FFmpeg  2.8.15
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
aacsbr_template.c
Go to the documentation of this file.
1 /*
2  * AAC Spectral Band Replication decoding functions
3  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5  *
6  * Fixed point code
7  * Copyright (c) 2013
8  * MIPS Technologies, Inc., California.
9  *
10  * This file is part of FFmpeg.
11  *
12  * FFmpeg is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU Lesser General Public
14  * License as published by the Free Software Foundation; either
15  * version 2.1 of the License, or (at your option) any later version.
16  *
17  * FFmpeg is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20  * Lesser General Public License for more details.
21  *
22  * You should have received a copy of the GNU Lesser General Public
23  * License along with FFmpeg; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25  */
26 
27 /**
28  * @file
29  * AAC Spectral Band Replication decoding functions
30  * @author Robert Swain ( rob opendot cl )
31  * @author Stanislav Ocovaj ( stanislav.ocovaj@imgtec.com )
32  * @author Zoran Basaric ( zoran.basaric@imgtec.com )
33  */
34 
36 {
37  static const struct {
38  const void *sbr_codes, *sbr_bits;
39  const unsigned int table_size, elem_size;
40  } sbr_tmp[] = {
41  SBR_VLC_ROW(t_huffman_env_1_5dB),
42  SBR_VLC_ROW(f_huffman_env_1_5dB),
43  SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
44  SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
45  SBR_VLC_ROW(t_huffman_env_3_0dB),
46  SBR_VLC_ROW(f_huffman_env_3_0dB),
47  SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
48  SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
49  SBR_VLC_ROW(t_huffman_noise_3_0dB),
50  SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
51  };
52 
53  // SBR VLC table initialization
54  SBR_INIT_VLC_STATIC(0, 1098);
55  SBR_INIT_VLC_STATIC(1, 1092);
56  SBR_INIT_VLC_STATIC(2, 768);
57  SBR_INIT_VLC_STATIC(3, 1026);
58  SBR_INIT_VLC_STATIC(4, 1058);
59  SBR_INIT_VLC_STATIC(5, 1052);
60  SBR_INIT_VLC_STATIC(6, 544);
61  SBR_INIT_VLC_STATIC(7, 544);
62  SBR_INIT_VLC_STATIC(8, 592);
63  SBR_INIT_VLC_STATIC(9, 512);
64 
66 
68 }
69 
70 /** Places SBR in pure upsampling mode. */
72  sbr->start = 0;
73  sbr->ready_for_dequant = 0;
74  // Init defults used in pure upsampling mode
75  sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
76  sbr->m[1] = 0;
77  // Reset values for first SBR header
78  sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
79  memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
80 }
81 
83 {
84  if(sbr->mdct.mdct_bits)
85  return;
86  sbr->kx[0] = sbr->kx[1];
87  sbr_turnoff(sbr);
88  sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
89  sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
90  /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
91  * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
92  * and scale back down at synthesis. */
93  AAC_RENAME_32(ff_mdct_init)(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
94  AAC_RENAME_32(ff_mdct_init)(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
95  AAC_RENAME(ff_ps_ctx_init)(&sbr->ps);
96  AAC_RENAME(ff_sbrdsp_init)(&sbr->dsp);
97  aacsbr_func_ptr_init(&sbr->c);
98 }
99 
101 {
102  AAC_RENAME_32(ff_mdct_end)(&sbr->mdct);
103  AAC_RENAME_32(ff_mdct_end)(&sbr->mdct_ana);
104 }
105 
106 static int qsort_comparison_function_int16(const void *a, const void *b)
107 {
108  return *(const int16_t *)a - *(const int16_t *)b;
109 }
110 
111 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
112 {
113  int i;
114  for (i = 0; i <= last_el; i++)
115  if (table[i] == needle)
116  return 1;
117  return 0;
118 }
119 
120 /// Limiter Frequency Band Table (14496-3 sp04 p198)
122 {
123  int k;
124  if (sbr->bs_limiter_bands > 0) {
125  static const INTFLOAT bands_warped[3] = { Q23(1.32715174233856803909f), //2^(0.49/1.2)
126  Q23(1.18509277094158210129f), //2^(0.49/2)
127  Q23(1.11987160404675912501f) }; //2^(0.49/3)
128  const INTFLOAT lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
129  int16_t patch_borders[7];
130  uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
131 
132  patch_borders[0] = sbr->kx[1];
133  for (k = 1; k <= sbr->num_patches; k++)
134  patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
135 
136  memcpy(sbr->f_tablelim, sbr->f_tablelow,
137  (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
138  if (sbr->num_patches > 1)
139  memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
140  (sbr->num_patches - 1) * sizeof(patch_borders[0]));
141 
142  qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
143  sizeof(sbr->f_tablelim[0]),
145 
146  sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
147  while (out < sbr->f_tablelim + sbr->n_lim) {
148 #if USE_FIXED
149  if ((*in << 23) >= *out * lim_bands_per_octave_warped) {
150 #else
151  if (*in >= *out * lim_bands_per_octave_warped) {
152 #endif /* USE_FIXED */
153  *++out = *in++;
154  } else if (*in == *out ||
155  !in_table_int16(patch_borders, sbr->num_patches, *in)) {
156  in++;
157  sbr->n_lim--;
158  } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
159  *out = *in++;
160  sbr->n_lim--;
161  } else {
162  *++out = *in++;
163  }
164  }
165  } else {
166  sbr->f_tablelim[0] = sbr->f_tablelow[0];
167  sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
168  sbr->n_lim = 1;
169  }
170 }
171 
173 {
174  unsigned int cnt = get_bits_count(gb);
175  uint8_t bs_header_extra_1;
176  uint8_t bs_header_extra_2;
177  int old_bs_limiter_bands = sbr->bs_limiter_bands;
178  SpectrumParameters old_spectrum_params;
179 
180  sbr->start = 1;
181  sbr->ready_for_dequant = 0;
182 
183  // Save last spectrum parameters variables to compare to new ones
184  memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
185 
186  sbr->bs_amp_res_header = get_bits1(gb);
187  sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
188  sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
189  sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
190  skip_bits(gb, 2); // bs_reserved
191 
192  bs_header_extra_1 = get_bits1(gb);
193  bs_header_extra_2 = get_bits1(gb);
194 
195  if (bs_header_extra_1) {
196  sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
199  } else {
203  }
204 
205  // Check if spectrum parameters changed
206  if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
207  sbr->reset = 1;
208 
209  if (bs_header_extra_2) {
210  sbr->bs_limiter_bands = get_bits(gb, 2);
211  sbr->bs_limiter_gains = get_bits(gb, 2);
212  sbr->bs_interpol_freq = get_bits1(gb);
213  sbr->bs_smoothing_mode = get_bits1(gb);
214  } else {
215  sbr->bs_limiter_bands = 2;
216  sbr->bs_limiter_gains = 2;
217  sbr->bs_interpol_freq = 1;
218  sbr->bs_smoothing_mode = 1;
219  }
220 
221  if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
222  sbr_make_f_tablelim(sbr);
223 
224  return get_bits_count(gb) - cnt;
225 }
226 
227 static int array_min_int16(const int16_t *array, int nel)
228 {
229  int i, min = array[0];
230  for (i = 1; i < nel; i++)
231  min = FFMIN(array[i], min);
232  return min;
233 }
234 
235 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
236 {
237  // Requirements (14496-3 sp04 p205)
238  if (n_master <= 0) {
239  av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
240  return -1;
241  }
242  if (bs_xover_band >= n_master) {
243  av_log(avctx, AV_LOG_ERROR,
244  "Invalid bitstream, crossover band index beyond array bounds: %d\n",
245  bs_xover_band);
246  return -1;
247  }
248  return 0;
249 }
250 
251 /// Master Frequency Band Table (14496-3 sp04 p194)
253  SpectrumParameters *spectrum)
254 {
255  unsigned int temp, max_qmf_subbands = 0;
256  unsigned int start_min, stop_min;
257  int k;
258  const int8_t *sbr_offset_ptr;
259  int16_t stop_dk[13];
260 
261  if (sbr->sample_rate < 32000) {
262  temp = 3000;
263  } else if (sbr->sample_rate < 64000) {
264  temp = 4000;
265  } else
266  temp = 5000;
267 
268  switch (sbr->sample_rate) {
269  case 16000:
270  sbr_offset_ptr = sbr_offset[0];
271  break;
272  case 22050:
273  sbr_offset_ptr = sbr_offset[1];
274  break;
275  case 24000:
276  sbr_offset_ptr = sbr_offset[2];
277  break;
278  case 32000:
