FFmpeg  3.3.8
h264_slice.c
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG-4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #include "libavutil/avassert.h"
29 #include "libavutil/display.h"
30 #include "libavutil/imgutils.h"
31 #include "libavutil/stereo3d.h"
32 #include "libavutil/timer.h"
33 #include "internal.h"
34 #include "cabac.h"
35 #include "cabac_functions.h"
36 #include "error_resilience.h"
37 #include "avcodec.h"
38 #include "h264.h"
39 #include "h264dec.h"
40 #include "h264data.h"
41 #include "h264chroma.h"
42 #include "h264_mvpred.h"
43 #include "h264_ps.h"
44 #include "golomb.h"
45 #include "mathops.h"
46 #include "mpegutils.h"
47 #include "mpegvideo.h"
48 #include "rectangle.h"
49 #include "thread.h"
50 
51 static const uint8_t field_scan[16+1] = {
52  0 + 0 * 4, 0 + 1 * 4, 1 + 0 * 4, 0 + 2 * 4,
53  0 + 3 * 4, 1 + 1 * 4, 1 + 2 * 4, 1 + 3 * 4,
54  2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 2 + 3 * 4,
55  3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4,
56 };
57 
58 static const uint8_t field_scan8x8[64+1] = {
59  0 + 0 * 8, 0 + 1 * 8, 0 + 2 * 8, 1 + 0 * 8,
60  1 + 1 * 8, 0 + 3 * 8, 0 + 4 * 8, 1 + 2 * 8,
61  2 + 0 * 8, 1 + 3 * 8, 0 + 5 * 8, 0 + 6 * 8,
62  0 + 7 * 8, 1 + 4 * 8, 2 + 1 * 8, 3 + 0 * 8,
63  2 + 2 * 8, 1 + 5 * 8, 1 + 6 * 8, 1 + 7 * 8,
64  2 + 3 * 8, 3 + 1 * 8, 4 + 0 * 8, 3 + 2 * 8,
65  2 + 4 * 8, 2 + 5 * 8, 2 + 6 * 8, 2 + 7 * 8,
66  3 + 3 * 8, 4 + 1 * 8, 5 + 0 * 8, 4 + 2 * 8,
67  3 + 4 * 8, 3 + 5 * 8, 3 + 6 * 8, 3 + 7 * 8,
68  4 + 3 * 8, 5 + 1 * 8, 6 + 0 * 8, 5 + 2 * 8,
69  4 + 4 * 8, 4 + 5 * 8, 4 + 6 * 8, 4 + 7 * 8,
70  5 + 3 * 8, 6 + 1 * 8, 6 + 2 * 8, 5 + 4 * 8,
71  5 + 5 * 8, 5 + 6 * 8, 5 + 7 * 8, 6 + 3 * 8,
72  7 + 0 * 8, 7 + 1 * 8, 6 + 4 * 8, 6 + 5 * 8,
73  6 + 6 * 8, 6 + 7 * 8, 7 + 2 * 8, 7 + 3 * 8,
74  7 + 4 * 8, 7 + 5 * 8, 7 + 6 * 8, 7 + 7 * 8,
75 };
76 
77 static const uint8_t field_scan8x8_cavlc[64+1] = {
78  0 + 0 * 8, 1 + 1 * 8, 2 + 0 * 8, 0 + 7 * 8,
79  2 + 2 * 8, 2 + 3 * 8, 2 + 4 * 8, 3 + 3 * 8,
80  3 + 4 * 8, 4 + 3 * 8, 4 + 4 * 8, 5 + 3 * 8,
81  5 + 5 * 8, 7 + 0 * 8, 6 + 6 * 8, 7 + 4 * 8,
82  0 + 1 * 8, 0 + 3 * 8, 1 + 3 * 8, 1 + 4 * 8,
83  1 + 5 * 8, 3 + 1 * 8, 2 + 5 * 8, 4 + 1 * 8,
84  3 + 5 * 8, 5 + 1 * 8, 4 + 5 * 8, 6 + 1 * 8,
85  5 + 6 * 8, 7 + 1 * 8, 6 + 7 * 8, 7 + 5 * 8,
86  0 + 2 * 8, 0 + 4 * 8, 0 + 5 * 8, 2 + 1 * 8,
87  1 + 6 * 8, 4 + 0 * 8, 2 + 6 * 8, 5 + 0 * 8,
88  3 + 6 * 8, 6 + 0 * 8, 4 + 6 * 8, 6 + 2 * 8,
89  5 + 7 * 8, 6 + 4 * 8, 7 + 2 * 8, 7 + 6 * 8,
90  1 + 0 * 8, 1 + 2 * 8, 0 + 6 * 8, 3 + 0 * 8,
91  1 + 7 * 8, 3 + 2 * 8, 2 + 7 * 8, 4 + 2 * 8,
92  3 + 7 * 8, 5 + 2 * 8, 4 + 7 * 8, 5 + 4 * 8,
93  6 + 3 * 8, 6 + 5 * 8, 7 + 3 * 8, 7 + 7 * 8,
94 };
95 
96 // zigzag_scan8x8_cavlc[i] = zigzag_scan8x8[(i/4) + 16*(i%4)]
97 static const uint8_t zigzag_scan8x8_cavlc[64+1] = {
98  0 + 0 * 8, 1 + 1 * 8, 1 + 2 * 8, 2 + 2 * 8,
99  4 + 1 * 8, 0 + 5 * 8, 3 + 3 * 8, 7 + 0 * 8,
100  3 + 4 * 8, 1 + 7 * 8, 5 + 3 * 8, 6 + 3 * 8,
101  2 + 7 * 8, 6 + 4 * 8, 5 + 6 * 8, 7 + 5 * 8,
102  1 + 0 * 8, 2 + 0 * 8, 0 + 3 * 8, 3 + 1 * 8,
103  3 + 2 * 8, 0 + 6 * 8, 4 + 2 * 8, 6 + 1 * 8,
104  2 + 5 * 8, 2 + 6 * 8, 6 + 2 * 8, 5 + 4 * 8,
105  3 + 7 * 8, 7 + 3 * 8, 4 + 7 * 8, 7 + 6 * 8,
106  0 + 1 * 8, 3 + 0 * 8, 0 + 4 * 8, 4 + 0 * 8,
107  2 + 3 * 8, 1 + 5 * 8, 5 + 1 * 8, 5 + 2 * 8,
108  1 + 6 * 8, 3 + 5 * 8, 7 + 1 * 8, 4 + 5 * 8,
109  4 + 6 * 8, 7 + 4 * 8, 5 + 7 * 8, 6 + 7 * 8,
110  0 + 2 * 8, 2 + 1 * 8, 1 + 3 * 8, 5 + 0 * 8,
111  1 + 4 * 8, 2 + 4 * 8, 6 + 0 * 8, 4 + 3 * 8,
112  0 + 7 * 8, 4 + 4 * 8, 7 + 2 * 8, 3 + 6 * 8,
113  5 + 5 * 8, 6 + 5 * 8, 6 + 6 * 8, 7 + 7 * 8,
114 };
115 
116 static void release_unused_pictures(H264Context *h, int remove_current)
117 {
118  int i;
119 
120  /* release non reference frames */
121  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
122  if (h->DPB[i].f->buf[0] && !h->DPB[i].reference &&
123  (remove_current || &h->DPB[i] != h->cur_pic_ptr)) {
124  ff_h264_unref_picture(h, &h->DPB[i]);
125  }
126  }
127 }
128 
129 static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
130 {
131  const H264Context *h = sl->h264;
132  int alloc_size = FFALIGN(FFABS(linesize) + 32, 32);
133 
134  av_fast_malloc(&sl->bipred_scratchpad, &sl->bipred_scratchpad_allocated, 16 * 6 * alloc_size);
135  // edge emu needs blocksize + filter length - 1
136  // (= 21x21 for H.264)
137  av_fast_malloc(&sl->edge_emu_buffer, &sl->edge_emu_buffer_allocated, alloc_size * 2 * 21);
138 
140  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
142  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
143 
144  if (!sl->bipred_scratchpad || !sl->edge_emu_buffer ||
145  !sl->top_borders[0] || !sl->top_borders[1]) {
148  av_freep(&sl->top_borders[0]);
149  av_freep(&sl->top_borders[1]);
150 
153  sl->top_borders_allocated[0] = 0;
154  sl->top_borders_allocated[1] = 0;
155  return AVERROR(ENOMEM);
156  }
157 
158  return 0;
159 }
160 
162 {
163  const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1;
164  const int mb_array_size = h->mb_stride * h->mb_height;
165  const int b4_stride = h->mb_width * 4 + 1;
166  const int b4_array_size = b4_stride * h->mb_height * 4;
167 
168  h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride,
170  h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) *
171  sizeof(uint32_t), av_buffer_allocz);
172  h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) *
173  sizeof(int16_t), av_buffer_allocz);
174  h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz);
175 
176  if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool ||
177  !h->ref_index_pool) {
182  return AVERROR(ENOMEM);
183  }
184 
185  return 0;
186 }
187 
189 {
190  int i, ret = 0;
191 
192  av_assert0(!pic->f->data[0]);
193 
194  pic->tf.f = pic->f;
195  ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ?
197  if (ret < 0)
198  goto fail;
199 
200  pic->crop = h->ps.sps->crop;
201  pic->crop_top = h->ps.sps->crop_top;
202  pic->crop_left= h->ps.sps->crop_left;
203 
204  if (h->avctx->hwaccel) {
205  const AVHWAccel *hwaccel = h->avctx->hwaccel;
207  if (hwaccel->frame_priv_data_size) {
209  if (!pic->hwaccel_priv_buf)
210  return AVERROR(ENOMEM);
212  }
213  }
214  if (CONFIG_GRAY && !h->avctx->hwaccel && h->flags & AV_CODEC_FLAG_GRAY && pic->f->data[2]) {
215  int h_chroma_shift, v_chroma_shift;
217  &h_chroma_shift, &v_chroma_shift);
218 
219  for(i=0; i<AV_CEIL_RSHIFT(pic->f->height, v_chroma_shift); i++) {
220  memset(pic->f->data[1] + pic->f->linesize[1]*i,
221  0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
222  memset(pic->f->data[2] + pic->f->linesize[2]*i,
223  0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
224  }
225  }
226 
227  if (!h->qscale_table_pool) {
228  ret = init_table_pools(h);
229  if (ret < 0)
230  goto fail;
231  }
232 
235  if (!pic->qscale_table_buf || !pic->mb_type_buf)
236  goto fail;
237 
238  pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1;
239  pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1;
240 
241  for (i = 0; i < 2; i++) {
244  if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i])
245  goto fail;
246 
247  pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
248  pic->ref_index[i] = pic->ref_index_buf[i]->data;
249  }
250 
251  return 0;
252 fail:
253  ff_h264_unref_picture(h, pic);
254  return (ret < 0) ? ret : AVERROR(ENOMEM);
255 }
256 
258 {
259  int i;
260 
261  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
262  if (!h->DPB[i].f->buf[0])
263  return i;
264  }
265  return AVERROR_INVALIDDATA;
266 }
267 
268 
269 #define IN_RANGE(a, b, size) (((void*)(a) >= (void*)(b)) && ((void*)(a) < (void*)((b) + (size))))
270 
271 #define REBASE_PICTURE(pic, new_ctx, old_ctx) \
272  (((pic) && (pic) >= (old_ctx)->DPB && \
273  (pic) < (old_ctx)->DPB + H264_MAX_PICTURE_COUNT) ? \
274  &(new_ctx)->DPB[(pic) - (old_ctx)->DPB] : NULL)
275 
277  H264Context *new_base,
278  H264Context *old_base)
279 {
280  int i;
281 
282  for (i = 0; i < count; i++) {
283  av_assert1(!from[i] ||
284  IN_RANGE(from[i], old_base, 1) ||
285  IN_RANGE(from[i], old_base->DPB, H264_MAX_PICTURE_COUNT));
286  to[i] = REBASE_PICTURE(from[i], new_base, old_base);
287  }
288 }
289 
291 
293  const AVCodecContext *src)
294 {
295  H264Context *h = dst->priv_data, *h1 = src->priv_data;
296  int inited = h->context_initialized, err = 0;
297  int need_reinit = 0;
298  int i, ret;
299 
300  if (dst == src)
301  return 0;
302 
303  // We can't fail if SPS isn't set at it breaks current skip_frame code
304  //if (!h1->ps.sps)
305  // return AVERROR_INVALIDDATA;
306 
307  if (inited &&
308  (h->width != h1->width ||
309  h->height != h1->height ||
310  h->mb_width != h1->mb_width ||
311  h->mb_height != h1->mb_height ||
312  !h->ps.sps ||
313  h->ps.sps->bit_depth_luma != h1->ps.sps->bit_depth_luma ||
314  h->ps.sps->chroma_format_idc != h1->ps.sps->chroma_format_idc ||
315  h->ps.sps->colorspace != h1->ps.sps->colorspace)) {
316  need_reinit = 1;
317  }
318 
319  /* copy block_offset since frame_start may not be called */
320  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
321 
322  // SPS/PPS
323  for (i = 0; i < FF_ARRAY_ELEMS(h->ps.sps_list); i++) {
324  av_buffer_unref(&h->ps.sps_list[i]);
325  if (h1->ps.sps_list[i]) {
326  h->ps.sps_list[i] = av_buffer_ref(h1->ps.sps_list[i]);
327  if (!h->ps.sps_list[i])
328  return AVERROR(ENOMEM);
329  }
330  }
331  for (i = 0; i < FF_ARRAY_ELEMS(h->ps.pps_list); i++) {
332  av_buffer_unref(&h->ps.pps_list[i]);
333  if (h1->ps.pps_list[i]) {
334  h->ps.pps_list[i] = av_buffer_ref(h1->ps.pps_list[i]);
335  if (!h->ps.pps_list[i])
336  return AVERROR(ENOMEM);
337  }
338  }
339 
342  h->ps.pps = NULL;
343  h->ps.sps = NULL;
344  if (h1->ps.pps_ref) {
345  h->ps.pps_ref = av_buffer_ref(h1->ps.pps_ref);
346  if (!h->ps.pps_ref)
347  return AVERROR(ENOMEM);
348  h->ps.pps = (const PPS*)h->ps.pps_ref->data;
349  }
350  if (h1->ps.sps_ref) {
351  h->ps.sps_ref = av_buffer_ref(h1->ps.sps_ref);
352  if (!h->ps.sps_ref)
353  return AVERROR(ENOMEM);
354  h->ps.sps = (const SPS*)h->ps.sps_ref->data;
355  }
356 
357  if (need_reinit || !inited) {
358  h->width = h1->width;
359  h->height = h1->height;
360  h->mb_height = h1->mb_height;
361  h->mb_width = h1->mb_width;
362  h->mb_num = h1->mb_num;
363  h->mb_stride = h1->mb_stride;
364  h->b_stride = h1->b_stride;
365 
366  if (h->context_initialized || h1->context_initialized) {
367  if ((err = h264_slice_header_init(h)) < 0) {
368  av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed");
369  return err;
370  }
371  }
372 
373  /* copy block_offset since frame_start may not be called */
374  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
375  }
376 
377  h->avctx->coded_height = h1->avctx->coded_height;
378  h->avctx->coded_width = h1->avctx->coded_width;
379  h->avctx->width = h1->avctx->width;
380  h->avctx->height = h1->avctx->height;
381  h->coded_picture_number = h1->coded_picture_number;
382  h->first_field = h1->first_field;
383  h->picture_structure = h1->picture_structure;
384  h->mb_aff_frame = h1->mb_aff_frame;
385  h->droppable = h1->droppable;
386 
387  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
388  ff_h264_unref_picture(h, &h->DPB[i]);
389  if (h1->DPB[i].f->buf[0] &&
390  (ret = ff_h264_ref_picture(h, &h->DPB[i], &h1->DPB[i])) < 0)
391  return ret;
392  }
393 
394  h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1);
396  if (h1->cur_pic.f->buf[0]) {
397  ret = ff_h264_ref_picture(h, &h->cur_pic, &h1->cur_pic);
398  if (ret < 0)
399  return ret;
400  }
401 
402  h->enable_er = h1->enable_er;
403  h->workaround_bugs = h1->workaround_bugs;
404  h->droppable = h1->droppable;
405 
406  // extradata/NAL handling
407  h->is_avc = h1->is_avc;
408  h->nal_length_size = h1->nal_length_size;
409  h->sei.unregistered.x264_build = h1->sei.unregistered.x264_build;
410 
411  memcpy(&h->poc, &h1->poc, sizeof(h->poc));
412 
413  memcpy(h->default_ref, h1->default_ref, sizeof(h->default_ref));
414  memcpy(h->short_ref, h1->short_ref, sizeof(h->short_ref));
415  memcpy(h->long_ref, h1->long_ref, sizeof(h->long_ref));
416  memcpy(h->delayed_pic, h1->delayed_pic, sizeof(h->delayed_pic));
417  memcpy(h->last_pocs, h1->last_pocs, sizeof(h->last_pocs));
418 
419  h->next_output_pic = h1->next_output_pic;
420  h->next_outputed_poc = h1->next_outputed_poc;
421 
422  memcpy(h->mmco, h1->mmco, sizeof(h->mmco));
423  h->nb_mmco = h1->nb_mmco;
424  h->mmco_reset = h1->mmco_reset;
425  h->explicit_ref_marking = h1->explicit_ref_marking;
426  h->long_ref_count = h1->long_ref_count;
427  h->short_ref_count = h1->short_ref_count;
428 
429  copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1);
430  copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1);
431  copy_picture_range(h->delayed_pic, h1->delayed_pic,
432  MAX_DELAYED_PIC_COUNT + 2, h, h1);
433 
434  h->frame_recovered = h1->frame_recovered;
435 
436  if (!h->cur_pic_ptr)
437  return 0;
438 
439  if (!h->droppable) {
441  h->poc.prev_poc_msb = h->poc.poc_msb;
442  h->poc.prev_poc_lsb = h->poc.poc_lsb;
443  }
446 
447  h->recovery_frame = h1->recovery_frame;
448 
449  return err;
450 }
451 
453 {
454  H264Picture *pic;
455  int i, ret;
456  const int pixel_shift = h->pixel_shift;
457  int c[4] = {
458  1<<(h->ps.sps->bit_depth_luma-1),
459  1<<(h->ps.sps->bit_depth_chroma-1),
460  1<<(h->ps.sps->bit_depth_chroma-1),
461  -1
462  };
463 
464  if (!ff_thread_can_start_frame(h->avctx)) {
465  av_log(h->avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n");
466  return -1;
467  }
468 
470  h->cur_pic_ptr = NULL;
471 
472  i = find_unused_picture(h);
473  if (i < 0) {
474  av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n");
475  return i;
476  }
477  pic = &h->DPB[i];
478 
479  pic->reference = h->droppable ? 0 : h->picture_structure;
482  pic->frame_num = h->poc.frame_num;
483  /*
484  * Zero key_frame here; IDR markings per slice in frame or fields are ORed
485  * in later.
