FFmpeg  2.8.15
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
alsdec.c
Go to the documentation of this file.
1 /*
2  * MPEG-4 ALS decoder
3  * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * MPEG-4 ALS decoder
25  * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
26  */
27 
28 #include <inttypes.h>
29 
30 #include "avcodec.h"
31 #include "get_bits.h"
32 #include "unary.h"
33 #include "mpeg4audio.h"
34 #include "bytestream.h"
35 #include "bgmc.h"
36 #include "bswapdsp.h"
37 #include "internal.h"
38 #include "libavutil/samplefmt.h"
39 #include "libavutil/crc.h"
40 
41 #include <stdint.h>
42 
43 /** Rice parameters and corresponding index offsets for decoding the
44  * indices of scaled PARCOR values. The table chosen is set globally
45  * by the encoder and stored in ALSSpecificConfig.
46  */
47 static const int8_t parcor_rice_table[3][20][2] = {
48  { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
49  { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
50  { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
51  { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
52  { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
53  { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
54  {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
55  { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
56  { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
57  { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
58  {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
59  { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
60 };
61 
62 
63 /** Scaled PARCOR values used for the first two PARCOR coefficients.
64  * To be indexed by the Rice coded indices.
65  * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
66  * Actual values are divided by 32 in order to be stored in 16 bits.
67  */
68 static const int16_t parcor_scaled_values[] = {
69  -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
70  -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
71  -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
72  -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
73  -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
74  -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
75  -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
76  -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
77  -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
78  -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
79  -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
80  -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
81  -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
82  -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
83  -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
84  -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
85  -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
86  -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
87  -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
88  -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
89  -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
90  -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
91  -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
92  46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
93  143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
94  244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
95  349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
96  458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
97  571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
98  688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
99  810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
100  935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
101 };
102 
103 
104 /** Gain values of p(0) for long-term prediction.
105  * To be indexed by the Rice coded indices.
106  */
107 static const uint8_t ltp_gain_values [4][4] = {
108  { 0, 8, 16, 24},
109  {32, 40, 48, 56},
110  {64, 70, 76, 82},
111  {88, 92, 96, 100}
112 };
113 
114 
115 /** Inter-channel weighting factors for multi-channel correlation.
116  * To be indexed by the Rice coded indices.
117  */
118 static const int16_t mcc_weightings[] = {
119  204, 192, 179, 166, 153, 140, 128, 115,
120  102, 89, 76, 64, 51, 38, 25, 12,
121  0, -12, -25, -38, -51, -64, -76, -89,
122  -102, -115, -128, -140, -153, -166, -179, -192
123 };
124 
125 
126 /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
127  */
128 static const uint8_t tail_code[16][6] = {
129  { 74, 44, 25, 13, 7, 3},
130  { 68, 42, 24, 13, 7, 3},
131  { 58, 39, 23, 13, 7, 3},
132  {126, 70, 37, 19, 10, 5},
133  {132, 70, 37, 20, 10, 5},
134  {124, 70, 38, 20, 10, 5},
135  {120, 69, 37, 20, 11, 5},
136  {116, 67, 37, 20, 11, 5},
137  {108, 66, 36, 20, 10, 5},
138  {102, 62, 36, 20, 10, 5},
139  { 88, 58, 34, 19, 10, 5},
140  {162, 89, 49, 25, 13, 7},
141  {156, 87, 49, 26, 14, 7},
142  {150, 86, 47, 26, 14, 7},
143  {142, 84, 47, 26, 14, 7},
144  {131, 79, 46, 26, 14, 7}
145 };
146 
147 
148 enum RA_Flag {
152 };
153 
154 
155 typedef struct ALSSpecificConfig {
156  uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
157  int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
158  int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
159  int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
160  int frame_length; ///< frame length for each frame (last frame may differ)
161  int ra_distance; ///< distance between RA frames (in frames, 0...255)
162  enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
163  int adapt_order; ///< adaptive order: 1 = on, 0 = off
164  int coef_table; ///< table index of Rice code parameters
165  int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
166  int max_order; ///< maximum prediction order (0..1023)
167  int block_switching; ///< number of block switching levels
168  int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
169  int sb_part; ///< sub-block partition
170  int joint_stereo; ///< joint stereo: 1 = on, 0 = off
171  int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
172  int chan_config; ///< indicates that a chan_config_info field is present
173  int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
174  int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
175  int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
176  int *chan_pos; ///< original channel positions
177  int crc_enabled; ///< enable Cyclic Redundancy Checksum
179 
180 
181 typedef struct ALSChannelData {
187  int weighting[6];
189 
190 
191 typedef struct ALSDecContext {
196  const AVCRC *crc_table;
197  uint32_t crc_org; ///< CRC value of the original input data
198  uint32_t crc; ///< CRC value calculated from decoded data
199  unsigned int cur_frame_length; ///< length of the current frame to decode
200  unsigned int frame_id; ///< the frame ID / number of the current frame
201  unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
202  unsigned int cs_switch; ///< if true, channel rearrangement is done
203  unsigned int num_blocks; ///< number of blocks used in the current frame
204  unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
205  uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
206  int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
207  int ltp_lag_length; ///< number of bits used for ltp lag value
208  int *const_block; ///< contains const_block flags for all channels
209  unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
210  unsigned int *opt_order; ///< contains opt_order flags for all channels
211  int *store_prev_samples; ///< contains store_prev_samples flags for all channels
212  int *use_ltp; ///< contains use_ltp flags for all channels
213  int *ltp_lag; ///< contains ltp lag values for all channels
214  int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
215  int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
216  int32_t **quant_cof; ///< quantized parcor coefficients for a channel
217  int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
218  int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
219  int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
220  int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
221  ALSChannelData **chan_data; ///< channel data for multi-channel correlation
222  ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
223  int *reverted_channels; ///< stores a flag for each reverted channel
224  int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
225  int32_t **raw_samples; ///< decoded raw samples for each channel
226  int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
227  uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
228 } ALSDecContext;
229 
230 
231 typedef struct ALSBlockData {
232  unsigned int block_length; ///< number of samples within the block
233  unsigned int ra_block; ///< if true, this is a random access block
234  int *const_block; ///< if true, this is a constant value block
235  int js_blocks; ///< true if this block contains a difference signal
236  unsigned int *shift_lsbs; ///< shift of values for this block
237  unsigned int *opt_order; ///< prediction order of this block
238  int *store_prev_samples;///< if true, carryover samples have to be stored
239  int *use_ltp; ///< if true, long-term prediction is used
240  int *ltp_lag; ///< lag value for long-term prediction
241  int *ltp_gain; ///< gain values for ltp 5-tap filter
242  int32_t *quant_cof; ///< quantized parcor coefficients
243  int32_t *lpc_cof; ///< coefficients of the direct form prediction
244  int32_t *raw_samples; ///< decoded raw samples / residuals for this block
245  int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
246  int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
247 } ALSBlockData;
248 
249 
251 {
252 #ifdef DEBUG
253  AVCodecContext *avctx = ctx->avctx;
254  ALSSpecificConfig *sconf = &ctx->sconf;
255 
256  ff_dlog(avctx, "resolution = %i\n", sconf->resolution);
257  ff_dlog(avctx, "floating = %i\n", sconf->floating);
258  ff_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
259  ff_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
260  ff_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
261  ff_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
262  ff_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
263  ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
264  ff_dlog(avctx, "max_order = %i\n", sconf->max_order);
265  ff_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
266  ff_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
267  ff_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
268  ff_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
269  ff_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
270  ff_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
271  ff_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
272  ff_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
273  ff_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
274 #endif
275 }
276 
277 
278 /** Read an ALSSpecificConfig from a buffer into the output struct.