279  sbr_offset_ptr = sbr_offset[3];
280  break;
281  case 44100: case 48000: case 64000:
282  sbr_offset_ptr = sbr_offset[4];
283  break;
284  case 88200: case 96000: case 128000: case 176400: case 192000:
285  sbr_offset_ptr = sbr_offset[5];
286  break;
287  default:
289  "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
290  return -1;
291  }
292 
293  start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
294  stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
295 
296  sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
297 
298  if (spectrum->bs_stop_freq < 14) {
299  sbr->k[2] = stop_min;
300  make_bands(stop_dk, stop_min, 64, 13);
301  qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
302  for (k = 0; k < spectrum->bs_stop_freq; k++)
303  sbr->k[2] += stop_dk[k];
304  } else if (spectrum->bs_stop_freq == 14) {
305  sbr->k[2] = 2*sbr->k[0];
306  } else if (spectrum->bs_stop_freq == 15) {
307  sbr->k[2] = 3*sbr->k[0];
308  } else {
310  "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
311  return -1;
312  }
313  sbr->k[2] = FFMIN(64, sbr->k[2]);
314 
315  // Requirements (14496-3 sp04 p205)
316  if (sbr->sample_rate <= 32000) {
317  max_qmf_subbands = 48;
318  } else if (sbr->sample_rate == 44100) {
319  max_qmf_subbands = 35;
320  } else if (sbr->sample_rate >= 48000)
321  max_qmf_subbands = 32;
322  else
323  av_assert0(0);
324 
325  if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
327  "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
328  return -1;
329  }
330 
331  if (!spectrum->bs_freq_scale) {
332  int dk, k2diff;
333 
334  dk = spectrum->bs_alter_scale + 1;
335  sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
337  return -1;
338 
339  for (k = 1; k <= sbr->n_master; k++)
340  sbr->f_master[k] = dk;
341 
342  k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
343  if (k2diff < 0) {
344  sbr->f_master[1]--;
345  sbr->f_master[2]-= (k2diff < -1);
346  } else if (k2diff) {
347  sbr->f_master[sbr->n_master]++;
348  }
349 
350  sbr->f_master[0] = sbr->k[0];
351  for (k = 1; k <= sbr->n_master; k++)
352  sbr->f_master[k] += sbr->f_master[k - 1];
353 
354  } else {
355  int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
356  int two_regions, num_bands_0;
357  int vdk0_max, vdk1_min;
358  int16_t vk0[49];
359 #if USE_FIXED
360  int tmp, nz = 0;
361 #endif /* USE_FIXED */
362 
363  if (49 * sbr->k[2] > 110 * sbr->k[0]) {
364  two_regions = 1;
365  sbr->k[1] = 2 * sbr->k[0];
366  } else {
367  two_regions = 0;
368  sbr->k[1] = sbr->k[2];
369  }
370 
371 #if USE_FIXED
372  tmp = (sbr->k[1] << 23) / sbr->k[0];
373  while (tmp < 0x40000000) {
374  tmp <<= 1;
375  nz++;
376  }
377  tmp = fixed_log(tmp - 0x80000000);
378  tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
379  tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
380  num_bands_0 = ((tmp + 0x400000) >> 23) * 2;
381 #else
382  num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
383 #endif /* USE_FIXED */
384 
385  if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
386  av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
387  return -1;
388  }
389 
390  vk0[0] = 0;
391 
392  make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
393 
394  qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
395  vdk0_max = vk0[num_bands_0];
396 
397  vk0[0] = sbr->k[0];
398  for (k = 1; k <= num_bands_0; k++) {
399  if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
400  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
401  return -1;
402  }
403  vk0[k] += vk0[k-1];
404  }
405 
406  if (two_regions) {
407  int16_t vk1[49];
408 #if USE_FIXED
409  int num_bands_1;
410 
411  tmp = (sbr->k[2] << 23) / sbr->k[1];
412  nz = 0;
413  while (tmp < 0x40000000) {
414  tmp <<= 1;
415  nz++;
416  }
417  tmp = fixed_log(tmp - 0x80000000);
418  tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
419  tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
420  if (spectrum->bs_alter_scale)
421  tmp = (int)(((int64_t)tmp * CONST_076923 + 0x40000000) >> 31);
422  num_bands_1 = ((tmp + 0x400000) >> 23) * 2;
423 #else
424  float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
425  : 1.0f; // bs_alter_scale = {0,1}
426  int num_bands_1 = lrintf(half_bands * invwarp *
427  log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
428 #endif /* USE_FIXED */
429  make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
430 
431  vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
432 
433  if (vdk1_min < vdk0_max) {
434  int change;
435  qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
436  change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
437  vk1[1] += change;
438  vk1[num_bands_1] -= change;
439  }
440 
441  qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
442 
443  vk1[0] = sbr->k[1];
444  for (k = 1; k <= num_bands_1; k++) {
445  if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
446  av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
447  return -1;
448  }
449  vk1[k] += vk1[k-1];
450  }
451 
452  sbr->n_master = num_bands_0 + num_bands_1;
454  return -1;
455  memcpy(&sbr->f_master[0], vk0,
456  (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
457  memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
458  num_bands_1 * sizeof(sbr->f_master[0]));
459 
460  } else {
461  sbr->n_master = num_bands_0;
463  return -1;
464  memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
465  }
466  }
467 
468  return 0;
469 }
470 
471 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
473 {
474  int i, k, last_k = -1, last_msb = -1, sb = 0;
475  int msb = sbr->k[0];
476  int usb = sbr->kx[1];
477  int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
478 
479  sbr->num_patches = 0;
480 
481  if (goal_sb < sbr->kx[1] + sbr->m[1]) {
482  for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
483  } else
484  k = sbr->n_master;
485 
486  do {
487  int odd = 0;
488  if (k == last_k && msb == last_msb) {
489  av_log(ac->avctx, AV_LOG_ERROR, "patch construction failed\n");
490  return AVERROR_INVALIDDATA;
491  }
492  last_k = k;
493  last_msb = msb;
494  for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
495  sb = sbr->f_master[i];
496  odd = (sb + sbr->k[0]) & 1;
497  }
498 
499  // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
500  // After this check the final number of patches can still be six which is
501  // illegal however the Coding Technologies decoder check stream has a final
502  // count of 6 patches
503  if (sbr->num_patches > 5) {
504  av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
505  return -1;
506  }
507 
508  sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
509  sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
510 
511  if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
512  usb = sb;
513  msb = sb;
514  sbr->num_patches++;
515  } else
516  msb = sbr->kx[1];
517 
518  if (sbr->f_master[k] - sb < 3)
519  k = sbr->n_master;
520  } while (sb != sbr->kx[1] + sbr->m[1]);
521 
522  if (sbr->num_patches > 1 &&
523  sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
524  sbr->num_patches--;
525 
526  return 0;
527 }
528 
529 /// Derived Frequency Band Tables (14496-3 sp04 p197)
531 {
532  int k, temp;
533 #if USE_FIXED
534  int nz = 0;
535 #endif /* USE_FIXED */
536 
537  sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
538  sbr->n[0] = (sbr->n[1] + 1) >> 1;
539 
540  memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
541  (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
542  sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
543  sbr->kx[1] = sbr->f_tablehigh[0];
544 
545  // Requirements (14496-3 sp04 p205)
546  if (sbr->kx[1] + sbr->m[1] > 64) {
548  "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
549  return -1;
550  }
551  if (sbr->kx[1] > 32) {
552  av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
553  return -1;
554  }
555 
556  sbr->f_tablelow[0] = sbr->f_tablehigh[0];
557  temp = sbr->n[1] & 1;
558  for (k = 1; k <= sbr->n[0]; k++)
559  sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
560 #if USE_FIXED
561  temp = (sbr->k[2] << 23) / sbr->kx[1];
562  while (temp < 0x40000000) {
563  temp <<= 1;