486  * See decode_nal_units().
487  */
488  pic->f->key_frame = 0;
489  pic->mmco_reset = 0;
490  pic->recovered = 0;
491  pic->invalid_gap = 0;
493 
494  pic->f->pict_type = h->slice_ctx[0].slice_type;
495 
496  if ((ret = alloc_picture(h, pic)) < 0)
497  return ret;
498  if(!h->frame_recovered && !h->avctx->hwaccel
501 #endif
502  )
503  ff_color_frame(pic->f, c);
504 
505  h->cur_pic_ptr = pic;
509  }
510 
511  if ((ret = ff_h264_ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0)
512  return ret;
513 
514  for (i = 0; i < h->nb_slice_ctx; i++) {
515  h->slice_ctx[i].linesize = h->cur_pic_ptr->f->linesize[0];
516  h->slice_ctx[i].uvlinesize = h->cur_pic_ptr->f->linesize[1];
517  }
518 
523  }
524 
525  for (i = 0; i < 16; i++) {
526  h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
527  h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
528  }
529  for (i = 0; i < 16; i++) {
530  h->block_offset[16 + i] =
531  h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
532  h->block_offset[48 + 16 + i] =
533  h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
534  }
535 
536  /* We mark the current picture as non-reference after allocating it, so
537  * that if we break out due to an error it can be released automatically
538  * in the next ff_mpv_frame_start().
539  */
540  h->cur_pic_ptr->reference = 0;
541 
542  h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX;
543 
544  h->next_output_pic = NULL;
545 
546  h->postpone_filter = 0;
547 
549 
550  assert(h->cur_pic_ptr->long_ref == 0);
551 
552  return 0;
553 }
554 
556  uint8_t *src_y,
557  uint8_t *src_cb, uint8_t *src_cr,
558  int linesize, int uvlinesize,
559  int simple)
560 {
561  uint8_t *top_border;
562  int top_idx = 1;
563  const int pixel_shift = h->pixel_shift;
564  int chroma444 = CHROMA444(h);
565  int chroma422 = CHROMA422(h);
566 
567  src_y -= linesize;
568  src_cb -= uvlinesize;
569  src_cr -= uvlinesize;
570 
571  if (!simple && FRAME_MBAFF(h)) {
572  if (sl->mb_y & 1) {
573  if (!MB_MBAFF(sl)) {
574  top_border = sl->top_borders[0][sl->mb_x];
575  AV_COPY128(top_border, src_y + 15 * linesize);
576  if (pixel_shift)
577  AV_COPY128(top_border + 16, src_y + 15 * linesize + 16);
578  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
579  if (chroma444) {
580  if (pixel_shift) {
581  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
582  AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16);
583  AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize);
584  AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16);
585  } else {
586  AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize);
587  AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize);
588  }
589  } else if (chroma422) {
590  if (pixel_shift) {
591  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
592  AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize);
593  } else {
594  AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize);
595  AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize);
596  }
597  } else {
598  if (pixel_shift) {
599  AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize);
600  AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize);
601  } else {
602  AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
603  AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
604  }
605  }
606  }
607  }
608  } else if (MB_MBAFF(sl)) {
609  top_idx = 0;
610  } else
611  return;
612  }
613 
614  top_border = sl->top_borders[top_idx][sl->mb_x];
615  /* There are two lines saved, the line above the top macroblock
616  * of a pair, and the line above the bottom macroblock. */
617  AV_COPY128(top_border, src_y + 16 * linesize);
618  if (pixel_shift)
619  AV_COPY128(top_border + 16, src_y + 16 * linesize + 16);
620 
621  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
622  if (chroma444) {
623  if (pixel_shift) {
624  AV_COPY128(top_border + 32, src_cb + 16 * linesize);
625  AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16);
626  AV_COPY128(top_border + 64, src_cr + 16 * linesize);
627  AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16);
628  } else {
629  AV_COPY128(top_border + 16, src_cb + 16 * linesize);
630  AV_COPY128(top_border + 32, src_cr + 16 * linesize);
631  }
632  } else if (chroma422) {
633  if (pixel_shift) {
634  AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize);
635  AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize);
636  } else {
637  AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize);
638  AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize);
639  }
640  } else {
641  if (pixel_shift) {
642  AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize);
643  AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize);
644  } else {
645  AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize);
646  AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize);
647  }
648  }
649  }
650 }
651 
652 /**
653  * Initialize implicit_weight table.
654  * @param field 0/1 initialize the weight for interlaced MBAFF
655  * -1 initializes the rest
656  */
657 static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
658 {
659  int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
660 
661  for (i = 0; i < 2; i++) {
662  sl->pwt.luma_weight_flag[i] = 0;
663  sl->pwt.chroma_weight_flag[i] = 0;
664  }
665 
666  if (field < 0) {
667  if (h->picture_structure == PICT_FRAME) {
668  cur_poc = h->cur_pic_ptr->poc;
669  } else {
670  cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1];
671  }
672  if (sl->ref_count[0] == 1 && sl->ref_count[1] == 1 && !FRAME_MBAFF(h) &&
673  sl->ref_list[0][0].poc + (int64_t)sl->ref_list[1][0].poc == 2 * cur_poc) {
674  sl->pwt.use_weight = 0;
675  sl->pwt.use_weight_chroma = 0;
676  return;
677  }
678  ref_start = 0;
679  ref_count0 = sl->ref_count[0];
680  ref_count1 = sl->ref_count[1];
681  } else {
682  cur_poc = h->cur_pic_ptr->field_poc[field];
683  ref_start = 16;
684  ref_count0 = 16 + 2 * sl->ref_count[0];
685  ref_count1 = 16 + 2 * sl->ref_count[1];
686  }
687 
688  sl->pwt.use_weight = 2;
689  sl->pwt.use_weight_chroma = 2;
690  sl->pwt.luma_log2_weight_denom = 5;
692 
693  for (ref0 = ref_start; ref0 < ref_count0; ref0++) {
694  int64_t poc0 = sl->ref_list[0][ref0].poc;
695  for (ref1 = ref_start; ref1 < ref_count1; ref1++) {
696  int w = 32;
697  if (!sl->ref_list[0][ref0].parent->long_ref && !sl->ref_list[1][ref1].parent->long_ref) {
698  int poc1 = sl->ref_list[1][ref1].poc;
699  int td = av_clip_int8(poc1 - poc0);
700  if (td) {
701  int tb = av_clip_int8(cur_poc - poc0);
702  int tx = (16384 + (FFABS(td) >> 1)) / td;
703  int dist_scale_factor = (tb * tx + 32) >> 8;
704  if (dist_scale_factor >= -64 && dist_scale_factor <= 128)
705  w = 64 - dist_scale_factor;
706  }
707  }
708  if (field < 0) {
709  sl->pwt.implicit_weight[ref0][ref1][0] =
710  sl->pwt.implicit_weight[ref0][ref1][1] = w;
711  } else {
712  sl->pwt.implicit_weight[ref0][ref1][field] = w;
713  }
714  }
715  }
716 }
717 
718 /**
719  * initialize scan tables
720  */
722 {
723  int i;
724  for (i = 0; i < 16; i++) {
725 #define TRANSPOSE(x) ((x) >> 2) | (((x) << 2) & 0xF)
727  h->field_scan[i] = TRANSPOSE(field_scan[i]);
728 #undef TRANSPOSE
729  }
730  for (i = 0; i < 64; i++) {
731 #define TRANSPOSE(x) ((x) >> 3) | (((x) & 7) << 3)
736 #undef TRANSPOSE
737  }
738  if (h->ps.sps->transform_bypass) { // FIXME same ugly
739  memcpy(h->zigzag_scan_q0 , ff_zigzag_scan , sizeof(h->zigzag_scan_q0 ));
740  memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 ));
742  memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 ));
743  memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
745  } else {
746  memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 ));
747  memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 ));
749  memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 ));
750  memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
752  }
753 }
754 
755 static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
756 {
757 #define HWACCEL_MAX (CONFIG_H264_DXVA2_HWACCEL + \
758  CONFIG_H264_D3D11VA_HWACCEL + \
759  CONFIG_H264_VAAPI_HWACCEL + \
760  (CONFIG_H264_VDA_HWACCEL * 2) + \
761  CONFIG_H264_VIDEOTOOLBOX_HWACCEL + \
762  CONFIG_H264_VDPAU_HWACCEL)
764  const enum AVPixelFormat *choices = pix_fmts;
765  int i;
766 
767  switch (h->ps.sps->bit_depth_luma) {
768  case 9:
769  if (CHROMA444(h)) {
770  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
771  *fmt++ = AV_PIX_FMT_GBRP9;
772  } else
773  *fmt++ = AV_PIX_FMT_YUV444P9;
774  } else if (CHROMA422(h))
775  *fmt++ = AV_PIX_FMT_YUV422P9;
776  else
777  *fmt++ = AV_PIX_FMT_YUV420P9;
778  break;
779  case 10:
780  if (CHROMA444(h)) {
781  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
782  *fmt++ = AV_PIX_FMT_GBRP10;
783  } else
784  *fmt++ = AV_PIX_FMT_YUV444P10;
785  } else if (CHROMA422(h))
786  *fmt++ = AV_PIX_FMT_YUV422P10;
787  else
788  *fmt++ = AV_PIX_FMT_YUV420P10;
789  break;
790  case 12:
791  if (CHROMA444(h)) {
792  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
793  *fmt++ = AV_PIX_FMT_GBRP12;
794  } else
795  *fmt++ = AV_PIX_FMT_YUV444P12;
796  } else if (CHROMA422(h))
797  *fmt++ = AV_PIX_FMT_YUV422P12;
798  else
799  *fmt++ = AV_PIX_FMT_YUV420P12;
800  break;
801  case 14:
802  if (CHROMA444(h)) {
803  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
804  *fmt++ = AV_PIX_FMT_GBRP14;
805  } else
806  *fmt++ = AV_PIX_FMT_YUV444P14;
807  } else if (CHROMA422(h))
808  *fmt++ = AV_PIX_FMT_YUV422P14;
809  else
810  *fmt++ = AV_PIX_FMT_YUV420P14;
811  break;
812  case 8:
813 #if CONFIG_H264_VDPAU_HWACCEL
814  *fmt++ = AV_PIX_FMT_VDPAU;
815 #endif
816  if (CHROMA444(h)) {
817  if (h->avctx->colorspace == AVCOL_SPC_RGB)
818  *fmt++ = AV_PIX_FMT_GBRP;
819  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
820  *fmt++ = AV_PIX_FMT_YUVJ444P;
821  else
822  *fmt++ = AV_PIX_FMT_YUV444P;
823  } else if (CHROMA422(h)) {
825  *fmt++ = AV_PIX_FMT_YUVJ422P;
826  else
827  *fmt++ = AV_PIX_FMT_YUV422P;
828  } else {
829 #if CONFIG_H264_DXVA2_HWACCEL
830  *fmt++ = AV_PIX_FMT_DXVA2_VLD;
831 #endif
832 #if CONFIG_H264_D3D11VA_HWACCEL
833  *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
834 #endif
835 #if CONFIG_H264_VAAPI_HWACCEL
836  *fmt++ = AV_PIX_FMT_VAAPI;
837 #endif
838 #if CONFIG_H264_VDA_HWACCEL
839  *fmt++ = AV_PIX_FMT_VDA_VLD;
840  *fmt++ = AV_PIX_FMT_VDA;
841 #endif
842 #if CONFIG_H264_VIDEOTOOLBOX_HWACCEL
843  *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
844 #endif
845  if (h->avctx->codec->pix_fmts)
846  choices = h->avctx->codec->pix_fmts;
847  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
848  *fmt++ = AV_PIX_FMT_YUVJ420P;
849  else
850  *fmt++ = AV_PIX_FMT_YUV420P;
851  }
852  break;
853  default:
855  "Unsupported bit depth %d\n", h->ps.sps->bit_depth_luma);
856  return AVERROR_INVALIDDATA;
857  }
858 
859  *fmt = AV_PIX_FMT_NONE;
860 
861  for (i=0; choices[i] != AV_PIX_FMT_NONE; i++)
862  if (choices[i] == h->avctx->pix_fmt && !force_callback)
863  return choices[i];
864  return ff_thread_get_format(h->avctx, choices);
865 }
866 
867 /* export coded and cropped frame dimensions to AVCodecContext */
869 {
870  const SPS *sps = (const SPS*)h->ps.sps;
871  int width = h->width - (sps->crop_right + sps->crop_left);
872  int height = h->height - (sps->crop_top + sps->crop_bottom);
873  av_assert0(sps->crop_right + sps->crop_left < (unsigned)h->width);
874  av_assert0(sps->crop_top + sps->crop_bottom < (unsigned)h->height);
875 
876  /* handle container cropping */
877  if (FFALIGN(h->avctx->width, 16) == FFALIGN(width, 16) &&
878  FFALIGN(h->avctx->height, 16) == FFALIGN(height, 16) &&
879  h->avctx->width <= width &&
880  h->avctx->height <= height
881  ) {
882  width = h->avctx->width;
883  height = h->avctx->height;
884  }
885 
886  h->avctx->coded_width = h->width;
887  h->avctx->coded_height = h->height;
888  h->avctx->width = width;
889  h->avctx->height = height;
890 
891  return 0;
892 }
893 
895 {
896  const SPS *sps = h->ps.sps;
897  int i, ret;
898 
899  ff_set_sar(h->avctx, sps->sar);
901  &h->chroma_x_shift, &h->chroma_y_shift);
902 
903  if (sps->timing_info_present_flag) {
904  int64_t den = sps->time_scale;
905  if (h->sei.unregistered.x264_build < 44U)
906  den *= 2;
908  sps->num_units_in_tick * h->avctx->ticks_per_frame, den, 1 << 30);
909  }
910 
912 
913  h->first_field = 0;
914  h->prev_interlaced_frame = 1;
915 
916  init_scan_tables(h);
917  ret = ff_h264_alloc_tables(h);
918  if (ret < 0) {
919  av_log(h->avctx, AV_LOG_ERROR, "Could not allocate memory\n");
920  goto fail;
921  }
922 
923 #if FF_API_CAP_VDPAU
924  if (h->avctx->codec &&
926  (sps->bit_depth_luma != 8 || sps->chroma_format_idc > 1)) {
928  "VDPAU decoding does not support video colorspace.\n");
929  ret = AVERROR_INVALIDDATA;
930  goto fail;
931  }
932 #endif
933 
934  if (sps->bit_depth_luma < 8 || sps->bit_depth_luma > 14 ||
935  sps->bit_depth_luma == 11 || sps->bit_depth_luma == 13
936  ) {
937  av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n",
938  sps->bit_depth_luma);
939  ret = AVERROR_INVALIDDATA;
940  goto fail;
941  }
942 
943  h->cur_bit_depth_luma =
946  h->pixel_shift = sps->bit_depth_luma > 8;
948  h->bit_depth_luma = sps->bit_depth_luma;
949 
951  sps->chroma_format_idc);
955  sps->chroma_format_idc);
957 
959  ret = ff_h264_slice_context_init(h, &h->slice_ctx[0]);
960  if (ret < 0) {
961  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
962  goto fail;
963  }
964  } else {
965  for (i = 0; i < h->nb_slice_ctx; i++) {
966  H264SliceContext *sl = &h->slice_ctx[i];
967 
968  sl->h264 = h;
969  sl->intra4x4_pred_mode = h->intra4x4_pred_mode + i * 8 * 2 * h->mb_stride;
970  sl->mvd_table[0] = h->mvd_table[0] + i * 8 * 2 * h->mb_stride;
971  sl->mvd_table[1] = h->mvd_table[1] + i * 8 * 2 * h->mb_stride;
972 
973  if ((ret = ff_h264_slice_context_init(h, sl)) < 0) {
974  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
975  goto fail;
976  }
977  }
978  }
979 
980  h->context_initialized = 1;
981 
982  return 0;
983 fail:
985  h->context_initialized = 0;
986  return ret;
987 }
988 
990 {
991  switch (a) {
995  default:
996  return a;
997  }
998 }
999 
1000 static int h264_init_ps(H264Context *h, const H264SliceContext *sl, int first_slice)
1001 {
1002  const SPS *sps;
1003  int needs_reinit = 0, must_reinit, ret;
1004 
1005  if (first_slice) {
1006  av_buffer_unref(&h->ps.pps_ref);
1007  h->ps.pps = NULL;
1008  h->ps.pps_ref = av_buffer_ref(h->ps.pps_list[sl->pps_id]);
1009  if (!h->ps.pps_ref)
1010  return AVERROR(ENOMEM);
1011  h->ps.pps = (const PPS*)h->ps.pps_ref->data;
1012  }
1013 
1014  if (h->ps.sps != (const SPS*)h->ps.sps_list[h->ps.pps->sps_id]->data) {
1015  av_buffer_unref(&h->ps.sps_ref);
1016  h->ps.sps = NULL;
1017  h->ps.sps_ref = av_buffer_ref(h->ps.sps_list[h->ps.pps->sps_id]);
1018  if (!h->ps.sps_ref)
1019  return AVERROR(ENOMEM);
