next
|
previous
|
forward
|
backward
| up |
top
|
index
|
toc
|
Macaulay2 web site
Divisor
::
WDiv
WDiv -- the class of divisors with integer coefficients
Description
The class of divisors whose coefficients are integers. Should be constructed by the divisor method. For the underlying structure, see BasicDiv.
See also
divisor
-- Define the Weil divisor as a formal sum of height one prime ideals
BasicDiv
-- the class of divisors with unspecified coefficients
QDiv
-- the class of divisors with rational coefficients
RDiv
-- the class of divisors with real coefficients
Methods that use an object of class WDiv :
baseLocus(WDiv), see
baseLocus
-- Computes the locus where a graded module (or O(D) Weil divisor) is not globally generated.
divisorToIdeal(WDiv), see
divisorToIdeal
-- Calculate the corresponding module of a given divisor and represent it as an ideal
divisorToModule(WDiv), see
divisorToModule
-- Calculate the corresponding module of a given divisor
isCartier(WDiv), see
isCartier
-- Check if a Weil divisor is Cartier
isDivPrincipal(WDiv), see
isDivPrincipal
-- Check if a Weil divisor is globally principal
isLinearEquivalent(WDiv,WDiv), see
isLinearEquivalent
-- Check if two Weil divisor are linearly equivalent
isQCartier(ZZ,WDiv), see
isQCartier
-- Check whether m times a divisor is Cartier for any m from 1 to a fixed positive integer n1.
mapToProjectiveSpace(WDiv), see
mapToProjectiveSpace
-- Calculate the double dual of an ideal
nonCartierLocus(WDiv), see
nonCartierLocus
-- Returns the non-Cartier locus of a Weil divisor
QQ * WDiv
-- Multiply a Weil divisor by a rational number
toQDiv(WDiv), see
toQDiv
-- Turn a Weil divisor to a rational divisor
toRDiv(WDiv), see
toRDiv
-- Turn a integer/rational divisor to a real divisor
For the programmer
The object
WDiv
is
a
type
, with ancestor classes
QDiv
<
RDiv
<
BasicDiv
<
HashTable
<
Thing
.