564  nz++;
565  }
566  temp = fixed_log(temp - 0x80000000);
567  temp = (int)(((int64_t)temp * CONST_RECIP_LN2 + 0x20000000) >> 30);
568  temp = (((temp + 0x80) >> 8) + ((8 - nz) << 23)) * sbr->spectrum_params.bs_noise_bands;
569 
570  sbr->n_q = (temp + 0x400000) >> 23;
571  if (sbr->n_q < 1)
572  sbr->n_q = 1;
573 #else
575  log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
576 #endif /* USE_FIXED */
577 
578  if (sbr->n_q > 5) {
579  av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
580  return -1;
581  }
582 
583  sbr->f_tablenoise[0] = sbr->f_tablelow[0];
584  temp = 0;
585  for (k = 1; k <= sbr->n_q; k++) {
586  temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
587  sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
588  }
589 
590  if (sbr_hf_calc_npatches(ac, sbr) < 0)
591  return -1;
592 
593  sbr_make_f_tablelim(sbr);
594 
595  sbr->data[0].f_indexnoise = 0;
596  sbr->data[1].f_indexnoise = 0;
597 
598  return 0;
599 }
600 
602  int elements)
603 {
604  int i;
605  for (i = 0; i < elements; i++) {
606  vec[i] = get_bits1(gb);
607  }
608 }
609 
610 /** ceil(log2(index+1)) */
611 static const int8_t ceil_log2[] = {
612  0, 1, 2, 2, 3, 3,
613 };
614 
616  GetBitContext *gb, SBRData *ch_data)
617 {
618  int i;
619  int bs_pointer = 0;
620  // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
621  int abs_bord_trail = 16;
622  int num_rel_lead, num_rel_trail;
623  unsigned bs_num_env_old = ch_data->bs_num_env;
624  int bs_frame_class, bs_num_env;
625 
626  ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
627  ch_data->bs_amp_res = sbr->bs_amp_res_header;
628  ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
629 
630  switch (bs_frame_class = get_bits(gb, 2)) {
631  case FIXFIX:
632  bs_num_env = 1 << get_bits(gb, 2);
633  if (bs_num_env > 4) {
635  "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
636  bs_num_env);
637  return -1;
638  }
639  ch_data->bs_num_env = bs_num_env;
640  num_rel_lead = ch_data->bs_num_env - 1;
641  if (ch_data->bs_num_env == 1)
642  ch_data->bs_amp_res = 0;
643 
644 
645  ch_data->t_env[0] = 0;
646  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
647 
648  abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
649  ch_data->bs_num_env;
650  for (i = 0; i < num_rel_lead; i++)
651  ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
652 
653  ch_data->bs_freq_res[1] = get_bits1(gb);
654  for (i = 1; i < ch_data->bs_num_env; i++)
655  ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
656  break;
657  case FIXVAR:
658  abs_bord_trail += get_bits(gb, 2);
659  num_rel_trail = get_bits(gb, 2);
660  ch_data->bs_num_env = num_rel_trail + 1;
661  ch_data->t_env[0] = 0;
662  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
663 
664  for (i = 0; i < num_rel_trail; i++)
665  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
666  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
667 
668  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
669 
670  for (i = 0; i < ch_data->bs_num_env; i++)
671  ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
672  break;
673  case VARFIX:
674  ch_data->t_env[0] = get_bits(gb, 2);
675  num_rel_lead = get_bits(gb, 2);
676  ch_data->bs_num_env = num_rel_lead + 1;
677  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
678 
679  for (i = 0; i < num_rel_lead; i++)
680  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
681 
682  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
683 
684  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
685  break;
686  case VARVAR:
687  ch_data->t_env[0] = get_bits(gb, 2);
688  abs_bord_trail += get_bits(gb, 2);
689  num_rel_lead = get_bits(gb, 2);
690  num_rel_trail = get_bits(gb, 2);
691  bs_num_env = num_rel_lead + num_rel_trail + 1;
692 
693  if (bs_num_env > 5) {
695  "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
696  bs_num_env);
697  return -1;
698  }
699  ch_data->bs_num_env = bs_num_env;
700 
701  ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
702 
703  for (i = 0; i < num_rel_lead; i++)
704  ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
705  for (i = 0; i < num_rel_trail; i++)
706  ch_data->t_env[ch_data->bs_num_env - 1 - i] =
707  ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
708 
709  bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
710 
711  get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
712  break;
713  }
714  ch_data->bs_frame_class = bs_frame_class;
715 
716  av_assert0(bs_pointer >= 0);
717  if (bs_pointer > ch_data->bs_num_env + 1) {
719  "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
720  bs_pointer);
721  return -1;
722  }
723 
724  for (i = 1; i <= ch_data->bs_num_env; i++) {
725  if (ch_data->t_env[i-1] >= ch_data->t_env[i]) {
726  av_log(ac->avctx, AV_LOG_ERROR, "Not strictly monotone time borders\n");
727  return -1;
728  }
729  }
730 
731  ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
732 
733  ch_data->t_q[0] = ch_data->t_env[0];
734  ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
735  if (ch_data->bs_num_noise > 1) {
736  int idx;
737  if (ch_data->bs_frame_class == FIXFIX) {
738  idx = ch_data->bs_num_env >> 1;
739  } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
740  idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
741  } else { // VARFIX
742  if (!bs_pointer)
743  idx = 1;
744  else if (bs_pointer == 1)
745  idx = ch_data->bs_num_env - 1;
746  else // bs_pointer > 1
747  idx = bs_pointer - 1;
748  }
749  ch_data->t_q[1] = ch_data->t_env[idx];
750  }
751 
752  ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
753  ch_data->e_a[1] = -1;
754  if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
755  ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
756  } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
757  ch_data->e_a[1] = bs_pointer - 1;
758 
759  return 0;
760 }
761 
762 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
763  //These variables are saved from the previous frame rather than copied
764  dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
765  dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
766  dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
767 
768  //These variables are read from the bitstream and therefore copied
769  memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
770  memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
771  memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
772  dst->bs_num_env = src->bs_num_env;
773  dst->bs_amp_res = src->bs_amp_res;
774  dst->bs_num_noise = src->bs_num_noise;
775  dst->bs_frame_class = src->bs_frame_class;
776  dst->e_a[1] = src->e_a[1];
777 }
778 
779 /// Read how the envelope and noise floor data is delta coded
781  SBRData *ch_data)
782 {
783  get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
784  get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
785 }
786 
787 /// Read inverse filtering data
789  SBRData *ch_data)
790 {
791  int i;
792 
793  memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
794  for (i = 0; i < sbr->n_q; i++)
795  ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
796 }
797 
799  SBRData *ch_data, int ch)
800 {
801  int bits;
802  int i, j, k;
803  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
804  int t_lav, f_lav;
805  const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
806  const int odd = sbr->n[1] & 1;
807 
808  if (sbr->bs_coupling && ch) {
809  if (ch_data->bs_amp_res) {
810  bits = 5;
815  } else {
816  bits = 6;
821  }
822  } else {
823  if (ch_data->bs_amp_res) {
824  bits = 6;
829  } else {
830  bits = 7;
835  }
836  }
837 
838 #if USE_FIXED
839  for (i = 0; i < ch_data->bs_num_env; i++) {
840  if (ch_data->bs_df_env[i]) {
841  // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
842  if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
843  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
844  ch_data->env_facs[i + 1][j].mant = ch_data->env_facs[i][j].mant + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
845  } else if (ch_data->bs_freq_res[i + 1]) {
846  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
847  k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
