next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Divisor :: ceilingDiv

ceilingDiv -- Get a divisor whose coefficients are floors of the given divisor

Synopsis

Description

Start with a rational/real divisor, we form a new divisor whose coefficients are obtained by taking the ceiling function
i1 : R = QQ[x, y, z] / ideal(x *y - z^2)

o1 = R

o1 : QuotientRing
i2 : D = divisor({1/2, 4/3}, {ideal(x, z), ideal(y, z)}, CoeffType => QQ)

o2 = 1/2*Div(x, z) + 4/3*Div(y, z) of R

o2 : QDiv
i3 : ceilingDiv( D )

o3 = 2*Div(y, z) + 1*Div(x, z) of R

o3 : WDiv

See also

Ways to use ceilingDiv :