR,
1349  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1350  master + begin - 1, master + end + 1,
1351  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1352  return AVERROR_INVALIDDATA;
1353  }
1354 
1355  for (smp = begin; smp < end; smp++) {
1356  y = (1 << 6) +
1357  MUL64(ch[dep].weighting[0], master[smp - 1]) +
1358  MUL64(ch[dep].weighting[1], master[smp ]) +
1359  MUL64(ch[dep].weighting[2], master[smp + 1]);
1360 
1361  bd->raw_samples[smp] += y >> 7;
1362  }
1363  }
1364  }
1365 
1366  return 0;
1367 }
1368 
1369 
1370 /** multiply two softfloats and handle the rounding off
1371  */
1373  uint64_t mantissa_temp;
1374  uint64_t mask_64;
1375  int cutoff_bit_count;
1376  unsigned char last_2_bits;
1377  unsigned int mantissa;
1378  int32_t sign;
1379  uint32_t return_val = 0;
1380  int bit_count = 48;
1381 
1382  sign = a.sign ^ b.sign;
1383 
1384  // Multiply mantissa bits in a 64-bit register
1385  mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
1386  mask_64 = (uint64_t)0x1 << 47;
1387 
1388  if (!mantissa_temp)
1389  return FLOAT_0;
1390 
1391  // Count the valid bit count
1392  while (!(mantissa_temp & mask_64) && mask_64) {
1393  bit_count--;
1394  mask_64 >>= 1;
1395  }
1396 
1397  // Round off
1398  cutoff_bit_count = bit_count - 24;
1399  if (cutoff_bit_count > 0) {
1400  last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
1401  if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
1402  // Need to round up
1403  mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
1404  }
1405  }
1406 
1407  mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
1408 
1409  // Need one more shift?
1410  if (mantissa & 0x01000000ul) {
1411  bit_count++;
1412  mantissa >>= 1;
1413  }
1414 
1415  if (!sign) {
1416  return_val = 0x80000000U;
1417  }
1418 
1419  return_val |= (a.exp + b.exp + bit_count - 47) << 23;
1420  return_val |= mantissa;
1421  return av_bits2sf_ieee754(return_val);
1422 }
1423 
1424 
1425 /** Read and decode the floating point sample data
1426  */
1427 static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
1428  AVCodecContext *avctx = ctx->avctx;
1429  GetBitContext *gb = &ctx->gb;
1430  SoftFloat_IEEE754 *acf = ctx->acf;
1431  int *shift_value = ctx->shift_value;
1432  int *last_shift_value = ctx->last_shift_value;
1433  int *last_acf_mantissa = ctx->last_acf_mantissa;
1434  int **raw_mantissa = ctx->raw_mantissa;
1435  int *nbits = ctx->nbits;
1436  unsigned char *larray = ctx->larray;
1437  int frame_length = ctx->cur_frame_length;
1438  SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
1439  unsigned int partA_flag;
1440  unsigned int highest_byte;
1441  unsigned int shift_amp;
1442  uint32_t tmp_32;
1443  int use_acf;
1444  int nchars;
1445  int i;
1446  int c;
1447  long k;
1448  long nbits_aligned;
1449  unsigned long acc;
1450  unsigned long j;
1451  uint32_t sign;
1452  uint32_t e;
1453  uint32_t mantissa;
1454 
1455  skip_bits_long(gb, 32); //num_bytes_diff_float
1456  use_acf = get_bits1(gb);
1457 
1458  if (ra_frame) {
1459  memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa));
1460  memset(last_shift_value, 0, avctx->channels * sizeof(*last_shift_value) );
1461  ff_mlz_flush_dict(ctx->mlz);
1462  }
1463 
1464  for (c = 0; c < avctx->channels; ++c) {
1465  if (use_acf) {
1466  //acf_flag
1467  if (get_bits1(gb)) {
1468  tmp_32 = get_bits(gb, 23);
1469  last_acf_mantissa[c] = tmp_32;
1470  } else {
1471  tmp_32 = last_acf_mantissa[c];
1472  }
1473  acf[c] = av_bits2sf_ieee754(tmp_32);
1474  } else {
1475  acf[c] = FLOAT_1;
1476  }
1477 
1478  highest_byte = get_bits(gb, 2);
1479  partA_flag = get_bits1(gb);
1480  shift_amp = get_bits1(gb);
1481 
1482  if (shift_amp) {
1483  shift_value[c] = get_bits(gb, 8);
1484  last_shift_value[c] = shift_value[c];
1485  } else {
1486  shift_value[c] = last_shift_value[c];
1487  }
1488 
1489  if (partA_flag) {
1490  if (!get_bits1(gb)) { //uncompressed
1491  for (i = 0; i < frame_length; ++i) {
1492  if (ctx->raw_samples[c][i] == 0) {
1493  ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
1494  }
1495  }
1496  } else { //compressed
1497  nchars = 0;
1498  for (i = 0; i < frame_length; ++i) {
1499  if (ctx->raw_samples[c][i] == 0) {
1500  nchars += 4;
1501  }
1502  }
1503 
1504  tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1505  if(tmp_32 != nchars) {
1506  av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1507  return AVERROR_INVALIDDATA;
1508  }
1509 
1510  for (i = 0; i < frame_length; ++i) {
1511  ctx->raw_mantissa[c][i] = AV_RB32(larray);
1512  }
1513  }
1514  }
1515 
1516  //decode part B
1517  if (highest_byte) {
1518  for (i = 0; i < frame_length; ++i) {
1519  if (ctx->raw_samples[c][i] != 0) {
1520  //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
1521  if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1522  nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
1523  } else {
1524  nbits[i] = 23;
1525  }
1526  nbits[i] = FFMIN(nbits[i], highest_byte*8);
1527  }
1528  }
1529 
1530  if (!get_bits1(gb)) { //uncompressed
1531  for (i = 0; i < frame_length; ++i) {
1532  if (ctx->raw_samples[c][i] != 0) {
1533  raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
1534  }
1535  }
1536  } else { //compressed