848  ch_data->env_facs[i + 1][j].mant = ch_data->env_facs[i][k].mant + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
849  }
850  } else {
851  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
852  k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
853  ch_data->env_facs[i + 1][j].mant = ch_data->env_facs[i][k].mant + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
854  }
855  }
856  } else {
857  ch_data->env_facs[i + 1][0].mant = delta * get_bits(gb, bits); // bs_env_start_value_balance
858  for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
859  ch_data->env_facs[i + 1][j].mant = ch_data->env_facs[i + 1][j - 1].mant + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
860  }
861  }
862 #else
863  for (i = 0; i < ch_data->bs_num_env; i++) {
864  if (ch_data->bs_df_env[i]) {
865  // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
866  if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
867  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
868  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
869  } else if (ch_data->bs_freq_res[i + 1]) {
870  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
871  k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
872  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
873  }
874  } else {
875  for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
876  k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
877  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
878  }
879  }
880  } else {
881  ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
882  for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
883  ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
884  }
885  }
886 #endif /* USE_FIXED */
887 
888  //assign 0th elements of env_facs from last elements
889  memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
890  sizeof(ch_data->env_facs[0]));
891 }
892 
894  SBRData *ch_data, int ch)
895 {
896  int i, j;
897  VLC_TYPE (*t_huff)[2], (*f_huff)[2];
898  int t_lav, f_lav;
899  int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
900 
901  if (sbr->bs_coupling && ch) {
906  } else {
911  }
912 
913 #if USE_FIXED
914  for (i = 0; i < ch_data->bs_num_noise; i++) {
915  if (ch_data->bs_df_noise[i]) {
916  for (j = 0; j < sbr->n_q; j++)
917  ch_data->noise_facs[i + 1][j].mant = ch_data->noise_facs[i][j].mant + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
918  } else {
919  ch_data->noise_facs[i + 1][0].mant = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
920  for (j = 1; j < sbr->n_q; j++)
921  ch_data->noise_facs[i + 1][j].mant = ch_data->noise_facs[i + 1][j - 1].mant + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
922  }
923  }
924 #else
925  for (i = 0; i < ch_data->bs_num_noise; i++) {
926  if (ch_data->bs_df_noise[i]) {
927  for (j = 0; j < sbr->n_q; j++)
928  ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
929  } else {
930  ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
931  for (j = 1; j < sbr->n_q; j++)
932  ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
933  }
934  }
935 #endif /* USE_FIXED */
936 
937  //assign 0th elements of noise_facs from last elements
938  memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
939  sizeof(ch_data->noise_facs[0]));
940 }
941 
943  GetBitContext *gb,
944  int bs_extension_id, int *num_bits_left)
945 {
946  switch (bs_extension_id) {
947  case EXTENSION_ID_PS:
948  if (!ac->oc[1].m4ac.ps) {
949  av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
950  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
951  *num_bits_left = 0;
952  } else {
953 #if 1
954  *num_bits_left -= AAC_RENAME(ff_ps_read_data)(ac->avctx, gb, &sbr->ps, *num_bits_left);
956 #else
957  avpriv_report_missing_feature(ac->avctx, "Parametric Stereo");
958  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
959  *num_bits_left = 0;
960 #endif
961  }
962  break;
963  default:
964  // some files contain 0-padding
965  if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
966  avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
967  skip_bits_long(gb, *num_bits_left); // bs_fill_bits
968  *num_bits_left = 0;
969  break;
970  }
971 }
972 
975  GetBitContext *gb)
976 {
977  if (get_bits1(gb)) // bs_data_extra
978  skip_bits(gb, 4); // bs_reserved
979 
980  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
981  return -1;
982  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
983  read_sbr_invf(sbr, gb, &sbr->data[0]);
984  read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
985  read_sbr_noise(sbr, gb, &sbr->data[0], 0);
986 
987  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
988  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
989 
990  return 0;
991 }
992 
995  GetBitContext *gb)
996 {
997  if (get_bits1(gb)) // bs_data_extra
998  skip_bits(gb, 8); // bs_reserved
999 
1000  if ((sbr->bs_coupling = get_bits1(gb))) {
1001  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
1002  return -1;
1003  copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
1004  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1005  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1006  read_sbr_invf(sbr, gb, &sbr->data[0]);
1007  memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1008  memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1009  read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
1010  read_sbr_noise(sbr, gb, &sbr->data[0], 0);
1011  read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
1012  read_sbr_noise(sbr, gb, &sbr->data[1], 1);
1013  } else {
1014  if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
1015  read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
1016  return -1;
1017  read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1018  read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1019  read_sbr_invf(sbr, gb, &sbr->data[0]);
1020  read_sbr_invf(sbr, gb, &sbr->data[1]);
1021  read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
1022  read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
1023  read_sbr_noise(sbr, gb, &sbr->data[0], 0);
1024  read_sbr_noise(sbr, gb, &sbr->data[1], 1);
1025  }
1026 
1027  if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1028  get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1029  if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1030  get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1031 
1032  return 0;
1033 }
1034 
1035 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1036  GetBitContext *gb, int id_aac)
1037 {
1038  unsigned int cnt = get_bits_count(gb);
1039 
1040  sbr->id_aac = id_aac;
1041  sbr->ready_for_dequant = 1;
1042 
1043  if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1044  if (read_sbr_single_channel_element(ac, sbr, gb)) {
1045  sbr_turnoff(sbr);
1046  return get_bits_count(gb) - cnt;
1047  }
1048  } else if (id_aac == TYPE_CPE) {
1049  if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1050  sbr_turnoff(sbr);
1051  return get_bits_count(gb) - cnt;
1052  }
1053  } else {
1054  av_log(ac->avctx, AV_LOG_ERROR,
1055  "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1056  sbr_turnoff(sbr);
1057  return get_bits_count(gb) - cnt;
1058  }
1059  if (get_bits1(gb)) { // bs_extended_data
1060  int num_bits_left = get_bits(gb, 4); // bs_extension_size
1061  if (num_bits_left == 15)
1062  num_bits_left += get_bits(gb, 8); // bs_esc_count
1063 
1064  num_bits_left <<= 3;
1065  while (num_bits_left > 7) {
1066  num_bits_left -= 2;
1067  read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1068  }
1069  if (num_bits_left < 0) {
1070  av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1071  }
1072  if (num_bits_left > 0)
1073  skip_bits(gb, num_bits_left);
1074  }
1075 
1076  return get_bits_count(gb) - cnt;
1077 }
1078 
1080 {
1081  int err;
1082  err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1083  if (err >= 0)
1084  err = sbr_make_f_derived(ac, sbr);
1085  if (err < 0) {
1086  av_log(ac->avctx, AV_LOG_ERROR,
1087  "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1088  sbr_turnoff(sbr);
1089  }
1090 }
1091 
1092 /**
1093  * Decode Spectral Band Replication extension data; reference: table 4.55.
