next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Divisor :: floorDiv

floorDiv -- Get a divisor whose coefficients are floors of the given divisor

Synopsis

Description

Start with a rational/real divisor, we form a new divisor whose coefficients are obtained by taking the floor function
i1 : R = QQ[x, y, u, v] / ideal(x * y - u * v)

o1 = R

o1 : QuotientRing
i2 : D = divisor({1.2, -3.4, 5.7, -9.8}, {ideal(x, u), ideal(x, v), ideal(y, u), ideal(y, v)}, CoeffType => RR)

o2 = 5.7*Div(y, u) + -9.8*Div(y, v) + 1.2*Div(x, u) + -3.4*Div(x, v) of R

o2 : RDiv
i3 : floorDiv( D )

o3 = -10*Div(y, v) + 5*Div(y, u) + -4*Div(x, v) + 1*Div(x, u) of R

o3 : WDiv

See also

Ways to use floorDiv :