next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
WeylGroups :: hasseDiagramToGraph(HasseDiagram)

hasseDiagramToGraph(HasseDiagram) -- turning a hasse diagram into a graph (intended for graphic representation)

Synopsis

Description

By default, the HasseGraph will have vertices with empty labels.
i1 : R=rootSystemA(3)

o1 = RootSystem{...8...}

o1 : RootSystem
i2 : w1 = reduce(R,{2})

o2 = WeylGroupElement{RootSystem{...8...}, | 2  |}
                                           | -1 |
                                           | 2  |

o2 : WeylGroupElement
i3 : w2 = reduce(R,{1,2,1,3,2})

o3 = WeylGroupElement{RootSystem{...8...}, | -1 |}
                                           | -2 |
                                           | 1  |

o3 : WeylGroupElement
i4 : myInterval=intervalBruhat(w1,w2)

o4 = HasseDiagram{{{WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | 0  |}, {1, | 1  |}, {2, | -1 |}}}}, {{WeylGroupElement{RootSystem{...8...}, | 1  |}, {{0, | -1 |}, {1, | 1  |}, {3, | 1 |}, {4, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -3 |}, {{1, | 1 |}, {2, | -1 |}, {3, | 0  |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | -1 |}, {2, | 2  |}, {4, | 0  |}}}}, {{WeylGroupElement{RootSystem{...8...}, | 2  |}, {{0, | 0  |}, {2, | 2  |}}}, {WeylGroupElement{RootSystem{...8...}, | 3  |}, {{1, | 0  |}, {2, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -3 |}, {{2, | 1 |}, {3, | 0  |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{1, | 1  |}, {3, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | -1 |}, {{0, | -1 |}, {3, | 2  |}}}}, {{WeylGroupElement{RootSystem{...8...}, | 1  |}, {{0, | 2  |}}}, {WeylGroupElement{RootSystem{...8...}, | 2  |}, {{0, | -1 |}}}, {WeylGroupElement{RootSystem{...8...}, | 3  |}, {{0, | 0  |}}}, {WeylGroupElement{RootSystem{...8...}, | -2 |}, {{0, | 1  |}}}}, {{WeylGroupElement{RootSystem{...8...}, | 2  |}, {}}}}
                                                          | -2 |        | -1 |       | 1  |       | 2  |                                              | -3 |        | 2  |       | 1  |       | 0 |       | 1  |                                            | 2  |        | 0 |       | 2  |       | -1 |                                            | -1 |        | 1  |       | -1 |       | -1 |                                              | -3 |        | -1 |       | -1 |                                            | -1 |        | -1 |       | 2  |                                            | 1  |        | 0 |       | -1 |                                            | 3  |        | 1  |       | 1  |                                            | -1 |        | 2  |       | -1 |                                              | -2 |        | -1 |                                            | 1  |        | 1  |                                            | -2 |        | -1 |                                            | 1  |        | 1  |                                              | -1 |
                                                          | 1  |        | 2  |       | -1 |       | -1 |                                              | 1  |        | -1 |       | -1 |       | 1 |       | 1  |                                            | -1 |        | 1 |       | -1 |       | 2  |                                            | 2  |        | 1  |       | 0  |       | 2  |                                              | 2  |        | 2  |       | 0  |                                            | -1 |        | 2  |       | -1 |                                            | 1  |        | 1 |       | 2  |                                            | -2 |        | -1 |       | 1  |                                            | 3  |        | -1 |       | 0  |                                              | 3  |        | 0  |                                            | -2 |        | 1  |                                            | 1  |        | 2  |                                            | 2  |        | -1 |                                              | 2  |

o4 : HasseDiagram
i5 : hasseDiagramToGraph(myInterval)

o5 = HasseGraph{{{, {{, 0}, {, 1}, {, 2}}}}, {{, {{, 0}, {, 1}, {, 3}, {, 4}}}, {, {{, 1}, {, 2}, {, 3}}}, {, {{, 0}, {, 2}, {, 4}}}}, {{, {{, 0}, {, 2}}}, {, {{, 1}, {, 2}}}, {, {{, 2}, {, 3}}}, {, {{, 1}, {, 3}}}, {, {{, 0}, {, 3}}}}, {{, {{, 0}}}, {, {{, 0}}}, {, {{, 0}}}, {, {{, 0}}}}, {{, {}}}}

o5 : HasseGraph
It is also possible to ask for reduced decompositions as labels by changing the option "labels" as below.
i6 : hasseDiagramToGraph(myInterval,"labels"=>"reduced decomposition")

o6 = HasseGraph{{{12132, {{3, 0}, {121, 1}, {2, 2}}}}, {{2132, {{2, 0}, {121, 1}, {12321, 3}, {232, 4}}}, {1232, {{12321, 1}, {2, 2}, {3, 3}}}, {1213, {{232, 0}, {1, 2}, {3, 4}}}}, {{213, {{3, 0}, {1, 2}}}, {232, {{3, 1}, {2, 2}}}, {123, {{12321, 2}, {3, 3}}}, {132, {{121, 1}, {232, 3}}}, {121, {{2, 0}, {1, 3}}}}, {{21, {{1, 0}}}, {32, {{232, 0}}}, {23, {{3, 0}}}, {12, {{121, 0}}}}, {{2, {}}}}

o6 : HasseGraph