1094  *
1095  * @param crc flag indicating the presence of CRC checksum
1096  * @param cnt length of TYPE_FIL syntactic element in bytes
1097  *
1098  * @return Returns number of bytes consumed from the TYPE_FIL element.
1099  */
1101  GetBitContext *gb_host, int crc, int cnt, int id_aac)
1102 {
1103  unsigned int num_sbr_bits = 0, num_align_bits;
1104  unsigned bytes_read;
1105  GetBitContext gbc = *gb_host, *gb = &gbc;
1106  skip_bits_long(gb_host, cnt*8 - 4);
1107 
1108  sbr->reset = 0;
1109 
1110  if (!sbr->sample_rate)
1111  sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1112  if (!ac->oc[1].m4ac.ext_sample_rate)
1113  ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1114 
1115  if (crc) {
1116  skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1117  num_sbr_bits += 10;
1118  }
1119 
1120  //Save some state from the previous frame.
1121  sbr->kx[0] = sbr->kx[1];
1122  sbr->m[0] = sbr->m[1];
1123  sbr->kx_and_m_pushed = 1;
1124 
1125  num_sbr_bits++;
1126  if (get_bits1(gb)) // bs_header_flag
1127  num_sbr_bits += read_sbr_header(sbr, gb);
1128 
1129  if (sbr->reset)
1130  sbr_reset(ac, sbr);
1131 
1132  if (sbr->start)
1133  num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1134 
1135  num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1136  bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1137 
1138  if (bytes_read > cnt) {
1139  av_log(ac->avctx, AV_LOG_ERROR,
1140  "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1141  }
1142  return cnt;
1143 }
1144 
1145 /**
1146  * Analysis QMF Bank (14496-3 sp04 p206)
1147  *
1148  * @param x pointer to the beginning of the first sample window
1149  * @param W array of complex-valued samples split into subbands
1150  */
1151 #ifndef sbr_qmf_analysis
1152 #if USE_FIXED
1153 static void sbr_qmf_analysis(AVFixedDSPContext *dsp, FFTContext *mdct,
1154 #else
1156 #endif /* USE_FIXED */
1157  SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x,
1158  INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
1159 {
1160  int i;
1161 #if USE_FIXED
1162  int j;
1163 #endif
1164  memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1165  memcpy(x+288, in, 1024*sizeof(x[0]));
1166  for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1167  // are not supported
1168  dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1169  sbrdsp->sum64x5(z);
1170  sbrdsp->qmf_pre_shuffle(z);
1171 #if USE_FIXED
1172  for (j = 64; j < 128; j++) {
1173  if (z[j] > 1<<24) {
1175  "sbr_qmf_analysis: value %09d too large, setting to %09d\n",
1176  z[j], 1<<24);
1177  z[j] = 1<<24;
1178  } else if (z[j] < -(1<<24)) {
1180  "sbr_qmf_analysis: value %09d too small, setting to %09d\n",
1181  z[j], -(1<<24));
1182  z[j] = -(1<<24);
1183  }
1184  }
1185 #endif
1186  mdct->imdct_half(mdct, z, z+64);
1187  sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1188  x += 32;
1189  }
1190 }
1191 #endif
1192 
1193 /**
1194  * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1195  * (14496-3 sp04 p206)
1196  */
1197 #ifndef sbr_qmf_synthesis
1198 static void sbr_qmf_synthesis(FFTContext *mdct,
1199 #if USE_FIXED
1200  SBRDSPContext *sbrdsp, AVFixedDSPContext *dsp,
1201 #else
1202  SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1203 #endif /* USE_FIXED */
1204  INTFLOAT *out, INTFLOAT X[2][38][64],
1205  INTFLOAT mdct_buf[2][64],
1206  INTFLOAT *v0, int *v_off, const unsigned int div)
1207 {
1208  int i, n;
1209  const INTFLOAT *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1210  const int step = 128 >> div;
1211  INTFLOAT *v;
1212  for (i = 0; i < 32; i++) {
1213  if (*v_off < step) {
1214  int saved_samples = (1280 - 128) >> div;
1215  memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(INTFLOAT));
1216  *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1217  } else {
1218  *v_off -= step;
1219  }
1220  v = v0 + *v_off;
1221  if (div) {
1222  for (n = 0; n < 32; n++) {
1223  X[0][i][ n] = -X[0][i][n];
1224  X[0][i][32+n] = X[1][i][31-n];
1225  }
1226  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1227  sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1228  } else {
1229  sbrdsp->neg_odd_64(X[1][i]);
1230  mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1231  mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1232  sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1233  }
1234  dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1235  dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1236  dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1237  dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1238  dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1239  dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1240  dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1241  dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1242  dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1243  dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1244  out += 64 >> div;
1245  }
1246 }
1247 #endif
1248 
1249 /// Generate the subband filtered lowband
1251  INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2],
1252  int buf_idx)
1253 {
1254  int i, k;
1255  const int t_HFGen = 8;
1256  const int i_f = 32;
1257  memset(X_low, 0, 32*sizeof(*X_low));
1258  for (k = 0; k < sbr->kx[1]; k++) {
1259  for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1260  X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1261  X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1262  }
1263  }
1264  buf_idx = 1-buf_idx;
1265  for (k = 0; k < sbr->kx[0]; k++) {
1266  for (i = 0; i < t_HFGen; i++) {
1267  X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1268  X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1269  }
1270  }
1271  return 0;
1272 }
1273 
1274 /// High Frequency Generator (14496-3 sp04 p215)
1276  INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2],
1277  const INTFLOAT (*alpha0)[2], const INTFLOAT (*alpha1)[2],
1278  const INTFLOAT bw_array[5], const uint8_t *t_env,
1279  int bs_num_env)
1280 {
1281  int j, x;
1282  int g = 0;
1283  int k = sbr->kx[1];
1284  for (j = 0; j < sbr->num_patches; j++) {
1285  for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1286  const int p = sbr->patch_start_subband[j] + x;
1287  while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1288  g++;
1289  g--;
1290 
1291  if (g < 0) {
1292  av_log(ac->avctx, AV_LOG_ERROR,
1293  "ERROR : no subband found for frequency %d\n", k);
1294  return -1;
1295  }
1296 
1297  sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1298  X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
1299  alpha0[p], alpha1[p], bw_array[g],
1300  2 * t_env[0], 2 * t_env[bs_num_env]);
1301  }
1302  }
1303  if (k < sbr->m[1] + sbr->kx[1])
1304  memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1305 
1306  return 0;
1307 }
1308 
1309 /// Generate the subband filtered lowband
1310 static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64],
1311  const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2],
1312  const INTFLOAT X_low[32][40][2], int ch)
1313 {
1314  int k, i;
1315  const int i_f = 32;
1316  const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1317  memset(X, 0, 2*sizeof(*X));
1318  for (k = 0; k < sbr->kx[0]; k++) {
1319  for (i = 0; i < i_Temp; i++) {
1320  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1321  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1322  }
1323  }
1324  for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1325  for (i = 0; i < i_Temp; i++) {
1326  X[0][i][k] = Y0[i + i_f][k][0];
1327  X[1][i][k] = Y0[i + i_f][k][1];
1328  }
1329  }
1330 
1331  for (k = 0; k < sbr->kx[1]; k++) {
1332  for (i = i_Temp; i < 38; i++) {
1333  X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1334  X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1335  }
1336  }
1337  for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1338  for (i = i_Temp; i < i_f; i++) {
1339  X[0][i][k] = Y1[i][k][0];
1340  X[1][i][k] = Y1[i][k][1];
1341  }
1342  }
1343  return 0;
1344 }
1345 
1346 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1347  * (14496-3 sp04 p217)
1348  */
1350  SBRData *ch_data, int e_a[2])
1351 {
1352  int e, i, m;
1353 
1354  memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1355  for (e = 0; e < ch_data->bs_num_env; e++) {
