i1 : R = QQ[x, y, z]/ ideal(x * y - z^2) o1 = R o1 : QuotientRing |
i2 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)}) o2 = 3*Div(x, z) + 8*Div(y, z) of R o2 : WDiv |
i3 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)}) o3 = 8*Div(y, z) + 1*Div(x, z) of R o3 : WDiv |
i4 : isLinearEquivalent(D1, D2) o4 = true |
i5 : R = QQ[x, y, z]/ ideal(x * y - z^2) o5 = R o5 : QuotientRing |
i6 : D1 = divisor({3, 8}, {ideal(x, z), ideal(y, z)}) o6 = 3*Div(x, z) + 8*Div(y, z) of R o6 : WDiv |
i7 : D2 = divisor({8, 1}, {ideal(y, z), ideal(x, z)}) o7 = 8*Div(y, z) + 1*Div(x, z) of R o7 : WDiv |
i8 : isLinearEquivalent(D1, D2, IsGraded => true) o8 = false |