1020  h->ps.sps = (const SPS*)h->ps.sps_ref->data;
1021 
1022  if (h->mb_width != h->ps.sps->mb_width ||
1023  h->mb_height != h->ps.sps->mb_height ||
1026  )
1027  needs_reinit = 1;
1028 
1029  if (h->bit_depth_luma != h->ps.sps->bit_depth_luma ||
1031  needs_reinit = 1;
1032  }
1033  sps = h->ps.sps;
1034 
1035  must_reinit = (h->context_initialized &&
1036  ( 16*sps->mb_width != h->avctx->coded_width
1037  || 16*sps->mb_height != h->avctx->coded_height
1038  || h->cur_bit_depth_luma != sps->bit_depth_luma
1040  || h->mb_width != sps->mb_width
1041  || h->mb_height != sps->mb_height
1042  ));
1043  if (h->avctx->pix_fmt == AV_PIX_FMT_NONE
1045  must_reinit = 1;
1046 
1047  if (first_slice && av_cmp_q(sps->sar, h->avctx->sample_aspect_ratio))
1048  must_reinit = 1;
1049 
1050  if (!h->setup_finished) {
1051  h->avctx->profile = ff_h264_get_profile(sps);
1052  h->avctx->level = sps->level_idc;
1053  h->avctx->refs = sps->ref_frame_count;
1054 
1055  h->mb_width = sps->mb_width;
1056  h->mb_height = sps->mb_height;
1057  h->mb_num = h->mb_width * h->mb_height;
1058  h->mb_stride = h->mb_width + 1;
1059 
1060  h->b_stride = h->mb_width * 4;
1061 
1062  h->chroma_y_shift = sps->chroma_format_idc <= 1; // 400 uses yuv420p
1063 
1064  h->width = 16 * h->mb_width;
1065  h->height = 16 * h->mb_height;
1066 
1067  ret = init_dimensions(h);
1068  if (ret < 0)
1069  return ret;
1070 
1071  if (sps->video_signal_type_present_flag) {
1072  h->avctx->color_range = sps->full_range > 0 ? AVCOL_RANGE_JPEG
1073  : AVCOL_RANGE_MPEG;
1075  if (h->avctx->colorspace != sps->colorspace)
1076  needs_reinit = 1;
1078  h->avctx->color_trc = sps->color_trc;
1079  h->avctx->colorspace = sps->colorspace;
1080  }
1081  }
1082  }
1083 
1084  if (!h->context_initialized || must_reinit || needs_reinit) {
1085  int flush_changes = h->context_initialized;
1086  h->context_initialized = 0;
1087  if (sl != h->slice_ctx) {
1089  "changing width %d -> %d / height %d -> %d on "
1090  "slice %d\n",
1091  h->width, h->avctx->coded_width,
1092  h->height, h->avctx->coded_height,
1093  h->current_slice + 1);
1094  return AVERROR_INVALIDDATA;
1095  }
1096 
1097  av_assert1(first_slice);
1098 
1099  if (flush_changes)
1101 
1102  if ((ret = get_pixel_format(h, 1)) < 0)
1103  return ret;
1104  h->avctx->pix_fmt = ret;
1105 
1106  av_log(h->avctx, AV_LOG_VERBOSE, "Reinit context to %dx%d, "
1107  "pix_fmt: %s\n", h->width, h->height, av_get_pix_fmt_name(h->avctx->pix_fmt));
1108 
1109  if ((ret = h264_slice_header_init(h)) < 0) {
1111  "h264_slice_header_init() failed\n");
1112  return ret;
1113  }
1114  }
1115 
1116  return 0;
1117 }
1118 
1120 {
1121  const SPS *sps = h->ps.sps;
1122  H264Picture *cur = h->cur_pic_ptr;
1123 
1124  cur->f->interlaced_frame = 0;
1125  cur->f->repeat_pict = 0;
1126 
1127  /* Signal interlacing information externally. */
1128  /* Prioritize picture timing SEI information over used
1129  * decoding process if it exists. */
1130 
1133  switch (pt->pic_struct) {
1134  case SEI_PIC_STRUCT_FRAME:
1135  break;
1138  cur->f->interlaced_frame = 1;
1139  break;
1142  if (FIELD_OR_MBAFF_PICTURE(h))
1143  cur->f->interlaced_frame = 1;
1144  else
1145  // try to flag soft telecine progressive
1147  break;
1150  /* Signal the possibility of telecined film externally
1151  * (pic_struct 5,6). From these hints, let the applications
1152  * decide if they apply deinterlacing. */
1153  cur->f->repeat_pict = 1;
1154  break;
1156  cur->f->repeat_pict = 2;
1157  break;
1159  cur->f->repeat_pict = 4;
1160  break;
1161  }
1162 
1163  if ((pt->ct_type & 3) &&
1165  cur->f->interlaced_frame = (pt->ct_type & (1 << 1)) != 0;
1166  } else {
1167  /* Derive interlacing flag from used decoding process. */
1169  }
1171 
1172  if (cur->field_poc[0] != cur->field_poc[1]) {
1173  /* Derive top_field_first from field pocs. */
1174  cur->f->top_field_first = cur->field_poc[0] < cur->field_poc[1];
1175  } else {
1177  /* Use picture timing SEI information. Even if it is a
1178  * information of a past frame, better than nothing. */
1181  cur->f->top_field_first = 1;
1182  else
1183  cur->f->top_field_first = 0;
1184  } else if (cur->f->interlaced_frame) {
1185  /* Default to top field first when pic_struct_present_flag
1186  * is not set but interlaced frame detected */
1187  cur->f->top_field_first = 1;
1188  } else {
1189  /* Most likely progressive */
1190  cur->f->top_field_first = 0;
1191  }
1192  }
1193 
1194  if (h->sei.frame_packing.present &&
1199  AVStereo3D *stereo = av_stereo3d_create_side_data(cur->f);
1200  if (stereo) {
1201  switch (fp->frame_packing_arrangement_type) {
1202  case 0:
1203  stereo->type = AV_STEREO3D_CHECKERBOARD;
1204  break;
1205  case 1:
1206  stereo->type = AV_STEREO3D_COLUMNS;
1207  break;
1208  case 2:
1209  stereo->type = AV_STEREO3D_LINES;
1210  break;
1211  case 3:
1212  if (fp->quincunx_sampling_flag)
1214  else
1215  stereo->type = AV_STEREO3D_SIDEBYSIDE;
1216  break;
1217  case 4:
1218  stereo->type = AV_STEREO3D_TOPBOTTOM;
1219  break;
1220  case 5:
1221  stereo->type = AV_STEREO3D_FRAMESEQUENCE;
1222  break;
1223  case 6:
1224  stereo->type = AV_STEREO3D_2D;
1225  break;
1226  }
1227 
1228  if (fp->content_interpretation_type == 2)
1229  stereo->flags = AV_STEREO3D_FLAG_INVERT;
1230  }
1231  }
1232 
1233  if (h->sei.display_orientation.present &&
1238  double angle = o->anticlockwise_rotation * 360 / (double) (1 << 16);
1239  AVFrameSideData *rotation = av_frame_new_side_data(cur->f,
1241  sizeof(int32_t) * 9);
1242  if (rotation) {
1243  av_display_rotation_set((int32_t *)rotation->data, angle);
1244  av_display_matrix_flip((int32_t *)rotation->data,
1245  o->hflip, o->vflip);
1246  }
1247  }
1248 
1249  if (h->sei.afd.present) {
1251  sizeof(uint8_t));
1252 
1253  if (sd) {
1255  h->sei.afd.present = 0;
1256  }
1257  }
1258 
1259  if (h->sei.a53_caption.a53_caption) {
1260  H264SEIA53Caption *a53 = &h->sei.a53_caption;
1263  a53->a53_caption_size);
1264  if (sd)
1265  memcpy(sd->data, a53->a53_caption, a53->a53_caption_size);
1266  av_freep(&a53->a53_caption);
1267  a53->a53_caption_size = 0;
1269  }
1270 
1271  return 0;
1272 }
1273 
1275 {
1276  const SPS *sps = h->ps.sps;
1277  H264Picture *out = h->cur_pic_ptr;
1278  H264Picture *cur = h->cur_pic_ptr;
1279  int i, pics, out_of_order, out_idx;
1280 
1281  cur->mmco_reset = h->mmco_reset;
1282  h->mmco_reset = 0;
1283 
1284  if (sps->bitstream_restriction_flag ||
1287  }
1288 
1289  for (i = 0; 1; i++) {
1290  if(i == MAX_DELAYED_PIC_COUNT || cur->poc < h->last_pocs[i]){
1291  if(i)
1292  h->last_pocs[i-1] = cur->poc;
1293  break;
1294  } else if(i) {
1295  h->last_pocs[i-1]= h->last_pocs[i];
1296  }
1297  }
1298  out_of_order = MAX_DELAYED_PIC_COUNT - i;
1299  if( cur->f->pict_type == AV_PICTURE_TYPE_B
1300  || (h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > INT_MIN && h->last_pocs[MAX_DELAYED_PIC_COUNT-1] - (int64_t)h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > 2))
1301  out_of_order = FFMAX(out_of_order, 1);
1302  if (out_of_order == MAX_DELAYED_PIC_COUNT) {
1303  av_log(h->avctx, AV_LOG_VERBOSE, "Invalid POC %d<%d\n", cur->poc, h->last_pocs[0]);
1304  for (i = 1; i < MAX_DELAYED_PIC_COUNT; i++)
1305  h->last_pocs[i] = INT_MIN;
1306  h->last_pocs[0] = cur->poc;
1307  cur->mmco_reset = 1;
1308  } else if(h->avctx->has_b_frames < out_of_order && !sps->bitstream_restriction_flag){
1309  int loglevel = h->avctx->frame_number > 1 ? AV_LOG_WARNING : AV_LOG_VERBOSE;
1310  av_log(h->avctx, loglevel, "Increasing reorder buffer to %d\n", out_of_order);
1311  h->avctx->has_b_frames = out_of_order;
1312  }
1313 
1314  pics = 0;
1315  while (h->delayed_pic[pics])
1316  pics++;
1317 
1319 
1320  h->delayed_pic[pics++] = cur;
1321  if (cur->reference == 0)
1322  cur->reference = DELAYED_PIC_REF;
1323 
1324  out = h->delayed_pic[0];
1325  out_idx = 0;
1326  for (i = 1; h->delayed_pic[i] &&
1327  !h->delayed_pic[i]->f->key_frame &&
1328  !h->delayed_pic[i]->mmco_reset;
1329  i++)
1330  if (h->delayed_pic[i]->poc < out->poc) {
1331  out = h->delayed_pic[i];
1332  out_idx = i;
1333  }
1334  if (h->avctx->has_b_frames == 0 &&
1335  (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset))
1336  h->next_outputed_poc = INT_MIN;
1337  out_of_order = out->poc < h->next_outputed_poc;
1338 
1339  if (out_of_order || pics > h->avctx->has_b_frames) {
1340  out->reference &= ~DELAYED_PIC_REF;
1341  for (i = out_idx; h->delayed_pic[i]; i++)
1342  h->delayed_pic[i] = h->delayed_pic[i + 1];
1343  }
1344  if (!out_of_order && pics > h->avctx->has_b_frames) {
1345  h->next_output_pic = out;
1346  if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset)) {
1347  h->next_outputed_poc = INT_MIN;
1348  } else
1349  h->next_outputed_poc = out->poc;
1350 
1351  if (out->recovered) {
1352  // We have reached an recovery point and all frames after it in
1353  // display order are "recovered".
1355  }
1357 
1358  if (!out->recovered) {
1359  if (!(h->avctx->flags & AV_CODEC_FLAG_OUTPUT_CORRUPT) &&
1361  h->next_output_pic = NULL;
1362  } else {
1363  out->f->flags |= AV_FRAME_FLAG_CORRUPT;
1364  }
1365  }
1366  } else {
1367  av_log(h->avctx, AV_LOG_DEBUG, "no picture %s\n", out_of_order ? "ooo" : "");
1368  }
1369 
1370  return 0;
1371 }
1372 
1373 /* This function is called right after decoding the slice header for a first
1374  * slice in a field (or a frame). It decides whether we are decoding a new frame
1375  * or a second field in a pair and does the necessary setup.
1376  */
1378  const H2645NAL *nal, int first_slice)
1379 {
1380  int i;
1381  const SPS *sps;
1382 
1383  int last_pic_structure, last_pic_droppable, ret;
1384 
1385  ret = h264_init_ps(h, sl, first_slice);
1386  if (ret < 0)
1387  return ret;
1388 
1389  sps = h->ps.sps;
1390 
1391  last_pic_droppable = h->droppable;
1392  last_pic_structure = h->picture_structure;
1393  h->droppable = (nal->ref_idc == 0);
1395 
1396  h->poc.frame_num = sl->frame_num;
1397  h->poc.poc_lsb = sl->poc_lsb;
1399  h->poc.delta_poc[0] = sl->delta_poc[0];
1400  h->poc.delta_poc[1] = sl->delta_poc[1];
1401 
1402  /* Shorten frame num gaps so we don't have to allocate reference
1403  * frames just to throw them away */
1404  if (h->poc.frame_num != h->poc.prev_frame_num) {
1405  int unwrap_prev_frame_num = h->poc.prev_frame_num;
1406  int max_frame_num = 1 << sps->log2_max_frame_num;
1407 
1408  if (unwrap_prev_frame_num > h->poc.frame_num)
1409  unwrap_prev_frame_num -= max_frame_num;
1410 
1411  if ((h->poc.frame_num - unwrap_prev_frame_num) > sps->ref_frame_count) {
1412  unwrap_prev_frame_num = (h->poc.frame_num - sps->ref_frame_count) - 1;
1413  if (unwrap_prev_frame_num < 0)
1414  unwrap_prev_frame_num += max_frame_num;
1415 
1416  h->poc.prev_frame_num = unwrap_prev_frame_num;
1417  }
1418  }
1419 
1420  /* See if we have a decoded first field looking for a pair...
1421  * Here, we're using that to see if we should mark previously
1422  * decode frames as "finished".
1423  * We have to do that before the "dummy" in-between frame allocation,
1424  * since that can modify h->cur_pic_ptr. */
1425  if (h->first_field) {
1426  int last_field = last_pic_structure == PICT_BOTTOM_FIELD;
1427  av_assert0(h->cur_pic_ptr);
1428  av_assert0(h->cur_pic_ptr->f->buf[0]);
1429  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1430 
1431  /* Mark old field/frame as completed */
1432  if (h->cur_pic_ptr->tf.owner[last_field] == h->avctx) {
1433  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, last_field);
1434  }
1435 
1436  /* figure out if we have a complementary field pair */
1437  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1438  /* Previous field is unmatched. Don't display it, but let it
1439  * remain for reference if marked as such. */
1440  if (last_pic_structure != PICT_FRAME) {
1442  last_pic_structure == PICT_TOP_FIELD);
1443  }
1444  } else {
1445  if (h->cur_pic_ptr->frame_num != h->poc.frame_num) {
1446  /* This and previous field were reference, but had
1447  * different frame_nums. Consider this field first in
1448  * pair. Throw away previous field except for reference
1449  * purposes. */
1450  if (last_pic_structure != PICT_FRAME) {
1452  last_pic_structure == PICT_TOP_FIELD);
1453  }
1454  } else {
1455  /* Second field in complementary pair */
1456  if (!((last_pic_structure == PICT_TOP_FIELD &&
1458  (last_pic_structure == PICT_BOTTOM_FIELD &&
1461  "Invalid field mode combination %d/%d\n",
1462  last_pic_structure, h->picture_structure);
1463  h->picture_structure = last_pic_structure;
1464  h->droppable = last_pic_droppable;
1465  return AVERROR_INVALIDDATA;
1466  } else if (last_pic_droppable != h->droppable) {
1468  "Found reference and non-reference fields in the same frame, which");
1469  h->picture_structure = last_pic_structure;
1470  h->droppable = last_pic_droppable;
1471  return AVERROR_PATCHWELCOME;
1472  }
1473  }
1474  }
1475  }
1476 
1477  while (h->poc.frame_num != h->poc.prev_frame_num && !h->first_field &&
1478  h->poc.frame_num != (h->poc.prev_frame_num + 1) % (1 << sps->log2_max_frame_num)) {
1479  H264Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
1480  av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n",
1481  h->poc.frame_num, h->poc.prev_frame_num);
1483  for(i=0; i<FF_ARRAY_ELEMS(h->last_pocs); i++)
1484  h->last_pocs[i] = INT_MIN;
1485  ret = h264_frame_start(h);
1486  if (ret < 0) {
1487  h->first_field = 0;
1488  return ret;
1489  }
1490 
1491  h->poc.prev_frame_num++;
1492  h->poc.prev_frame_num %= 1 << sps->log2_max_frame_num;
1495  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
1496  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
1497 
1498  h->explicit_ref_marking = 0;
1500  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1501  return ret;
1502  /* Error concealment: If a ref is missing, copy the previous ref
1503  * in its place.
1504  * FIXME: Avoiding a memcpy would be nice, but ref handling makes
1505  * many assumptions about there being no actual duplicates.
1506  * FIXME: This does not copy padding for out-of-frame motion
1507  * vectors. Given we are concealing a lost frame, this probably
1508  * is not noticeable by comparison, but it should be fixed. */
1509  if (h->short_ref_count) {
1510  if (prev &&
1511  h->short_ref[0]->f->width == prev->f->width &&
1512  h->short_ref[0]->f->height == prev->f->height &&
1513  h->short_ref[0]->f->format == prev->f->format) {
1514  ff_thread_await_progress(&prev->tf, INT_MAX, 0);
1515  if (prev->field_picture)
1516  ff_thread_await_progress(&prev->tf, INT_MAX, 1);
1517  av_image_copy(h->short_ref[0]->f->data,
1518  h->short_ref[0]->f->linesize,
1519  (const uint8_t **)prev->f->data,
1520  prev->f->linesize,
1521  prev->f->format,
1522  prev->f->width,
1523  prev->f->height);
1524  h->short_ref[0]->poc = prev->poc + 2;
1525  }
1526  h->short_ref[0]->frame_num = h->poc.prev_frame_num;
1527  }
1528  }
1529 
1530  /* See if we have a decoded first field looking for a pair...
