
S-Lang Library C Programmer’s Guide, V2.0.4

John E. Davis, davis@space.mit.edu Jun 18, 2005

ii

Preface

S-Lang is an interpreted language that was designed from the start to be easily embedded into a
program to provide it with a powerful extension language. Examples of programs that use S-Lang
as an extension language include the jed text editor and the slrn newsreader. Although S-Lang
does not exist as a separate application, it is distributed with a quite capable program called slsh
(“slang-shell”) that embeds the interpreter and allows one to execute S-Lang scripts, or simply
experiment with S-Lang at an interactive prompt. Many of the the examples in this document are
presented in the context of one of the above applications.

S-Lang is also a programmer’s library that permits a programmer to develop sophisticated platform-
independent software. In addition to providing the S-Lang interpreter, the library provides facilities
for screen management, keymaps, low-level terminal I/O, etc. However, this document is concerned
only with the extension language and does not address these other features of the S-Lang library.
For information about the other components of the library, the reader is referred to The S-Lang
Library Reference.

A Brief History of S-Lang

I first began working on S-Lang sometime during the fall of 1992. At that time I was writing
a text editor (jed), which I wanted to endow with a macro language. It occured to me that an
application-independent language that could be embedded into the editor would prove more useful
because I could envision embedding it into other programs. As a result, S-Lang was born.

S-Lang was originally a stack language that supported a postscript-like syntax. For that reason,
I named it S-Lang, where the S was supposed to emphasize its stack-based nature. About a year
later, I began to work on a preparser that would allow one unfamiliar with stack based languages
to make use of a more traditional infix syntax. Currently, the syntax of the language resembles
C, nevertheless some postscript-like features still remain, e.g., the ‘%’ character is still used as a
comment delimiter.

Acknowledgements

Since I first released S-Lang, I have received a lot feedback about the library and the language from
many people. This has given me the opportunity and pleasure to interact with a number of people
to make the library portable and easy to use. In particular, I would like to thank the following
individuals:

iii

iv

Luchesar Ionkov for his comments and criticisms of the syntax of the language. He was the person
who made me realize that the low-level byte-code engine should be totally type-independent. He also
improved the tokenizer and preparser and impressed upon me that the language needed a grammar.

Mark Olesen for his many patches to various aspects of the library and his support on AIX. He also
contributed a lot to the pre-processing (SLprep) routines.

John Burnell for the OS/2 port of the video and keyboard routines. He also made value suggestions
regarding the interpreter interface.

Darrel Hankerson for cleaning up and unifying some of the code and the makefiles.

Dominik Wujastyk who was always willing to test new releases of the library.

Michael Elkins for his work on the curses emulation.

Hunter Goatley, Andy Harper, Martin P.J. Zinser, and Jouk Jansen for their VMS support.

Dave Sims and Chin Huang for Windows 95 and Windows NT support, and Dino Sangoi for the
Windows DLL support.

I am also grateful to many other people who send in bug-reports, bug-fixes, little enhancements, and
suggestions, and so on. Without such community involvement, S-Lang would not be as well-tested
and stable as it is. Finally, I would like to thank my wife for her support and understanding while
I spent long weekend hours developing the library.