279  */
281 {
282  GetBitContext gb;
283  uint64_t ht_size;
284  int i, config_offset;
285  MPEG4AudioConfig m4ac = {0};
286  ALSSpecificConfig *sconf = &ctx->sconf;
287  AVCodecContext *avctx = ctx->avctx;
288  uint32_t als_id, header_size, trailer_size;
289  int ret;
290 
291  if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
292  return ret;
293 
294  config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
295  avctx->extradata_size * 8, 1);
296 
297  if (config_offset < 0)
298  return AVERROR_INVALIDDATA;
299 
300  skip_bits_long(&gb, config_offset);
301 
302  if (get_bits_left(&gb) < (30 << 3))
303  return AVERROR_INVALIDDATA;
304 
305  // read the fixed items
306  als_id = get_bits_long(&gb, 32);
307  avctx->sample_rate = m4ac.sample_rate;
308  skip_bits_long(&gb, 32); // sample rate already known
309  sconf->samples = get_bits_long(&gb, 32);
310  avctx->channels = m4ac.channels;
311  skip_bits(&gb, 16); // number of channels already known
312  skip_bits(&gb, 3); // skip file_type
313  sconf->resolution = get_bits(&gb, 3);
314  sconf->floating = get_bits1(&gb);
315  sconf->msb_first = get_bits1(&gb);
316  sconf->frame_length = get_bits(&gb, 16) + 1;
317  sconf->ra_distance = get_bits(&gb, 8);
318  sconf->ra_flag = get_bits(&gb, 2);
319  sconf->adapt_order = get_bits1(&gb);
320  sconf->coef_table = get_bits(&gb, 2);
321  sconf->long_term_prediction = get_bits1(&gb);
322  sconf->max_order = get_bits(&gb, 10);
323  sconf->block_switching = get_bits(&gb, 2);
324  sconf->bgmc = get_bits1(&gb);
325  sconf->sb_part = get_bits1(&gb);
326  sconf->joint_stereo = get_bits1(&gb);
327  sconf->mc_coding = get_bits1(&gb);
328  sconf->chan_config = get_bits1(&gb);
329  sconf->chan_sort = get_bits1(&gb);
330  sconf->crc_enabled = get_bits1(&gb);
331  sconf->rlslms = get_bits1(&gb);
332  skip_bits(&gb, 5); // skip 5 reserved bits
333  skip_bits1(&gb); // skip aux_data_enabled
334 
335 
336  // check for ALSSpecificConfig struct
337  if (als_id != MKBETAG('A','L','S','\0'))
338  return AVERROR_INVALIDDATA;
339 
340  ctx->cur_frame_length = sconf->frame_length;
341 
342  // read channel config
343  if (sconf->chan_config)
344  sconf->chan_config_info = get_bits(&gb, 16);
345  // TODO: use this to set avctx->channel_layout
346 
347 
348  // read channel sorting
349  if (sconf->chan_sort && avctx->channels > 1) {
350  int chan_pos_bits = av_ceil_log2(avctx->channels);
351  int bits_needed = avctx->channels * chan_pos_bits + 7;
352  if (get_bits_left(&gb) < bits_needed)
353  return AVERROR_INVALIDDATA;
354 
355  if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
356  return AVERROR(ENOMEM);
357 
358  ctx->cs_switch = 1;
359 
360  for (i = 0; i < avctx->channels; i++) {
361  sconf->chan_pos[i] = -1;
362  }
363 
364  for (i = 0; i < avctx->channels; i++) {
365  int idx;
366 
367  idx = get_bits(&gb, chan_pos_bits);
368  if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
369  av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
370  ctx->cs_switch = 0;
371  break;
372  }
373  sconf->chan_pos[idx] = i;
374  }
375 
376  align_get_bits(&gb);
377  }
378 
379 
380  // read fixed header and trailer sizes,
381  // if size = 0xFFFFFFFF then there is no data field!
382  if (get_bits_left(&gb) < 64)
383  return AVERROR_INVALIDDATA;
384 
385  header_size = get_bits_long(&gb, 32);
386  trailer_size = get_bits_long(&gb, 32);
387  if (header_size == 0xFFFFFFFF)
388  header_size = 0;
389  if (trailer_size == 0xFFFFFFFF)
390  trailer_size = 0;
391 
392  ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
393 
394 
395  // skip the header and trailer data
396  if (get_bits_left(&gb) < ht_size)
397  return AVERROR_INVALIDDATA;
398 
399  if (ht_size > INT32_MAX)
400  return AVERROR_PATCHWELCOME;
401 
402  skip_bits_long(&gb, ht_size);
403 
404 
405  // initialize CRC calculation
406  if (sconf->crc_enabled) {
407  if (get_bits_left(&gb) < 32)
408  return AVERROR_INVALIDDATA;
409 
412  ctx->crc = 0xFFFFFFFF;
413  ctx->crc_org = ~get_bits_long(&gb, 32);
414  } else
415  skip_bits_long(&gb, 32);
416  }
417 
418 
419  // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
420 
422 
423  return 0;
424 }
425 
426 
427 /** Check the ALSSpecificConfig for unsupported features.
428  */
430 {
431  ALSSpecificConfig *sconf = &ctx->sconf;
432  int error = 0;
433 
434  // report unsupported feature and set error value
435  #define MISSING_ERR(cond, str, errval) \
436  { \
437  if (cond) { \
438  avpriv_report_missing_feature(ctx->avctx, \
439  str); \
440  error = errval; \
441  } \
442  }
443 
444  MISSING_ERR(sconf->floating, "Floating point decoding", AVERROR_PATCHWELCOME);
445  MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
446 
447  return error;
448 }
449 
450 
451 /** Parse the bs_info field to extract the block partitioning used in
452  * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
453  */
454 static void parse_bs_info(const uint32_t bs_info, unsigned int n,
455  unsigned int div, unsigned int **div_blocks,
456  unsigned int *num_blocks)
457 {
458  if (n < 31 && ((bs_info << n) & 0x40000000)) {
459  // if the level is valid and the investigated bit n is set
460  // then recursively check both children at bits (2n+1) and (2n+2)
461  n *= 2;
462  div += 1;
463  parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
464  parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
465  } else {
466  // else the bit is not set or the last level has been reached
467  // (bit implicitly not set)
468  **div_blocks = div;
469  (*div_blocks)++;
470  (*num_blocks)++;
471  }
472 }
473 
474 
475 /** Read and decode a Rice codeword.
476  */
477 static int32_t decode_rice(GetBitContext *gb, unsigned int k)
478 {
479  int max = get_bits_left(gb) - k;
480  int q = get_unary(gb, 0, max);
481  int r = k ? get_bits1(gb) : !(q & 1);
482 
483  if (k > 1) {
484  q <<= (k - 1);
485  q += get_bits_long(gb, k - 1);
486  } else if (!k) {
487  q >>= 1;
488  }
489  return r ? q : ~q;
490 }
491 
492 
493 /** Convert PARCOR coefficient k to direct filter coefficient.
494  */
495 static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
496 {
497  int i, j;
498 
499  for (i = 0, j = k - 1; i < j; i++, j--) {
500  int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
501  cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
502  cof[i] += tmp1;
503  }
504  if (i == j)
505  cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
506 
507  cof[k] = par[k];
508 }
509 
510 
511 /** Read block switching field if necessary and set actual block sizes.
512  * Also assure that the block sizes of the last frame correspond to the
513  * actual number of samples.
514  */
515 static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
516  uint32_t *bs_info)
517 {
518  ALSSpecificConfig *sconf = &ctx->sconf;
519  GetBitContext *gb = &ctx->gb;
520  unsigned int *ptr_div_blocks = div_blocks;
521  unsigned int b;
522 
523  if (sconf->block_switching) {
524  unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
525  *bs_info = get_bits_long(gb, bs_info_len);
526  *bs_info <<= (32 - bs_info_len);
527  }
528 
529  ctx->num_blocks = 0;
530  parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
531 
532  // The last frame may have an overdetermined block structure given in
533  // the bitstream. In that case the defined block structure would need
534  // more samples than available to be consistent.
535  // The block structure is actually used but the block sizes are adapted
536  // to fit the actual number of available samples.
537  // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
538  // This results in the actual block sizes: 2 2 1 0.
539  // This is not specified in 14496-3 but actually done by the reference
540  // codec RM22 revision 2.
541  // This appears to happen in case of an odd number of samples in the last
542  // frame which is actually not allowed by the block length switching part
543  // of 14496-3.
544  // The ALS conformance files feature an odd number of samples in the last
545  // frame.