1531  * We're using that to see whether to continue decoding in that
1532  * frame, or to allocate a new one. */
1533  if (h->first_field) {
1534  av_assert0(h->cur_pic_ptr);
1535  av_assert0(h->cur_pic_ptr->f->buf[0]);
1536  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1537 
1538  /* figure out if we have a complementary field pair */
1539  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1540  /* Previous field is unmatched. Don't display it, but let it
1541  * remain for reference if marked as such. */
1542  h->missing_fields ++;
1543  h->cur_pic_ptr = NULL;
1544  h->first_field = FIELD_PICTURE(h);
1545  } else {
1546  h->missing_fields = 0;
1547  if (h->cur_pic_ptr->frame_num != h->poc.frame_num) {
1550  /* This and the previous field had different frame_nums.
1551  * Consider this field first in pair. Throw away previous
1552  * one except for reference purposes. */
1553  h->first_field = 1;
1554  h->cur_pic_ptr = NULL;
1555  } else if (h->cur_pic_ptr->reference & DELAYED_PIC_REF) {
1556  /* This frame was already output, we cannot draw into it
1557  * anymore.
1558  */
1559  h->first_field = 1;
1560  h->cur_pic_ptr = NULL;
1561  } else {
1562  /* Second field in complementary pair */
1563  h->first_field = 0;
1564  }
1565  }
1566  } else {
1567  /* Frame or first field in a potentially complementary pair */
1568  h->first_field = FIELD_PICTURE(h);
1569  }
1570 
1571  if (!FIELD_PICTURE(h) || h->first_field) {
1572  if (h264_frame_start(h) < 0) {
1573  h->first_field = 0;
1574  return AVERROR_INVALIDDATA;
1575  }
1576  } else {
1577  int field = h->picture_structure == PICT_BOTTOM_FIELD;
1579  h->cur_pic_ptr->tf.owner[field] = h->avctx;
1580  }
1581  /* Some macroblocks can be accessed before they're available in case
1582  * of lost slices, MBAFF or threading. */
1583  if (FIELD_PICTURE(h)) {
1584  for(i = (h->picture_structure == PICT_BOTTOM_FIELD); i<h->mb_height; i++)
1585  memset(h->slice_table + i*h->mb_stride, -1, (h->mb_stride - (i+1==h->mb_height)) * sizeof(*h->slice_table));
1586  } else {
1587  memset(h->slice_table, -1,
1588  (h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table));
1589  }
1590 
1592  h->ps.sps, &h->poc, h->picture_structure, nal->ref_idc);
1593 
1594  memcpy(h->mmco, sl->mmco, sl->nb_mmco * sizeof(*h->mmco));
1595  h->nb_mmco = sl->nb_mmco;
1597 
1598  h->picture_idr = nal->type == H264_NAL_IDR_SLICE;
1599 
1600  if (h->sei.recovery_point.recovery_frame_cnt >= 0) {
1601  const int sei_recovery_frame_cnt = h->sei.recovery_point.recovery_frame_cnt;
1602 
1603  if (h->poc.frame_num != sei_recovery_frame_cnt || sl->slice_type_nos != AV_PICTURE_TYPE_I)
1604  h->valid_recovery_point = 1;
1605 
1606  if ( h->recovery_frame < 0
1607  || av_mod_uintp2(h->recovery_frame - h->poc.frame_num, h->ps.sps->log2_max_frame_num) > sei_recovery_frame_cnt) {
1608  h->recovery_frame = av_mod_uintp2(h->poc.frame_num + sei_recovery_frame_cnt, h->ps.sps->log2_max_frame_num);
1609 
1610  if (!h->valid_recovery_point)
1611  h->recovery_frame = h->poc.frame_num;
1612  }
1613  }
1614 
1615  h->cur_pic_ptr->f->key_frame |= (nal->type == H264_NAL_IDR_SLICE);
1616 
1617  if (nal->type == H264_NAL_IDR_SLICE ||
1618  (h->recovery_frame == h->poc.frame_num && nal->ref_idc)) {
1619  h->recovery_frame = -1;
1620  h->cur_pic_ptr->recovered = 1;
1621  }
1622  // If we have an IDR, all frames after it in decoded order are
1623  // "recovered".
1624  if (nal->type == H264_NAL_IDR_SLICE)
1626 #if 1
1628 #else
1630 #endif
1631 
1632  /* Set the frame properties/side data. Only done for the second field in
1633  * field coded frames, since some SEI information is present for each field
1634  * and is merged by the SEI parsing code. */
1635  if (!FIELD_PICTURE(h) || !h->first_field || h->missing_fields > 1) {
1636  ret = h264_export_frame_props(h);
1637  if (ret < 0)
1638  return ret;
1639 
1640  ret = h264_select_output_frame(h);
1641  if (ret < 0)
1642  return ret;
1643  }
1644 
1645  return 0;
1646 }
1647 
1649  const H2645NAL *nal)
1650 {
1651  const SPS *sps;
1652  const PPS *pps;
1653  int ret;
1654  unsigned int slice_type, tmp, i;
1655  int field_pic_flag, bottom_field_flag;
1656  int first_slice = sl == h->slice_ctx && !h->current_slice;
1657  int picture_structure;
1658 
1659  if (first_slice)
1661 
1662  sl->first_mb_addr = get_ue_golomb_long(&sl->gb);
1663 
1664  slice_type = get_ue_golomb_31(&sl->gb);
1665  if (slice_type > 9) {
1667  "slice type %d too large at %d\n",
1668  slice_type, sl->first_mb_addr);
1669  return AVERROR_INVALIDDATA;
1670  }
1671  if (slice_type > 4) {
1672  slice_type -= 5;
1673  sl->slice_type_fixed = 1;
1674  } else
1675  sl->slice_type_fixed = 0;
1676 
1677  slice_type = ff_h264_golomb_to_pict_type[slice_type];
1678  sl->slice_type = slice_type;
1679  sl->slice_type_nos = slice_type & 3;
1680 
1681  if (nal->type == H264_NAL_IDR_SLICE &&
1683  av_log(h->avctx, AV_LOG_ERROR, "A non-intra slice in an IDR NAL unit.\n");
1684  return AVERROR_INVALIDDATA;
1685  }
1686 
1687  sl->pps_id = get_ue_golomb(&sl->gb);
1688  if (sl->pps_id >= MAX_PPS_COUNT) {
1689  av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", sl->pps_id);
1690  return AVERROR_INVALIDDATA;
1691  }
1692  if (!h->ps.pps_list[sl->pps_id]) {
1694  "non-existing PPS %u referenced\n",
1695  sl->pps_id);
1696  return AVERROR_INVALIDDATA;
1697  }
1698  pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data;
1699 
1700  if (!h->ps.sps_list[pps->sps_id]) {
1702  "non-existing SPS %u referenced\n", pps->sps_id);
1703  return AVERROR_INVALIDDATA;
1704  }
1705  sps = (const SPS*)h->ps.sps_list[pps->sps_id]->data;
1706 
1707  sl->frame_num = get_bits(&sl->gb, sps->log2_max_frame_num);
1708  if (!first_slice) {
1709  if (h->poc.frame_num != sl->frame_num) {
1710  av_log(h->avctx, AV_LOG_ERROR, "Frame num change from %d to %d\n",
1711  h->poc.frame_num, sl->frame_num);
1712  return AVERROR_INVALIDDATA;
1713  }
1714  }
1715 
1716  sl->mb_mbaff = 0;
1717 
1718  if (sps->frame_mbs_only_flag) {
1719  picture_structure = PICT_FRAME;
1720  } else {
1721  if (!sps->direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) {
1722  av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n");
1723  return -1;
1724  }
1725  field_pic_flag = get_bits1(&sl->gb);
1726  if (field_pic_flag) {
1727  bottom_field_flag = get_bits1(&sl->gb);
1728  picture_structure = PICT_TOP_FIELD + bottom_field_flag;
1729  } else {
1730  picture_structure = PICT_FRAME;
1731  }
1732  }
1733  sl->picture_structure = picture_structure;
1734  sl->mb_field_decoding_flag = picture_structure != PICT_FRAME;
1735 
1736  if (picture_structure == PICT_FRAME) {
1737  sl->curr_pic_num = sl->frame_num;
1738  sl->max_pic_num = 1 << sps->log2_max_frame_num;
1739  } else {
1740  sl->curr_pic_num = 2 * sl->frame_num + 1;
1741  sl->max_pic_num = 1 << (sps->log2_max_frame_num + 1);
1742  }
1743 
1744  if (nal->type == H264_NAL_IDR_SLICE)
1745  get_ue_golomb_long(&sl->gb); /* idr_pic_id */
1746 
1747  if (sps->poc_type == 0) {
1748  sl->poc_lsb = get_bits(&sl->gb, sps->log2_max_poc_lsb);
1749 
1750  if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME)
1751  sl->delta_poc_bottom = get_se_golomb(&sl->gb);
1752  }
1753 
1754  if (sps->poc_type == 1 && !sps->delta_pic_order_always_zero_flag) {
1755  sl->delta_poc[0] = get_se_golomb(&sl->gb);
1756 
1757  if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME)
1758  sl->delta_poc[1] = get_se_golomb(&sl->gb);
1759  }
1760 
1761  sl->redundant_pic_count = 0;
1762  if (pps->redundant_pic_cnt_present)
1763  sl->redundant_pic_count = get_ue_golomb(&sl->gb);
1764 
1765  if (sl->slice_type_nos == AV_PICTURE_TYPE_B)
1766  sl->direct_spatial_mv_pred = get_bits1(&sl->gb);
1767 
1769  &sl->gb, pps, sl->slice_type_nos,
1770  picture_structure, h->avctx);
1771  if (ret < 0)
1772  return ret;
1773 
1774  if (sl->slice_type_nos != AV_PICTURE_TYPE_I) {
1776  if (ret < 0) {
1777  sl->ref_count[1] = sl->ref_count[0] = 0;
1778  return ret;
1779  }
1780  }
1781 
1782  sl->pwt.use_weight = 0;
1783  for (i = 0; i < 2; i++) {
1784  sl->pwt.luma_weight_flag[i] = 0;
1785  sl->pwt.chroma_weight_flag[i] = 0;
1786  }
1787  if ((pps->weighted_pred && sl->slice_type_nos == AV_PICTURE_TYPE_P) ||
1788  (pps->weighted_bipred_idc == 1 &&
1790  ret = ff_h264_pred_weight_table(&sl->gb, sps, sl->ref_count,
1791  sl->slice_type_nos, &sl->pwt,
1792  picture_structure, h->avctx);
1793  if (ret < 0)
1794  return ret;
1795  }
1796 
1797  sl->explicit_ref_marking = 0;
1798  if (nal->ref_idc) {
1799  ret = ff_h264_decode_ref_pic_marking(sl, &sl->gb, nal, h->avctx);
1800  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1801  return AVERROR_INVALIDDATA;
1802  }
1803 
1804  if (sl->slice_type_nos != AV_PICTURE_TYPE_I && pps->cabac) {
1805  tmp = get_ue_golomb_31(&sl->gb);
1806  if (tmp > 2) {
1807  av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc %u overflow\n", tmp);
1808  return AVERROR_INVALIDDATA;
1809  }
1810  sl->cabac_init_idc = tmp;
1811  }
1812 
1813  sl->last_qscale_diff = 0;
1814  tmp = pps->init_qp + (unsigned)get_se_golomb(&sl->gb);
1815  if (tmp > 51 + 6 * (sps->bit_depth_luma - 8)) {
1816  av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
1817  return AVERROR_INVALIDDATA;
1818  }
1819  sl->qscale = tmp;
1820  sl->chroma_qp[0] = get_chroma_qp(pps, 0, sl->qscale);
1821  sl->chroma_qp[1] = get_chroma_qp(pps, 1, sl->qscale);
1822  // FIXME qscale / qp ... stuff
1823  if (sl->slice_type == AV_PICTURE_TYPE_SP)
1824  get_bits1(&sl->gb); /* sp_for_switch_flag */
1825  if (sl->slice_type == AV_PICTURE_TYPE_SP ||
1827  get_se_golomb(&sl->gb); /* slice_qs_delta */
1828 
1829  sl->deblocking_filter = 1;
1830  sl->slice_alpha_c0_offset = 0;
1831  sl->slice_beta_offset = 0;
1833  tmp = get_ue_golomb_31(&sl->gb);
1834  if (tmp > 2) {
1836  "deblocking_filter_idc %u out of range\n", tmp);
1837  return AVERROR_INVALIDDATA;
1838  }
1839  sl->deblocking_filter = tmp;
1840  if (sl->deblocking_filter < 2)
1841  sl->deblocking_filter ^= 1; // 1<->0
1842 
1843  if (sl->deblocking_filter) {
1844  int slice_alpha_c0_offset_div2 = get_se_golomb(&sl->gb);
1845  int slice_beta_offset_div2 = get_se_golomb(&sl->gb);
1846  if (slice_alpha_c0_offset_div2 > 6 ||
1847  slice_alpha_c0_offset_div2 < -6 ||
1848  slice_beta_offset_div2 > 6 ||
1849  slice_beta_offset_div2 < -6) {
1851  "deblocking filter parameters %d %d out of range\n",
1852  slice_alpha_c0_offset_div2, slice_beta_offset_div2);
1853  return AVERROR_INVALIDDATA;
1854  }
1855  sl->slice_alpha_c0_offset = slice_alpha_c0_offset_div2 * 2;
1856  sl->slice_beta_offset = slice_beta_offset_div2 * 2;
1857  }
1858  }
1859 
1860  return 0;
1861 }
1862 
1863 /* do all the per-slice initialization needed before we can start decoding the
1864  * actual MBs */
1866  const H2645NAL *nal)
1867 {
1868  int i, j, ret = 0;
1869 
1870  if (h->picture_idr && nal->type != H264_NAL_IDR_SLICE) {
1871  av_log(h->avctx, AV_LOG_ERROR, "Invalid mix of IDR and non-IDR slices\n");
1872  return AVERROR_INVALIDDATA;
1873  }
1874 
1875  av_assert1(h->mb_num == h->mb_width * h->mb_height);
1876  if (sl->first_mb_addr << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num ||
1877  sl->first_mb_addr >= h->mb_num) {
1878  av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
1879  return AVERROR_INVALIDDATA;
1880  }
1881  sl->resync_mb_x = sl->mb_x = sl->first_mb_addr % h->mb_width;
1882  sl->resync_mb_y = sl->mb_y = (sl->first_mb_addr / h->mb_width) <<
1885  sl->resync_mb_y = sl->mb_y = sl->mb_y + 1;
1886  av_assert1(sl->mb_y < h->mb_height);
1887 
1888  ret = ff_h264_build_ref_list(h, sl);
1889  if (ret < 0)
1890  return ret;
1891 
1892  if (h->ps.pps->weighted_bipred_idc == 2 &&
1894  implicit_weight_table(h, sl, -1);
1895  if (FRAME_MBAFF(h)) {
1896  implicit_weight_table(h, sl, 0);
1897  implicit_weight_table(h, sl, 1);
1898  }
1899  }
1900 
1903  if (!h->setup_finished)
1905 
1906  if (h->avctx->skip_loop_filter >= AVDISCARD_ALL ||
1914  nal->ref_idc == 0))
1915  sl->deblocking_filter = 0;
1916 
1917  if (sl->deblocking_filter == 1 && h->nb_slice_ctx > 1) {
1918  if (h->avctx->flags2 & AV_CODEC_FLAG2_FAST) {
1919  /* Cheat slightly for speed:
1920  * Do not bother to deblock across slices. */
1921  sl->deblocking_filter = 2;
1922  } else {
1923  h->postpone_filter = 1;
1924  }
1925  }
1926  sl->qp_thresh = 15 -
1928  FFMAX3(0,
1929  h->ps.pps->chroma_qp_index_offset[0],
1930  h->ps.pps->chroma_qp_index_offset[1]) +
1931  6 * (h->ps.sps->bit_depth_luma - 8);
1932 
1933  sl->slice_num = ++h->current_slice;
1934 
1935  if (sl->slice_num)
1936  h->slice_row[(sl->slice_num-1)&(MAX_SLICES-1)]= sl->resync_mb_y;
1937  if ( h->slice_row[sl->slice_num&(MAX_SLICES-1)] + 3 >= sl->resync_mb_y
1938  && h->slice_row[sl->slice_num&(MAX_SLICES-1)] <= sl->resync_mb_y
1939  && sl->slice_num >= MAX_SLICES) {
1940  //in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case
1941  av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", sl->slice_num, MAX_SLICES);
1942  }
1943 
1944  for (j = 0; j < 2; j++) {
1945  int id_list[16];
1946  int *ref2frm = h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][j];
1947  for (i = 0; i < 16; i++) {
1948  id_list[i] = 60;
1949  if (j < sl->list_count && i < sl->ref_count[j] &&
1950  sl->ref_list[j][i].parent->f->buf[0]) {
1951  int k;
1952  AVBuffer *buf = sl->ref_list[j][i].parent->f->buf[0]->buffer;
1953  for (k = 0; k < h->short_ref_count; k++)
1954  if (h->short_ref[k]->f->buf[0]->buffer == buf) {
1955  id_list[i] = k;
1956  break;
1957  }
1958  for (k = 0; k < h->long_ref_count; k++)
1959  if (h->long_ref[k] && h->long_ref[k]->f->buf[0]->buffer == buf) {
1960  id_list[i] = h->short_ref_count + k;
1961  break;
1962  }
1963  }
1964  }
1965 
1966  ref2frm[0] =
1967  ref2frm[1] = -1;
1968  for (i = 0; i < 16; i++)
1969  ref2frm[i + 2] = 4 * id_list[i] + (sl->ref_list[j][i].reference & 3);
1970  ref2frm[18 + 0] =
1971  ref2frm[18 + 1] = -1;
1972  for (i = 16; i < 48; i++)
1973  ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] +
1974  (sl->ref_list[j][i].reference & 3);
1975  }
1976 
1977  if (h->avctx->debug & FF_DEBUG_PICT_INFO) {
1979  "slice:%d %s mb:%d %c%s%s frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
1980  sl->slice_num,
1981  (h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"),
1982  sl->mb_y * h->mb_width + sl->mb_x,
1984  sl->slice_type_fixed ? " fix" : "",
1985  nal->type == H264_NAL_IDR_SLICE ? " IDR" : "",
1986  h->poc.frame_num,
1987  h->cur_pic_ptr->field_poc[0],
1988  h->cur_pic_ptr->field_poc[1],
1989  sl->ref_count[0], sl->ref_count[1],
1990  sl->qscale,
1991  sl->deblocking_filter,
1993  sl->pwt.use_weight,
1994  sl->pwt.use_weight == 1 && sl->pwt.use_weight_chroma ? "c" : "",
1995  sl->slice_type == AV_PICTURE_TYPE_B ? (sl->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "");
1996  }
1997 
1998  return 0;
1999 }
2000 
2002 {
2004  int first_slice = sl == h->slice_ctx && !h->current_slice;