Contents

1 Introduction 1

2 Error Handling 3

3 Unicode Support 5

4 Interpreter Interface 7

4.1 Embedding the Interpreter . 7

4.2 Calling the Interpreter . 8

4.2.1 Loading Files . 8

4.2.2 Loading Strings . 9

4.3 Intrinsic Functions . 9

4.3.1 Restrictions on Intrinsic Functions . 9

4.3.2 Adding a New Intrinsic . 10

4.3.3 More Complicated Intrinsics . 12

4.4 Intrinsic Variables . 14

4.5 Aggregate Data Objects . 16

4.5.1 Arrays . 16

4.5.2 Structures . 18

4.6 Signals . 23

4.7 Exceptions . 23

5 Keyboard Interface 25

5.1 Initializing the Keyboard Interface . 25

5.2 Resetting the Keyboard Interface . 26

5.3 Initializing the SLkp Routines . 26

5.4 Setting the Interrupt Handler . 27

5.5 Reading Keyboard Input with SLang getkey . 28

v

vi CONTENTS

5.6 Reading Keyboard Input with SLkp getkey . 29

5.7 Buffering Input . 30

5.8 Global Variables . 31

6 Screen Management 33

6.1 Initialization . 33

6.2 Resetting SLsmg . 34

6.3 Handling Screen Resize Events . 34

6.4 SLsmg Functions . 35

6.4.1 Positioning the cursor . 35

6.4.2 Writing to the Display . 36

6.4.3 Erasing the Display . 37

6.4.4 Setting Character Attributes . 37

6.4.5 Lines and Alternate Character Sets . 39

6.4.6 Miscellaneous Functions . 39

6.5 Variables . 39

6.6 Hints for using SLsmg . 40

7 Signal Functions 41

8 Searching Functions 43

8.1 Simple Searches . 43

8.2 Regular Expressions . 43

A S-Lang 2 API NEWS and UPGRADE information 45

A.1 SLang Error . 45

A.2 SLsmg/SLtt Functions . 46

A.3 SLsearch Functions . 46

A.4 Regular Expression Functions . 47

A.5 Readline Functions . 47

A.6 Preprocessor Interface . 47

A.7 Functions dealing with the interpreter C API . 48

A.8 Modules . 48

B Copyright 49

B.1 The GNU Public License . 49

Chapter 1

Introduction

S-Lang is a C programmer’s library that includes routines for the rapid development of sophisti-
cated, user friendly, multi-platform applications. The S-Lang library includes the following:

• Low level tty input routines for reading single characters at a time.

• Keymap routines for defining keys and manipulating multiple keymaps.

• A high-level keyprocessing interface (SLkp) for handling function and arrow keys.

• High level screen management routines for manipulating both monochrome and color terminals.
These routines are very efficient. (SLsmg)

• Low level terminal-independent routines for manipulating the display of a terminal. (SLtt)

• Routines for reading single line input with line editing and recall capabilities. (SLrline)

• Searching functions: both ordinary searches and regular expression searches. (SLsearch)

• An embedded stack-based language interpreter with a C-like syntax.

The library is currently available for OS/2, MSDOS, Unix, and VMS systems. For the most part,
the interface to library routines has been implemented in such a way that it appears to be platform
independent from the point of view of the application. In addition, care has been taken to ensure
that the routines are “independent” of one another as much as possible. For example, although the
keymap routines require keyboard input, they are not tied to S-Lang’s keyboard input routines—
one can use a different keyboard getkey routine if one desires. This also means that linking to
only part of the S-Lang library does not pull the whole library into the application. Thus, S-Lang
applications tend to be relatively small in comparison to programs that use libraries with similar
capabilities.

1

2 Chapter 1. Introduction

Chapter 2

Error Handling

Many of the S-Lang functions return 0 upon success or -1 to signify failure. Other functions may
return NULL to indicate failure. In addition, upon failure, many will set the error state of the
library to a value that indicates the nature of the error. The value of this state may be queried via
the SLang get error function. This function will return 0 to indicate that there is no error, or a
non-zero value such as one of the following constants:

SL_Any_Error SL_Index_Error

SL_OS_Error SL_Parse_Error

SL_Malloc_Error SL_Syntax_Error

SL_IO_Error SL_DuplicateDefinition_Error

SL_Write_Error SL_UndefinedName_Error

SL_Read_Error SL_Usage_Error

SL_Open_Error SL_Application_Error

SL_RunTime_Error SL_Internal_Error

SL_InvalidParm_Error SL_NotImplemented_Error

SL_TypeMismatch_Error SL_LimitExceeded_Error

SL_UserBreak_Error SL_Forbidden_Error

SL_Stack_Error SL_Math_Error

SL_StackOverflow_Error SL_DivideByZero_Error

SL_StackUnderflow_Error SL_ArithOverflow_Error

SL_ReadOnly_Error SL_ArithUnderflow_Error

SL_VariableUninitialized_Error SL_Domain_Error

SL_NumArgs_Error SL_Data_Error

SL_Unknown_Error SL_Unicode_Error

SL_Import_Error SL_InvalidUTF8_Error

For example, if a function tries to allocate memory but fails, then SLang get error will return
SL Malloc Error.

If the application makes use of the interpreter, then it is important that application-specific functions
called from the interpreter set the error state of the library in order for exception handling to work.
This may be accomplished using the SLang set error function, e.g.,

if (NULL == (fp = fopen (file, "r")))

SLang_set_error (SL_Open_Error);

3

4 Chapter 2. Error Handling

Often it is desirable to give error message that contains more information about the error. The
SLang verror function may be used for this purpose:

if (NULL == (fp = fopen (file, "r")))

SLang_verror (SL_Open_Error, "Failed to open %s: errno=%d",

file, errno);

By default, SLang verror will write the error message to stderr. For applications that make use of
the SLsmg routines it is probably better for the error message to be printed to a specific area of the
display. The SLang Error Hook variable may be used to redirect error messages to an application
defined function, e.g.,

static void write_error (char *err)

{

SLsmg_gotorc (0, 0);

SLsmg_set_color (ERROR_COLOR);

SLsmg_write_string (err);

}

int main (int argc, char **argv)

{

/* Redirect error messages to write_error */

SLang_Error_Hook = write_error;

.

.