546 
547  for (b = 0; b < ctx->num_blocks; b++)
548  div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
549 
550  if (ctx->cur_frame_length != ctx->sconf.frame_length) {
551  unsigned int remaining = ctx->cur_frame_length;
552 
553  for (b = 0; b < ctx->num_blocks; b++) {
554  if (remaining <= div_blocks[b]) {
555  div_blocks[b] = remaining;
556  ctx->num_blocks = b + 1;
557  break;
558  }
559 
560  remaining -= div_blocks[b];
561  }
562  }
563 }
564 
565 
566 /** Read the block data for a constant block
567  */
569 {
570  ALSSpecificConfig *sconf = &ctx->sconf;
571  AVCodecContext *avctx = ctx->avctx;
572  GetBitContext *gb = &ctx->gb;
573 
574  if (bd->block_length <= 0)
575  return AVERROR_INVALIDDATA;
576 
577  *bd->raw_samples = 0;
578  *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
579  bd->js_blocks = get_bits1(gb);
580 
581  // skip 5 reserved bits
582  skip_bits(gb, 5);
583 
584  if (*bd->const_block) {
585  unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
586  *bd->raw_samples = get_sbits_long(gb, const_val_bits);
587  }
588 
589  // ensure constant block decoding by reusing this field
590  *bd->const_block = 1;
591 
592  return 0;
593 }
594 
595 
596 /** Decode the block data for a constant block
597  */
599 {
600  int smp = bd->block_length - 1;
601  int32_t val = *bd->raw_samples;
602  int32_t *dst = bd->raw_samples + 1;
603 
604  // write raw samples into buffer
605  for (; smp; smp--)
606  *dst++ = val;
607 }
608 
609 
610 /** Read the block data for a non-constant block
611  */
613 {
614  ALSSpecificConfig *sconf = &ctx->sconf;
615  AVCodecContext *avctx = ctx->avctx;
616  GetBitContext *gb = &ctx->gb;
617  unsigned int k;
618  unsigned int s[8];
619  unsigned int sx[8];
620  unsigned int sub_blocks, log2_sub_blocks, sb_length;
621  unsigned int start = 0;
622  unsigned int opt_order;
623  int sb;
624  int32_t *quant_cof = bd->quant_cof;
625  int32_t *current_res;
626 
627 
628  // ensure variable block decoding by reusing this field
629  *bd->const_block = 0;
630 
631  *bd->opt_order = 1;
632  bd->js_blocks = get_bits1(gb);
633 
634  opt_order = *bd->opt_order;
635 
636  // determine the number of subblocks for entropy decoding
637  if (!sconf->bgmc && !sconf->sb_part) {
638  log2_sub_blocks = 0;
639  } else {
640  if (sconf->bgmc && sconf->sb_part)
641  log2_sub_blocks = get_bits(gb, 2);
642  else
643  log2_sub_blocks = 2 * get_bits1(gb);
644  }
645 
646  sub_blocks = 1 << log2_sub_blocks;
647 
648  // do not continue in case of a damaged stream since
649  // block_length must be evenly divisible by sub_blocks
650  if (bd->block_length & (sub_blocks - 1)) {
651  av_log(avctx, AV_LOG_WARNING,
652  "Block length is not evenly divisible by the number of subblocks.\n");
653  return AVERROR_INVALIDDATA;
654  }
655 
656  sb_length = bd->block_length >> log2_sub_blocks;
657 
658  if (sconf->bgmc) {
659  s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
660  for (k = 1; k < sub_blocks; k++)
661  s[k] = s[k - 1] + decode_rice(gb, 2);
662 
663  for (k = 0; k < sub_blocks; k++) {
664  sx[k] = s[k] & 0x0F;
665  s [k] >>= 4;
666  }
667  } else {
668  s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
669  for (k = 1; k < sub_blocks; k++)
670  s[k] = s[k - 1] + decode_rice(gb, 0);
671  }
672  for (k = 1; k < sub_blocks; k++)
673  if (s[k] > 32) {
674  av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
675  return AVERROR_INVALIDDATA;
676  }
677 
678  if (get_bits1(gb))
679  *bd->shift_lsbs = get_bits(gb, 4) + 1;
680 
681  *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
682 
683 
684  if (!sconf->rlslms) {
685  if (sconf->adapt_order && sconf->max_order) {
686  int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
687  2, sconf->max_order + 1));
688  *bd->opt_order = get_bits(gb, opt_order_length);
689  if (*bd->opt_order > sconf->max_order) {
690  *bd->opt_order = sconf->max_order;
691  av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
692  return AVERROR_INVALIDDATA;
693  }
694  } else {
695  *bd->opt_order = sconf->max_order;
696  }
697  if (*bd->opt_order > bd->block_length) {
698  *bd->opt_order = bd->block_length;
699  av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
700  return AVERROR_INVALIDDATA;
701  }
702  opt_order = *bd->opt_order;
703 
704  if (opt_order) {
705  int add_base;
706 
707  if (sconf->coef_table == 3) {
708  add_base = 0x7F;
709 
710  // read coefficient 0
711  quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
712 
713  // read coefficient 1
714  if (opt_order > 1)
715  quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
716 
717  // read coefficients 2 to opt_order
718  for (k = 2; k < opt_order; k++)
719  quant_cof[k] = get_bits(gb, 7);
720  } else {
721  int k_max;
722  add_base = 1;
723 
724  // read coefficient 0 to 19
725  k_max = FFMIN(opt_order, 20);
726  for (k = 0; k < k_max; k++) {
727  int rice_param = parcor_rice_table[sconf->coef_table][k][1];
728  int offset = parcor_rice_table[sconf->coef_table][k][0];
729  quant_cof[k] = decode_rice(gb, rice_param) + offset;
730  if (quant_cof[k] < -64 || quant_cof[k] > 63) {
731  av_log(avctx, AV_LOG_ERROR,
732  "quant_cof %"PRIu32" is out of range.\n",
733  quant_cof[k]);
734  return AVERROR_INVALIDDATA;
735  }
736  }
737 
738  // read coefficients 20 to 126
739  k_max = FFMIN(opt_order, 127);
740  for (; k < k_max; k++)
741  quant_cof[k] = decode_rice(gb, 2) + (k & 1);
742 
743  // read coefficients 127 to opt_order
744  for (; k < opt_order; k++)
745  quant_cof[k] = decode_rice(gb, 1);
746 
747  quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
748 
749  if (opt_order > 1)
750  quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
751  }
752 
753  for (k = 2; k < opt_order; k++)
754  quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
755  }
756  }
757 
758  // read LTP gain and lag values
759  if (sconf->long_term_prediction) {
760  *bd->use_ltp = get_bits1(gb);
761 
762  if (*bd->use_ltp) {
763  int r, c;
764 
765  bd->ltp_gain[0] = decode_rice(gb, 1) << 3;
766  bd->ltp_gain[1] = decode_rice(gb, 2) << 3;
767 
768  r = get_unary(gb, 0, 4);
769  c = get_bits(gb, 2);
770  if (r >= 4) {
771  av_log(avctx, AV_LOG_ERROR, "r overflow\n");
772  return AVERROR_INVALIDDATA;
773  }
774 
775  bd->ltp_gain[2] = ltp_gain_values[r][c];
776 
777  bd->ltp_gain[3] = decode_rice(gb, 2) << 3;
778  bd->ltp_gain[4] = decode_rice(gb, 1) << 3;
779 
780  *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
781  *bd->ltp_lag += FFMAX(4, opt_order + 1);
782  }
783  }
784 
785  // read first value and residuals in case of a random access block
786  if (bd->ra_block) {
787  if (opt_order)
788  bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
789  if (opt_order > 1)
790  bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
791  if (opt_order > 2)
792  bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
793 
794  start = FFMIN(opt_order, 3);
795  }
796 
797  // read all residuals
798  if (sconf->bgmc) {
799  int delta[8];
800  unsigned int k [8];
801  unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
802 
803  // read most significant bits
804  unsigned int high;
805  unsigned int low;
806  unsigned int value;
807 
808  ff_bgmc_decode_init(gb, &high, &low, &value);
809 
810  current_res = bd->raw_samples + start;
811 
812  for (sb = 0; sb < sub_blocks; sb++) {
813  unsigned int sb_len = sb_length - (sb ? 0 : start);
814 
815  k [sb] = s[sb] > b ? s[sb] - b : 0;
816  delta[sb] = 5 - s[sb] + k[sb];
817 
818  ff_bgmc_decode(gb, sb_len, current_res,
819  delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
820 
821  current_res += sb_len;
822  }
823 
824  ff_bgmc_decode_end(gb);
825 
826 
827  // read least significant bits and tails
828  current_res = bd->raw_samples + start;
829 
830  for (sb = 0; sb < sub_blocks; sb++, start = 0) {
831  unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
832  unsigned int cur_k = k[sb];
833  unsigned int cur_s = s[sb];
834 
835  for (; start < sb_length; start++) {
836  int32_t res = *current_res;
837 
838  if (res == cur_tail_code) {
839  unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
840  << (5 - delta[sb]);
841 
842  res = decode_rice(gb, cur_s);
843 
844  if (res >= 0) {
845  res += (max_msb ) << cur_k;
846  } else {
847  res -= (max_msb - 1) << cur_k;
848  }
849  } else {
850  if (res > cur_tail_code)
851  res--;
852 
853  if (res & 1)
854  res = -res;
855 
856  res >>= 1;
857 
858  if (cur_k) {
859  res <<= cur_k;
860  res |= get_bits_long(gb, cur_k);
861  }
862  }
863 
864  *current_res++ = res;
865  }
866  }
867  } else {
868  current_res = bd->raw_samples + start;
869 
870  for (sb = 0; sb < sub_blocks; sb++, start = 0)
871  for (; start < sb_length; start++)
872  *current_res++ = decode_rice(gb, s[sb]);
873  }
874 
875  if (!sconf->mc_coding || ctx->js_switch)
876  align_get_bits(gb);
877 
878  return 0;
879 }
880 
881 
882 /** Decode the block data for a non-constant block
883  */
885 {
886  ALSSpecificConfig *sconf = &ctx->sconf;
887  unsigned int block_length = bd->block_length;
888  unsigned int smp = 0;
889  unsigned int k;
890  int opt_order = *bd->opt_order;
891  int sb;
892  int64_t y;
893  int32_t *quant_cof = bd->quant_cof;
894  int32_t *lpc_cof = bd->lpc_cof;
895  int32_t *raw_samples = bd->raw_samples;
896  int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
897  int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
898 
899  // reverse long-term prediction
900  if (*bd->use_ltp) {
901  int ltp_smp;
902 
903  for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
904  int center = ltp_smp - *bd->ltp_lag;
905  int begin = FFMAX(0, center - 2);
906  int end = center + 3;
907  int tab = 5 - (end - begin);
908  int base;
909 
910  y = 1 << 6;
911 
912  for (base = begin; base < end; base++, tab++)
913  y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
914 
915  raw_samples[ltp_smp] += y >> 7;
916  }
917  }
918 
919  // reconstruct all samples from residuals
920  if (bd->ra_block) {
921  for (smp = 0; smp < opt_order; smp++) {
922  y = 1 << 19;
923 
924  for (sb = 0; sb < smp; sb++)
925  y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
926 
927  *raw_samples++ -= y >> 20;
928  parcor_to_lpc(smp, quant_cof, lpc_cof);
929  }
930  } else {
931  for (k = 0; k < opt_order; k++)
932  parcor_to_lpc(k, quant_cof, lpc_cof);
933 
934  // store previous samples in case that they have to be altered
935  if (*bd->store_prev_samples)
936  memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
937  sizeof(*bd->prev_raw_samples) * sconf->max_order);
938 
939  // reconstruct difference signal for prediction (joint-stereo)
940  if (bd->js_blocks && bd->raw_other) {
941  int32_t *left, *right;
942 
943  if (bd->raw_other > raw_samples) { // D = R - L
944  left = raw_samples;
945  right = bd->raw_other;
946  } else { // D = R - L
947  left = bd->raw_other;
948  right = raw_samples;
949  }
950 
951  for (sb = -1; sb >= -sconf->max_order; sb--)
952  raw_samples[sb] = right[sb] - left[sb];
953  }
954 
955  // reconstruct shifted signal
956  if (*bd->shift_lsbs)
957  for (sb = -1; sb >= -sconf->max_order; sb--)
958  raw_samples[sb] >>= *bd->shift_lsbs;
959  }
960 
961  // reverse linear prediction coefficients for efficiency
962  lpc_cof = lpc_cof + opt_order;
963 
964  for (sb = 0; sb < opt_order; sb++)
965  lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
966 
967  // reconstruct raw samples
968  raw_samples = bd->raw_samples + smp;
969  lpc_cof = lpc_cof_reversed + opt_order;
970 
971  for (; raw_samples < raw_samples_end; raw_samples++) {
972  y = 1 << 19;
973 
974  for (sb = -opt_order; sb < 0; sb++)
975  y += MUL64(lpc_cof[sb], raw_samples[sb]);
976 
977  *raw_samples -= y >> 20;
978  }
979 
980  raw_samples = bd->raw_samples;
981 
982  // restore previous samples in case that they have been altered
983  if (*bd->store_prev_samples)
984  memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
985  sizeof(*raw_samples) * sconf->max_order);
986 
987  return 0;
988 }
989 
990 
991 /** Read the block data.