2005  int ret;
2006 
2007  sl->gb = nal->gb;
2008 
2009  ret = h264_slice_header_parse(h, sl, nal);
2010  if (ret < 0)
2011  return ret;
2012 
2013  // discard redundant pictures
2014  if (sl->redundant_pic_count > 0) {
2015  sl->ref_count[0] = sl->ref_count[1] = 0;
2016  return 0;
2017  }
2018 
2019  if (sl->first_mb_addr == 0 || !h->current_slice) {
2020  if (h->setup_finished) {
2021  av_log(h->avctx, AV_LOG_ERROR, "Too many fields\n");
2022  return AVERROR_INVALIDDATA;
2023  }
2024  }
2025 
2026  if (sl->first_mb_addr == 0) { // FIXME better field boundary detection
2027  if (h->current_slice) {
2028  // this slice starts a new field
2029  // first decode any pending queued slices
2030  if (h->nb_slice_ctx_queued) {
2031  H264SliceContext tmp_ctx;
2032 
2034  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
2035  return ret;
2036 
2037  memcpy(&tmp_ctx, h->slice_ctx, sizeof(tmp_ctx));
2038  memcpy(h->slice_ctx, sl, sizeof(tmp_ctx));
2039  memcpy(sl, &tmp_ctx, sizeof(tmp_ctx));
2040  sl = h->slice_ctx;
2041  }
2042 
2043  if (h->cur_pic_ptr && FIELD_PICTURE(h) && h->first_field) {
2044  ret = ff_h264_field_end(h, h->slice_ctx, 1);
2045  if (ret < 0)
2046  return ret;
2047  } else if (h->cur_pic_ptr && !FIELD_PICTURE(h) && !h->first_field && h->nal_unit_type == H264_NAL_IDR_SLICE) {
2048  av_log(h, AV_LOG_WARNING, "Broken frame packetizing\n");
2049  ret = ff_h264_field_end(h, h->slice_ctx, 1);
2050  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
2051  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
2052  h->cur_pic_ptr = NULL;
2053  if (ret < 0)
2054  return ret;
2055  } else
2056  return AVERROR_INVALIDDATA;
2057  }
2058 
2059  if (!h->first_field) {
2060  if (h->cur_pic_ptr && !h->droppable) {
2063  }
2064  h->cur_pic_ptr = NULL;
2065  }
2066  }
2067 
2068  if (!h->current_slice)
2069  av_assert0(sl == h->slice_ctx);
2070 
2071  if (h->current_slice == 0 && !h->first_field) {
2072  if (
2073  (h->avctx->skip_frame >= AVDISCARD_NONREF && !h->nal_ref_idc) ||
2077  h->avctx->skip_frame >= AVDISCARD_ALL) {
2078  return 0;
2079  }
2080  }
2081 
2082  if (!first_slice) {
2083  const PPS *pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data;
2084 
2085  if (h->ps.pps->sps_id != pps->sps_id ||
2086  h->ps.pps->transform_8x8_mode != pps->transform_8x8_mode /*||
2087  (h->setup_finished && h->ps.pps != pps)*/) {
2088  av_log(h->avctx, AV_LOG_ERROR, "PPS changed between slices\n");
2089  return AVERROR_INVALIDDATA;
2090  }
2091  if (h->ps.sps != (const SPS*)h->ps.sps_list[h->ps.pps->sps_id]->data) {
2093  "SPS changed in the middle of the frame\n");
2094  return AVERROR_INVALIDDATA;
2095  }
2096  }
2097 
2098  if (h->current_slice == 0) {
2099  ret = h264_field_start(h, sl, nal, first_slice);
2100  if (ret < 0)
2101  return ret;
2102  } else {
2103  if (h->picture_structure != sl->picture_structure ||
2104  h->droppable != (nal->ref_idc == 0)) {
2106  "Changing field mode (%d -> %d) between slices is not allowed\n",
2108  return AVERROR_INVALIDDATA;
2109  } else if (!h->cur_pic_ptr) {
2111  "unset cur_pic_ptr on slice %d\n",
2112  h->current_slice + 1);
2113  return AVERROR_INVALIDDATA;
2114  }
2115  }
2116 
2117  ret = h264_slice_init(h, sl, nal);
2118  if (ret < 0)
2119  return ret;
2120 
2121  h->nb_slice_ctx_queued++;
2122 
2123  return 0;
2124 }
2125 
2127 {
2128  switch (sl->slice_type) {
2129  case AV_PICTURE_TYPE_P:
2130  return 0;
2131  case AV_PICTURE_TYPE_B:
2132  return 1;
2133  case AV_PICTURE_TYPE_I:
2134  return 2;
2135  case AV_PICTURE_TYPE_SP:
2136  return 3;
2137  case AV_PICTURE_TYPE_SI:
2138  return 4;
2139  default:
2140  return AVERROR_INVALIDDATA;
2141  }
2142 }
2143 
2145  H264SliceContext *sl,
2146  int mb_type, int top_xy,
2147  int left_xy[LEFT_MBS],
2148  int top_type,
2149  int left_type[LEFT_MBS],
2150  int mb_xy, int list)
2151 {
2152  int b_stride = h->b_stride;
2153  int16_t(*mv_dst)[2] = &sl->mv_cache[list][scan8[0]];
2154  int8_t *ref_cache = &sl->ref_cache[list][scan8[0]];
2155  if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) {
2156  if (USES_LIST(top_type, list)) {
2157  const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
2158  const int b8_xy = 4 * top_xy + 2;
2159  const int *ref2frm = &h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2160  AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]);
2161  ref_cache[0 - 1 * 8] =
2162  ref_cache[1 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 0]];
2163  ref_cache[2 - 1 * 8] =
2164  ref_cache[3 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 1]];
2165  } else {
2166  AV_ZERO128(mv_dst - 1 * 8);
2167  AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2168  }
2169 
2170  if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) {
2171  if (USES_LIST(left_type[LTOP], list)) {
2172  const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
2173  const int b8_xy = 4 * left_xy[LTOP] + 1;
2174  const int *ref2frm = &h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2175  AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]);
2176  AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]);
2177  AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]);
2178  AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]);
2179  ref_cache[-1 + 0] =
2180  ref_cache[-1 + 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 0]];
2181  ref_cache[-1 + 16] =
2182  ref_cache[-1 + 24] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 1]];
2183  } else {
2184  AV_ZERO32(mv_dst - 1 + 0);
2185  AV_ZERO32(mv_dst - 1 + 8);
2186  AV_ZERO32(mv_dst - 1 + 16);
2187  AV_ZERO32(mv_dst - 1 + 24);
2188  ref_cache[-1 + 0] =
2189  ref_cache[-1 + 8] =
2190  ref_cache[-1 + 16] =
2191  ref_cache[-1 + 24] = LIST_NOT_USED;
2192  }
2193  }
2194  }
2195 
2196  if (!USES_LIST(mb_type, list)) {
2197  fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4);
2198  AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2199  AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2200  AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2201  AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2202  return;
2203  }
2204 
2205  {
2206  int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy];
2207  const int *ref2frm = &h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2208  uint32_t ref01 = (pack16to32(ref2frm[ref[0]], ref2frm[ref[1]]) & 0x00FF00FF) * 0x0101;
2209  uint32_t ref23 = (pack16to32(ref2frm[ref[2]], ref2frm[ref[3]]) & 0x00FF00FF) * 0x0101;
2210  AV_WN32A(&ref_cache[0 * 8], ref01);
2211  AV_WN32A(&ref_cache[1 * 8], ref01);
2212  AV_WN32A(&ref_cache[2 * 8], ref23);
2213  AV_WN32A(&ref_cache[3 * 8], ref23);
2214  }
2215 
2216  {
2217  int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * sl->mb_x + 4 * sl->mb_y * b_stride];
2218  AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride);
2219  AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride);
2220  AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride);
2221  AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride);
2222  }
2223 }
2224 
2225 /**
2226  * @return non zero if the loop filter can be skipped
2227  */
2228 static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
2229 {
2230  const int mb_xy = sl->mb_xy;
2231  int top_xy, left_xy[LEFT_MBS];
2232  int top_type, left_type[LEFT_MBS];
2233  uint8_t *nnz;
2234  uint8_t *nnz_cache;
2235 
2236  top_xy = mb_xy - (h->mb_stride << MB_FIELD(sl));
2237 
2238  left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
2239  if (FRAME_MBAFF(h)) {
2240  const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
2241  const int curr_mb_field_flag = IS_INTERLACED(mb_type);
2242  if (sl->mb_y & 1) {
2243  if (left_mb_field_flag != curr_mb_field_flag)
2244  left_xy[LTOP] -= h->mb_stride;
2245  } else {
2246  if (curr_mb_field_flag)
2247  top_xy += h->mb_stride &
2248  (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
2249  if (left_mb_field_flag != curr_mb_field_flag)
2250  left_xy[LBOT] += h->mb_stride;
2251  }
2252  }
2253 
2254  sl->top_mb_xy = top_xy;
2255  sl->left_mb_xy[LTOP] = left_xy[LTOP];
2256  sl->left_mb_xy[LBOT] = left_xy[LBOT];
2257  {
2258  /* For sufficiently low qp, filtering wouldn't do anything.
2259  * This is a conservative estimate: could also check beta_offset
2260  * and more accurate chroma_qp. */
2261  int qp_thresh = sl->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice
2262  int qp = h->cur_pic.qscale_table[mb_xy];
2263  if (qp <= qp_thresh &&
2264  (left_xy[LTOP] < 0 ||
2265  ((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) &&
2266  (top_xy < 0 ||
2267  ((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) {
2268  if (!FRAME_MBAFF(h))
2269  return 1;
2270  if ((left_xy[LTOP] < 0 ||
2271  ((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) &&
2272  (top_xy < h->mb_stride ||
2273  ((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh))
2274  return 1;
2275  }
2276  }
2277 
2278  top_type = h->cur_pic.mb_type[top_xy];
2279  left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
2280  left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
2281  if (sl->deblocking_filter == 2) {
2282  if (h->slice_table[top_xy] != sl->slice_num)
2283  top_type = 0;
2284  if (h->slice_table[left_xy[LBOT]] != sl->slice_num)
2285  left_type[LTOP] = left_type[LBOT] = 0;
2286  } else {
2287  if (h->slice_table[top_xy] == 0xFFFF)
2288  top_type = 0;
2289  if (h->slice_table[left_xy[LBOT]] == 0xFFFF)
2290  left_type[LTOP] = left_type[LBOT] = 0;
2291  }
2292  sl->top_type = top_type;
2293  sl->left_type[LTOP] = left_type[LTOP];
2294  sl->left_type[LBOT] = left_type[LBOT];
2295 
2296  if (IS_INTRA(mb_type))
2297  return 0;
2298 
2299  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2300  top_type, left_type, mb_xy, 0);
2301  if (sl->list_count == 2)
2302  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2303  top_type, left_type, mb_xy, 1);
2304 
2305  nnz = h->non_zero_count[mb_xy];
2306  nnz_cache = sl->non_zero_count_cache;
2307  AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]);
2308  AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]);
2309  AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]);
2310  AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]);
2311  sl->cbp = h->cbp_table[mb_xy];
2312 
2313  if (top_type) {
2314  nnz = h->non_zero_count[top_xy];
2315  AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]);
2316  }
2317 
2318  if (left_type[LTOP]) {
2319  nnz = h->non_zero_count[left_xy[LTOP]];
2320  nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4];
2321  nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4];
2322  nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4];
2323  nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4];
2324  }
2325 
2326  /* CAVLC 8x8dct requires NNZ values for residual decoding that differ
2327  * from what the loop filter needs */
2328  if (!CABAC(h) && h->ps.pps->transform_8x8_mode) {
2329  if (IS_8x8DCT(top_type)) {
2330  nnz_cache[4 + 8 * 0] =
2331  nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12;
2332  nnz_cache[6 + 8 * 0] =
2333  nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12;
2334  }
2335  if (IS_8x8DCT(left_type[LTOP])) {
2336  nnz_cache[3 + 8 * 1] =
2337  nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF
2338  }
2339  if (IS_8x8DCT(left_type[LBOT])) {
2340  nnz_cache[3 + 8 * 3] =
2341  nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF
2342  }
2343 
2344  if (IS_8x8DCT(mb_type)) {
2345  nnz_cache[scan8[0]] =
2346  nnz_cache[scan8[1]] =
2347  nnz_cache[scan8[2]] =
2348  nnz_cache[scan8[3]] = (sl->cbp & 0x1000) >> 12;
2349 
2350  nnz_cache[scan8[0 + 4]] =
2351  nnz_cache[scan8[1 + 4]] =
2352  nnz_cache[scan8[2 + 4]] =
2353  nnz_cache[scan8[3 + 4]] = (sl->cbp & 0x2000) >> 12;
2354 
2355  nnz_cache[scan8[0 + 8]] =
2356  nnz_cache[scan8[1 + 8]] =
2357  nnz_cache[scan8[2 + 8]] =
2358  nnz_cache[scan8[3 + 8]] = (sl->cbp & 0x4000) >> 12;
2359 
2360  nnz_cache[scan8[0 + 12]] =
2361  nnz_cache[scan8[1 + 12]] =
2362  nnz_cache[scan8[2 + 12]] =
2363  nnz_cache[scan8[3 + 12]] = (sl->cbp & 0x8000) >> 12;
2364  }
2365  }
2366 
2367  return 0;
2368 }
2369 
2370 static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
2371 {
2372  uint8_t *dest_y, *dest_cb, *dest_cr;
2373  int linesize, uvlinesize, mb_x, mb_y;
2374  const int end_mb_y = sl->mb_y + FRAME_MBAFF(h);
2375  const int old_slice_type = sl->slice_type;
2376  const int pixel_shift = h->pixel_shift;
2377  const int block_h = 16 >> h->chroma_y_shift;
2378 
2379  if (h->postpone_filter)
2380  return;
2381 
2382  if (sl->deblocking_filter) {
2383  for (mb_x = start_x; mb_x < end_x; mb_x++)
2384  for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) {
2385  int mb_xy, mb_type;
2386  mb_xy = sl->mb_xy = mb_x + mb_y * h->mb_stride;
2387  mb_type = h->cur_pic.mb_type[mb_xy];
2388 
2389  if (FRAME_MBAFF(h))
2390  sl->mb_mbaff =
2391  sl->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
2392 
2393  sl->mb_x = mb_x;
2394  sl->mb_y = mb_y;
2395  dest_y = h->cur_pic.f->data[0] +
2396  ((mb_x << pixel_shift) + mb_y * sl->linesize) * 16;
2397  dest_cb = h->cur_pic.f->data[1] +
2398  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2399  mb_y * sl->uvlinesize * block_h;
2400  dest_cr = h->cur_pic.f->data[2] +
2401  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2402  mb_y * sl->uvlinesize * block_h;
2403  // FIXME simplify above
2404 
2405  if (MB_FIELD(sl)) {
2406  linesize = sl->mb_linesize = sl->linesize * 2;
2407  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize * 2;
2408  if (mb_y & 1) { // FIXME move out of this function?
2409  dest_y -= sl->linesize * 15;
2410  dest_cb -= sl->uvlinesize * (block_h - 1);
2411  dest_cr -= sl->uvlinesize * (block_h - 1);
2412  }
2413  } else {
2414  linesize = sl->mb_linesize = sl->linesize;
2415  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize;
2416  }
2417  backup_mb_border(h, sl, dest_y, dest_cb, dest_cr, linesize,
2418  uvlinesize, 0);
2419  if (fill_filter_caches(h, sl, mb_type))
2420  continue;
2421  sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, h->cur_pic.qscale_table[mb_xy]);
2422  sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, h->cur_pic.qscale_table[mb_xy]);
2423 
2424  if (FRAME_MBAFF(h)) {
2425  ff_h264_filter_mb(h, sl, mb_x, mb_y, dest_y, dest_cb, dest_cr,
2426  linesize, uvlinesize);
2427  } else {
2428  ff_h264_filter_mb_fast(h, sl, mb_x, mb_y, dest_y, dest_cb,
2429  dest_cr, linesize, uvlinesize);
2430  }
2431  }
2432  }
2433  sl->slice_type = old_slice_type;
2434  sl->mb_x = end_x;
2435  sl->mb_y = end_mb_y - FRAME_MBAFF(h);
2436  sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, sl->qscale);
2437  sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, sl->qscale);
2438 }
2439 
2441 {
2442  const int mb_xy = sl->mb_x + sl->mb_y * h->mb_stride;
2443  int mb_type = (h->slice_table[mb_xy - 1] == sl->slice_num) ?