}

Under extremely rare circumstances the library will call the C exit function causing the application
to exit. This will happen if the SLtt get terminfo is called but the terminal is not sufficiently
powerful. If this behavior is undesirable, then another function exists (SLtt initialize) that
returns an error code. The other times the library will exit are when the interpreter is called upon
to do something but has not been properly initialized by the application. Such a condition is regarded
as misuse of the libary and should be caught by routine testing of the application during development.
In any case, when the library does call the exit function, it will call an application-defined exit hook
specified by the SLang Exit Error Hook variable:

static int exit_error_hook (char *fmt, va_list ap)

{

fprintf (stderr, "Fatal Error. Reason:");

vfprintf (stderr, fmt, va_list);

}

int main (int argc, char **argv)

{

SLang_Exit_Error_Hook = exit_error_hook;

.

.

}

The idea is that the hook can be used to perform some cleanup, free resources, and other tasks that
the application needs to do for a clean exit.

Chapter 3

Unicode Support

S-Lang has native support for the UTF-8 encoding of unicode in a number of its interfaces including
the the SLsmg screen mangement interface as well as the interpreter. UTF-8 is a variable length
multibyte encoding where unicode characters are represented by one to six bytes. A technical
description of the UTF-encoding is beyond the scope of this document, and as such the reader is
advised to look elsewhere for a more detailed specification of the encoding.

By default, the library’s handling of UTF-8 is turned off. It may be enabled by a call to the
SLutf8 enable function:

int SLutf8_enable (int mode)

If the value of mode is 1, then the library will be put in UTF-8 mode. If the value of mode is 0, then
the library will be initialized with UTF-8 support disabled. If the value is -1, then the mode will
determined through an OS-dependent manner, e.g., for Unix, the standard locale mechanism will be
used. The return value of this function will be 1 if UTF-8 support was activated, or 0 if not.

The above function determines the UTF-8 state of the library as a whole. For some purposes it may
be desirable to have more fine-grained control of the UTF-8 support. For example, one might be
using the jed editor to view a UTF-8 encoded file but the terminal associated with the editor may
not support UTF-8. In such a case, one would want the SLsmg interface to be in UTF-8 mode but
lower-level SLtt interface to not be in UTF-8 mode. Hence, the following activation functions are
also provided:

int SLsmg_utf8_enable (int mode);

int SLtt_utf8_enable (int mode);

int SLinterp_utf8_enable (int mode);

Note that once one of these interface specific functions has been called, any further calls to the
umbrella function SLutf8 enable will have no effect on that interface. For this reason, it is best to
call SLutf8 enable first before the calling one of the interface-specific functions.

Until support for Unicode is more widespread among users, it is expected that most users will still
be using a national character set such as ASCII or iso-8869-1. For example, iso-8869-1 is a very
widespread character set used on Usenet. As a result, applications will still have to provide support
for such character sets. Unfortunately there appears to be no best way to do this.

5

6 Chapter 3. Unicode Support

For the most part, the UTF-8 support should be largely transparent to the user. For example, the
interpreter treats all multibyte characters as a single character which means that the user does not
have to be concerned about the internal representation of a character. Rather one must keep in
mind the distinction between a character and a byte.

Chapter 4

Interpreter Interface

The S-Lang library provides an interpreter that when embedded into an application, makes the
application extensible. Examples of programs that embed the interpreter include the jed editor and
the slrn newsreader.

Embedding the interpreter is easy. The hard part is to decide what application specific built-in or
intrinsic functions should be provided by the application. The S-Lang library provides some pre-
defined intrinsic functions, such as string processing functions, and simple file input-output routines.
However, the basic philosophy behind the interpreter is that it is not a standalone program and it
derives much of its power from the application that embeds it.

4.1 Embedding the Interpreter

Only one function needs to be called to embed the S-Lang interpreter into an application:
SLang init slang. This function initializes the interpreter’s data structures and adds some in-
trinsic functions:

if (-1 == SLang_init_slang ())

exit (EXIT_FAILURE);

This function does not provide file input output intrinsic nor does it provide mathematical functions.
To make these as well as some posix system calls available use

if ((-1 == SLang_init_slang ()) /* basic interpreter functions */

|| (-1 == SLang_init_slmath ()) /* sin, cos, etc... */

|| (-1 == SLang_init_array ()) /* sum, min, max, transpose... */

|| (-1 == SLang_init_stdio ()) /* stdio file I/O */

|| (-1 == SLang_init_ospath ()) /* path_concat, etc... */

|| (-1 == SLang_init_posix_dir ()) /* mkdir, stat, etc. */

|| (-1 == SLang_init_posix_process ()) /* getpid, umask, etc. */

|| (-1 == SLang_init_posix_io ()) /* open, close, read, ... */

|| (-1 == SLang_init_signal ()) /* signal, alarm, ... */

)

exit (EXIT_FAILURE);

7

8 Chapter 4. Interpreter Interface

If you intend to enable all intrinsic functions, then it is simpler to initialize the interpreter via

if (-1 == SLang_init_all ())

exit (EXIT_FAILURE);

See the \slang-run-time-library for more information about the intrinsic functions.