1537  nchars = 0;
1538  for (i = 0; i < frame_length; ++i) {
1539  if (ctx->raw_samples[c][i]) {
1540  nchars += (int) nbits[i] / 8;
1541  if (nbits[i] & 7) {
1542  ++nchars;
1543  }
1544  }
1545  }
1546 
1547  tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1548  if(tmp_32 != nchars) {
1549  av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1550  return AVERROR_INVALIDDATA;
1551  }
1552 
1553  j = 0;
1554  for (i = 0; i < frame_length; ++i) {
1555  if (ctx->raw_samples[c][i]) {
1556  if (nbits[i] & 7) {
1557  nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
1558  } else {
1559  nbits_aligned = nbits[i];
1560  }
1561  acc = 0;
1562  for (k = 0; k < nbits_aligned/8; ++k) {
1563  acc = (acc << 8) + larray[j++];
1564  }
1565  acc >>= (nbits_aligned - nbits[i]);
1566  raw_mantissa[c][i] = acc;
1567  }
1568  }
1569  }
1570  }
1571 
1572  for (i = 0; i < frame_length; ++i) {
1573  SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
1574  pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
1575 
1576  if (ctx->raw_samples[c][i] != 0) {
1577  if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1578  pcm_sf = multiply(acf[c], pcm_sf);
1579  }
1580 
1581  sign = pcm_sf.sign;
1582  e = pcm_sf.exp;
1583  mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
1584 
1585  while(mantissa >= 0x1000000) {
1586  e++;
1587  mantissa >>= 1;
1588  }
1589 
1590  if (mantissa) e += (shift_value[c] - 127);
1591  mantissa &= 0x007fffffUL;
1592 
1593  tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
1594  ctx->raw_samples[c][i] = tmp_32;
1595  } else {
1596  ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
1597  }
1598  }
1599  align_get_bits(gb);
1600  }
1601  return 0;
1602 }
1603 
1604 
1605 /** Read the frame data.
1606  */
1607 static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1608 {
1609  ALSSpecificConfig *sconf = &ctx->sconf;
1610  AVCodecContext *avctx = ctx->avctx;
1611  GetBitContext *gb = &ctx->gb;
1612  unsigned int div_blocks[32]; ///< block sizes.
1613  unsigned int c;
1614  unsigned int js_blocks[2];
1615  uint32_t bs_info = 0;
1616  int ret;
1617 
1618  // skip the size of the ra unit if present in the frame
1619  if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1620  skip_bits_long(gb, 32);
1621 
1622  if (sconf->mc_coding && sconf->joint_stereo) {
1623  ctx->js_switch = get_bits1(gb);
1624  align_get_bits(gb);
1625  }
1626 
1627  if (!sconf->mc_coding || ctx->js_switch) {
1628  int independent_bs = !sconf->joint_stereo;
1629 
1630  for (c = 0; c < avctx->channels; c++) {
1631  js_blocks[0] = 0;
1632  js_blocks[1] = 0;
1633 
1634  get_block_sizes(ctx, div_blocks, &bs_info);
1635 
1636  // if joint_stereo and block_switching is set, independent decoding
1637  // is signaled via the first bit of bs_info
1638  if (sconf->joint_stereo && sconf->block_switching)
1639  if (bs_info >> 31)
1640  independent_bs = 2;
1641 
1642  // if this is the last channel, it has to be decoded independently
1643  if (c == avctx->channels - 1 || (c & 1))
1644  independent_bs = 1;
1645 
1646  if (independent_bs) {
1647  ret = decode_blocks_ind(ctx, ra_frame, c,
1648  div_blocks, js_blocks);
1649  if (ret < 0)
1650  return ret;
1651  independent_bs--;
1652  } else {
1653  ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
1654  if (ret < 0)
1655  return ret;
1656 
1657  c++;
1658  }
1659 
1660  // store carryover raw samples
1661  memmove(ctx->raw_samples[c] - sconf->max_order,
1662  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1663  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1664  }
1665  } else { // multi-channel coding
1666  ALSBlockData bd = { 0 };
1667  int b, ret;
1668  int *reverted_channels = ctx->reverted_channels;
1669  unsigned int offset = 0;
1670 
1671  for (c = 0; c < avctx->channels; c++)
1672  if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1673  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
1674  return AVERROR_INVALIDDATA;
1675  }
1676 
1677  memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
1678 
1679  bd.ra_block = ra_frame;
1681 
1682  get_block_sizes(ctx, div_blocks, &bs_info);
1683 
1684  for (b = 0; b < ctx->num_blocks; b++) {
1685  bd.block_length = div_blocks[b];
1686  if (bd.block_length <= 0) {
1687  av_log(ctx->avctx, AV_LOG_WARNING,
1688  "Invalid block length %u in channel data!\n",
1689  bd.block_length);
1690  continue;
1691  }
1692 
1693  for (c = 0; c < avctx->channels; c++) {
1694  bd.const_block = ctx->const_block + c;
1695  bd.shift_lsbs = ctx->shift_lsbs + c;
1696  bd.opt_order = ctx->opt_order + c;
1698  bd.use_ltp = ctx->use_ltp + c;
1699  bd.ltp_lag = ctx->ltp_lag + c;
1700  bd.ltp_gain = ctx->ltp_gain[c];
1701  bd.lpc_cof = ctx->lpc_cof[c];
1702  bd.quant_cof = ctx->quant_cof[c];
1703  bd.raw_samples = ctx->raw_samples[c] + offset;
1704  bd.raw_other = NULL;
1705 
1706  if ((ret = read_block(ctx, &bd)) < 0)
1707  return ret;
1708  if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
1709  return ret;
1710  }
1711 
1712  for (c = 0; c < avctx->channels; c++) {
1713  ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
1714  reverted_channels, offset, c);
1715  if (ret < 0)
1716  return ret;
1717  }
1718  for (c = 0; c < avctx->channels; c++) {