1356  const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1357  uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1358  int k;
1359 
1360  if (sbr->kx[1] != table[0]) {
1361  av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1362  "Derived frequency tables were not regenerated.\n");
1363  sbr_turnoff(sbr);
1364  return AVERROR_BUG;
1365  }
1366  for (i = 0; i < ilim; i++)
1367  for (m = table[i]; m < table[i + 1]; m++)
1368  sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1369 
1370  // ch_data->bs_num_noise > 1 => 2 noise floors
1371  k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1372  for (i = 0; i < sbr->n_q; i++)
1373  for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1374  sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1375 
1376  for (i = 0; i < sbr->n[1]; i++) {
1377  if (ch_data->bs_add_harmonic_flag) {
1378  const unsigned int m_midpoint =
1379  (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1380 
1381  ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1382  (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1383  }
1384  }
1385 
1386  for (i = 0; i < ilim; i++) {
1387  int additional_sinusoid_present = 0;
1388  for (m = table[i]; m < table[i + 1]; m++) {
1389  if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1390  additional_sinusoid_present = 1;
1391  break;
1392  }
1393  }
1394  memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1395  (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1396  }
1397  }
1398 
1399  memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1400  return 0;
1401 }
1402 
1403 /// Estimation of current envelope (14496-3 sp04 p218)
1404 static void sbr_env_estimate(AAC_FLOAT (*e_curr)[48], INTFLOAT X_high[64][40][2],
1405  SpectralBandReplication *sbr, SBRData *ch_data)
1406 {
1407  int e, m;
1408  int kx1 = sbr->kx[1];
1409 
1410  if (sbr->bs_interpol_freq) {
1411  for (e = 0; e < ch_data->bs_num_env; e++) {
1412 #if USE_FIXED
1413  const SoftFloat recip_env_size = av_int2sf(0x20000000 / (ch_data->t_env[e + 1] - ch_data->t_env[e]), 30);
1414 #else
1415  const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1416 #endif /* USE_FIXED */
1417  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1418  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1419 
1420  for (m = 0; m < sbr->m[1]; m++) {
1421  AAC_FLOAT sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1422 #if USE_FIXED
1423  e_curr[e][m] = av_mul_sf(sum, recip_env_size);
1424 #else
1425  e_curr[e][m] = sum * recip_env_size;
1426 #endif /* USE_FIXED */
1427  }
1428  }
1429  } else {
1430  int k, p;
1431 
1432  for (e = 0; e < ch_data->bs_num_env; e++) {
1433  const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1434  int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1435  int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1436  const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1437 
1438  for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1439 #if USE_FIXED
1440  SoftFloat sum = FLOAT_0;
1441  const SoftFloat den = av_int2sf(0x20000000 / (env_size * (table[p + 1] - table[p])), 29);
1442  for (k = table[p]; k < table[p + 1]; k++) {
1443  sum = av_add_sf(sum, sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb));
1444  }
1445  sum = av_mul_sf(sum, den);
1446 #else
1447  float sum = 0.0f;
1448  const int den = env_size * (table[p + 1] - table[p]);
1449 
1450  for (k = table[p]; k < table[p + 1]; k++) {
1451  sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1452  }
1453  sum /= den;
1454 #endif /* USE_FIXED */
1455  for (k = table[p]; k < table[p + 1]; k++) {
1456  e_curr[e][k - kx1] = sum;
1457  }
1458  }
1459  }
1460  }
1461 }
1462 
1464  INTFLOAT* L, INTFLOAT* R)
1465 {
1466  int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1467  int ch;
1468  int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1469  int err;
1470 
1471  if (id_aac != sbr->id_aac) {
1472  av_log(ac->avctx, AV_LOG_ERROR,
1473  "element type mismatch %d != %d\n", id_aac, sbr->id_aac);
1474  sbr_turnoff(sbr);
1475  }
1476 
1477  if (sbr->start && !sbr->ready_for_dequant) {
1478  av_log(ac->avctx, AV_LOG_ERROR,
1479  "No quantized data read for sbr_dequant.\n");
1480  sbr_turnoff(sbr);
1481  }
1482 
1483  if (!sbr->kx_and_m_pushed) {
1484  sbr->kx[0] = sbr->kx[1];
1485  sbr->m[0] = sbr->m[1];
1486  } else {
1487  sbr->kx_and_m_pushed = 0;
1488  }
1489 
1490  if (sbr->start) {
1491  sbr_dequant(sbr, id_aac);
1492  sbr->ready_for_dequant = 0;
1493  }
1494  for (ch = 0; ch < nch; ch++) {
1495  /* decode channel */
1496  sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1497  (INTFLOAT*)sbr->qmf_filter_scratch,
1498  sbr->data[ch].W, sbr->data[ch].Ypos);
1499  sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1500  (const INTFLOAT (*)[32][32][2]) sbr->data[ch].W,
1501  sbr->data[ch].Ypos);
1502  sbr->data[ch].Ypos ^= 1;
1503  if (sbr->start) {
1504  sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1505  (const INTFLOAT (*)[40][2]) sbr->X_low, sbr->k[0]);
1506  sbr_chirp(sbr, &sbr->data[ch]);
1507  av_assert0(sbr->data[ch].bs_num_env > 0);
1508  sbr_hf_gen(ac, sbr, sbr->X_high,
1509  (const INTFLOAT (*)[40][2]) sbr->X_low,
1510  (const INTFLOAT (*)[2]) sbr->alpha0,
1511  (const INTFLOAT (*)[2]) sbr->alpha1,
1512  sbr->data[ch].bw_array, sbr->data[ch].t_env,
1513  sbr->data[ch].bs_num_env);
1514 
1515  // hf_adj
1516  err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1517  if (!err) {
1518  sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1519  sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1520  sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1521  (const INTFLOAT (*)[40][2]) sbr->X_high,
1522  sbr, &sbr->data[ch],
1523  sbr->data[ch].e_a);
1524  }
1525  }
1526 
1527  /* synthesis */
1528  sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1529  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1530  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
1531  (const INTFLOAT (*)[40][2]) sbr->X_low, ch);
1532  }
1533 
1534  if (ac->oc[1].m4ac.ps == 1) {
1535  if (sbr->ps.start) {
1536  AAC_RENAME(ff_ps_apply)(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1537  } else {
1538  memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1539  }
1540  nch = 2;
1541  }
1542 
1543  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1544  L, sbr->X[0], sbr->qmf_filter_scratch,
1545  sbr->data[0].synthesis_filterbank_samples,
1546  &sbr->data[0].synthesis_filterbank_samples_offset,
1547  downsampled);
1548  if (nch == 2)
1549  sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1550  R, sbr->X[1], sbr->qmf_filter_scratch,
1551  sbr->data[1].synthesis_filterbank_samples,
1552  &sbr->data[1].synthesis_filterbank_samples_offset,
1553  downsampled);
1554 }
1555 
1557 {
1558  c->sbr_lf_gen = sbr_lf_gen;
1560  c->sbr_x_gen = sbr_x_gen;
1562 
1563 #if !USE_FIXED
1564  if(ARCH_MIPS)
1566 #endif
1567 }
uint8_t s_indexmapped[8][48]
Definition: sbr.h:97
unsigned bs_add_harmonic_flag
Definition: sbr.h:68
void AAC_RENAME() ff_sbrdsp_init(SBRDSPContext *s)
static int qsort_comparison_function_int16(const void *a, const void *b)
#define NULL
Definition: coverity.c:32
float v
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int id_aac)
static int array_min_int16(const int16_t *array, int nel)
static void sbr_hf_assemble(float Y1[38][64][2], const float X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Assembling HF Signals (14496-3 sp04 p220)
Definition: aacsbr.c:268
static const int8_t vlc_sbr_lav[10]
Definition: aacsbr.h:69
unsigned bs_smoothing_mode
Definition: sbr.h:152
AVCodecContext * avctx
Definition: aac.h:290
static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
AAC_FLOAT(* sum_square)(INTFLOAT(*x)[2], int n)
Definition: sbrdsp.h:30
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:261
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static float sbr_qmf_window_us[640]
static void sbr_qmf_synthesis(FFTContext *mdct, SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp, INTFLOAT *out, INTFLOAT X[2][38][64], INTFLOAT mdct_buf[2][64], INTFLOAT *v0, int *v_off, const unsigned int div)
Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank (14496-3 sp04 p206) ...