4.2 Calling the Interpreter

There are several ways of calling the interpreter. The two most common method is to load a file
containing S-Lang code, or to load a string.

4.2.1 Loading Files

The SLang load file and SLns load file functions may be used to interpret a file. Both these
functions return zero if successful, or -1 upon failure. If either of these functions fail, the interpreter
will accept no more code unless the error state is cleared. This is done by calling SLang restart

function to set the interpreter to its default state:

if (-1 == SLang_load_file ("site.sl"))

{

/* Clear the error and reset the interpreter */

SLang_restart (1);

}

When a file is loaded via SLang load file, any non-public variables and functions defined in the
file will be placed into a namespace that is local to the file itself. The SLns load file function may
be used to load a file using a specified namespace, e.g.,

if (-1 == SLns_load_file ("site.sl", "NS"))

{

SLang_restart (1);

SLang_set_error (0);

}

will load site.sl into a namespace called NS. If such a namespace does not exist, then it will be
created.

Both the SLang load file and SLns load file functions search for files along an application-
specified search path. This path may be set using the SLpath set load path function, as well as
from interpeted code via the set slang load path function. By default, no search path is defined.

Files are searched as follows: If the name begins with the equivalent of "./" or "../", then it is
searched for with respect to the current directory, and not along the load-path. If no such file exists,
then an error will be generated. Otherwise, the file is searched for in each of the directories of the
load-path by concatenating the path element with the specified file name. The first such file found
to exist by this process will be loaded. If a matching file still has not been found, and the file name
lacks an extension, then the path is searched with ".sl" and ".slc" appended to the filename. If

4.3. Intrinsic Functions 9

two such files are found (one ending with ".sl" and the other with ".slc"), then the more recent
of the two will be used. If no matching file has been found by this process, then the search will cease
and an error generated.

The search path is a delimiter separated list of directories that specify where the interpreter looks
for files. By default, the value of the delimiter is OS-dependent following the convention of the
underlying OS. For example, on Unix the delimiter is represented by a colon, on DOS/Windows it
is a semi-colon, and on VMS it is a space. The SLpath set delimiter and SLpath get delimiter

may be used to set and query the delimiter’s value, respectively.

4.2.2 Loading Strings

There are several other mechanisms for interacting with the interpreter. For example, the
SLang load string function loads a string into the interpreter and interprets it:

if (-1 == SLang_load_string ("message (\"hello\");"))

return;

Similarly, the SLns load string function may be used to load a string into a specified namespace.

Typically, an interactive application will load a file via SLang load file and then go into a loop
that consists of reading lines of input and sending them to the interpreter, e.g.,

while (EOF != fgets (buf, sizeof (buf), stdin))

{

if (-1 == SLang_load_string (buf))

{

SLang_restart (1);

}

}

Finally, some applications such as jed and slrn use another method of interacting with the inter-
preter. They read key sequences from the keyboard and map those key sequences to interpreter
functions via the S-Lang keymap interface.

4.3 Intrinsic Functions

An intrinsic function is simply a function that is written in C and is made available to the inter-
preter as a built-in function. For this reason, the words ‘intrinsic’ and ‘built-in’ are often used
interchangeably.

Applications are expected to add application specific functions to the interpreter. For example, jed
adds nearly 300 editor-specific intrinsic functions. The application designer should think carefully
about what intrinsic functions to add to the interpreter.

4.3.1 Restrictions on Intrinsic Functions

When implementing intrinsic functions, it is necessary to follow a few rules to cooperate with the
interpreter.

10 Chapter 4. Interpreter Interface

The C version of an intrinsic function takes only pointer arguments. This is because when the
interpreter calls an intrinsic function, it passes values to the function by reference and not by value.
For example, intrinsic with the declarations:

int intrinsic_0 (void);

int intrinsic_1 (char *s);

void intrinsic_2 (char *s, int *i);

void intrinsic_3 (int *i, double *d, double *e);

are all valid. However,

int invalid_1 (char *s, int len);

is not valid since the len parameter is not a pointer.

The return value of an intrinsic function must be one of the following types: void, char, short,
int, long, double, char *, as well as unsigned versions of the integer types. A function such as

int *invalid (void);

is not permitted since int* is not a valid return-type for an intrinsic function. Any other type of
value can be passed back to the interpreter by explicitly pushing the object onto the interpreter’s
stack via the appropriate ”push” function.

The current implementation limits the number of arguments of an intrinsic function to 7. The ”pop”
functions can be used to allow the function to take an arbitrary number as seen from an interpreter
script.

