i1 : setRandomSeed 4386; |
i2 : R = ZZ/32749[x,y,z] o2 = R o2 : PolynomialRing |
i3 : eulerChar ideal(x^3 + x^2*z - y^2*z) o3 = 1 |
The example was done using symbolic computations with Gröbner bases. The default algorithm computes the projective degrees using Gröbner bases. Changing the option Algorithm to ResidualSymbolic will compute the residual degrees using Gröbner bases. Changing the option Algorithm to Bertini will do the main computations numerically, provided Bertini is installed and configured .