else temp
Definition: vf_mcdeint.c:257
static void skip_bits_long(GetBitContext *s, int n)
Definition: get_bits.h:218
const char * g
Definition: vf_curves.c:108
Definition: aac.h:56
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2], const INTFLOAT(*alpha0)[2], const INTFLOAT(*alpha1)[2], const INTFLOAT bw_array[5], const uint8_t *t_env, int bs_num_env)
High Frequency Generator (14496-3 sp04 p215)
Definition: aac.h:57
int e_a[2]
l_APrev and l_A
Definition: sbr.h:87
int AAC_RENAME() ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
Definition: aacps.c:158
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read inverse filtering data.
const char * b
Definition: vf_curves.c:109
Definition: aacsbr.h:59
AAC_SIGNE kx[2]
kx', and kx respectively, kx is the first QMF subband where SBR is used.
Definition: sbr.h:158
#define VLC_TYPE
Definition: get_bits.h:62
void(* vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats, and store the result in a vector of floats...
Definition: float_dsp.h:138
void(* sbr_hf_assemble)(INTFLOAT Y1[38][64][2], const INTFLOAT X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Definition: sbr.h:122
GLfloat v0
Definition: opengl_enc.c:107
int(* sbr_x_gen)(SpectralBandReplication *sbr, INTFLOAT X[2][38][64], const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2], const INTFLOAT X_low[32][40][2], int ch)
Definition: sbr.h:126
Definition: aacsbr.h:61
uint8_t bs_xover_band
Definition: sbr.h:45
int profile
profile
Definition: avcodec.h:3125
SpectrumParameters spectrum_params
Definition: sbr.h:143
Definition: aac.h:58
Definition: aacsbr.h:60
#define USE_FIXED
Definition: aac_defines.h:25
#define AAC_RENAME_32(x)
Definition: aac_defines.h:84
int AAC_RENAME() ff_ps_apply(AVCodecContext *avctx, PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top)
Definition: aacps.c:975
static const SoftFloat FLOAT_0
Definition: softfloat.h:39
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
static const int8_t sbr_offset[6][16]
Definition: aacsbrdata.h:261
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
AAC_SIGNE num_patches
Definition: sbr.h:182
uint8_t bits
Definition: crc.c:295
uint8_t
#define av_cold
Definition: attributes.h:74
AAC_FLOAT noise_facs[3][5]
Noise scalefactors.
Definition: sbr.h:101
float delta
AAC_SIGNE n_lim
Number of limiter bands.
Definition: sbr.h:171
#define ENVELOPE_ADJUSTMENT_OFFSET
Definition: aacsbr.h:36
#define INTFLOAT
Definition: aac_defines.h:85
static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
uint16_t f_tablehigh[49]
Frequency borders for high resolution SBR.
Definition: sbr.h:177
void ff_aacsbr_func_ptr_init_mips(AACSBRContext *c)
Definition: aacsbr_mips.c:609
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:213
AAC_SIGNE bs_num_noise
Definition: sbr.h:71
#define lrintf(x)
Definition: libm_mips.h:70
av_cold void AAC_RENAME() ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
Close one SBR context.
SBRData data[2]
Definition: sbr.h:164
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
Derived Frequency Band Tables (14496-3 sp04 p197)
uint8_t bs_df_noise[2]
Definition: sbr.h:73
void(* sbr_hf_inverse_filter)(SBRDSPContext *dsp, INTFLOAT(*alpha0)[2], INTFLOAT(*alpha1)[2], const INTFLOAT X_low[32][40][2], int k0)
Definition: sbr.h:129
static int fixed_log(int x)
Definition: aacsbr_fixed.c:87
#define av_log(a,...)
uint8_t patch_num_subbands[6]
Definition: sbr.h:183
unsigned m
Definition: audioconvert.c:187
uint16_t f_tablenoise[6]
Frequency borders for noise floors.
Definition: sbr.h:179
#define SBR_INIT_VLC_STATIC(num, size)
Definition: aacsbr.h:72
static void copy_sbr_grid(SBRData *dst, const SBRData *src)
MPEG4AudioConfig m4ac
Definition: aac.h:124
uint8_t t_q[3]
Noise time borders.
Definition: sbr.h:107
static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
uint16_t f_tablelow[25]
Frequency borders for low resolution SBR.
Definition: sbr.h:175
static void sbr_hf_inverse_filter(SBRDSPContext *dsp, float(*alpha0)[2], float(*alpha1)[2], const float X_low[32][40][2], int k0)
High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering (14496-3 sp04 p214) Warning: Thi...
Definition: aacsbr.c:133
Spectral Band Replication header - spectrum parameters that invoke a reset if they differ from the pr...
Definition: sbr.h:42
#define FF_PROFILE_AAC_HE_V2
Definition: avcodec.h:3134
AAC_SIGNE k[5]
k0, k1, k2
Definition: sbr.h:155
AAC_SIGNE m[2]
M' and M respectively, M is the number of QMF subbands that use SBR.
Definition: sbr.h:160
void(* vector_fmul)(float *dst, const float *src0, const float *src1, int len)
Calculate the entry wise product of two vectors of floats and store the result in a vector of floats...
Definition: float_dsp.h:38
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
Dequantization and stereo decoding (14496-3 sp04 p203)
Definition: aacsbr.c:72
static const struct endianess table[]
static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, int e_a[2])
High Frequency Adjustment (14496-3 sp04 p217) and Mapping (14496-3 sp04 p217)
#define ff_mdct_init
Definition: fft.h:167
#define FFMAX(a, b)
Definition: common.h:90
unsigned bs_interpol_freq
Definition: sbr.h:151
#define AAC_RENAME(x)
Definition: aac_defines.h:83
unsigned f_indexnoise
Definition: sbr.h:108
uint8_t t_env_num_env_old
Envelope time border of the last envelope of the previous frame.
