Reduces the generators of a DualSpace or PolySpace so that the new generators are linearly independent, and each has a distinct lead monomial. This is achieved by Gaussian reduction.
i1 : R = CC[x,y];
i2 : T = polySpace matrix{{x,y,x-y+1e-10}}
o2 = | x y x-y+1e-10 |
o2 : PolySpace
i3 : S = reduceSpace T
o3 = | x y |
o3 : PolySpace
i4 : S = reduceSpace(T, Tolerance=>1e-12)
o4 = | x y 1 |
o4 : PolySpace