1719  bd.const_block = ctx->const_block + c;
1720  bd.shift_lsbs = ctx->shift_lsbs + c;
1721  bd.opt_order = ctx->opt_order + c;
1723  bd.use_ltp = ctx->use_ltp + c;
1724  bd.ltp_lag = ctx->ltp_lag + c;
1725  bd.ltp_gain = ctx->ltp_gain[c];
1726  bd.lpc_cof = ctx->lpc_cof[c];
1727  bd.quant_cof = ctx->quant_cof[c];
1728  bd.raw_samples = ctx->raw_samples[c] + offset;
1729 
1730  if ((ret = decode_block(ctx, &bd)) < 0)
1731  return ret;
1732  }
1733 
1734  memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
1735  offset += div_blocks[b];
1736  bd.ra_block = 0;
1737  }
1738 
1739  // store carryover raw samples
1740  for (c = 0; c < avctx->channels; c++)
1741  memmove(ctx->raw_samples[c] - sconf->max_order,
1742  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1743  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1744  }
1745 
1746  if (sconf->floating) {
1747  read_diff_float_data(ctx, ra_frame);
1748  }
1749 
1750  if (get_bits_left(gb) < 0) {
1751  av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
1752  return AVERROR_INVALIDDATA;
1753  }
1754 
1755  return 0;
1756 }
1757 
1758 
1759 /** Decode an ALS frame.
1760  */
1761 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
1762  AVPacket *avpkt)
1763 {
1764  ALSDecContext *ctx = avctx->priv_data;
1765  AVFrame *frame = data;
1766  ALSSpecificConfig *sconf = &ctx->sconf;
1767  const uint8_t *buffer = avpkt->data;
1768  int buffer_size = avpkt->size;
1769  int invalid_frame, ret;
1770  unsigned int c, sample, ra_frame, bytes_read, shift;
1771 
1772  if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
1773  return ret;
1774 
1775  // In the case that the distance between random access frames is set to zero
1776  // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1777  // For the first frame, if prediction is used, all samples used from the
1778  // previous frame are assumed to be zero.
1779  ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1780 
1781  // the last frame to decode might have a different length
1782  if (sconf->samples != 0xFFFFFFFF)
1783  ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1784  sconf->frame_length);
1785  else
1786  ctx->cur_frame_length = sconf->frame_length;
1787 
1788  // decode the frame data
1789  if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1790  av_log(ctx->avctx, AV_LOG_WARNING,
1791  "Reading frame data failed. Skipping RA unit.\n");
1792 
1793  ctx->frame_id++;
1794 
1795  /* get output buffer */
1796  frame->nb_samples = ctx->cur_frame_length;
1797  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1798  return ret;
1799 
1800  // transform decoded frame into output format
1801  #define INTERLEAVE_OUTPUT(bps) \
1802  { \
1803  int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
1804  shift = bps - ctx->avctx->bits_per_raw_sample; \
1805  if (!ctx->cs_switch) { \
1806  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1807  for (c = 0; c < avctx->channels; c++) \
1808  *dest++ = ctx->raw_samples[c][sample] * (1U << shift); \
1809  } else { \
1810  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1811  for (c = 0; c < avctx->channels; c++) \
1812  *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] * (1U << shift); \
1813  } \
1814  }
1815 
1816  if (ctx->avctx->bits_per_raw_sample <= 16) {
1817  INTERLEAVE_OUTPUT(16)
1818  } else {
1819  INTERLEAVE_OUTPUT(32)
1820  }
1821 
1822  // update CRC
1823  if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1824  int swap = HAVE_BIGENDIAN != sconf->msb_first;
1825 
1826  if (ctx->avctx->bits_per_raw_sample == 24) {
1827  int32_t *src = (int32_t *)frame->data[0];
1828 
1829  for (sample = 0;
1830  sample < ctx->cur_frame_length * avctx->channels;
1831  sample++) {
1832  int32_t v;
1833 
1834  if (swap)
1835  v = av_bswap32(src[sample]);
1836  else
1837  v = src[sample];
1838  if (!HAVE_BIGENDIAN)
1839  v >>= 8;
1840 
1841  ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
1842  }
1843  } else {
1844  uint8_t *crc_source;
1845 
1846  if (swap) {
1847  if (ctx->avctx->bits_per_raw_sample <= 16) {
1848  int16_t *src = (int16_t*) frame->data[0];
1849  int16_t *dest = (int16_t*) ctx->crc_buffer;
1850  for (sample = 0;
1851  sample < ctx->cur_frame_length * avctx->channels;
1852  sample++)
1853  *dest++ = av_bswap16(src[sample]);
1854  } else {
1855  ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
1856  (uint32_t *) frame->data[0],
1857  ctx->cur_frame_length * avctx->channels);
1858  }
1859  crc_source = ctx->crc_buffer;
1860  } else {
1861  crc_source = frame->data[0];
1862  }
1863 
1864  ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
1865  ctx->cur_frame_length * avctx->channels *
1867  }
1868 
1869 
1870  // check CRC sums if this is the last frame
1871  if (ctx->cur_frame_length != sconf->frame_length &&
1872  ctx->crc_org != ctx->crc) {
1873  av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1874  if (avctx->err_recognition & AV_EF_EXPLODE)
1875  return AVERROR_INVALIDDATA;
1876  }
1877  }
1878 
1879  *got_frame_ptr = 1;
1880 
1881  bytes_read = invalid_frame ? buffer_size :
1882  (get_bits_count(&ctx->gb) + 7) >> 3;
1883 
1884  return bytes_read;
1885 }
1886 
1887 
1888 /** Uninitialize the ALS decoder.
