ToricVectorBundles : Table of Contents
- ToricVectorBundles -- cohomology computations of equivariant vector bundles on toric varieties
- addBase -- changing the basis matrices of a toric vector bundle in Klyachko's description
- addBaseChange -- changing the transition matrices of a toric vector bundle
- addDegrees -- changing the degrees of a toric vector bundle
- addFiltration -- changing the filtration matrices of a toric vector bundle in Klyachko's description
- areIsomorphic -- checks if two vector bundles are isomorphic
- base -- the basis matrices for the rays
- cartierIndex -- the Cartier index of a Weil divisor
- charts -- the number of maximal affine charts
- cocycleCheck -- checks if a toric vector bundle fulfills the cocycle condition
- cokernel(ToricVectorBundleKlyachko,Matrix) -- the cokernel of a morphism to a vector bundle
- cotangentBundle -- the cotangent bundle on a toric variety
- deltaE -- the polytope of possible degrees that give non zero cohomology
- details -- the details of a toric vector bundle
- dual(ToricVectorBundle) -- the dual bundle of a toric vector bundle
- eulerChi -- the Euler characteristic of a toric vector bundle
- existsDecomposition -- checks if a list of matrices of weight vectors for each maximal cone admits a decomposition
- exteriorPower(ZZ,ToricVectorBundle) -- the 'l'-th exterior power of a toric vector bundle
- fan(ToricVectorBundle) -- the underlying fan of a toric vector bundle
- filtration -- the filtration matrices of the vector bundle
- findWeights -- finds the possible weight vectors for the maximal cones
- HH^ZZ ToricVectorBundle -- the i-th cohomology group of a toric vector bundle
- hh^ZZ(ToricVectorBundle) -- the rank of the i-th cohomology group of a toric vector bundle
- HH^ZZ(ToricVectorBundle,List) -- the i-th cohomology of a toric vector bundle for a given list of degrees
- HH^ZZ(ToricVectorBundle,Matrix) -- the i-th cohomology of a toric vector bundle in a given degree
- hirzebruchFan -- the fan of the n-th Hirzebruch surface
- image(ToricVectorBundleKlyachko,Matrix) -- the image of a vector bundle under a morphism
- isGeneral -- checks whether a toric vector bundle is general
- isomorphism -- the isomorphism if the two bundles are isomorphic
- isVectorBundle -- checks if the data does in fact define an equivariant toric vector bundle
- kernel(ToricVectorBundleKlyachko,Matrix) -- the kernel of a morphism to a vector bundle
- maxCones(ToricVectorBundle) -- the list of maximal cones of the underlying fan
- net(ToricVectorBundleKaneyama) -- displays characteristics of a toric vector bundle
- net(ToricVectorBundleKlyachko) -- displays characteristics of a toric vector bundle in Klyachko's description
- pp1ProductFan -- the fan of n products of PP^1
- projectiveSpaceFan -- the fan of projective n space
- randomDeformation -- a random deformation of a given toric vector bundle
- rank(ToricVectorBundle) -- the rank of the vector bundle
- rays(ToricVectorBundle) -- the rays of the underlying fan
- regCheck -- checking the regularity condition for a toric vector bundle
- ring(ToricVectorBundle) -- the graded ring of the bundle
- symmetricPower(ZZ,ToricVectorBundle) -- the 'l'-th symmetric power of a toric vector bundle
- tangentBundle -- the tangent bundle on a toric variety
- tensor(ToricVectorBundle,ToricVectorBundle) -- the tensor product of two toric vector bundles
- ToricVectorBundle -- the class of all toric vector bundles
- toricVectorBundle -- the trivial bundle of rank 'k' for a given fan
- ToricVectorBundle ** ToricVectorBundle -- the tensor product of two toric vector bundles
- ToricVectorBundle ++ ToricVectorBundle -- the direct sum of two toric vector bundles
- ToricVectorBundle == ToricVectorBundle -- checks for equality
- toricVectorBundle(ZZ,Fan,List,List) -- a toric vector bundle of rank 'k' with given filtrations or degrees
- ToricVectorBundleKaneyama -- the class of all toric vector bundles in Kaneyama's description
- ToricVectorBundleKlyachko -- the class of all toric vector bundles in Klyachko's description
- twist -- twists a toric vector bundle with a line bundle
- weilToCartier -- the line bundle given by a Cartier divisor