992  */
993 static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
994 {
995  int ret;
996  GetBitContext *gb = &ctx->gb;
997 
998  *bd->shift_lsbs = 0;
999  // read block type flag and read the samples accordingly
1000  if (get_bits1(gb)) {
1001  ret = read_var_block_data(ctx, bd);
1002  } else {
1003  ret = read_const_block_data(ctx, bd);
1004  }
1005 
1006  return ret;
1007 }
1008 
1009 
1010 /** Decode the block data.
1011  */
1013 {
1014  unsigned int smp;
1015  int ret = 0;
1016 
1017  // read block type flag and read the samples accordingly
1018  if (*bd->const_block)
1019  decode_const_block_data(ctx, bd);
1020  else
1021  ret = decode_var_block_data(ctx, bd); // always return 0
1022 
1023  if (ret < 0)
1024  return ret;
1025 
1026  // TODO: read RLSLMS extension data
1027 
1028  if (*bd->shift_lsbs)
1029  for (smp = 0; smp < bd->block_length; smp++)
1030  bd->raw_samples[smp] <<= *bd->shift_lsbs;
1031 
1032  return 0;
1033 }
1034 
1035 
1036 /** Read and decode block data successively.
1037  */
1039 {
1040  int ret;
1041 
1042  if ((ret = read_block(ctx, bd)) < 0)
1043  return ret;
1044 
1045  return decode_block(ctx, bd);
1046 }
1047 
1048 
1049 /** Compute the number of samples left to decode for the current frame and
1050  * sets these samples to zero.
1051  */
1052 static void zero_remaining(unsigned int b, unsigned int b_max,
1053  const unsigned int *div_blocks, int32_t *buf)
1054 {
1055  unsigned int count = 0;
1056 
1057  while (b < b_max)
1058  count += div_blocks[b++];
1059 
1060  if (count)
1061  memset(buf, 0, sizeof(*buf) * count);
1062 }
1063 
1064 
1065 /** Decode blocks independently.
1066  */
1067 static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1068  unsigned int c, const unsigned int *div_blocks,
1069  unsigned int *js_blocks)
1070 {
1071  int ret;
1072  unsigned int b;
1073  ALSBlockData bd = { 0 };
1074 
1075  bd.ra_block = ra_frame;
1076  bd.const_block = ctx->const_block;
1077  bd.shift_lsbs = ctx->shift_lsbs;
1078  bd.opt_order = ctx->opt_order;
1080  bd.use_ltp = ctx->use_ltp;
1081  bd.ltp_lag = ctx->ltp_lag;
1082  bd.ltp_gain = ctx->ltp_gain[0];
1083  bd.quant_cof = ctx->quant_cof[0];
1084  bd.lpc_cof = ctx->lpc_cof[0];
1086  bd.raw_samples = ctx->raw_samples[c];
1087 
1088 
1089  for (b = 0; b < ctx->num_blocks; b++) {
1090  bd.block_length = div_blocks[b];
1091 
1092  if ((ret = read_decode_block(ctx, &bd)) < 0) {
1093  // damaged block, write zero for the rest of the frame
1094  zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1095  return ret;
1096  }
1097  bd.raw_samples += div_blocks[b];
1098  bd.ra_block = 0;
1099  }
1100 
1101  return 0;
1102 }
1103 
1104 
1105 /** Decode blocks dependently.
1106  */
1107 static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1108  unsigned int c, const unsigned int *div_blocks,
1109  unsigned int *js_blocks)
1110 {
1111  ALSSpecificConfig *sconf = &ctx->sconf;
1112  unsigned int offset = 0;
1113  unsigned int b;
1114  int ret;
1115  ALSBlockData bd[2] = { { 0 } };
1116 
1117  bd[0].ra_block = ra_frame;
1118  bd[0].const_block = ctx->const_block;
1119  bd[0].shift_lsbs = ctx->shift_lsbs;
1120  bd[0].opt_order = ctx->opt_order;
1122  bd[0].use_ltp = ctx->use_ltp;
1123  bd[0].ltp_lag = ctx->ltp_lag;
1124  bd[0].ltp_gain = ctx->ltp_gain[0];
1125  bd[0].quant_cof = ctx->quant_cof[0];
1126  bd[0].lpc_cof = ctx->lpc_cof[0];
1127  bd[0].prev_raw_samples = ctx->prev_raw_samples;
1128  bd[0].js_blocks = *js_blocks;
1129 
1130  bd[1].ra_block = ra_frame;
1131  bd[1].const_block = ctx->const_block;
1132  bd[1].shift_lsbs = ctx->shift_lsbs;
1133  bd[1].opt_order = ctx->opt_order;
1135  bd[1].use_ltp = ctx->use_ltp;
1136  bd[1].ltp_lag = ctx->ltp_lag;
1137  bd[1].ltp_gain = ctx->ltp_gain[0];
1138  bd[1].quant_cof = ctx->quant_cof[0];
1139  bd[1].lpc_cof = ctx->lpc_cof[0];
1140  bd[1].prev_raw_samples = ctx->prev_raw_samples;
1141  bd[1].js_blocks = *(js_blocks + 1);
1142 
1143  // decode all blocks
1144  for (b = 0; b < ctx->num_blocks; b++) {
1145  unsigned int s;
1146 
1147  bd[0].block_length = div_blocks[b];
1148  bd[1].block_length = div_blocks[b];
1149 
1150  bd[0].raw_samples = ctx->raw_samples[c ] + offset;
1151  bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
1152 
1153  bd[0].raw_other = bd[1].raw_samples;
1154  bd[1].raw_other = bd[0].raw_samples;
1155 
1156  if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
1157  (ret = read_decode_block(ctx, &bd[1])) < 0)
1158  goto fail;
1159 
1160  // reconstruct joint-stereo blocks
1161  if (bd[0].js_blocks) {
1162  if (bd[1].js_blocks)
1163  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
1164 
1165  for (s = 0; s < div_blocks[b]; s++)
1166  bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
1167  } else if (bd[1].js_blocks) {
1168  for (s = 0; s < div_blocks[b]; s++)
1169  bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
1170  }
1171 
1172  offset += div_blocks[b];
1173  bd[0].ra_block = 0;
1174  bd[1].ra_block = 0;
1175  }
1176 
1177  // store carryover raw samples,
1178  // the others channel raw samples are stored by the calling function.
1179  memmove(ctx->raw_samples[c] - sconf->max_order,
1180  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1181  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1182 
1183  return 0;
1184 fail:
1185  // damaged block, write zero for the rest of the frame
1186  zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1187  zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1188  return ret;
1189 }
1190 
1191 static inline int als_weighting(GetBitContext *gb, int k, int off)
1192 {
1193  int idx = av_clip(decode_rice(gb, k) + off,
1194  0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
1195  return mcc_weightings[idx];
1196 }
1197 
1198 /** Read the channel data.