1889  */
1891 {
1892  ALSDecContext *ctx = avctx->priv_data;
1893  int i;
1894 
1895  av_freep(&ctx->sconf.chan_pos);
1896 
1897  ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1898 
1899  av_freep(&ctx->const_block);
1900  av_freep(&ctx->shift_lsbs);
1901  av_freep(&ctx->opt_order);
1903  av_freep(&ctx->use_ltp);
1904  av_freep(&ctx->ltp_lag);
1905  av_freep(&ctx->ltp_gain);
1906  av_freep(&ctx->ltp_gain_buffer);
1907  av_freep(&ctx->quant_cof);
1908  av_freep(&ctx->lpc_cof);
1909  av_freep(&ctx->quant_cof_buffer);
1910  av_freep(&ctx->lpc_cof_buffer);
1912  av_freep(&ctx->prev_raw_samples);
1913  av_freep(&ctx->raw_samples);
1914  av_freep(&ctx->raw_buffer);
1915  av_freep(&ctx->chan_data);
1916  av_freep(&ctx->chan_data_buffer);
1917  av_freep(&ctx->reverted_channels);
1918  av_freep(&ctx->crc_buffer);
1919  if (ctx->mlz) {
1920  av_freep(&ctx->mlz->dict);
1921  av_freep(&ctx->mlz);
1922  }
1923  av_freep(&ctx->acf);
1924  av_freep(&ctx->last_acf_mantissa);
1925  av_freep(&ctx->shift_value);
1926  av_freep(&ctx->last_shift_value);
1927  if (ctx->raw_mantissa) {
1928  for (i = 0; i < avctx->channels; i++) {
1929  av_freep(&ctx->raw_mantissa[i]);
1930  }
1931  av_freep(&ctx->raw_mantissa);
1932  }
1933  av_freep(&ctx->larray);
1934  av_freep(&ctx->nbits);
1935 
1936  return 0;
1937 }
1938 
1939 
1940 /** Initialize the ALS decoder.
1941  */
1943 {
1944  unsigned int c;
1945  unsigned int channel_size;
1946  int num_buffers, ret;
1947  ALSDecContext *ctx = avctx->priv_data;
1948  ALSSpecificConfig *sconf = &ctx->sconf;
1949  ctx->avctx = avctx;
1950 
1951  if (!avctx->extradata) {
1952  av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1953  return AVERROR_INVALIDDATA;
1954  }
1955 
1956  if ((ret = read_specific_config(ctx)) < 0) {
1957  av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1958  goto fail;
1959  }
1960 
1961  if ((ret = check_specific_config(ctx)) < 0) {
1962  goto fail;
1963  }
1964 
1965  if (sconf->bgmc) {
1966  ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
1967  if (ret < 0)
1968  goto fail;
1969  }
1970  if (sconf->floating) {
1971  avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
1972  avctx->bits_per_raw_sample = 32;
1973  } else {
1974  avctx->sample_fmt = sconf->resolution > 1
1976  avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
1977  if (avctx->bits_per_raw_sample > 32) {
1978  av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
1979  avctx->bits_per_raw_sample);
1980  ret = AVERROR_INVALIDDATA;
1981  goto fail;
1982  }
1983  }
1984 
1985  // set maximum Rice parameter for progressive decoding based on resolution
1986  // This is not specified in 14496-3 but actually done by the reference
1987  // codec RM22 revision 2.