Another restriction is that the intrinsic function should regard all its parameters as pointers to
constant objects and make no attempt to modify the value to which they point. For example,

void truncate (char *s)

{

s[0] = 0;

}

is illegal since the function modifies the string s.

4.3.2 Adding a New Intrinsic

There are two basic mechanisms for adding an intrinsic function to the interpreter:
SLadd intrinsic function and SLadd intrin fun table. Functions may be added to a specified
namespace via SLns add intrinsic function and SLns add intrin fun table functions.

As an specific example, consider a function that will cause the program to exit via the exit C
library function. It is not possible to make this function an intrinsic because it does not meet the
specifications for an intrinsic function that were described earlier. However, one can call exit from
a function that is suitable, e.g.,

void intrin_exit (int *code)

{

4.3. Intrinsic Functions 11

exit (*code);

}

This function may be made available to the interpreter as an intrinsic via the
SLadd intrinsic function routine:

if (-1 == SLadd_intrinsic_function ("exit", (FVOID_STAR) intrin_exit,

SLANG_VOID_TYPE, 1,

SLANG_INT_TYPE))

exit (EXIT_FAILURE);

This statement basically tells the interpreter that intrin exit is a function that returns nothing
and takes a single argument: a pointer to an integer (SLANG INT TYPE). A user can call this function
from within the interpreter via

message ("Calling the exit function");

exit (0);

After printing a message, this will cause the intrin exit function to execute, which in turn calls
exit.

The most convenient mechanism for adding new intrinsic functions is to create a table of
SLang Intrin Fun Type objects and add the table via the SLadd intrin fun table function. The
table will look like:

SLang_Intrin_Fun_Type My_Intrinsics [] =

{

/* table entries */

MAKE_INTRINSIC_N(...),

MAKE_INTRINSIC_N(...),

.

.

MAKE_INTRINSIC_N(...),

SLANG_END_INTRIN_FUN_TABLE

};

Construction of the table entries may be facilitated using a set of MAKE INTRINSIC macros defined
in slang.h. The main macro is called MAKE INTRINSIC N and takes 11 arguments:

MAKE_INTRINSIC_N(name, funct-ptr, return-type, num-args,

arg-1-type, arg-2-type, ... arg-7-type)

Here name is the name of the intrinsic function that the interpreter is to give to the function.
func-ptr is a pointer to the intrinsic function taking num-args and returning ret-type. The final
7 arguments specify the argument types. For example, the intrin exit intrinsic described above
may be added to the table using

MAKE_INTRINSIC_N("exit", intrin_exit, SLANG_VOID_TYPE, 1,

SLANG_INT_TYPE, 0,0,0,0,0,0)

12 Chapter 4. Interpreter Interface

While MAKE INTRINSIC N is the main macro for constructing table entries, slang.h defines other
macros that may prove useful. In particular, an entry for the intrin exit function may also be
created using any of the following forms:

MAKE_INTRINSIC_1("exit", intrin_exit, SLANG_VOID_TYPE, SLANG_INT_TYPE)

MAKE_INTRINSIC_I("exit", intrin_exit, SLANG_VOID_TYPE)

See slang.h for related macros. You are also encouraged to look at, e.g., slang/src/slstd.c for a
more extensive examples.

The table may be added via the SLadd intrin fun table function, e.g.,

if (-1 == SLadd_intrin_fun_table (My_Intrinsics, NULL))

{

/* an error occurred */

}

Please note that there is no need to load a given table more than once, and it is considered to be an
error on the part of the application it adds the same table multiple times. For performance reasons,
no checking is performed by the library to see if a table has already been added.

Earlier it was mentioned that intrinsics may be added to a specified namespace. To this end, one
must first get a pointer to the namespace via the SLns create namespace function. The following
example illustrates how this function is used to add the My Intrinsics table to a namespace called
my:

SLang_NameSpace_Type *ns = SLns_create_namespace ("my");

if (ns == NULL)

return -1;

return SLns_add_intrin_fun_table (ns, My_Intrinsics, "__MY__"));

4.3.3 More Complicated Intrinsics

The intrinsic functions described in the previous example were functions that took a fixed number
of arguments. In this section we explore more complex intrinsics such as those that take a variable
number of arguments.

