i1 : R = QQ[x, y, z] o1 = R o1 : PolynomialRing |
i2 : D1 = divisor({1, 2, 1, 3, 8}, {ideal(x), ideal(y), ideal(z), ideal(y), ideal(y)}) o2 = 1*Div(z) + 13*Div(y) + 1*Div(x) of R o2 : WDiv |
i3 : D2 = divisor({-2, 3, -5}, {ideal(z), ideal(y), ideal(x)}) o3 = 3*Div(y) + -2*Div(z) + -5*Div(x) of R o3 : WDiv |
i4 : D1 + D2 o4 = -1*Div(z) + 16*Div(y) + -4*Div(x) of R o4 : WDiv |
i5 : R = QQ[x] o5 = R o5 : PolynomialRing |
i6 : D1 = divisor({3}, {ideal(x)}) o6 = 3*Div(x) of R o6 : WDiv |
i7 : D2 = divisor({3/2}, {ideal(x)}, CoeffType=>QQ) o7 = 3/2*Div(x) of R o7 : QDiv |
i8 : D3 = divisor({1.333}, {ideal(x)}, CoeffType=>RR) o8 = 1.333*Div(x) of R o8 : RDiv |
i9 : D1+D2 o9 = 9/2*Div(x) of R o9 : QDiv |
i10 : D1+D3 o10 = 4.333*Div(x) of R o10 : RDiv |
i11 : D2+D3 o11 = 2.833*Div(x) of R o11 : RDiv |