1988  ctx->s_max = sconf->resolution > 1 ? 31 : 15;
1989 
1990  // set lag value for long-term prediction
1991  ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
1992  (avctx->sample_rate >= 192000);
1993 
1994  // allocate quantized parcor coefficient buffer
1995  num_buffers = sconf->mc_coding ? avctx->channels : 1;
1996  if (num_buffers * (uint64_t)num_buffers > INT_MAX) // protect chan_data_buffer allocation
1997  return AVERROR_INVALIDDATA;
1998 
1999  ctx->quant_cof = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
2000  ctx->lpc_cof = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
2001  ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
2002  sizeof(*ctx->quant_cof_buffer));
2003  ctx->lpc_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
2004  sizeof(*ctx->lpc_cof_buffer));
2006  sizeof(*ctx->lpc_cof_buffer));
2007 
2008  if (!ctx->quant_cof || !ctx->lpc_cof ||
2009  !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
2010  !ctx->lpc_cof_reversed_buffer) {
2011  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2012  ret = AVERROR(ENOMEM);
2013  goto fail;
2014  }
2015 
2016  // assign quantized parcor coefficient buffers
2017  for (c = 0; c < num_buffers; c++) {
2018  ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
2019  ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
2020  }
2021 
2022  // allocate and assign lag and gain data buffer for ltp mode
2023  ctx->const_block = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
2024  ctx->shift_lsbs = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
2025  ctx->opt_order = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
2026  ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
2027  ctx->use_ltp = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
2028  ctx->ltp_lag = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
2029  ctx->ltp_gain = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
2030  ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
2031 
2032  if (!ctx->const_block || !ctx->shift_lsbs ||
2033  !ctx->opt_order || !ctx->store_prev_samples ||
2034  !ctx->use_ltp || !ctx->ltp_lag ||
2035  !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
2036  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2037  ret = AVERROR(ENOMEM);
2038  goto fail;
2039  }
2040 
2041  for (c = 0; c < num_buffers; c++)
2042  ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
2043 
2044  // allocate and assign channel data buffer for mcc mode
2045  if (sconf->mc_coding) {
2046  ctx->chan_data_buffer = av_mallocz_array(num_buffers * num_buffers,
2047  sizeof(*ctx->chan_data_buffer));
2048  ctx->chan_data = av_mallocz_array(num_buffers,
2049  sizeof(*ctx->chan_data));
2050  ctx->reverted_channels = av_malloc_array(num_buffers,
2051  sizeof(*ctx->reverted_channels));
2052 
2053  if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
2054  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2055  ret = AVERROR(ENOMEM);
2056  goto fail;
2057  }
2058 
2059  for (c = 0; c < num_buffers; c++)
2060  ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
2061  } else {
2062  ctx->chan_data = NULL;
2063  ctx->chan_data_buffer = NULL;
2064  ctx->reverted_channels = NULL;
2065  }
2066 
2067  channel_size = sconf->frame_length + sconf->max_order;
2068 
2069  ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
2070  ctx->raw_buffer = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
2071  ctx->raw_samples = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
2072 
2073  if (sconf->floating) {
2074  ctx->acf = av_malloc_array(avctx->channels, sizeof(*ctx->acf));
2075  ctx->shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value));
2076  ctx->last_shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value));
2077  ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa));
2078  ctx->raw_mantissa = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa));
2079 
2080  ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
2081  ctx->nbits = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
2082  ctx->mlz = av_mallocz(sizeof(*ctx->mlz));
2083 
2084  if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
2085  || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
2086  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2087  ret = AVERROR(ENOMEM);
2088  goto fail;
2089  }
2090 
2091  ff_mlz_init_dict(avctx, ctx->mlz);
2092  ff_mlz_flush_dict(ctx->mlz);
2093 
2094  for (c = 0; c < avctx->channels; ++c) {
2095  ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
2096  }
2097  }
2098 
2099  // allocate previous raw sample buffer
2100  if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
2101  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2102  ret = AVERROR(ENOMEM);
2103  goto fail;
2104  }
2105 
2106  // assign raw samples buffers
2107  ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
2108  for (c = 1; c < avctx->channels; c++)
2109  ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
2110 
2111  // allocate crc buffer
2112  if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
2115  avctx->channels *
2117  sizeof(*ctx->crc_buffer));
2118  if (!ctx->crc_buffer) {
2119  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2120  ret = AVERROR(ENOMEM);
2121  goto fail;
2122  }
2123  }
2124 
2125  ff_bswapdsp_init(&ctx->bdsp);
2126 
2127  return 0;
2128 
2129 fail:
2130  return ret;
2131 }
2132 
2133 
2134 /** Flush (reset) the frame ID after seeking.
2135  */
2136 static av_cold void flush(AVCodecContext *avctx)
2137 {
2138  ALSDecContext *ctx = avctx->priv_data;
2139 
2140  ctx->frame_id = 0;
2141 }
2142 
2143 
2145  .name = "als",
2146  .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
2147  .type = AVMEDIA_TYPE_AUDIO,
2148  .id = AV_CODEC_ID_MP4ALS,
2149  .priv_data_size = sizeof(ALSDecContext),
2150  .init = decode_init,
2151  .close = decode_end,
2152  .decode = decode_frame,
2153  .flush = flush,
2154  .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
2155  .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
2156 };
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:48
#define MUL64(a, b)
Definition: mathops.h:54
AVCodec ff_als_decoder
Definition: alsdec.c:2144
static int als_weighting(GetBitContext *gb, int k, int off)
Definition: alsdec.c:1203
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a non-constant block.
Definition: alsdec.c:892
int msb_first
1 = original CRC calculated on big-endian system, 0 = little-endian
Definition: alsdec.c:162
#define NULL
Definition: coverity.c:32
const char const char void * val
Definition: avisynth_c.h:771
unsigned char * larray
buffer to store the output of masked lz decompression
Definition: alsdec.c:237
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static int shift(int a, int b)
Definition: sonic.c:82
This structure describes decoded (raw) audio or video data.
Definition: frame.h:226
int * use_ltp
contains use_ltp flags for all channels
Definition: alsdec.c:215
av_cold void ff_bgmc_end(uint8_t **cf_lut, int **cf_lut_status)
Release the lookup table arrays.
Definition: bgmc.c:480
MLZ * mlz
masked lz decompression structure
Definition: alsdec.c:231
int32_t ** raw_samples
decoded raw samples for each channel
Definition: alsdec.c:228
uint8_t * crc_buffer
buffer of byte order corrected samples used for CRC check
Definition: alsdec.c:230
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:381
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static const int16_t mcc_weightings[]
Inter-channel weighting factors for multi-channel correlation.
Definition: alsdec.c:121
static void skip_bits_long(GetBitContext *s, int n)
Skips the specified number of bits.