1199  */
1201 {
1202  GetBitContext *gb = &ctx->gb;
1203  ALSChannelData *current = cd;
1204  unsigned int channels = ctx->avctx->channels;
1205  int entries = 0;
1206 
1207  while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1208  current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1209 
1210  if (current->master_channel >= channels) {
1211  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
1212  return AVERROR_INVALIDDATA;
1213  }
1214 
1215  if (current->master_channel != c) {
1216  current->time_diff_flag = get_bits1(gb);
1217  current->weighting[0] = als_weighting(gb, 1, 16);
1218  current->weighting[1] = als_weighting(gb, 2, 14);
1219  current->weighting[2] = als_weighting(gb, 1, 16);
1220 
1221  if (current->time_diff_flag) {
1222  current->weighting[3] = als_weighting(gb, 1, 16);
1223  current->weighting[4] = als_weighting(gb, 1, 16);
1224  current->weighting[5] = als_weighting(gb, 1, 16);
1225 
1226  current->time_diff_sign = get_bits1(gb);
1227  current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1228  }
1229  }
1230 
1231  current++;
1232  entries++;
1233  }
1234 
1235  if (entries == channels) {
1236  av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
1237  return AVERROR_INVALIDDATA;
1238  }
1239 
1240  align_get_bits(gb);
1241  return 0;
1242 }
1243 
1244 
1245 /** Recursively reverts the inter-channel correlation for a block.
1246  */
1248  ALSChannelData **cd, int *reverted,
1249  unsigned int offset, int c)
1250 {
1251  ALSChannelData *ch = cd[c];
1252  unsigned int dep = 0;
1253  unsigned int channels = ctx->avctx->channels;
1254  unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
1255 
1256  if (reverted[c])
1257  return 0;
1258 
1259  reverted[c] = 1;
1260 
1261  while (dep < channels && !ch[dep].stop_flag) {
1262  revert_channel_correlation(ctx, bd, cd, reverted, offset,
1263  ch[dep].master_channel);
1264 
1265  dep++;
1266  }
1267 
1268  if (dep == channels) {
1269  av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
1270  return AVERROR_INVALIDDATA;
1271  }
1272 
1273  bd->const_block = ctx->const_block + c;
1274  bd->shift_lsbs = ctx->shift_lsbs + c;
1275  bd->opt_order = ctx->opt_order + c;
1277  bd->use_ltp = ctx->use_ltp + c;
1278  bd->ltp_lag = ctx->ltp_lag + c;
1279  bd->ltp_gain = ctx->ltp_gain[c];
1280  bd->lpc_cof = ctx->lpc_cof[c];
1281  bd->quant_cof = ctx->quant_cof[c];
1282  bd->raw_samples = ctx->raw_samples[c] + offset;
1283 
1284  for (dep = 0; !ch[dep].stop_flag; dep++) {
1285  ptrdiff_t smp;
1286  ptrdiff_t begin = 1;
1287  ptrdiff_t end = bd->block_length - 1;
1288  int64_t y;
1289  int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1290 
1291  if (ch[dep].master_channel == c)
1292  continue;
1293 
1294  if (ch[dep].time_diff_flag) {
1295  int t = ch[dep].time_diff_index;
1296 
1297  if (ch[dep].time_diff_sign) {
1298  t = -t;
1299  if (begin < t) {
1300  av_log(ctx->avctx, AV_LOG_ERROR, "begin %td smaller than time diff index %d.\n", begin, t);
1301  return AVERROR_INVALIDDATA;
1302  }
1303  begin -= t;
1304  } else {
1305  if (end < t) {
1306  av_log(ctx->avctx, AV_LOG_ERROR, "end %td smaller than time diff index %d.\n", end, t);
1307  return AVERROR_INVALIDDATA;
1308  }
1309  end -= t;
1310  }
1311 
1312  if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
1313  FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
1314  av_log(ctx->avctx, AV_LOG_ERROR,
1315  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1316  master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t),
1317  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1318  return AVERROR_INVALIDDATA;
1319  }
1320 
1321  for (smp = begin; smp < end; smp++) {
1322  y = (1 << 6) +
1323  MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
1324  MUL64(ch[dep].weighting[1], master[smp ]) +
1325  MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
1326  MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1327  MUL64(ch[dep].weighting[4], master[smp + t]) +
1328  MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1329 
1330  bd->raw_samples[smp] += y >> 7;
1331  }
1332  } else {
1333 
1334  if (begin - 1 < ctx->raw_buffer - master ||
1335  end + 1 > ctx->raw_buffer + channels * channel_size - master) {
1336  av_log(ctx->avctx, AV_LOG_ERROR,
1337  "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1338  master + begin - 1, master + end + 1,
1339  ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1340  return AVERROR_INVALIDDATA;
1341  }
1342 
1343  for (smp = begin; smp < end; smp++) {
1344  y = (1 << 6) +
1345  MUL64(ch[dep].weighting[0], master[smp - 1]) +
1346  MUL64(ch[dep].weighting[1], master[smp ]) +
1347  MUL64(ch[dep].weighting[2], master[smp + 1]);
1348 
1349  bd->raw_samples[smp] += y >> 7;
1350  }
1351  }
1352  }
1353 
1354  return 0;
1355 }
1356 
1357 
1358 /** Read the frame data.
1359  */
1360 static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1361 {
1362  ALSSpecificConfig *sconf = &ctx->sconf;
1363  AVCodecContext *avctx = ctx->avctx;
1364  GetBitContext *gb = &ctx->gb;
1365  unsigned int div_blocks[32]; ///< block sizes.
1366  unsigned int c;
1367  unsigned int js_blocks[2];
1368  uint32_t bs_info = 0;
1369  int ret;
1370 
1371  // skip the size of the ra unit if present in the frame
1372  if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1373  skip_bits_long(gb, 32);
1374 
1375  if (sconf->mc_coding && sconf->joint_stereo) {
1376  ctx->js_switch = get_bits1(gb);
1377  align_get_bits(gb);
1378  }
1379 
1380  if (!sconf->mc_coding || ctx->js_switch) {
1381  int independent_bs = !sconf->joint_stereo;
1382 
1383  for (c = 0; c < avctx->channels; c++) {
1384  js_blocks[0] = 0;
1385  js_blocks[1] = 0;
1386 
1387  get_block_sizes(ctx, div_blocks, &bs_info);
1388 
1389  // if joint_stereo and block_switching is set, independent decoding
1390  // is signaled via the first bit of bs_info
1391  if (sconf->joint_stereo && sconf->block_switching)
1392  if (bs_info >> 31)
1393  independent_bs = 2;
1394 
1395  // if this is the last channel, it has to be decoded independently
1396  if (c == avctx->channels - 1)
1397  independent_bs = 1;
1398 
1399  if (independent_bs) {
1400  ret = decode_blocks_ind(ctx, ra_frame, c,
1401  div_blocks, js_blocks);
1402  if (ret < 0)
1403  return ret;
1404  independent_bs--;
1405  } else {
1406  ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
1407  if (ret < 0)
1408  return ret;
1409 
1410  c++;
1411  }
1412 
1413  // store carryover raw samples
1414  memmove(ctx->raw_samples[c] - sconf->max_order,
1415  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1416  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1417  }
1418  } else { // multi-channel coding
1419  ALSBlockData bd = { 0 };
1420  int b, ret;
1421  int *reverted_channels = ctx->reverted_channels;
1422  unsigned int offset = 0;
1423 
1424  for (c = 0; c < avctx->channels; c++)
1425  if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1426  av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
1427  return AVERROR_INVALIDDATA;
1428  }
1429 
1430  memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
1431 
1432  bd.ra_block = ra_frame;
1434 
1435  get_block_sizes(ctx, div_blocks, &bs_info);
1436 
1437  for (b = 0; b < ctx->num_blocks; b++) {
1438  bd.block_length = div_blocks[b];
1439  if (bd.block_length <= 0) {
1440  av_log(ctx->avctx, AV_LOG_WARNING,
1441  "Invalid block length %u in channel data!\n",
1442  bd.block_length);
1443  continue;
1444  }
1445 
1446  for (c = 0; c < avctx->channels; c++) {
1447  bd.const_block = ctx->const_block + c;
1448  bd.shift_lsbs = ctx->shift_lsbs + c;
1449  bd.opt_order = ctx->opt_order + c;
1451  bd.use_ltp = ctx->use_ltp + c;
1452  bd.ltp_lag = ctx->ltp_lag + c;
1453  bd.ltp_gain = ctx->ltp_gain[c];
1454  bd.lpc_cof = ctx->lpc_cof[c];
1455  bd.quant_cof = ctx->quant_cof[c];
1456  bd.raw_samples = ctx->raw_samples[c] + offset;
1457  bd.raw_other = NULL;
1458 
1459  if ((ret = read_block(ctx, &bd)) < 0)
1460  return ret;
1461  if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
1462  return ret;
1463  }
1464 
1465  for (c = 0; c < avctx->channels; c++) {
1466  ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
1467  reverted_channels, offset, c);
1468  if (ret < 0)
1469  return ret;
1470  }
1471  for (c = 0; c < avctx->channels; c++) {
1472  bd.const_block = ctx->const_block + c;
1473  bd.shift_lsbs = ctx->shift_lsbs + c;
1474  bd.opt_order = ctx->opt_order + c;
1476  bd.use_ltp = ctx->use_ltp + c;
1477  bd.ltp_lag = ctx->ltp_lag + c;
1478  bd.ltp_gain = ctx->ltp_gain[c];
1479  bd.lpc_cof = ctx->lpc_cof[c];
1480  bd.quant_cof = ctx->quant_cof[c];
1481  bd.raw_samples = ctx->raw_samples[c] + offset;
1482 
1483  if ((ret = decode_block(ctx, &bd)) < 0)
1484  return ret;
1485  }
1486 
1487  memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
1488  offset += div_blocks[b];
1489  bd.ra_block = 0;
1490  }
1491 
1492  // store carryover raw samples
1493  for (c = 0; c < avctx->channels; c++)
1494  memmove(ctx->raw_samples[c] - sconf->max_order,
1495  ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1496  sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1497  }
1498 
1499  // TODO: read_diff_float_data
1500 
1501  if (get_bits_left(gb) < 0) {
1502  av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
1503  return AVERROR_INVALIDDATA;
1504  }
1505 
1506  return 0;
1507 }
1508 
1509 
1510 /** Decode an ALS frame.