Definition: sbr.h:105
static int read_sbr_channel_pair_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
Definition: fft.h:88
unsigned bs_amp_res
Definition: sbr.h:76
#define FFMIN(a, b)
Definition: common.h:92
#define AAC_FLOAT
Definition: aac_defines.h:88
uint8_t bs_freq_scale
Definition: sbr.h:51
static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
static float sbr_qmf_window_ds[320]
< window coefficients for analysis/synthesis QMF banks
unsigned bs_limiter_gains
Definition: sbr.h:150
static const int CONST_RECIP_LN2
Definition: aacsbr_fixed.c:78
static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct, SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x, INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
Analysis QMF Bank (14496-3 sp04 p206)
static unsigned int show_bits(GetBitContext *s, int n)
Show 1-25 bits.
Definition: get_bits.h:288
AAC_FLOAT e_origmapped[7][48]
Dequantized envelope scalefactors, remapped.
Definition: sbr.h:196
uint8_t s_mapped[7][48]
Sinusoidal presence, remapped.
Definition: sbr.h:200
static void aacsbr_func_ptr_init(AACSBRContext *c)
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:561
static int in_table_int16(const int16_t *table, int last_el, int16_t needle)
static void sbr_env_estimate(AAC_FLOAT(*e_curr)[48], INTFLOAT X_high[64][40][2], SpectralBandReplication *sbr, SBRData *ch_data)
Estimation of current envelope (14496-3 sp04 p218)
int n
Definition: avisynth_c.h:547
uint8_t bs_freq_res[7]
Definition: sbr.h:70
av_cold void AAC_RENAME() ff_ps_init(void)
Definition: aacps.c:1005
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2], int buf_idx)
Generate the subband filtered lowband.
#define L(x)
Definition: vp56_arith.h:36
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr, SBRData *ch_data, const int e_a[2])
Calculation of levels of additional HF signal components (14496-3 sp04 p219) and Calculation of gain ...
Definition: aacsbr.c:212
static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data, int ch)
AAC_SIGNE bs_num_env
Definition: sbr.h:69
static void sbr_turnoff(SpectralBandReplication *sbr)
Places SBR in pure upsampling mode.
#define SBR_SYNTHESIS_BUF_SIZE
Definition: sbr.h:57
AAC_FLOAT q_mapped[7][48]
Dequantized noise scalefactors, remapped.
Definition: sbr.h:198
static const int8_t ceil_log2[]
ceil(log2(index+1))
void(* hf_gen)(INTFLOAT(*X_high)[2], const INTFLOAT(*X_low)[2], const INTFLOAT alpha0[2], const INTFLOAT alpha1[2], INTFLOAT bw, int start, int end)
Definition: sbrdsp.h:37
AVS_Value src
Definition: avisynth_c.h:482
void AAC_RENAME() ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac, INTFLOAT *L, INTFLOAT *R)
Apply one SBR element to one AAC element.
int AAC_RENAME() ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb_host, int crc, int cnt, int id_aac)
Decode Spectral Band Replication extension data; reference: table 4.55.
main external API structure.
Definition: avcodec.h:1512
static void(WINAPI *cond_broadcast)(pthread_cond_t *cond)
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)
Read how the envelope and noise floor data is delta coded.
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
void(* imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
Definition: fft.h:108
void(* vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len)
Calculate the entry wise product of two vectors of floats, add a third vector of floats and store the...
Definition: float_dsp.h:121
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
Definition: error.h:50
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:305
static const int CONST_076923
Definition: aacsbr_fixed.c:79
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:298
static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec, int elements)
#define W(a, i, v)
Definition: jpegls.h:122
static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, int bs_extension_id, int *num_bits_left)
static int read_sbr_single_channel_element(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb)
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr, SpectrumParameters *spectrum)
Master Frequency Band Table (14496-3 sp04 p194)
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
Chirp Factors (14496-3 sp04 p214)
Definition: aacsbr.c:188
av_cold void AAC_RENAME() ff_ps_ctx_init(PSContext *ps)
Definition: aacps.c:1037
AAC_FLOAT env_facs[6][48]
Envelope scalefactors.
Definition: sbr.h:99
uint8_t bs_noise_bands
Definition: sbr.h:53
#define ARCH_MIPS
Definition: config.h:26
main AAC context
Definition: aac.h:288
AAC_SIGNE n_master
The number of frequency bands in f_master.
Definition: sbr.h:163
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
Limiter Frequency Band Table (14496-3 sp04 p198)
uint8_t bs_stop_freq
Definition: sbr.h:44
void avpriv_report_missing_feature(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
uint16_t f_master[49]
The master QMF frequency grouping.
Definition: sbr.h:173
uint8_t bs_invf_mode[2][5]
Definition: sbr.h:74
static av_const SoftFloat av_add_sf(SoftFloat a, SoftFloat b)
Definition: softfloat.h:145
static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64], const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2], const INTFLOAT X_low[32][40][2], int ch)
Generate the subband filtered lowband.
OutputConfiguration oc[2]
Definition: aac.h:349
int(* sbr_lf_gen)(AACContext *ac, SpectralBandReplication *sbr, INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2], int buf_idx)
Definition: sbr.h:119
if(ret< 0)
Definition: vf_mcdeint.c:280
#define log2f(x)
Definition: libm.h:127
#define ff_mdct_end
Definition: fft.h:168
static av_const SoftFloat av_mul_sf(SoftFloat a, SoftFloat b)
Definition: softfloat.h:98
static double c[64]
uint8_t patch_start_subband[6]
Definition: sbr.h:184
uint8_t t_env[8]
Envelope time borders.
Definition: sbr.h:103
aacsbr functions pointers
Definition: sbr.h:118
Definition: aacsbr.h:62
uint16_t f_tablelim[30]
Frequency borders for the limiter.
Definition: sbr.h:181
Spectral Band Replication per channel data.
Definition: sbr.h:62
static void make_bands(int16_t *bands, int start, int stop, int num_bands)
Definition: aacsbr.c:53
#define SBR_VLC_ROW(name)
Definition: aacsbr.h:78
unsigned bs_limiter_bands
Definition: sbr.h:149
uint8_t bs_alter_scale
Definition: sbr.h:52
unsigned bs_frame_class
Definition: sbr.h:67
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
uint8_t bs_df_env[5]
Definition: sbr.h:72
VLC_TYPE(* table)[2]
code, bits
Definition: get_bits.h:66
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_log(ac->avr, AV_LOG_TRACE,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> out
SBRDSPContext dsp
Definition: sbr.h:211
static av_const SoftFloat av_int2sf(int v, int frac_bits)
Converts a mantisse and exponent to a SoftFloat.
Definition: softfloat.h:165
#define Q23(x)
Definition: aac_defines.h:92
#define av_always_inline
Definition: attributes.h:37
Definition: vf_geq.c:46
int ps
-1 implicit, 1 presence
Definition: mpeg4audio.h:40
static VLC vlc_sbr[10]
Definition: aacsbr.c:50
AAC_SIGNE n_q
Number of noise floor bands.
Definition: sbr.h:169
unsigned bs_coupling
Definition: sbr.h:154
Spectral Band Replication.
Definition: sbr.h:137
static av_cold void aacsbr_tableinit(void)
float min
av_cold void AAC_RENAME() ff_aac_sbr_init(void)
Initialize SBR.
uint8_t bs_add_harmonic[48]
Definition: sbr.h:75
av_cold void AAC_RENAME() ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
Initialize one SBR context.
PSContext ps
Definition: sbr.h:165
uint8_t bs_start_freq
Definition: sbr.h:43
AAC_SIGNE n[2]
N_Low and N_High respectively, the number of frequency bands for low and high resolution.
Definition: sbr.h:167
static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb, SBRData *ch_data)