i1 : R = QQ[x,y,z] o1 = R o1 : PolynomialRing |
i2 : D = divisor({1,2,3}, {ideal(x), ideal(y), ideal(z)}) o2 = 3*Div(z) + 2*Div(y) + 1*Div(x) of R o2 : WDiv |
i3 : E = divisor(x*y^2*z^3) o3 = 3*Div(z) + 2*Div(y) + 1*Div(x) of R o3 : WDiv |
i4 : F = divisor(ideal(x*y^2*z^3)) o4 = 3*Div(z) + 2*Div(y) + 1*Div(x) of R o4 : WDiv |
i5 : G = divisor({{1, ideal(x)}, {2, ideal(y)}, {3, ideal(z)}}) o5 = 3*Div(z) + 2*Div(y) + 1*Div(x) of R o5 : WDiv |
i6 : R = QQ[x,y,z]/ideal(x^2-y*z) o6 = R o6 : QuotientRing |
i7 : D = divisor({2}, {ideal(x,y)}) o7 = 2*Div(x, y) of R o7 : WDiv |
i8 : E = divisor(y) o8 = 2*Div(y, x) of R o8 : WDiv |
i9 : R = ZZ/7[x,y] o9 = R o9 : PolynomialRing |
i10 : D = divisor({-1/2, 2/1}, {ideal(y^2-x^3), ideal(x)}, CoeffType=>QQ) o10 = -1/2*Div(-x^3+y^2) + 2*Div(x) of R o10 : QDiv |
i11 : R = ZZ/11[x,y,u,v]/ideal(x*y-u*v) o11 = R o11 : QuotientRing |
i12 : D = divisor({1.1, -3.14159}, {ideal(x,u), ideal(x, v)}, CoeffType=>RR) o12 = 1.1*Div(x, u) + -3.14159*Div(x, v) of R o12 : RDiv |