1511  */
1512 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
1513  AVPacket *avpkt)
1514 {
1515  ALSDecContext *ctx = avctx->priv_data;
1516  AVFrame *frame = data;
1517  ALSSpecificConfig *sconf = &ctx->sconf;
1518  const uint8_t *buffer = avpkt->data;
1519  int buffer_size = avpkt->size;
1520  int invalid_frame, ret;
1521  unsigned int c, sample, ra_frame, bytes_read, shift;
1522 
1523  if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
1524  return ret;
1525 
1526  // In the case that the distance between random access frames is set to zero
1527  // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1528  // For the first frame, if prediction is used, all samples used from the
1529  // previous frame are assumed to be zero.
1530  ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1531 
1532  // the last frame to decode might have a different length
1533  if (sconf->samples != 0xFFFFFFFF)
1534  ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1535  sconf->frame_length);
1536  else
1537  ctx->cur_frame_length = sconf->frame_length;
1538 
1539  // decode the frame data
1540  if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1541  av_log(ctx->avctx, AV_LOG_WARNING,
1542  "Reading frame data failed. Skipping RA unit.\n");
1543 
1544  ctx->frame_id++;
1545 
1546  /* get output buffer */
1547  frame->nb_samples = ctx->cur_frame_length;
1548  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1549  return ret;
1550 
1551  // transform decoded frame into output format
1552  #define INTERLEAVE_OUTPUT(bps) \
1553  { \
1554  int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
1555  shift = bps - ctx->avctx->bits_per_raw_sample; \
1556  if (!ctx->cs_switch) { \
1557  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1558  for (c = 0; c < avctx->channels; c++) \
1559  *dest++ = ctx->raw_samples[c][sample] << shift; \
1560  } else { \
1561  for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1562  for (c = 0; c < avctx->channels; c++) \
1563  *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] << shift; \
1564  } \
1565  }
1566 
1567  if (ctx->avctx->bits_per_raw_sample <= 16) {
1568  INTERLEAVE_OUTPUT(16)
1569  } else {
1570  INTERLEAVE_OUTPUT(32)
1571  }
1572 
1573  // update CRC
1574  if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1575  int swap = HAVE_BIGENDIAN != sconf->msb_first;
1576 
1577  if (ctx->avctx->bits_per_raw_sample == 24) {
1578  int32_t *src = (int32_t *)frame->data[0];
1579 
1580  for (sample = 0;
1581  sample < ctx->cur_frame_length * avctx->channels;
1582  sample++) {
1583  int32_t v;
1584 
1585  if (swap)
1586  v = av_bswap32(src[sample]);
1587  else
1588  v = src[sample];
1589  if (!HAVE_BIGENDIAN)
1590  v >>= 8;
1591 
1592  ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
1593  }
1594  } else {
1595  uint8_t *crc_source;
1596 
1597  if (swap) {
1598  if (ctx->avctx->bits_per_raw_sample <= 16) {
1599  int16_t *src = (int16_t*) frame->data[0];
1600  int16_t *dest = (int16_t*) ctx->crc_buffer;
1601  for (sample = 0;
1602  sample < ctx->cur_frame_length * avctx->channels;
1603  sample++)
1604  *dest++ = av_bswap16(src[sample]);
1605  } else {
1606  ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
1607  (uint32_t *) frame->data[0],
1608  ctx->cur_frame_length * avctx->channels);
1609  }
1610  crc_source = ctx->crc_buffer;
1611  } else {
1612  crc_source = frame->data[0];
1613  }
1614 
1615  ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
1616  ctx->cur_frame_length * avctx->channels *
1618  }
1619 
1620 
1621  // check CRC sums if this is the last frame
1622  if (ctx->cur_frame_length != sconf->frame_length &&
1623  ctx->crc_org != ctx->crc) {
1624  av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1625  if (avctx->err_recognition & AV_EF_EXPLODE)
1626  return AVERROR_INVALIDDATA;
1627  }
1628  }
1629 
1630  *got_frame_ptr = 1;
1631 
1632  bytes_read = invalid_frame ? buffer_size :
1633  (get_bits_count(&ctx->gb) + 7) >> 3;
1634 
1635  return bytes_read;
1636 }
1637 
1638 
1639 /** Uninitialize the ALS decoder.
1640  */
1642 {
1643  ALSDecContext *ctx = avctx->priv_data;
1644 
1645  av_freep(&ctx->sconf.chan_pos);
1646 
1647  ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1648 
1649  av_freep(&ctx->const_block);
1650  av_freep(&ctx->shift_lsbs);
1651  av_freep(&ctx->opt_order);
1653  av_freep(&ctx->use_ltp);
1654  av_freep(&ctx->ltp_lag);
1655  av_freep(&ctx->ltp_gain);
1656  av_freep(&ctx->ltp_gain_buffer);
1657  av_freep(&ctx->quant_cof);
1658  av_freep(&ctx->lpc_cof);
1659  av_freep(&ctx->quant_cof_buffer);
1660  av_freep(&ctx->lpc_cof_buffer);
1662  av_freep(&ctx->prev_raw_samples);
1663  av_freep(&ctx->raw_samples);
1664  av_freep(&ctx->raw_buffer);
1665  av_freep(&ctx->chan_data);
1666  av_freep(&ctx->chan_data_buffer);
1667  av_freep(&ctx->reverted_channels);
1668  av_freep(&ctx->crc_buffer);
1669 
1670  return 0;
1671 }
1672 
1673 
1674 /** Initialize the ALS decoder.
1675  */
1677 {
1678  unsigned int c;
1679  unsigned int channel_size;
1680  int num_buffers, ret;
1681  ALSDecContext *ctx = avctx->priv_data;
1682  ALSSpecificConfig *sconf = &ctx->sconf;
1683  ctx->avctx = avctx;
1684 
1685  if (!avctx->extradata) {
1686  av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1687  return AVERROR_INVALIDDATA;
1688  }
1689 
1690  if ((ret = read_specific_config(ctx)) < 0) {
1691  av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1692  goto fail;
1693  }
1694 
1695  if ((ret = check_specific_config(ctx)) < 0) {
1696  goto fail;
1697  }
1698 
1699  if (sconf->bgmc) {
1700  ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
1701  if (ret < 0)
1702  goto fail;
1703  }
1704  if (sconf->floating) {
1705  avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
1706  avctx->bits_per_raw_sample = 32;
1707  } else {
1708  avctx->sample_fmt = sconf->resolution > 1
1710  avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
1711  if (avctx->bits_per_raw_sample > 32) {
1712  av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
1713  avctx->bits_per_raw_sample);
1714  ret = AVERROR_INVALIDDATA;
1715  goto fail;
1716  }
1717  }
1718 
1719  // set maximum Rice parameter for progressive decoding based on resolution
1720  // This is not specified in 14496-3 but actually done by the reference
1721  // codec RM22 revision 2.