2444  h->cur_pic.mb_type[mb_xy - 1] :
2445  (h->slice_table[mb_xy - h->mb_stride] == sl->slice_num) ?
2446  h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0;
2447  sl->mb_mbaff = sl->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
2448 }
2449 
2450 /**
2451  * Draw edges and report progress for the last MB row.
2452  */
2454 {
2455  int top = 16 * (sl->mb_y >> FIELD_PICTURE(h));
2456  int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h);
2457  int height = 16 << FRAME_MBAFF(h);
2458  int deblock_border = (16 + 4) << FRAME_MBAFF(h);
2459 
2460  if (sl->deblocking_filter) {
2461  if ((top + height) >= pic_height)
2462  height += deblock_border;
2463  top -= deblock_border;
2464  }
2465 
2466  if (top >= pic_height || (top + height) < 0)
2467  return;
2468 
2469  height = FFMIN(height, pic_height - top);
2470  if (top < 0) {
2471  height = top + height;
2472  top = 0;
2473  }
2474 
2475  ff_h264_draw_horiz_band(h, sl, top, height);
2476 
2477  if (h->droppable || sl->h264->slice_ctx[0].er.error_occurred)
2478  return;
2479 
2480  ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1,
2482 }
2483 
2485  int startx, int starty,
2486  int endx, int endy, int status)
2487 {
2488  if (!sl->h264->enable_er)
2489  return;
2490 
2492  ERContext *er = &sl->h264->slice_ctx[0].er;
2493 
2494  ff_er_add_slice(er, startx, starty, endx, endy, status);
2495  }
2496 }
2497 
2498 static int decode_slice(struct AVCodecContext *avctx, void *arg)
2499 {
2500  H264SliceContext *sl = arg;
2501  const H264Context *h = sl->h264;
2502  int lf_x_start = sl->mb_x;
2503  int orig_deblock = sl->deblocking_filter;
2504  int ret;
2505 
2506  sl->linesize = h->cur_pic_ptr->f->linesize[0];
2507  sl->uvlinesize = h->cur_pic_ptr->f->linesize[1];
2508 
2509  ret = alloc_scratch_buffers(sl, sl->linesize);
2510  if (ret < 0)
2511  return ret;
2512 
2513  sl->mb_skip_run = -1;
2514 
2515  av_assert0(h->block_offset[15] == (4 * ((scan8[15] - scan8[0]) & 7) << h->pixel_shift) + 4 * sl->linesize * ((scan8[15] - scan8[0]) >> 3));
2516 
2517  if (h->postpone_filter)
2518  sl->deblocking_filter = 0;
2519 
2520  sl->is_complex = FRAME_MBAFF(h) || h->picture_structure != PICT_FRAME ||
2521  (CONFIG_GRAY && (h->flags & AV_CODEC_FLAG_GRAY));
2522 
2524  const int start_i = av_clip(sl->resync_mb_x + sl->resync_mb_y * h->mb_width, 0, h->mb_num - 1);
2525  if (start_i) {
2526  int prev_status = h->slice_ctx[0].er.error_status_table[h->slice_ctx[0].er.mb_index2xy[start_i - 1]];
2527  prev_status &= ~ VP_START;
2528  if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END))
2529  h->slice_ctx[0].er.error_occurred = 1;
2530  }
2531  }
2532 
2533  if (h->ps.pps->cabac) {
2534  /* realign */
2535  align_get_bits(&sl->gb);
2536 
2537  /* init cabac */
2538  ret = ff_init_cabac_decoder(&sl->cabac,
2539  sl->gb.buffer + get_bits_count(&sl->gb) / 8,
2540  (get_bits_left(&sl->gb) + 7) / 8);
2541  if (ret < 0)
2542  return ret;
2543 
2545 
2546  for (;;) {
2547  // START_TIMER
2548  int ret, eos;
2549  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
2550  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
2551  sl->next_slice_idx);
2552  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2553  sl->mb_y, ER_MB_ERROR);
2554  return AVERROR_INVALIDDATA;
2555  }
2556 
2557  ret = ff_h264_decode_mb_cabac(h, sl);
2558  // STOP_TIMER("decode_mb_cabac")
2559 
2560  if (ret >= 0)
2561  ff_h264_hl_decode_mb(h, sl);
2562 
2563  // FIXME optimal? or let mb_decode decode 16x32 ?
2564  if (ret >= 0 && FRAME_MBAFF(h)) {
2565  sl->mb_y++;
2566 
2567  ret = ff_h264_decode_mb_cabac(h, sl);
2568 
2569  if (ret >= 0)
2570  ff_h264_hl_decode_mb(h, sl);
2571  sl->mb_y--;
2572  }
2573  eos = get_cabac_terminate(&sl->cabac);
2574 
2575  if ((h->workaround_bugs & FF_BUG_TRUNCATED) &&
2576  sl->cabac.bytestream > sl->cabac.bytestream_end + 2) {
2577  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2578  sl->mb_y, ER_MB_END);
2579  if (sl->mb_x >= lf_x_start)
2580  loop_filter(h, sl, lf_x_start, sl->mb_x + 1);
2581  goto finish;
2582  }
2583  if (sl->cabac.bytestream > sl->cabac.bytestream_end + 2 )
2584  av_log(h->avctx, AV_LOG_DEBUG, "bytestream overread %"PTRDIFF_SPECIFIER"\n", sl->cabac.bytestream_end - sl->cabac.bytestream);
2585  if (ret < 0 || sl->cabac.bytestream > sl->cabac.bytestream_end + 4) {
2587  "error while decoding MB %d %d, bytestream %"PTRDIFF_SPECIFIER"\n",
2588  sl->mb_x, sl->mb_y,
2589  sl->cabac.bytestream_end - sl->cabac.bytestream);
2590  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2591  sl->mb_y, ER_MB_ERROR);
2592  return AVERROR_INVALIDDATA;
2593  }
2594 
2595  if (++sl->mb_x >= h->mb_width) {
2596  loop_filter(h, sl, lf_x_start, sl->mb_x);
2597  sl->mb_x = lf_x_start = 0;
2598  decode_finish_row(h, sl);
2599  ++sl->mb_y;
2600  if (FIELD_OR_MBAFF_PICTURE(h)) {
2601  ++sl->mb_y;
2602  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2604  }
2605  }
2606 
2607  if (eos || sl->mb_y >= h->mb_height) {
2608  ff_tlog(h->avctx, "slice end %d %d\n",
2609  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2610  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2611  sl->mb_y, ER_MB_END);
2612  if (sl->mb_x > lf_x_start)
2613  loop_filter(h, sl, lf_x_start, sl->mb_x);
2614  goto finish;
2615  }
2616  }
2617  } else {
2618  for (;;) {
2619  int ret;
2620 
2621  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
2622  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
2623  sl->next_slice_idx);
2624  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2625  sl->mb_y, ER_MB_ERROR);
2626  return AVERROR_INVALIDDATA;
2627  }
2628 
2629  ret = ff_h264_decode_mb_cavlc(h, sl);
2630 
2631  if (ret >= 0)
2632  ff_h264_hl_decode_mb(h, sl);
2633 
2634  // FIXME optimal? or let mb_decode decode 16x32 ?
2635  if (ret >= 0 && FRAME_MBAFF(h)) {
2636  sl->mb_y++;
2637  ret = ff_h264_decode_mb_cavlc(h, sl);
2638 
2639  if (ret >= 0)
2640  ff_h264_hl_decode_mb(h, sl);
2641  sl->mb_y--;
2642  }
2643 
2644  if (ret < 0) {
2646  "error while decoding MB %d %d\n", sl->mb_x, sl->mb_y);
2647  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2648  sl->mb_y, ER_MB_ERROR);
2649  return ret;
2650  }
2651 
2652  if (++sl->mb_x >= h->mb_width) {
2653  loop_filter(h, sl, lf_x_start, sl->mb_x);
2654  sl->mb_x = lf_x_start = 0;
2655  decode_finish_row(h, sl);
2656  ++sl->mb_y;
2657  if (FIELD_OR_MBAFF_PICTURE(h)) {
2658  ++sl->mb_y;
2659  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2661  }
2662  if (sl->mb_y >= h->mb_height) {
2663  ff_tlog(h->avctx, "slice end %d %d\n",
2664  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2665 
2666  if ( get_bits_left(&sl->gb) == 0
2667  || get_bits_left(&sl->gb) > 0 && !(h->avctx->err_recognition & AV_EF_AGGRESSIVE)) {
2668  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2669  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2670 
2671  goto finish;
2672  } else {
2673  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2674  sl->mb_x, sl->mb_y, ER_MB_END);
2675 
2676  return AVERROR_INVALIDDATA;
2677  }
2678  }
2679  }
2680 
2681  if (get_bits_left(&sl->gb) <= 0 && sl->mb_skip_run <= 0) {
2682  ff_tlog(h->avctx, "slice end %d %d\n",
2683  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2684 
2685  if (get_bits_left(&sl->gb) == 0) {
2686  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2687  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2688  if (sl->mb_x > lf_x_start)
2689  loop_filter(h, sl, lf_x_start, sl->mb_x);
2690 
2691  goto finish;
2692  } else {
2693  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2694  sl->mb_y, ER_MB_ERROR);
2695 
2696  return AVERROR_INVALIDDATA;
2697  }
2698  }
2699  }
2700  }
2701 
2702 finish:
2703  sl->deblocking_filter = orig_deblock;
2704  return 0;
2705 }
2706 
2707 /**
2708  * Call decode_slice() for each context.
2709  *
2710  * @param h h264 master context
2711  */
2713 {
2714  AVCodecContext *const avctx = h->avctx;
2715  H264SliceContext *sl;
2716  int context_count = h->nb_slice_ctx_queued;
2717  int ret = 0;
2718  int i, j;
2719 
2720  h->slice_ctx[0].next_slice_idx = INT_MAX;
2721 
2722  if (h->avctx->hwaccel || context_count < 1
2723 #if FF_API_CAP_VDPAU
2725 #endif
2726  )
2727  return 0;
2728 
2729  av_assert0(context_count && h->slice_ctx[context_count - 1].mb_y < h->mb_height);
2730 
2731  if (context_count == 1) {
2732 
2733  h->slice_ctx[0].next_slice_idx = h->mb_width * h->mb_height;
2734  h->postpone_filter = 0;
2735 
2736  ret = decode_slice(avctx, &h->slice_ctx[0]);
2737  h->mb_y = h->slice_ctx[0].mb_y;
2738  if (ret < 0)
2739  goto finish;
2740  } else {
2741  av_assert0(context_count > 0);
2742  for (i = 0; i < context_count; i++) {
2743  int next_slice_idx = h->mb_width * h->mb_height;
2744  int slice_idx;
2745 
2746  sl = &h->slice_ctx[i];
2748  sl->er.error_count = 0;
2749  }
2750 
2751  /* make sure none of those slices overlap */
2752  slice_idx = sl->mb_y * h->mb_width + sl->mb_x;
2753  for (j = 0; j < context_count; j++) {
2754  H264SliceContext *sl2 = &h->slice_ctx[j];
2755  int slice_idx2 = sl2->mb_y * h->mb_width + sl2->mb_x;
2756 
2757  if (i == j || slice_idx2 < slice_idx)
2758  continue;
2759  next_slice_idx = FFMIN(next_slice_idx, slice_idx2);
2760  }
2761  sl->next_slice_idx = next_slice_idx;
2762  }
2763 
2764  avctx->execute(avctx, decode_slice, h->slice_ctx,
2765  NULL, context_count, sizeof(h->slice_ctx[0]));
2766 
2767  /* pull back stuff from slices to master context */
2768  sl = &h->slice_ctx[context_count - 1];
2769  h->mb_y = sl->mb_y;
2771  for (i = 1; i < context_count; i++)
2773  }
2774 
2775  if (h->postpone_filter) {
2776  h->postpone_filter = 0;
2777 
2778  for (i = 0; i < context_count; i++) {
2779  int y_end, x_end;
2780 
2781  sl = &h->slice_ctx[i];
2782  y_end = FFMIN(sl->mb_y + 1, h->mb_height);
2783  x_end = (sl->mb_y >= h->mb_height) ? h->mb_width : sl->mb_x;
2784 
2785  for (j = sl->resync_mb_y; j < y_end; j += 1 + FIELD_OR_MBAFF_PICTURE(h)) {
2786  sl->mb_y = j;
2787  loop_filter(h, sl, j > sl->resync_mb_y ? 0 : sl->resync_mb_x,
2788  j == y_end - 1 ? x_end : h->mb_width);
2789  }
2790  }
2791  }
2792  }
2793 
2794 finish:
2795  h->nb_slice_ctx_queued = 0;
2796  return ret;
2797 }
int chroma_format_idc
Definition: h264_ps.h:48
int video_signal_type_present_flag
Definition: h264_ps.h:74
struct H264Context * h264
Definition: h264dec.h:182
#define AV_EF_AGGRESSIVE
consider things that a sane encoder should not do as an error
Definition: avcodec.h:3036
#define ff_tlog(ctx,...)
Definition: internal.h:65
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
#define NULL
Definition: coverity.c:32
int ff_thread_can_start_frame(AVCodecContext *avctx)
const struct AVCodec * codec
Definition: avcodec.h:1741
AVRational framerate
Definition: avcodec.h:3429
discard all frames except keyframes
Definition: avcodec.h:821
int nb_mmco
Definition: h264dec.h:472
int workaround_bugs
Definition: h264dec.h:371
int long_ref
1->long term reference 0->short term reference
Definition: h264dec.h:154
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
int sei_recovery_frame_cnt
Definition: h264dec.h:163
int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal)
Submit a slice for decoding.
Definition: h264_slice.c:2001
H264POCContext poc
Definition: h264dec.h:458
int mb_num
Definition: h264dec.h:435
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it...
Definition: buffer.c:125
int mb_aff_frame
Definition: h264dec.h:404
int recovery_frame_cnt
recovery_frame_cnt
Definition: h264_sei.h:110
int16_t mv_cache[2][5 *8][2]
Motion vector cache.
Definition: h264dec.h:303
#define AV_PIX_FMT_YUV444P14
Definition: pixfmt.h:361
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
Definition: golomb.h:183
int edge_emu_buffer_allocated
Definition: h264dec.h:291
int coded_width
Bitstream width / height, may be different from width/height e.g.
Definition: avcodec.h:1934
static void decode_finish_row(const H264Context *h, H264SliceContext *sl)
Draw edges and report progress for the last MB row.
Definition: h264_slice.c:2453
const char * fmt
Definition: avisynth_c.h:769
int first_field
Definition: h264dec.h:406
uint8_t field_scan8x8_q0[64]
Definition: h264dec.h:429
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:67
misc image utilities
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:262
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
#define ER_MB_END
AVFrame * f
Definition: thread.h:36
int weighted_bipred_idc
Definition: h264_ps.h:117
int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl)
Definition: h264_refs.c:299
int left_mb_xy[LEFT_MBS]
Definition: h264dec.h:215
int chroma_qp_index_offset[2]
Definition: h264_ps.h:120
AVBufferRef * sps_list[MAX_SPS_COUNT]
Definition: h264_ps.h:139
const uint8_t * bytestream_end
Definition: cabac.h:49
static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
Get the chroma qp.
Definition: h264dec.h:675
AVBufferRef * buf[AV_NUM_DATA_POINTERS]
AVBuffer references backing the data for this frame.
Definition: frame.h:370
hardware decoding through Videotoolbox
Definition: pixfmt.h:296
H264ChromaContext h264chroma
Definition: h264dec.h:346
uint16_t * cbp_table
Definition: h264dec.h:411
int luma_weight_flag[2]
7.4.3.2 luma_weight_lX_flag
Definition: h264_parse.h:35
MMCO mmco[MAX_MMCO_COUNT]
memory management control operations buffer.
Definition: h264dec.h:471
static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
Initialize implicit_weight table.
Definition: h264_slice.c:657
Sequence parameter set.
Definition: h264_ps.h:44
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: avcodec.h:2469
int mb_y
Definition: h264dec.h:432
int coded_picture_number
Definition: h264dec.h:367
int bitstream_restriction_flag
Definition: h264_ps.h:85
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:180
int num
Numerator.
Definition: rational.h:59
AVBufferRef * mb_type_buf
Definition: h264dec.h:138
int repeat_pict
When decoding, this signals how much the picture must be delayed.
Definition: frame.h:320
int bipred_scratchpad_allocated
Definition: h264dec.h:290
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output...
Definition: diracdec.c:66
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:367
#define VP_START
< current MB is the first after a resync marker
AVBufferPool * mb_type_pool
Definition: h264dec.h:543
int ff_h264_init_poc(int pic_field_poc[2], int *pic_poc, const SPS *sps, H264POCContext *pc, int picture_structure, int nal_ref_idc)
Definition: h264_parse.c:272
int chroma_x_shift
Definition: h264dec.h:364
const uint8_t * buffer
Definition: get_bits.h:57
Picture parameter set.
Definition: h264_ps.h:109
int crop
Definition: h264dec.h:165
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel...
Definition: avcodec.h:2143
int16_t(*[2] motion_val)[2]
Definition: h264dec.h:136
int flags
Definition: h264dec.h:370
void ff_h264_flush_change(H264Context *h)
Definition: h264dec.c:482
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1960
int frame_mbs_only_flag
Definition: h264_ps.h:62
int mb_height
Definition: h264dec.h:433
H264Picture * delayed_pic[MAX_DELAYED_PIC_COUNT+2]
Definition: h264dec.h:463
int is_avc
Used to parse AVC variant of H.264.
Definition: h264dec.h:448
3: top field, bottom field, in that order
Definition: h264_sei.h:45
H264Ref default_ref[2]
Definition: h264dec.h:460
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
Definition: h264pred.c:411
AVBufferPool * ref_index_pool
Definition: h264dec.h:545
uint8_t zigzag_scan8x8_cavlc[64]
Definition: h264dec.h:421
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:355
av_cold void ff_h264chroma_init(H264ChromaContext *c, int bit_depth)
Definition: h264chroma.c:41
ERPicture last_pic
H264SEIDisplayOrientation display_orientation
Definition: h264_sei.h:155
mpegvideo header.
int next_slice_idx
Definition: h264dec.h:240
static const uint8_t zigzag_scan8x8_cavlc[64+1]
Definition: h264_slice.c:97
H264Context.