Consider a function that takes two double precision numbers and returns the lesser:

double intrin_min (double *a, double *b)

{

if (*a < *b) return *a;

return *b;

}

This function may be added to a table of intrinsics using

MAKE_INTRINSIC_2("vmin", intrin_min, SLANG_DOUBLE_TYPE,

SLANG_DOUBLE_TYPE, SLANG_DOUBLE_TYPE)

4.3. Intrinsic Functions 13

It is useful to extend this function to take an arbitray number of arguments and return the lesser.
Consider the following variant:

double intrin_min_n (int *num_ptr)

{

double min_value, x;

unsigned int num = (unsigned int) *num_ptr;

if (-1 == SLang_pop_double (&min_value, NULL, NULL))

return 0.0;

num--;

while (num > 0)

{

num--;

if (-1 == SLang_pop_double (&x, NULL, NULL))

return 0.0;

if (x < min_value) min_value = x;

}

return min_value;

}

Here the number to compare is passed to the function and the actual numbers are removed from
the stack via the SLang pop double function. A suitable table entry for it is

MAKE_INTRINSIC_I("vmin", intrin_min_n, SLANG_DOUBLE_TYPE)

This function would be used in an interpreter script via a statement such as

variable xmin = vmin (x0, x1, x2, x3, x4, 5);

which computes the smallest of 5 values.

The problem with this intrinsic function is that the user must explicitly specify how many numbers
to compare. It would be more convenient to simply use

variable xmin = vmin (x0, x1, x2, x3, x4);

An intrinsic function can query the value of the variable SLang Num Function Args to obtain the
necessary information:

double intrin_min (void)

{

double min_value, x;

unsigned int num = SLang_Num_Function_Args;

if (-1 == SLang_pop_double (&min_value, NULL, NULL))

return 0.0;

num--;

14 Chapter 4. Interpreter Interface

while (num > 0)

{

num--;

if (-1 == SLang_pop_double (&x, NULL, NULL))

return 0.0;

if (x < min_value) min_value = x;

}

return min_value;

}

This may be declared as an intrinsic using:

MAKE_INTRINSIC_0("vmin", intrin_min, SLANG_DOUBLE_TYPE)

4.4 Intrinsic Variables

It is possible to access an application’s global variables from within the interpreter. The current
implementation supports the access of variables of type int, char *, and double.

There are two basic methods of making an intrinsic variable available to the interpreter. The most
straight forward method is to use the function SLadd intrinsic variable:

int SLadd_intrinsic_variable (char *name, VOID_STAR addr,

unsigned char data_type,

int read_only);

For example, suppose that I is an integer variable, e.g.,

int I;

One can make it known to the interpreter as I Variable via a statement such as

if (-1 == SLadd_intrinsic_variable ("I_Variable", &I,

SLANG_INT_TYPE, 0))

exit (EXIT_FAILURE);

Similarly, if S is declared as

char *S;

then

if (-1 == SLadd_intrinsic_variable ("S_Variable", &S,

SLANG_STRING_TYPE, 1))

exit (EXIT_FAILURE);

makes S available as a read-only variable with the name S Variable. Note that if a pointer variable is
made available to the interpreter, it should be declared as being read-only to prevent the interpreter
from changing the pointer’s value.

It is important to note that if S were declared as an array of characters, e.g.,

4.4. Intrinsic Variables 15

char S[256];

then it would not be possible to make it directly available to the interpreter. However, one could
create a pointer to it, i.e.,

char *S_Ptr = S;

and make S Ptr available as a read-only variable.

One should not make the mistake of trying to use the same address for different variables as the
following example illustrates:

int do_not_try_this (void)

{

static char *names[3] = {"larry", "curly", "moe"};

unsigned int i;

for (i = 0; i < 3; i++)

{

int value;

if (-1 == SLadd_intrinsic_variable (names[i], (VOID_STAR) &value,

SLANG_INT_TYPE, 1))

return -1;

}

return 0;

}

Not only does this piece of code create intrinsic variables that use the same address, it also uses the
address of a local variable that will go out of scope.

The most convenient method for adding many intrinsic variables to the interpreter is to create an
array of SLang Intrin Var Type objects and then add the array via SLadd intrin var table. For
example, the array

static SLang_Intrin_Var_Type Intrin_Vars [] =

{

MAKE_VARIABLE("I_Variable", &I, SLANG_INT_TYPE, 0),

MAKE_VARIABLE("S_Variable", &S_Ptr, SLANG_STRING_TYPE, 1),

SLANG_END_TABLE

};

may be added via

if (-1 == SLadd_intrin_var_table (Intrin_Vars, NULL))

exit (EXIT_FAILURE);

It should be rather obvious that the arguments to the MAKE VARIABLE macro correspond to the
parameters of the SLadd intrinsic variable function.

Finally, variables may be added to a specific namespace via the SLns add intrin var table and
SLns add intrinsic variable functions.

16 Chapter 4. Interpreter Interface

4.5 Aggregate Data Objects

An aggregate data object is an object that can contain more than one data value. The S-Lang
interpreter supports several such objects: arrays, structure, and associative arrays. In the following
sections, information about interacting with these objects is given.