1722  ctx->s_max = sconf->resolution > 1 ? 31 : 15;
1723 
1724  // set lag value for long-term prediction
1725  ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
1726  (avctx->sample_rate >= 192000);
1727 
1728  // allocate quantized parcor coefficient buffer
1729  num_buffers = sconf->mc_coding ? avctx->channels : 1;
1730 
1731  ctx->quant_cof = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
1732  ctx->lpc_cof = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
1733  ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
1734  sizeof(*ctx->quant_cof_buffer));
1735  ctx->lpc_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
1736  sizeof(*ctx->lpc_cof_buffer));
1738  sizeof(*ctx->lpc_cof_buffer));
1739 
1740  if (!ctx->quant_cof || !ctx->lpc_cof ||
1741  !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
1742  !ctx->lpc_cof_reversed_buffer) {
1743  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1744  ret = AVERROR(ENOMEM);
1745  goto fail;
1746  }
1747 
1748  // assign quantized parcor coefficient buffers
1749  for (c = 0; c < num_buffers; c++) {
1750  ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
1751  ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
1752  }
1753 
1754  // allocate and assign lag and gain data buffer for ltp mode
1755  ctx->const_block = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
1756  ctx->shift_lsbs = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
1757  ctx->opt_order = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
1758  ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
1759  ctx->use_ltp = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
1760  ctx->ltp_lag = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
1761  ctx->ltp_gain = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
1762  ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
1763 
1764  if (!ctx->const_block || !ctx->shift_lsbs ||
1765  !ctx->opt_order || !ctx->store_prev_samples ||
1766  !ctx->use_ltp || !ctx->ltp_lag ||
1767  !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
1768  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1769  ret = AVERROR(ENOMEM);
1770  goto fail;
1771  }
1772 
1773  for (c = 0; c < num_buffers; c++)
1774  ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
1775 
1776  // allocate and assign channel data buffer for mcc mode
1777  if (sconf->mc_coding) {
1778  ctx->chan_data_buffer = av_mallocz_array(num_buffers * num_buffers,
1779  sizeof(*ctx->chan_data_buffer));
1780  ctx->chan_data = av_mallocz_array(num_buffers,
1781  sizeof(*ctx->chan_data));
1782  ctx->reverted_channels = av_malloc_array(num_buffers,
1783  sizeof(*ctx->reverted_channels));
1784 
1785  if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
1786  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1787  ret = AVERROR(ENOMEM);
1788  goto fail;
1789  }
1790 
1791  for (c = 0; c < num_buffers; c++)
1792  ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
1793  } else {
1794  ctx->chan_data = NULL;
1795  ctx->chan_data_buffer = NULL;
1796  ctx->reverted_channels = NULL;
1797  }
1798 
1799  channel_size = sconf->frame_length + sconf->max_order;
1800 
1801  ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
1802  ctx->raw_buffer = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
1803  ctx->raw_samples = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
1804 
1805  // allocate previous raw sample buffer
1806  if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
1807  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1808  ret = AVERROR(ENOMEM);
1809  goto fail;
1810  }
1811 
1812  // assign raw samples buffers
1813  ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
1814  for (c = 1; c < avctx->channels; c++)
1815  ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
1816 
1817  // allocate crc buffer
1818  if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
1821  avctx->channels *
1823  sizeof(*ctx->crc_buffer));
1824  if (!ctx->crc_buffer) {
1825  av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1826  ret = AVERROR(ENOMEM);
1827  goto fail;
1828  }
1829  }
1830 
1831  ff_bswapdsp_init(&ctx->bdsp);
1832 
1833  return 0;
1834 
1835 fail:
1836  decode_end(avctx);
1837  return ret;
1838 }
1839 
1840 
1841 /** Flush (reset) the frame ID after seeking.
1842  */
1843 static av_cold void flush(AVCodecContext *avctx)
1844 {
1845  ALSDecContext *ctx = avctx->priv_data;
1846 
1847  ctx->frame_id = 0;
1848 }
1849 
1850 
1852  .name = "als",
1853  .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
1854  .type = AVMEDIA_TYPE_AUDIO,
1855  .id = AV_CODEC_ID_MP4ALS,
1856  .priv_data_size = sizeof(ALSDecContext),
1857  .init = decode_init,
1858  .close = decode_end,
1859  .decode = decode_frame,
1860  .flush = flush,
1861  .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
1862 };
#define MUL64(a, b)
Definition: mathops.h:52
void(* bswap_buf)(uint32_t *dst, const uint32_t *src, int w)
Definition: bswapdsp.h:25
AVCodec ff_als_decoder
Definition: alsdec.c:1851
static int als_weighting(GetBitContext *gb, int k, int off)
Definition: alsdec.c:1191
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a non-constant block.
Definition: alsdec.c:884
int msb_first
1 = original CRC calculated on big-endian system, 0 = little-endian
Definition: alsdec.c:159
#define NULL
Definition: coverity.c:32
const char const char void * val
Definition: avisynth_c.h:634
float v
const char * s
Definition: avisynth_c.h:631
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
static int shift(int a, int b)
Definition: sonic.c:82
This structure describes decoded (raw) audio or video data.
Definition: frame.h:171
int * use_ltp
contains use_ltp flags for all channels
Definition: alsdec.c:212
ptrdiff_t const GLvoid * data
Definition: opengl_enc.c:101
av_cold void ff_bgmc_end(uint8_t **cf_lut, int **cf_lut_status)
Release the lookup table arrays.
Definition: bgmc.c:480
int32_t ** raw_samples
decoded raw samples for each channel
Definition: alsdec.c:225
uint8_t * crc_buffer
buffer of byte order corrected samples used for CRC check
Definition: alsdec.c:227
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:261
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:182
static const int16_t mcc_weightings[]
Inter-channel weighting factors for multi-channel correlation.
Definition: alsdec.c:118
static void skip_bits_long(GetBitContext *s, int n)
Definition: get_bits.h:218
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
int block_switching
number of block switching levels
Definition: alsdec.c:167
int rlslms
use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
Definition: alsdec.c:174
int size
Definition: avcodec.h:1434
const char * b
Definition: vf_curves.c:109
static int check_specific_config(ALSDecContext *ctx)
Check the ALSSpecificConfig for unsupported features.
Definition: alsdec.c:429
#define av_bswap16
Definition: bswap.h:31
int adapt_order
adaptive order: 1 = on, 0 = off
Definition: alsdec.c:163
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
Read the frame data.
Definition: alsdec.c:1360
int32_t * lpc_cof_reversed_buffer
temporary buffer to set up a reversed versio of lpc_cof_buffer
Definition: alsdec.c:220
GetBitContext gb
Definition: alsdec.c:194
Block Gilbert-Moore decoder header.
const char * master
Definition: vf_curves.c:110
unsigned int js_switch
if true, joint-stereo decoding is enforced
Definition: alsdec.c:201
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:3013
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Read and decode block data successively.
Definition: alsdec.c:1038
#define INTERLEAVE_OUTPUT(bps)
#define sample
AVCodec.
Definition: avcodec.h:3482
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
Read and decode a Rice codeword.
Definition: alsdec.c:477
static int get_sbits_long(GetBitContext *s, int n)
Read 0-32 bits as a signed integer.
Definition: get_bits.h:376
int * ltp_lag
contains ltp lag values for all channels
Definition: alsdec.c:213
int * const_block
contains const_block flags for all channels
Definition: alsdec.c:208
static const uint8_t ltp_gain_values[4][4]
Gain values of p(0) for long-term prediction.
Definition: alsdec.c:107
static av_cold int decode_init(AVCodecContext *avctx)
Initialize the ALS decoder.
Definition: alsdec.c:1676
BswapDSPContext bdsp
Definition: alsdec.c:195
int32_t * lpc_cof
coefficients of the direct form prediction
Definition: alsdec.c:243
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:2280
uint8_t
#define av_cold
Definition: attributes.h:74
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data for a constant block.
Definition: alsdec.c:598
float delta
static av_cold int end(AVCodecContext *avctx)
Definition: avrndec.c:90
int ** ltp_gain
gain values for ltp 5-tap filter for a channel
Definition: alsdec.c:214
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1627
int chan_sort
channel rearrangement: 1 = on, 0 = off
Definition: alsdec.c:173
static AVFrame * frame
int joint_stereo
joint stereo: 1 = on, 0 = off
Definition: alsdec.c:170
uint8_t * data
Definition: avcodec.h:1433
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:213
#define ff_dlog(a,...)
bitstream reader API header.
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks independently.
Definition: alsdec.c:1067
void ff_bgmc_decode_init(GetBitContext *gb, unsigned int *h, unsigned int *l, unsigned int *v)
Initialize decoding and reads the first value.
Definition: bgmc.c:488
unsigned int block_length
number of samples within the block
Definition: alsdec.c:232
static void zero_remaining(unsigned int b, unsigned int b_max, const unsigned int *div_blocks, int32_t *buf)
Compute the number of samples left to decode for the current frame and sets these samples to zero...
Definition: alsdec.c:1052
int ra_distance
distance between RA frames (in frames, 0...255)
Definition: alsdec.c:161
int weighting[6]
Definition: alsdec.c:187
int32_t * quant_cof_buffer
contains all quantized parcor coefficients
Definition: alsdec.c:217
signed 32 bits
Definition: samplefmt.h:63
ALSChannelData * chan_data_buffer
contains channel data for all channels
Definition: alsdec.c:222
#define av_log(a,...)
int bgmc
"Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
Definition: alsdec.c:168
unsigned int cs_switch
if true, channel rearrangement is done
Definition: alsdec.c:202
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:594
int * use_ltp
if true, long-term prediction is used
Definition: alsdec.c:239
enum RA_Flag ra_flag
indicates where the size of ra units is stored
Definition: alsdec.c:162
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
int ltp_lag_length
number of bits used for ltp lag value
Definition: alsdec.c:207
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:2911
#define AVERROR(e)
Definition: error.h:43
static av_cold void dprint_specific_config(ALSDecContext *ctx)
Definition: alsdec.c:250
unsigned int * opt_order
prediction order of this block
Definition: alsdec.c:237
int * chan_pos
original channel positions
Definition: alsdec.c:176
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:178
AVCodecContext * avctx
Definition: alsdec.c:192
static const int16_t parcor_scaled_values[]
Scaled PARCOR values used for the first two PARCOR coefficients.
Definition: alsdec.c:68
const char * r
Definition: vf_curves.c:107
int32_t ** lpc_cof
coefficients of the direct form prediction filter for a channel
Definition: alsdec.c:218
int chan_config_info
mapping of channels to loudspeaker locations. Unused until setting channel configuration is implement...
Definition: alsdec.c:175
unsigned int num_blocks
number of blocks used in the current frame
Definition: alsdec.c:203
const char * name
Name of the codec implementation.
Definition: avcodec.h:3489
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:224
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame, unsigned int c, const unsigned int *div_blocks, unsigned int *js_blocks)
Decode blocks dependently.
