next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Divisor :: divisorToIdeal

divisorToIdeal -- Calculate the corresponding module of a given divisor and represent it as an ideal

Synopsis

Description

Get the associated module O(D) of a given Weil Divisor D. Then express it as an ideal.
i1 : R = QQ[x, y, u, v] / ideal(x * y - u * v)

o1 = R

o1 : QuotientRing
i2 : D1 = divisor({1, -2, 3, -4}, {ideal(x, u), ideal(x, v), ideal(y, u), ideal(y, v)})

o2 = 3*Div(y, u) + -4*Div(y, v) + 1*Div(x, u) + -2*Div(x, v) of R

o2 : WDiv
i3 : divisorToIdeal( D1 )

             2 3       3   2 3     2 2   2 2
o3 = ideal (u v , x*u*v , x v , y*u v , y u v)

o3 : Ideal of R

See also

Ways to use divisorToIdeal :