Definition: h264dec.h:341
discard all non intra frames
Definition: avcodec.h:820
discard all
Definition: avcodec.h:822
AVFrame * f
Definition: h264dec.h:129
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:3133
uint32_t num_units_in_tick
Definition: h264_ps.h:81
static const uint8_t field_scan[16+1]
Definition: h264_slice.c:51
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
H264Picture * long_ref[32]
Definition: h264dec.h:462
#define src
Definition: vp8dsp.c:254
8: frame tripling
Definition: h264_sei.h:50
int profile
profile
Definition: avcodec.h:3235
Views are next to each other.
Definition: stereo3d.h:45
int picture_structure
Definition: h264dec.h:405
order of coefficients is actually GBR, also IEC 61966-2-1 (sRGB)
Definition: pixfmt.h:452
#define AV_WN32A(p, v)
Definition: intreadwrite.h:543
#define AV_COPY32(d, s)
Definition: intreadwrite.h:591
unsigned int ref_count[2]
num_ref_idx_l0/1_active_minus1 + 1
Definition: h264dec.h:271
#define IN_RANGE(a, b, size)
Definition: h264_slice.c:269
#define REBASE_PICTURE(pic, new_ctx, old_ctx)
Definition: h264_slice.c:271
MMCO mmco[MAX_MMCO_COUNT]
Definition: h264dec.h:326
int ff_h264_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
Definition: h264_slice.c:292
Switching Intra.
Definition: avutil.h:278
int setup_finished
Definition: h264dec.h:532
enum AVDiscard skip_frame
Skip decoding for selected frames.
Definition: avcodec.h:3355
int ff_h264_execute_decode_slices(H264Context *h)
Call decode_slice() for each context.
Definition: h264_slice.c:2712
H264SEIContext sei
Definition: h264dec.h:540
struct AVHWAccel * hwaccel
Hardware accelerator in use.
Definition: avcodec.h:3052
unsigned int crop_top
frame_cropping_rect_top_offset
Definition: h264_ps.h:70
#define USES_LIST(a, list)
Definition: mpegutils.h:101
void ff_color_frame(AVFrame *frame, const int color[4])
Definition: utils.c:708
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
const uint8_t * bytestream
Definition: cabac.h:48
int ref2frm[MAX_SLICES][2][64]
reference to frame number lists, used in the loop filter, the first 2 are for -2,-1 ...
Definition: h264dec.h:546
int deblocking_filter_parameters_present
deblocking_filter_parameters_present_flag
Definition: h264_ps.h:121
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
const PPS * pps
Definition: h264_ps.h:145
static enum AVPixelFormat non_j_pixfmt(enum AVPixelFormat a)
Definition: h264_slice.c:989
uint8_t
int full_range
Definition: h264_ps.h:75
unsigned int crop_left
frame_cropping_rect_left_offset
Definition: h264_ps.h:68
int gaps_in_frame_num_allowed_flag
Definition: h264_ps.h:58
#define MB_MBAFF(h)
Definition: h264dec.h:71
int slice_alpha_c0_offset
Definition: h264dec.h:198
Stereo 3D type: this structure describes how two videos are packed within a single video surface...
Definition: stereo3d.h:123
int poc
Definition: h264dec.h:175
void ff_h264_set_erpic(ERPicture *dst, H264Picture *src)
Definition: h264_picture.c:129
int field_picture
whether or not picture was encoded in separate fields
Definition: h264dec.h:158
int bit_depth_chroma
bit_depth_chroma_minus8 + 8
Definition: h264_ps.h:99
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl)
Definition: h264_mb.c:799
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:2974
enum AVColorPrimaries color_primaries
Definition: h264_ps.h:77
int poc
frame POC
Definition: h264dec.h:148
int frame_num_offset
for POC type 2
Definition: h264_parse.h:51
int chroma_weight_flag[2]
7.4.3.2 chroma_weight_lX_flag
Definition: h264_parse.h:36
Multithreading support functions.
#define ER_MB_ERROR
int cabac
entropy_coding_mode_flag
Definition: h264_ps.h:111
#define MB_FIELD(sl)
Definition: h264dec.h:72
const char * from
Definition: jacosubdec.c:65
unsigned int crop_right
frame_cropping_rect_right_offset
Definition: h264_ps.h:69
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:366
int invalid_gap
Definition: h264dec.h:162
#define FF_API_CAP_VDPAU
Definition: version.h:73
ERPicture cur_pic
int frame_recovered
Initial frame has been completely recovered.
Definition: h264dec.h:522
Structure to hold side data for an AVFrame.
Definition: frame.h:149
int height
Definition: h264dec.h:363
#define PICT_BOTTOM_FIELD
Definition: mpegutils.h:38
#define height
#define MAX_PPS_COUNT
Definition: h264_ps.h:38
int pt
Definition: rtp.c:35
int transform_bypass
qpprime_y_zero_transform_bypass_flag
Definition: h264_ps.h:49
static void finish(void)
Definition: movenc.c:344
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:200
void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
Definition: utils.c:91
#define AV_CODEC_CAP_HWACCEL_VDPAU
Codec can export data for HW decoding (VDPAU).
Definition: avcodec.h:1030
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:75
#define ER_MV_END
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:225
int redundant_pic_cnt_present
redundant_pic_cnt_present_flag
Definition: h264_ps.h:123
int picture_structure
Definition: h264dec.h:244
int chroma_y_shift
Definition: h264dec.h:364
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:192
int interlaced_frame
The content of the picture is interlaced.
Definition: frame.h:325
AVBufferRef * qscale_table_buf
Definition: h264dec.h:132
static int h264_export_frame_props(H264Context *h)
Definition: h264_slice.c:1119
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:356
H264Picture * parent
Definition: h264dec.h:178
#define FRAME_RECOVERED_SEI
Sufficient number of frames have been decoded since a SEI recovery point, so all the following frames...
Definition: h264dec.h:520
H264SEIAFD afd
Definition: h264_sei.h:149
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:896
high precision timer, useful to profile code
Views are alternated temporally.
Definition: stereo3d.h:66
int recovered
picture at IDR or recovery point + recovery count
Definition: h264dec.h:161
Active Format Description data consisting of a single byte as specified in ETSI TS 101 154 using AVAc...
Definition: frame.h:88
#define AV_COPY64(d, s)
Definition: intreadwrite.h:595
int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx)
Definition: h264_refs.c:421
#define FFALIGN(x, a)
Definition: macros.h:48
int chroma_qp[2]
Definition: h264dec.h:192
7: frame doubling
Definition: h264_sei.h:49
#define av_log(a,...)
int last_pocs[MAX_DELAYED_PIC_COUNT]
Definition: h264dec.h:464
const char * to
Definition: webvttdec.c:34
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:121
SEI_FpaType frame_packing_arrangement_type
Definition: h264_sei.h:122
int width
Definition: h264dec.h:363
static int h264_frame_start(H264Context *h)
Definition: h264_slice.c:452
int a53_caption_size
Definition: h264_sei.h:94
H.264 common definitions.
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height)
Definition: h264dec.c:104
#define U(x)
Definition: vp56_arith.h:37
#define HWACCEL_MAX
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:589
H.264 parameter set handling.
H264Picture DPB[H264_MAX_PICTURE_COUNT]
Definition: h264dec.h:349
enum AVColorTransferCharacteristic color_trc
Definition: h264_ps.h:78
int mb_aff
mb_adaptive_frame_field_flag
Definition: h264_ps.h:63
H264PredContext hpc
Definition: h264dec.h:384
AVBufferRef * sps_ref
Definition: h264_ps.h:143
int chroma_log2_weight_denom
Definition: h264_parse.h:34
int width
width and height of the video frame
Definition: frame.h:239
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int has_b_frames
Size of the frame reordering buffer in the decoder.
Definition: avcodec.h:2054
#define td
Definition: regdef.h:70
int flags
Additional information about the frame packing.
Definition: stereo3d.h:132
static int get_ue_golomb(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to 8190.
Definition: golomb.h:53
static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
Definition: h264_slice.c:129
int poc_type
pic_order_cnt_type
Definition: h264_ps.h:51
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
int context_initialized
Definition: h264dec.h:369
#define PTRDIFF_SPECIFIER
Definition: internal.h:254
ERContext er
Definition: h264dec.h:184
int nal_unit_type
Definition: h264dec.h:441
int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb, const H2645NAL *nal, void *logctx)
Definition: h264_refs.c:823
int ff_h264_get_profile(const SPS *sps)
Compute profile from profile_idc and constraint_set?_flags.
Definition: h264_parse.c:507
int num_reorder_frames
Definition: h264_ps.h:86
discard all bidirectional frames
Definition: avcodec.h:819
#define AVERROR(e)
Definition: error.h:43
void * hwaccel_picture_private
hardware accelerator private data
Definition: h264dec.h:142
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2361
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:3180
static const uint8_t field_scan8x8[64+1]
Definition: h264_slice.c:58
int capabilities
Codec capabilities.
Definition: avcodec.h:3700
const uint8_t ff_zigzag_scan[16+1]
Definition: mathtables.c:109
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:197
ATSC A53 Part 4 Closed Captions.
Definition: frame.h:57
#define FIELD_PICTURE(h)
Definition: h264dec.h:74
int picture_idr
Definition: h264dec.h:381
static int init_dimensions(H264Context *h)
Definition: h264_slice.c:868
const char * arg
Definition: jacosubdec.c:66
int deblocking_filter
disable_deblocking_filter_idc with 1 <-> 0
Definition: h264dec.h:197
uint8_t(*[2] mvd_table)[2]
Definition: h264dec.h:415
int prev_interlaced_frame
Complement sei_pic_struct SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced...
Definition: h264dec.h:496
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:1827
static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
Definition: h264_slice.c:2228
ThreadFrame tf
Definition: h264dec.h:130
simple assert() macros that are a bit more flexible than ISO C assert().
uint8_t(*[2] top_borders)[(16 *3) *2]
Definition: h264dec.h:289
int weighted_pred
weighted_pred_flag
Definition: h264_ps.h:116
#define PICT_TOP_FIELD
Definition: mpegutils.h:37
H264QpelContext h264qpel
Definition: h264dec.h:347
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:354
int direct_spatial_mv_pred
Definition: h264dec.h:255
H264SEIUnregistered unregistered
Definition: h264_sei.h:151
HW acceleration through VDA, data[3] contains a CVPixelBufferRef.
Definition: pixfmt.h:224
int frame_num
frame_num (raw frame_num from slice header)
Definition: h264dec.h:149
const uint8_t ff_h264_golomb_to_pict_type[5]
Definition: h264data.c:37
#define MAX_SLICES
Definition: dxva2_hevc.c:33
int valid_recovery_point
Are the SEI recovery points looking valid.
Definition: h264dec.h:501
int ff_h264_get_slice_type(const H264SliceContext *sl)
Reconstruct bitstream slice_type.
Definition: h264_slice.c:2126
#define FFMAX(a, b)
Definition: common.h:94
#define fail()
Definition: checkasm.h:89
uint8_t active_format_description
Definition: h264_sei.h:90
int delta_pic_order_always_zero_flag
Definition: h264_ps.h:53
void av_image_copy(uint8_t *dst_data[4], int dst_linesizes[4], const uint8_t *src_data[4], const int src_linesizes[4], enum AVPixelFormat pix_fmt, int width, int height)
Copy image in src_data to dst_data.
Definition: imgutils.c:385
int * mb_index2xy
int slice_type_nos
S free slice type (SI/SP are remapped to I/P)
Definition: h264dec.h:188
uint8_t zigzag_scan8x8[64]
Definition: h264dec.h:420
AVBufferRef * hwaccel_priv_buf
Definition: h264dec.h:141
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:66
int crop_left
Definition: h264dec.h:166
int crop
frame_cropping_flag
Definition: h264_ps.h:65
uint8_t * error_status_table
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:469
int ff_h264_parse_ref_count(int *plist_count, int ref_count[2], GetBitContext *gb, const PPS *pps, int slice_type_nos, int picture_structure, void *logctx)
Definition: h264_parse.c:219
int nal_length_size
Number of bytes used for nal length (1, 2 or 4)
Definition: h264dec.h:449
useful rectangle filling function
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:349
int refs
number of reference frames
Definition: avcodec.h:2413
int prev_poc_msb
poc_msb of the last reference pic for POC type 0
Definition: h264_parse.h:49
AVBufferRef * motion_val_buf[2]
Definition: h264dec.h:135
Views are packed per line, as if interlaced.
Definition: stereo3d.h:97
int ref_frame_count
num_ref_frames
Definition: h264_ps.h:57
enum AVPixelFormat * pix_fmts
array of supported pixel formats, or NULL if unknown, array is terminated by -1
Definition: avcodec.h:3702
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:261
int flags
Frame flags, a combination of AV_FRAME_FLAGS.
Definition: frame.h:416
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:3020
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
int ct_type
Bit set of clock types for fields/frames in picture timing SEI message.
Definition: h264_sei.h:75
void av_fast_mallocz(void *ptr, unsigned int *size, size_t min_size)
Allocate and clear a buffer, reusing the given one if large enough.
Definition: mem.c:474
#define FFMIN(a, b)
Definition: common.h:96
uint16_t * slice_table
slice_table_base + 2*mb_stride + 1
Definition: h264dec.h:401
static void copy_picture_range(H264Picture **to, H264Picture **from, int count, H264Context *new_base, H264Context *old_base)
Definition: h264_slice.c:276
static int h264_field_start(H264Context *h, const H264SliceContext *sl, const H2645NAL *nal, int first_slice)
Definition: h264_slice.c:1377
uint8_t field_scan8x8_cavlc[64]
Definition: h264dec.h:424
#define IS_DIRECT(a)
Definition: mpegutils.h:86
CABACContext cabac
Cabac.
Definition: h264dec.h:322
int colour_description_present_flag
Definition: h264_ps.h:76
unsigned int first_mb_addr
Definition: h264dec.h:238
int reference
Definition: h264dec.h:160
static void er_add_slice(H264SliceContext *sl, int startx, int starty, int endx, int endy, int status)
Definition: h264_slice.c:2484
#define LEFT_MBS
Definition: h264dec.h:75
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:74
AVRational sar
Definition: h264_ps.h:73
#define width
int width
picture width / height.
Definition: avcodec.h:1919
int redundant_pic_count
Definition: h264dec.h:248
int nb_slice_ctx
Definition: h264dec.h:355
H264PredWeightTable pwt
Definition: h264dec.h:201
int long_ref_count
number of actual long term references
Definition: h264dec.h:476
#define ER_DC_END
uint32_t * mb_type
Definition: h264dec.h:139
#define AV_FRAME_FLAG_CORRUPT
The frame data may be corrupted, e.g.
Definition: frame.h:404
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
static int h264_init_ps(H264Context *h, const H264SliceContext *sl, int first_slice)
Definition: h264_slice.c:1000
int size_in_bits
Definition: get_bits.h:59
int32_t
int ff_init_cabac_decoder(CABACContext *c, const uint8_t *buf, int buf_size)
Definition: cabac.c:177
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:2448
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
Definition: avcodec.h:3173
Context Adaptive Binary Arithmetic Coder inline functions.
int level
level
Definition: avcodec.h:3333
int init_qp
pic_init_qp_minus26 + 26
Definition: h264_ps.h:118
H.264 / AVC / MPEG-4 part10 codec.
int mmco_reset
Definition: h264dec.h:473
H264SliceContext * slice_ctx
Definition: h264dec.h:354
int direct_8x8_inference_flag
Definition: h264_ps.h:64
static int h264_select_output_frame(H264Context *h)
Definition: h264_slice.c:1274
#define CONFIG_GRAY
Definition: config.h:531
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:3031
int reference
Definition: h264dec.h:174
int ticks_per_frame
For some codecs, the time base is closer to the field rate than the frame rate.
Definition: avcodec.h:1878
int top_borders_allocated[2]
Definition: h264dec.h:292
static void fill_rectangle(int x, int y, int w, int h)
Definition: ffplay.c:786
#define FIELD_OR_MBAFF_PICTURE(h)
Definition: h264dec.h:91
uint8_t * a53_caption
Definition: h264_sei.h:95
int ref_idc
H.264 only, nal_ref_idc.
Definition: h2645_parse.h:65
static void init_scan_tables(H264Context *h)
initialize scan tables
Definition: h264_slice.c:721
static int av_unused get_cabac_terminate(CABACContext *c)
int quincunx_sampling_flag
Definition: h264_sei.h:125
if(ret< 0)
Definition: vf_mcdeint.c:282
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:350
#define AV_STEREO3D_FLAG_INVERT
Inverted views, Right/Bottom represents the left view.
Definition: stereo3d.h:114
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:369
int type
NAL unit type.
Definition: h2645_parse.h:52
2: bottom field
Definition: h264_sei.h:44
void av_display_rotation_set(int32_t matrix[9], double angle)
Initialize a transformation matrix describing a pure counterclockwise rotation by the specified angle...
Definition: display.c:50
#define FF_ARRAY_ELEMS(a)
the normal 2^n-1 "JPEG" YUV ranges
Definition: pixfmt.h:476
static int init_table_pools(H264Context *h)
Definition: h264_slice.c:161
uint8_t * edge_emu_buffer
Definition: h264dec.h:288
Views are packed per column.
Definition: stereo3d.h:107
static unsigned get_ue_golomb_long(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to UINT32_MAX-1.
Definition: golomb.h:85
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int pic_order_present
pic_order_present_flag
Definition: h264_ps.h:112
uint8_t zigzag_scan_q0[16]
Definition: h264dec.h:425
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames...