Definition: alsdec.c:1107
void ff_bgmc_decode_end(GetBitContext *gb)
Finish decoding.
Definition: bgmc.c:498
const AVCRC * crc_table
Definition: alsdec.c:196
static const uint8_t offset[127][2]
Definition: vf_spp.c:92
GLsizei count
Definition: opengl_enc.c:109
#define FFMAX(a, b)
Definition: common.h:90
int * bgmc_lut_status
pointer at lookup table status flags used for BGMC
Definition: alsdec.c:206
Libavcodec external API header.
#define fail()
Definition: checkasm.h:57
ALSSpecificConfig sconf
Definition: alsdec.c:193
int * store_prev_samples
if true, carryover samples have to be stored
Definition: alsdec.c:238
unsigned int * shift_lsbs
contains shift_lsbs flags for all channels
Definition: alsdec.c:209
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:2900
#define FFMIN(a, b)
Definition: common.h:92
float y
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a non-constant block.
Definition: alsdec.c:612
GLsizei GLboolean const GLfloat * value
Definition: opengl_enc.c:109
int chan_config
indicates that a chan_config_info field is present
Definition: alsdec.c:172
int32_t
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
Definition: crc.c:356
void ff_bgmc_decode(GetBitContext *gb, unsigned int num, int32_t *dst, int delta, unsigned int sx, unsigned int *h, unsigned int *l, unsigned int *v, uint8_t *cf_lut, int *cf_lut_status)
Read and decode a block Gilbert-Moore coded symbol.
Definition: bgmc.c:505
static av_cold int decode_end(AVCodecContext *avctx)
Uninitialize the ALS decoder.
Definition: alsdec.c:1641
int * const_block
if true, this is a constant value block
Definition: alsdec.c:234
int n
Definition: avisynth_c.h:547
int floating
1 = IEEE 32-bit floating-point, 0 = integer
Definition: alsdec.c:158
int time_diff_flag
Definition: alsdec.c:184
int master_channel
Definition: alsdec.c:183
uint32_t crc
CRC value calculated from decoded data.
Definition: alsdec.c:198
int coef_table
table index of Rice code parameters
Definition: alsdec.c:164
static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data for a constant block.
Definition: alsdec.c:568
#define FF_ARRAY_ELEMS(a)
int sb_part
sub-block partition
Definition: alsdec.c:169
int32_t * raw_other
decoded raw samples of the other channel of a channel pair
Definition: alsdec.c:246
uint8_t * bgmc_lut
pointer at lookup tables used for BGMC
Definition: alsdec.c:205
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
int * ltp_gain
gain values for ltp 5-tap filter
Definition: alsdec.c:241
int js_blocks
true if this block contains a difference signal
Definition: alsdec.c:235
#define av_bswap32
Definition: bswap.h:33
unsigned int ra_block
if true, this is a random access block
Definition: alsdec.c:233
AVS_Value src
Definition: avisynth_c.h:482
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
Convert PARCOR coefficient k to direct filter coefficient.
Definition: alsdec.c:495
int sample_rate
samples per second
Definition: avcodec.h:2272
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
Definition: get_bits.h:446
main external API structure.
Definition: avcodec.h:1512
ALSChannelData ** chan_data
channel data for multi-channel correlation
Definition: alsdec.c:221
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Decode an ALS frame.
Definition: alsdec.c:1512
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: utils.c:1048
#define MISSING_ERR(cond, str, errval)
void * buf
Definition: avisynth_c.h:553
int extradata_size
Definition: avcodec.h:1628
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:305
static void skip_bits1(GetBitContext *s)
Definition: get_bits.h:330
unsigned int s_max
maximum Rice parameter allowed in entropy coding
Definition: alsdec.c:204
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:298
#define AV_CODEC_CAP_SUBFRAMES
Codec can output multiple frames per AVPacket Normally demuxers return one frame at a time...
Definition: avcodec.h:907
int * ltp_lag
lag value for long-term prediction
Definition: alsdec.c:240
int32_t * lpc_cof_buffer
contains all coefficients of the direct form prediction filter
Definition: alsdec.c:219
static const int8_t parcor_rice_table[3][20][2]
Rice parameters and corresponding index offsets for decoding the indices of scaled PARCOR values...
Definition: alsdec.c:47
RA_Flag
Definition: alsdec.c:148
static av_cold int read_specific_config(ALSDecContext *ctx)
Read an ALSSpecificConfig from a buffer into the output struct.
Definition: alsdec.c:280
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:338
int long_term_prediction
long term prediction (LTP): 1 = on, 0 = off
Definition: alsdec.c:165
int32_t * raw_samples
decoded raw samples / residuals for this block
Definition: alsdec.c:244
int * reverted_channels
stores a flag for each reverted channel
Definition: alsdec.c:223
unsigned int * opt_order
contains opt_order flags for all channels
Definition: alsdec.c:210
int32_t * raw_buffer
contains all decoded raw samples including carryover samples
Definition: alsdec.c:226
int max_order
maximum prediction order (0..1023)
Definition: alsdec.c:166
uint32_t samples
number of samples, 0xFFFFFFFF if unknown
Definition: alsdec.c:156
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:182
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
Definition: samplefmt.c:104
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
Definition: crc.c:342
static int decode(AVCodecContext *avctx, void *data, int *got_sub, AVPacket *avpkt)
Definition: ccaption_dec.c:521
int mc_coding
extended inter-channel coding (multi channel coding): 1 = on, 0 = off
Definition: alsdec.c:171
static const uint8_t tail_code[16][6]
Tail codes used in arithmetic coding using block Gilbert-Moore codes.
Definition: alsdec.c:128
common internal api header.
if(ret< 0)
Definition: vf_mcdeint.c:280
int32_t * prev_raw_samples
contains unshifted raw samples from the previous block
Definition: alsdec.c:245
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
Definition: unary.h:33
static av_cold void flush(AVCodecContext *avctx)
Flush (reset) the frame ID after seeking.
Definition: alsdec.c:1843
signed 16 bits
Definition: samplefmt.h:62
static double c[64]
int time_diff_index
Definition: alsdec.c:186
int * ltp_gain_buffer
contains all gain values for ltp 5-tap filter
Definition: alsdec.c:215
int32_t * quant_cof
quantized parcor coefficients
Definition: alsdec.c:242
int avpriv_mpeg4audio_get_config(MPEG4AudioConfig *c, const uint8_t *buf, int bit_size, int sync_extension)
Parse MPEG-4 systems extradata to retrieve audio configuration.
Definition: mpeg4audio.c:81
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data...
Definition: avcodec.h:2908
#define MKBETAG(a, b, c, d)
Definition: common.h:342
static void parse_bs_info(const uint32_t bs_info, unsigned int n, unsigned int div, unsigned int **div_blocks, unsigned int *num_blocks)
Parse the bs_info field to extract the block partitioning used in block switching mode...
Definition: alsdec.c:454
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
Definition: bswapdsp.c:49
void * priv_data
Definition: avcodec.h:1554
int32_t ** quant_cof
quantized parcor coefficients for a channel
Definition: alsdec.c:216
int channels
number of audio channels
Definition: avcodec.h:2273
int crc_enabled
enable Cyclic Redundancy Checksum
Definition: alsdec.c:177
uint32_t crc_org
CRC value of the original input data.
Definition: alsdec.c:197
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
Decode the block data.
Definition: alsdec.c:1012
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
Read the block data.
Definition: alsdec.c:993
int frame_length
frame length for each frame (last frame may differ)
Definition: alsdec.c:160
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:454
int stop_flag
Definition: alsdec.c:182
static const struct twinvq_data tab
unsigned int * shift_lsbs
shift of values for this block
Definition: alsdec.c:236
static void * av_mallocz_array(size_t nmemb, size_t size)
Definition: mem.h:228
#define av_freep(p)
void INT64 start
Definition: avisynth_c.h:553
av_cold int ff_bgmc_init(AVCodecContext *avctx, uint8_t **cf_lut, int **cf_lut_status)
Initialize the lookup table arrays.
Definition: bgmc.c:460
#define av_malloc_array(a, b)
#define HAVE_BIGENDIAN
Definition: config.h:186
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
Read the channel data.
Definition: alsdec.c:1200
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks, uint32_t *bs_info)
Read block switching field if necessary and set actual block sizes.
Definition: alsdec.c:515
int * store_prev_samples
contains store_prev_samples flags for all channels
Definition: alsdec.c:211
unsigned int frame_id
the frame ID / number of the current frame
Definition: alsdec.c:200
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd, ALSChannelData **cd, int *reverted, unsigned int offset, int c)
Recursively reverts the inter-channel correlation for a block.
Definition: alsdec.c:1247
This structure stores compressed data.
Definition: avcodec.h:1410
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:225
uint32_t AVCRC
Definition: crc.h:34
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:857
for(j=16;j >0;--j)
unsigned int cur_frame_length
length of the current frame to decode
Definition: alsdec.c:199
GLuint buffer
Definition: opengl_enc.c:102
int resolution
000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
Definition: alsdec.c:157
int time_diff_sign
Definition: alsdec.c:185
#define AV_EF_CAREFUL
consider things that violate the spec, are fast to calculate and have not been seen in the wild as er...
Definition: avcodec.h:2914