Definition: get_bits.h:293
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int acc
Definition: yuv2rgb.c:554
int block_switching
number of block switching levels
Definition: alsdec.c:170
int rlslms
use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
Definition: alsdec.c:177
channels
Definition: aptx.c:30
int size
Definition: avcodec.h:1446
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch ch
Definition: audioconvert.c:56
const char * b
Definition: vf_curves.c:116
static int check_specific_config(ALSDecContext *ctx)
Check the ALSSpecificConfig for unsupported features.
Definition: alsdec.c:440
#define av_bswap16
Definition: bswap.h:31
int adapt_order
adaptive order: 1 = on, 0 = off
Definition: alsdec.c:166
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
Read the frame data.
Definition: alsdec.c:1607
int32_t * lpc_cof_reversed_buffer
temporary buffer to set up a reversed versio of lpc_cof_buffer
Definition: alsdec.c:223
GetBitContext gb
Definition: alsdec.c:197
Block Gilbert-Moore decoder header.
int * nbits
contains the number of bits to read for masked lz decompression for all samples
Definition: alsdec.c:238
const char * master
Definition: vf_curves.c:117
unsigned int js_switch
if true, joint-stereo decoding is enforced
Definition: alsdec.c:204
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:2757
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Read and decode block data successively.
Definition: alsdec.c:1050
#define INTERLEAVE_OUTPUT(bps)
#define src
Definition: vp8dsp.c:254
#define sample
AVCodec.
Definition: avcodec.h:3424
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:42
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
Read and decode a Rice codeword.
Definition: alsdec.c:487
static int get_sbits_long(GetBitContext *s, int n)
Read 0-32 bits as a signed integer.
Definition: get_bits.h:575
int * ltp_lag
contains ltp lag values for all channels
Definition: alsdec.c:216
int * const_block
contains const_block flags for all channels
Definition: alsdec.c:211
static const uint8_t ltp_gain_values[4][4]
Gain values of p(0) for long-term prediction.
Definition: alsdec.c:110
static const SoftFloat FLOAT_0
0.0
Definition: softfloat.h:39
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
static av_cold int decode_init(AVCodecContext *avctx)
Initialize the ALS decoder.
Definition: alsdec.c:1942
BswapDSPContext bdsp
Definition: alsdec.c:198
static char buffer[20]
Definition: seek.c:32
int32_t * lpc_cof
coefficients of the direct form prediction
Definition: alsdec.c:254
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:2197
uint8_t
#define av_cold
Definition: attributes.h:82
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a constant block.
Definition: alsdec.c:608
float delta
void(* bswap_buf)(uint32_t *dst, const uint32_t *src, int w)
Definition: bswapdsp.h:25
#define AV_RB32
Definition: intreadwrite.h:130
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
int ** ltp_gain
gain values for ltp 5-tap filter for a channel
Definition: alsdec.c:217
static SoftFloat_IEEE754 av_bits2sf_ieee754(uint32_t n)
Make a softfloat out of the bitstream.
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1634
int chan_sort
channel rearrangement: 1 = on, 0 = off
Definition: alsdec.c:176
static AVFrame * frame
int joint_stereo
joint stereo: 1 = on, 0 = off
Definition: alsdec.c:173
Public header for CRC hash function implementation.
static SoftFloat_IEEE754 av_int2sf_ieee754(int64_t n, int e)
Convert integer to softfloat.
const char data[16]
Definition: mxf.c:91
uint8_t * data
Definition: avcodec.h:1445
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
#define ff_dlog(a,...)
bitstream reader API header.
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks independently.
Definition: alsdec.c:1079
void ff_bgmc_decode_init(GetBitContext *gb, unsigned int *h, unsigned int *l, unsigned int *v)
Initialize decoding and reads the first value.
Definition: bgmc.c:488
unsigned int block_length
number of samples within the block
Definition: alsdec.c:243
static void zero_remaining(unsigned int b, unsigned int b_max, const unsigned int *div_blocks, int32_t *buf)
Compute the number of samples left to decode for the current frame and sets these samples to zero...
Definition: alsdec.c:1064
int ra_distance
distance between RA frames (in frames, 0...255)
Definition: alsdec.c:164
int weighting[6]
Definition: alsdec.c:190
int32_t * quant_cof_buffer
contains all quantized parcor coefficients
Definition: alsdec.c:220
signed 32 bits
Definition: samplefmt.h:62
ALSChannelData * chan_data_buffer
contains channel data for all channels
Definition: alsdec.c:225
#define av_log(a,...)
int bgmc
"Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
Definition: alsdec.c:171
#define U(x)
Definition: vp56_arith.h:37
MLZDict * dict
Definition: mlz.h:54
unsigned int cs_switch
if true, channel rearrangement is done
Definition: alsdec.c:205
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:814
int * use_ltp
if true, long-term prediction is used
Definition: alsdec.c:250
enum RA_Flag ra_flag
indicates where the size of ra units is stored
Definition: alsdec.c:165
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int ltp_lag_length
number of bits used for ltp lag value
Definition: alsdec.c:210
#define PTRDIFF_SPECIFIER
Definition: internal.h:261
#define AVERROR(e)
Definition: error.h:43
static av_cold void dprint_specific_config(ALSDecContext *ctx)
Definition: alsdec.c:261
unsigned int * opt_order
prediction order of this block
Definition: alsdec.c:248
int * chan_pos
original channel positions
Definition: alsdec.c:179
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:186
AVCodecContext * avctx
Definition: alsdec.c:195
static const int16_t parcor_scaled_values[]
Scaled PARCOR values used for the first two PARCOR coefficients.