4.5.1 Arrays

An intrinsic function may interact with an array in several different ways. For example, an intrinsic
may create an array and return it. The basic functions for manipulating arrays include:

SLang_create_array

SLang_pop_array_of_type

SLang_push_array

SLang_free_array

SLang_get_array_element

SLang_set_array_element

The use of these functions will be illustrated via a few simple examples.

The first example shows how to create an return an array of strings to the interpreter. In particular,
the names of the four seasons of the year will be returned:

void months_of_the_year (void)

{

static char *seasons[4] =

{

"Spring", "Summer", "Autumn", "Winter"

};

SLang_Array_Type *at;

int i, four;

four = 4;

at = SLang_create_array (SLANG_STRING_TYPE, 0, NULL, &four, 1);

if (at == NULL)

return;

/* Now set the elements of the array */

for (i = 0; i < 4; i++)

{

if (-1 == SLang_set_array_element (at, &i, &seasons[i]))

{

SLang_free_array (at);

return;

}

}

(void) SLang_push_array (at, 0);

SLang_free_array (at);

}

4.5. Aggregate Data Objects 17

This example illustrates several points. First of all, the SLang create array function was used to
create a 1 dimensional array of 4 strings. Since this function could fail, its return value was checked.
Then the SLang set array element function was used to set the elements of the newly created
array. Note that the address containing the value of the array element was passed and not the value
of the array element itself. That is,

SLang_set_array_element (at, &i, seasons[i])

was not used. The return value from this function was also checked because it too could also fail.
Finally, the array was pushed onto the interpreter’s stack and then it was freed. It is important to
understand why it was freed. This is because arrays are reference-counted. When the array was
created, it was returned with a reference count of 1. When it was pushed, the reference count was
bumped up to 2. Then since it was nolonger needed by the function, SLang free array was called to
decrement the reference count back to 1. For convenience, the second argument to SLang push array

determines whether or not it is to also free the array. So, instead of the two function calls:

(void) SLang_push_array (at, 0);

SLang_free_array (at);

it is preferable to combine them as

(void) SLang_push_array (at, 1);

The second example returns a diagonal array of a specified size to the stack. A diagonal array is a
2-d array with all elements zero except for those along the diagonal, which have a value of one:

void make_diagonal_array (int n)

{

SLang_Array_Type *at;

int dims[2];

int i, one;

dims[0] = dims[1] = n;

at = SLang_create_array (SLANG_INT_TYPE, 0, NULL, dims, 2);

if (at == NULL)

return;

one = 1;

for (i = 0; i < n; i++)

{

dims[0] = dims[1] = i;

if (-1 == SLang_set_array_element (at, dims, &one))

{

SLang_free_array (at);

return;

}

}

(void) SLang_push_array (at, 1);

}

18 Chapter 4. Interpreter Interface

In this example, only the diagonal elements of the array were set. This is bacause when the array
was created, all its elements were set to zero.

Now consider an example that acts upon an existing array. In particular, consider one that computes
the trace of a 2-d matrix, i.e., the sum of the diagonal elements:

double compute_trace (void)

{

SLang_Array_Type *at;

double trace;

int dims[2];

if (-1 == SLang_pop_array_of_type (&at, SLANG_DOUBLE_TYPE))

return 0.0;

/* We want a 2-d square matrix. If the matrix is 1-d and has only one

element, then return that element. */

trace = 0.0;

if (((at->num_dims == 1) && (at->dims[0] == 1))

|| ((at->num_dims == 2) && (at->dims[0] == at->dims[1])))

{

double dtrace;

int n = at->dims[0];

for (i = 0; i < n; i++)

{

dims[0] = dims[1] = i;

(void) SLang_get_array_element (at, &dims, &dtrace);

trace += dtrace;

}

}

else SLang_verror (SL_TYPE_MISMATCH, "Expecting a square matrix");

SLang_free_array (at);

return trace;

}

In this example, SLang pop array of type was used to pop an array of doubles from the stack.
This function will make implicit typecasts in order to return an array of the requested type.

4.5.2 Structures

For the purposes of this section, we shall differentiate structures according to whether or not they
correspond to an application defined C structure. Those that do are called intrinsic structures, and
those do not are called S-Lang interpreter structures.

Interpreter Structures

The following simple example shows one method that may be used to create and return a structure
with a string and integer field to the interpreter’s stack:

4.5. Aggregate Data Objects 19

int push_struct_example (char *string_value, int int_value)

{

char *field_names[2];

unsigned char field_types[2];

VOID_STAR field_values[2];

field_names[0] = "string_field";

field_types[0] = SLANG_STRING_TYPE;

field_values[0] = &string_value;

field_names[1] = "int_field";

field_types[1] = SLANG_INT_TYPE;

field_values[1] = &int_value;

if (-1 == SLstruct_create_struct (2, field_names,

field_types, field_values))

return -1;

return 0;

}

Here, SLstruct create struct is used to push a structure with the specified field names and values
onto the interpreter’s stack.

