Returns true if the two divisors are equal
i1 : R = QQ[x,y]
o1 = R
o1 : PolynomialRing
|
i2 : D = divisor(x*y)
o2 = 1*Div(y) + 1*Div(x) of R
o2 : WDiv
|
i3 : E = divisor(x)
o3 = 1*Div(x) of R
o3 : WDiv
|
i4 : F = divisor(y)
o4 = 1*Div(y) of R
o4 : WDiv
|
i5 : D == E
o5 = false
|
i6 : D == E+F
o6 = true
|
Here is an example with rational coefficients compared with integer coefficients
i7 : R = QQ[x,y];
|
i8 : D = (1/2)*divisor(x)
o8 = 1/2*Div(x) of R
o8 : QDiv
|
i9 : D == 2*D
o9 = false
|
i10 : D + D == 2*D
o10 = true
|
i11 : E = divisor(x)
o11 = 1*Div(x) of R
o11 : WDiv
|
i12 : D == E
o12 = false
|
i13 : 2*D == E
o13 = true
|