Definition: alsdec.c:71
static const SoftFloat FLOAT_1
1.0
Definition: softfloat.h:41
const char * r
Definition: vf_curves.c:114
static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
multiply two softfloats and handle the rounding off
Definition: alsdec.c:1372
int32_t ** lpc_cof
coefficients of the direct form prediction filter for a channel
Definition: alsdec.c:221
static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame)
Read and decode the floating point sample data.
Definition: alsdec.c:1427
int chan_config_info
mapping of channels to loudspeaker locations. Unused until setting channel configuration is implement...
Definition: alsdec.c:178
unsigned int num_blocks
number of blocks used in the current frame
Definition: alsdec.c:206
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:236
const char * name
Name of the codec implementation.
Definition: avcodec.h:3431
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:227
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks dependently.
Definition: alsdec.c:1119
void ff_bgmc_decode_end(GetBitContext *gb)
Finish decoding.
Definition: bgmc.c:498
const AVCRC * crc_table
Definition: alsdec.c:199
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
#define FFMAX(a, b)
Definition: common.h:94
int * bgmc_lut_status
pointer at lookup table status flags used for BGMC
Definition: alsdec.c:209
#define fail()
Definition: checkasm.h:117
ALSSpecificConfig sconf
Definition: alsdec.c:196
int * store_prev_samples
if true, carryover samples have to be stored
Definition: alsdec.c:249
unsigned int * shift_lsbs
contains shift_lsbs flags for all channels
Definition: alsdec.c:212
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:2658
#define FFMIN(a, b)
Definition: common.h:96
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a non-constant block.
Definition: alsdec.c:622
int ff_mlz_decompression(MLZ *mlz, GetBitContext *gb, int size, unsigned char *buff)
Run mlz decompression on the next size bits and the output will be stored in buff.
Definition: mlz.c:123
int chan_config
indicates that a chan_config_info field is present
Definition: alsdec.c:175
int32_t
AVFormatContext * ctx
Definition: movenc.c:48
#define EXP_BIAS
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
Definition: crc.c:392
int * last_shift_value
contains last shift value for all channels
Definition: alsdec.c:235
static int av_cmp_sf_ieee754(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
Compare a with b strictly.
#define s(width, name)
Definition: cbs_vp9.c:257
void ff_bgmc_decode(GetBitContext *gb, unsigned int num, int32_t *dst, int delta, unsigned int sx, unsigned int *h, unsigned int *l, unsigned int *v, uint8_t *cf_lut, int *cf_lut_status)
Read and decode a block Gilbert-Moore coded symbol.
Definition: bgmc.c:505
static av_cold int decode_end(AVCodecContext *avctx)
Uninitialize the ALS decoder.
Definition: alsdec.c:1890
int * const_block
if true, this is a constant value block
Definition: alsdec.c:245
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:2669
int n
Definition: avisynth_c.h:684
int floating
1 = IEEE 32-bit floating-point, 0 = integer
Definition: alsdec.c:161
int time_diff_flag
Definition: alsdec.c:187
SoftFloat_IEEE754 * acf
contains common multiplier for all channels
Definition: alsdec.c:232
int master_channel
Definition: alsdec.c:186
uint32_t crc
CRC value calculated from decoded data.
Definition: alsdec.c:201
int coef_table
table index of Rice code parameters
Definition: alsdec.c:167
if(ret< 0)
Definition: vf_mcdeint.c:279
static void error(const char *err)
static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a constant block.
Definition: alsdec.c:578
#define FF_ARRAY_ELEMS(a)
#define av_log2
Definition: intmath.h:83
int sb_part
sub-block partition
Definition: alsdec.c:172
MLZ data strucure.
Definition: mlz.h:47
int32_t * raw_other
decoded raw samples of the other channel of a channel pair
Definition: alsdec.c:257
uint8_t * bgmc_lut
pointer at lookup tables used for BGMC
Definition: alsdec.c:208
av_cold void ff_mlz_init_dict(void *context, MLZ *mlz)
Initialize the dictionary.
Definition: mlz.c:23
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int * ltp_gain
gain values for ltp 5-tap filter
Definition: alsdec.c:252
int js_blocks
true if this block contains a difference signal
Definition: alsdec.c:246
#define av_bswap32
Definition: bswap.h:33
unsigned int ra_block
if true, this is a random access block
Definition: alsdec.c:244
Libavcodec external API header.
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
Convert PARCOR coefficient k to direct filter coefficient.
Definition: alsdec.c:505
int * shift_value
value by which the binary point is to be shifted for all channels
Definition: alsdec.c:234
int sample_rate
samples per second
Definition: avcodec.h:2189
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:650
main external API structure.
Definition: avcodec.h:1533
ALSChannelData ** chan_data
channel data for multi-channel correlation
Definition: alsdec.c:224
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Decode an ALS frame.
Definition: alsdec.c:1761
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1918
#define MISSING_ERR(cond, str, errval)
void * buf
Definition: avisynth_c.h:690
int extradata_size
Definition: avcodec.h:1635
#define AV_EF_CAREFUL
consider things that violate the spec, are fast to calculate and have not been seen in the wild as er...
Definition: avcodec.h:2672
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:487
static void skip_bits1(GetBitContext *s)
Definition: get_bits.h:523
double value
Definition: eval.c:98
unsigned int s_max
maximum Rice parameter allowed in entropy coding
Definition: alsdec.c:207
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:460
#define AV_CODEC_CAP_SUBFRAMES
Codec can output multiple frames per AVPacket Normally demuxers return one frame at a time...