Definition: frame.h:251
int bit_depth_luma
luma bit depth from sps to detect changes
Definition: h264dec.h:451
int chroma_format_idc
chroma format from sps to detect changes
Definition: h264dec.h:452
VideoDSPContext vdsp
Definition: h264dec.h:344
int timing_info_present_flag
Definition: h264_ps.h:80
int coded_picture_number
picture number in bitstream order
Definition: frame.h:292
enum AVStereo3DType type
How views are packed within the video.
Definition: stereo3d.h:127
int mb_stride
Definition: h264dec.h:434
int postpone_filter
Definition: h264dec.h:376
#define IS_INTERLACED(a)
Definition: mpegutils.h:85
AVCodecContext * avctx
Definition: h264dec.h:343
uint8_t zigzag_scan8x8_q0[64]
Definition: h264dec.h:426
#define AV_PIX_FMT_YUV420P14
Definition: pixfmt.h:359
Libavcodec external API header.
#define MAX_DELAYED_PIC_COUNT
Definition: h264dec.h:56
int last_qscale_diff
Definition: h264dec.h:194
This side data contains a 3x3 transformation matrix describing an affine transformation that needs to...
Definition: frame.h:83
AVBufferRef * pps_list[MAX_PPS_COUNT]
Definition: h264_ps.h:140
enum AVCodecID codec_id
Definition: avcodec.h:1749
static int get_ue_golomb_31(GetBitContext *gb)
read unsigned exp golomb code, constraint to a max of 31.
Definition: golomb.h:100
int delta_poc_bottom
Definition: h264_parse.h:46
ERPicture next_pic
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:218
H264Picture * short_ref[32]
Definition: h264dec.h:461
int next_outputed_poc
Definition: h264dec.h:466
int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl)
Decode a macroblock.
Definition: h264_cabac.c:1914
int explicit_ref_marking
Definition: h264dec.h:474
Views are next to each other, but when upscaling apply a checkerboard pattern.
Definition: stereo3d.h:87
#define AV_CODEC_FLAG2_FAST
Allow non spec compliant speedup tricks.
Definition: avcodec.h:936
int field_poc[2]
top/bottom POC
Definition: h264dec.h:147
SEI_PicStructType pic_struct
Definition: h264_sei.h:68
int debug
debug
Definition: avcodec.h:2973
int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
int recovery_frame
recovery_frame is the frame_num at which the next frame should be fully constructed.
Definition: h264dec.h:509
main external API structure.
Definition: avcodec.h:1732
void av_display_matrix_flip(int32_t matrix[9], int hflip, int vflip)
Flip the input matrix horizontally and/or vertically.
Definition: display.c:65
int qp_thresh
QP threshold to skip loopfilter.
Definition: h264dec.h:193
int explicit_ref_marking
Definition: h264dec.h:328
uint8_t * data
The data buffer.
Definition: buffer.h:89
#define fp
Definition: regdef.h:44
uint8_t * data
Definition: frame.h:151
static int h264_slice_header_parse(const H264Context *h, H264SliceContext *sl, const H2645NAL *nal)
Definition: h264_slice.c:1648
H264SEIA53Caption a53_caption
Definition: h264_sei.h:150
void * buf
Definition: avisynth_c.h:690
int implicit_weight[48][48][2]
Definition: h264_parse.h:40
int8_t * qscale_table
Definition: h264dec.h:133
static const uint8_t scan8[16 *3+3]
Definition: h264dec.h:638
#define CABAC(h)
Definition: h264_cabac.c:28
AVBufferRef * av_buffer_allocz(int size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
Definition: buffer.c:83
AVBuffer * buffer
Definition: buffer.h:82
static const uint8_t field_scan8x8_cavlc[64+1]
Definition: h264_slice.c:77
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:314
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:351
AVCodecContext * owner[2]
Definition: thread.h:37
int coded_height
Definition: avcodec.h:1934
Switching Predicted.
Definition: avutil.h:279
int prev_frame_num
frame_num of the last pic for POC type 1/2
Definition: h264_parse.h:53
#define FF_CODEC_PROPERTY_CLOSED_CAPTIONS
Definition: avcodec.h:3552
AVFrameSideData * av_frame_new_side_data(AVFrame *frame, enum AVFrameSideDataType type, int size)
Add a new side data to a frame.
Definition: frame.c:667
uint8_t non_zero_count_cache[15 *8]
non zero coeff count cache.
Definition: h264dec.h:298
5: top field, bottom field, top field repeated, in that order
Definition: h264_sei.h:47
void av_buffer_pool_uninit(AVBufferPool **ppool)
Mark the pool as being available for freeing.
Definition: buffer.c:275
#define FRAME_MBAFF(h)
Definition: h264dec.h:73
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:2462
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:2455
#define LBOT
Definition: h264dec.h:77
HW acceleration through VDPAU, Picture.data[3] contains a VdpVideoSurface.
Definition: pixfmt.h:209
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
Definition: h264dec.h:654
int8_t * ref_index[2]
Definition: h264dec.h:145
int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src)
Definition: h264_picture.c:67
A reference counted buffer type.
int pixel_shift
0 for 8-bit H.264, 1 for high-bit-depth H.264
Definition: h264dec.h:360
int mmco_reset
MMCO_RESET set this 1.
Definition: h264dec.h:150
int content_interpretation_type
Definition: h264_sei.h:124
H264Picture * cur_pic_ptr
Definition: h264dec.h:350
#define LIST_NOT_USED
Definition: h264dec.h:388
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
ptrdiff_t mb_uvlinesize
Definition: h264dec.h:232
static int h264_slice_header_init(H264Context *h)
Definition: h264_slice.c:894
int mb_mbaff
mb_aff_frame && mb_field_decoding_flag
Definition: h264dec.h:246
enum AVPixelFormat ff_thread_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Wrapper around get_format() for frame-multithreaded codecs.
int enable_er
Definition: h264dec.h:538
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:348
#define IS_INTER(a)
Definition: mpegutils.h:81
#define FF_COMPLIANCE_STRICT
Strictly conform to all the things in the spec no matter what consequences.
Definition: avcodec.h:2953
const SPS * sps
Definition: h264_ps.h:146
unsigned int sps_id
Definition: h264_ps.h:110
#define TRANSPOSE(x)
H264SEIPictureTiming picture_timing
Definition: h264_sei.h:148
int log2_max_poc_lsb
log2_max_pic_order_cnt_lsb_minus4
Definition: h264_ps.h:52
H264SEIRecoveryPoint recovery_point
Definition: h264_sei.h:152
ptrdiff_t mb_linesize
may be equal to s->linesize or s->linesize * 2, for mbaff
Definition: h264dec.h:231
HW decoding through DXVA2, Picture.data[3] contains a LPDIRECT3DSURFACE9 pointer. ...
Definition: pixfmt.h:148
int16_t slice_row[MAX_SLICES]
to detect when MAX_SLICES is too low
Definition: h264dec.h:536
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:262
static int alloc_picture(H264Context *h, H264Picture *pic)
Definition: h264_slice.c:188
ptrdiff_t linesize
Definition: h264dec.h:230
int block_offset[2 *(16 *3)]
block_offset[ 0..23] for frame macroblocks block_offset[24..47] for field macroblocks ...
Definition: h264dec.h:395
uint32_t time_scale
Definition: h264_ps.h:82
#define AV_PIX_FMT_YUV422P14
Definition: pixfmt.h:360
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:368
int transform_8x8_mode
transform_8x8_mode_flag
Definition: h264_ps.h:124
ptrdiff_t uvlinesize
Definition: h264dec.h:230
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:352
static int h264_slice_init(H264Context *h, H264SliceContext *sl, const H2645NAL *nal)
Definition: h264_slice.c:1865
int pic_struct_present_flag
Definition: h264_ps.h:92
#define CHROMA444(h)
Definition: h264dec.h:99
AVStereo3D * av_stereo3d_create_side_data(AVFrame *frame)
Allocate a complete AVFrameSideData and add it to the frame.
Definition: stereo3d.c:33
unsigned int list_count
Definition: h264dec.h:272
uint8_t zigzag_scan[16]
Definition: h264dec.h:419
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:358
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:201
int prev_poc_lsb
poc_lsb of the last reference pic for POC type 0
Definition: h264_parse.h:50
static void release_unused_pictures(H264Context *h, int remove_current)
Definition: h264_slice.c:116
int ff_h264_alloc_tables(H264Context *h)
Allocate tables.
Definition: h264dec.c:182
#define AV_ZERO128(d)
Definition: intreadwrite.h:627
the normal 219*2^(n-8) "MPEG" YUV ranges
Definition: pixfmt.h:475
#define CONFIG_ERROR_RESILIENCE
Definition: config.h:558
int left_type[LEFT_MBS]
Definition: h264dec.h:220
static int av_cmp_q(AVRational a, AVRational b)
Compare two rationals.
Definition: rational.h:89
hardware decoding through VDA
Definition: pixfmt.h:179
int nb_slice_ctx_queued
Definition: h264dec.h:356
discard all non reference
Definition: avcodec.h:818
int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup)
Definition: h264_picture.c:152
AVBufferPool * qscale_table_pool
Definition: h264dec.h:542
H264Picture * next_output_pic
Definition: h264dec.h:465
volatile int error_count
int mb_height
Definition: h264_ps.h:61
AVBufferPool * motion_val_pool
Definition: h264dec.h:544
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:62
int delta_poc_bottom
Definition: h264dec.h:332
#define IS_8x8DCT(a)
Definition: h264dec.h:104
common internal api header.
AVBufferPool * av_buffer_pool_init(int size, AVBufferRef *(*alloc)(int size))
Allocate and initialize a buffer pool.
Definition: buffer.c:238
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
#define AV_COPY128(d, s)
Definition: intreadwrite.h:599
static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
Definition: h264_slice.c:755
AVBufferRef * pps_ref
Definition: h264_ps.h:142
Video is not stereoscopic (and metadata has to be there).
Definition: stereo3d.h:35
int log2_max_frame_num
log2_max_frame_num_minus4 + 4
Definition: h264_ps.h:50
int missing_fields
Definition: h264dec.h:526
Views are packed in a checkerboard-like structure per pixel.
Definition: stereo3d.h:76
static double c[64]
H264ParamSets ps
Definition: h264dec.h:454
H264SEIFramePacking frame_packing
Definition: h264_sei.h:154
H.264 / AVC / MPEG-4 part10 motion vector prediction.
AVBufferRef * av_buffer_ref(AVBufferRef *buf)
Create a new reference to an AVBuffer.
Definition: buffer.c:93
Bi-dir predicted.
Definition: avutil.h:276
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:76
int cur_chroma_format_idc
Definition: h264dec.h:534
int8_t * intra4x4_pred_mode
Definition: h264dec.h:210
unsigned properties
Definition: avcodec.h:3550
enum AVDiscard skip_loop_filter
Skip loop filtering for selected frames.
Definition: avcodec.h:3341
int den
Denominator.
Definition: rational.h:60
static void predict_field_decoding_flag(const H264Context *h, H264SliceContext *sl)
Definition: h264_slice.c:2440
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl)
Decode a macroblock.
Definition: h264_cavlc.c:702
GetBitContext gb
Definition: h2645_parse.h:47
int bit_depth_luma
bit_depth_luma_minus8 + 8
Definition: h264_ps.h:98
#define IS_INTRA(x, y)
int present
Definition: h264_sei.h:89
int delta_poc[2]
Definition: h264_parse.h:47
void ff_h264_free_tables(H264Context *h)
Definition: h264dec.c:139
void * priv_data
Definition: avcodec.h:1774
#define LTOP
Definition: h264dec.h:76
#define PICT_FRAME
Definition: mpegutils.h:39
4: bottom field, top field, in that order
Definition: h264_sei.h:46
static av_always_inline void backup_mb_border(const H264Context *h, H264SliceContext *sl, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple)
Definition: h264_slice.c:555
uint8_t zigzag_scan8x8_cavlc_q0[64]
Definition: h264dec.h:427
int8_t ref_cache[2][5 *8]
Definition: h264dec.h:304
#define AV_CODEC_FLAG_OUTPUT_CORRUPT
Output even those frames that might be corrupted.
Definition: avcodec.h:876
unsigned int pps_id
Definition: h264dec.h:282
int top_field_first
If the content is interlaced, is top field displayed first.
Definition: frame.h:330
int frame_priv_data_size
Size of per-frame hardware accelerator private data.
Definition: avcodec.h:3898
#define CHROMA422(h)
Definition: h264dec.h:98
#define FF_BUG_TRUNCATED
Definition: avcodec.h:2936
H264Picture cur_pic
Definition: h264dec.h:351
Views are on top of each other.
Definition: stereo3d.h:55
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:256
#define AV_ZERO32(d)
Definition: intreadwrite.h:619
int mb_width
Definition: h264dec.h:433
static int find_unused_picture(H264Context *h)
Definition: h264_slice.c:257
int current_slice
current slice number, used to initialize slice_num of each thread/context
Definition: h264dec.h:486
int ff_h264_execute_ref_pic_marking(H264Context *h)
Execute the reference picture marking (memory management control operations).
Definition: h264_refs.c:608
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:465
int ff_h264_pred_weight_table(GetBitContext *gb, const SPS *sps, const int *ref_count, int slice_type_nos, H264PredWeightTable *pwt, int picture_structure, void *logctx)
Definition: h264_parse.c:27
int mb_width
pic_width_in_mbs_minus1 + 1
Definition: h264_ps.h:59
int flags2
AV_CODEC_FLAG2_*.
Definition: avcodec.h:1834
uint32_t * mb2b_xy
Definition: h264dec.h:397
H264Ref ref_list[2][48]
0..15: frame refs, 16..47: mbaff field refs.
Definition: h264dec.h:273
uint8_t field_scan8x8_cavlc_q0[64]
Definition: h264dec.h:430
#define HAVE_THREADS
Definition: config.h:388
int cur_bit_depth_luma
Definition: h264dec.h:535
AVBufferRef * ref_index_buf[2]
Definition: h264dec.h:144
av_cold void ff_h264dsp_init(H264DSPContext *c, const int bit_depth, const int chroma_format_idc)
Definition: h264dsp.c:67
int frame_number
Frame counter, set by libavcodec.
Definition: avcodec.h:2525
H264DSPContext h264dsp
Definition: h264dec.h:345
void ff_er_frame_start(ERContext *s)
int height
Definition: frame.h:239
int crop_top
Definition: h264dec.h:167
#define AV_CODEC_FLAG2_SHOW_ALL
Show all frames before the first keyframe.
Definition: avcodec.h:964
FILE * out
Definition: movenc.c:54
1: top field
Definition: h264_sei.h:43
uint8_t(*[2] mvd_table)[2]
Definition: h264dec.h:317
uint8_t field_scan8x8[64]
Definition: h264dec.h:423
int slice_type_fixed
Definition: h264dec.h:189
static av_always_inline void fill_filter_caches_inter(const H264Context *h, H264SliceContext *sl, int mb_type, int top_xy, int left_xy[LEFT_MBS], int top_type, int left_type[LEFT_MBS], int mb_xy, int list)
Definition: h264_slice.c:2144
#define av_freep(p)
void INT64 INT64 count
Definition: avisynth_c.h:690
int prev_frame_num_offset
for POC type 2
Definition: h264_parse.h:52
#define av_always_inline
Definition: attributes.h:39
HW decoding through Direct3D11, Picture.data[3] contains a ID3D11VideoDecoderOutputView pointer...
Definition: pixfmt.h:243
int slice_beta_offset
Definition: h264dec.h:199
int8_t * intra4x4_pred_mode
Definition: h264dec.h:383
AVBufferRef * av_buffer_pool_get(AVBufferPool *pool)
Allocate a new AVBuffer, reusing an old buffer from the pool when available.
Definition: buffer.c:334
#define ER_AC_END
static int decode_slice(struct AVCodecContext *avctx, void *arg)
Definition: h264_slice.c:2498
int delta_poc[2]
Definition: h264dec.h:333
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:62
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2249
int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl)
Init context Allocate buffers which are not shared amongst multiple threads.
Definition: h264dec.c:240
uint8_t field_scan_q0[16]
Definition: h264dec.h:428
int mb_field_decoding_flag
Definition: h264dec.h:245
uint8_t(* non_zero_count)[48]
Definition: h264dec.h:386
static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
Definition: h264_slice.c:2370
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:3201
unsigned int crop_bottom
frame_cropping_rect_bottom_offset
Definition: h264_ps.h:71
exp golomb vlc stuff
uint8_t * bipred_scratchpad
Definition: h264dec.h:287
void ff_h264_unref_picture(H264Context *h, H264Picture *pic)
Definition: h264_picture.c:46
AVPixelFormat
Pixel format.
Definition: pixfmt.h:60
av_cold void ff_h264qpel_init(H264QpelContext *c, int bit_depth)
Definition: h264qpel.c:49
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:1389
int droppable
Definition: h264dec.h:366
int level_idc
Definition: h264_ps.h:47
int strict_std_compliance
strictly follow the standard (MPEG-4, ...).
Definition: avcodec.h:2951
void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
int nal_ref_idc
Definition: h264dec.h:440
GetBitContext gb
Definition: h264dec.h:183
uint8_t field_scan[16]
Definition: h264dec.h:422
int cabac_init_idc
Definition: h264dec.h:324
#define FRAME_RECOVERED_IDR
We have seen an IDR, so all the following frames in coded order are correctly decodable.
Definition: h264dec.h:515
for(j=16;j >0;--j)
#define FFMAX3(a, b, c)
Definition: common.h:95
int b_stride
Definition: h264dec.h:399
6: bottom field, top field, bottom field repeated, in that order
Definition: h264_sei.h:48
Predicted.
Definition: avutil.h:275
#define tb
Definition: regdef.h:68
Context Adaptive Binary Arithmetic Coder.
#define H264_MAX_PICTURE_COUNT
Definition: h264dec.h:52
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl)
Definition: h264_cabac.c:1263
int short_ref_count
number of actual short term references
Definition: h264dec.h:477
static uint8_t tmp[11]
Definition: aes_ctr.c:26
enum AVColorSpace colorspace
Definition: h264_ps.h:79