Definition: avcodec.h:1011
int * ltp_lag
lag value for long-term prediction
Definition: alsdec.c:251
int32_t * lpc_cof_buffer
contains all coefficients of the direct form prediction filter
Definition: alsdec.c:222
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data...
Definition: avcodec.h:2666
static const int8_t parcor_rice_table[3][20][2]
Rice parameters and corresponding index offsets for decoding the indices of scaled PARCOR values...
Definition: alsdec.c:50
RA_Flag
Definition: alsdec.c:151
static av_cold int read_specific_config(ALSDecContext *ctx)
Read an ALSSpecificConfig from a buffer into the output struct.
Definition: alsdec.c:291
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:531
int long_term_prediction
long term prediction (LTP): 1 = on, 0 = off
Definition: alsdec.c:168
int32_t * raw_samples
decoded raw samples / residuals for this block
Definition: alsdec.c:255
int * reverted_channels
stores a flag for each reverted channel
Definition: alsdec.c:226
int * last_acf_mantissa
contains the last acf mantissa data of common multiplier for all channels
Definition: alsdec.c:233
unsigned int * opt_order
contains opt_order flags for all channels
Definition: alsdec.c:213
int32_t * raw_buffer
contains all decoded raw samples including carryover samples
Definition: alsdec.c:229
int max_order
maximum prediction order (0..1023)
Definition: alsdec.c:169
uint32_t samples
number of samples, 0xFFFFFFFF if unknown
Definition: alsdec.c:159
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:240
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
Definition: samplefmt.c:106
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
Definition: crc.c:374
int mc_coding
extended inter-channel coding (multi channel coding): 1 = on, 0 = off
Definition: alsdec.c:174
int
static const uint8_t tail_code[16][6]
Tail codes used in arithmetic coding using block Gilbert-Moore codes.
Definition: alsdec.c:131
common internal api header.
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:256
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
Definition: unary.h:46
av_cold void ff_mlz_flush_dict(MLZ *mlz)
Flush the dictionary.
Definition: mlz.c:35
static av_cold void flush(AVCodecContext *avctx)
Flush (reset) the frame ID after seeking.
Definition: alsdec.c:2136
signed 16 bits
Definition: samplefmt.h:61
static double c[64]
int time_diff_index
Definition: alsdec.c:189
int * ltp_gain_buffer
contains all gain values for ltp 5-tap filter
Definition: alsdec.c:218
int32_t * quant_cof
quantized parcor coefficients
Definition: alsdec.c:253
int avpriv_mpeg4audio_get_config(MPEG4AudioConfig *c, const uint8_t *buf, int bit_size, int sync_extension)
Parse MPEG-4 systems extradata from a raw buffer to retrieve audio configuration. ...
Definition: mpeg4audio.c:155
#define MKBETAG(a, b, c, d)
Definition: common.h:367
static void parse_bs_info(const uint32_t bs_info, unsigned int n, unsigned int div, unsigned int **div_blocks, unsigned int *num_blocks)
Parse the bs_info field to extract the block partitioning used in block switching mode...
Definition: alsdec.c:464
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
void * priv_data
Definition: avcodec.h:1560
int32_t ** quant_cof
quantized parcor coefficients for a channel
Definition: alsdec.c:219
int channels
number of audio channels
Definition: avcodec.h:2190
int crc_enabled
enable Cyclic Redundancy Checksum
Definition: alsdec.c:180
int ** raw_mantissa
decoded mantissa bits of the difference signal
Definition: alsdec.c:236
uint32_t crc_org
CRC value of the original input data.
Definition: alsdec.c:200
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data.
Definition: alsdec.c:1024
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data.
Definition: alsdec.c:1001
int frame_length
frame length for each frame (last frame may differ)
Definition: alsdec.c:163
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:658
int stop_flag
Definition: alsdec.c:185
static const struct twinvq_data tab
unsigned int * shift_lsbs
shift of values for this block
Definition: alsdec.c:247
#define av_freep(p)
void INT64 INT64 count
Definition: avisynth_c.h:690
void INT64 start
Definition: avisynth_c.h:690
av_cold int ff_bgmc_init(AVCodecContext *avctx, uint8_t **cf_lut, int **cf_lut_status)
Initialize the lookup table arrays.
Definition: bgmc.c:460
#define av_malloc_array(a, b)
#define HAVE_BIGENDIAN
Definition: config.h:196
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
Read the channel data.
Definition: alsdec.c:1212
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks, uint32_t *bs_info)
Read block switching field if necessary and set actual block sizes.
Definition: alsdec.c:525
int * store_prev_samples
contains store_prev_samples flags for all channels
Definition: alsdec.c:214
static SoftFloat_IEEE754 av_div_sf_ieee754(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b)
Divide a by b.
unsigned int frame_id
the frame ID / number of the current frame
Definition: alsdec.c:203
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd, ALSChannelData **cd, int *reverted, unsigned int offset, int c)
Recursively reverts the inter-channel correlation for a block.
Definition: alsdec.c:1259
This structure stores compressed data.
Definition: avcodec.h:1422
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:292
uint32_t AVCRC
Definition: crc.h:47
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:968
for(j=16;j >0;--j)
unsigned int cur_frame_length
length of the current frame to decode
Definition: alsdec.c:202
static av_always_inline int get_bitsz(GetBitContext *s, int n)
Read 0-25 bits.
Definition: get_bits.h:412
int resolution
000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
Definition: alsdec.c:160
void * av_mallocz_array(size_t nmemb, size_t size)
Allocate a memory block for an array with av_mallocz().
Definition: mem.c:191
int time_diff_sign
Definition: alsdec.c:188