A simpler mechanism exists provided that one has already defined a C structure with a description
of how the structure is laid out. For example, consider a C structure defined by

typedef struct

{

char *s;

int i;

}

SI_Type;

Its layout may be specified via a table of SLang CStruct Field Type entries:

SLang_CStruct_Field_Type SI_Type_Layout [] =

{

MAKE_CSTRUCT_FIELD(SI_Type, s, "string_field", SLANG_STRING_TYPE, 0),

MAKE_CSTRUCT_FIELD(SI_Type, i, "int_field", SLANG_INT_TYPE, 0),

SLANG_END_CSTRUCT_TABLE

};

Here, MAKE CSTRUCT FIELD is a macro taking 5 arguments:

MAKE_CSTRUCT_FIELD(C-structure-type,

C-field-name,

slang-field-name,

slang-data-type,

is-read-only)

The first argument is the structure type, the second is the name of a field of the structure, the third
is a string that specifies the name of the corresponding field of the S-Lang structure, the fourth

20 Chapter 4. Interpreter Interface

argument specifies the field’s type, and the last argument specifies whether or not the field should
be regarded as read-only.

Once the layout of the structure has been specified, pushing a S-Lang version of the structure is
trival:

int push_struct_example (char *string_value, int int_value)

{

SI_Type si;

si.s = string_value;

si.i = int_value;

return SLang_push_cstruct ((VOID_STAR)&si, SI_Type_Layout);

}

This mechanism of structure creation also permits a S-Lang structure to be passed to an intrinsic
function through the use of the SLang pop cstruct routine, e.g.,

void print_si_struct (void)

{

SI_Type si;

if (-1 == SLang_pop_cstruct ((VOID_STAR)&si, SI_Type_Layout))

return;

printf ("si.i=%d", si.i);

printf ("si.s=%s", si.s);

SLang_free_cstruct ((VOID_STAR)&si, SI_Type_Layout);

}

Assuming print si struct exists as an intrinsic function, the S-Lang code

variable s = struct {string_field, int_field};

s.string_field = "hello";

s.int_field = 20;

print_si_struct (s);

would result in the display of

si.i=20;

si.s=hello

Note that the SLang free cstruct function was called after the contents of si were nolonger needed.
This was necessary because SLang pop cstruct allocated memory to set the char *s field of si.
Calling SLang free cstruct frees up such memory.

Now consider the following:

typedef struct

{

pid_t pid;

gid_t group;

}

X_t;

4.5. Aggregate Data Objects 21

How should the layout of this structure be defined? One might be tempted to use:

SLang_CStruct_Field_Type X_t_Layout [] =

{

MAKE_CSTRUCT_FIELD(X_t, pid, "pid", SLANG_INT_TYPE, 0),

MAKE_CSTRUCT_FIELD(X_t, group, "group", SLANG_INT_TYPE, 0),

SLANG_END_CSTRUCT_TABLE

};

However, this assumes pid t and gid t have been typedefed as ints. But what if gid t is a short?
In such a case, using

MAKE_CSTRUCT_FIELD(X_t, group, "group", SLANG_SHORT_TYPE, 0),

would be the appropriate entry for the group field. Of course, one has no way of knowing how gid t

is declared on other systems. For this reason, it is preferable to use the MAKE CSTRUCT INT FIELD

macro in cases involving integer valued fields, e.g.,

SLang_CStruct_Field_Type X_t_Layout [] =

{

MAKE_CSTRUCT_INT_FIELD(X_t, pid, "pid", 0),

MAKE_CSTRUCT_INT_FIELD(X_t, group, "group", 0),

SLANG_END_CSTRUCT_TABLE

};

Before leaving this section, it is important to mention that access to character array fields is not
permitted via this interface. That is, a structure such as

typedef struct

{

char name[32];

}

Name_Type;

is not supported since char name[32] is not a SLANG STRING TYPE object. Always keep in mind
that a SLANG STRING TYPE object is a char *.

Intrinsic Structures

Here we show how to make intrinsic structures available to the interpreter.

The simplest interface is to structure pointers and not to the actual structures themselves. The latter
would require the interpreter to be involved with the creation and destruction of the structures.
Dealing with the pointers themselves is far simpler.

As an example, consider an object such as

typedef struct _Window_Type

{

char *title;

22 Chapter 4. Interpreter Interface

int row;

int col;

int width;

int height;

} Window_Type;

which defines a window object with a title, size (width, height), and location (row, col).

We can make variables of type Window Type available to the interpreter via a table as follows:

static SLang_IStruct_Field_Type Window_Type_Field_Table [] =

{

MAKE_ISTRUCT_FIELD(Window_Type, title, "title", SLANG_STRING_TYPE, 1),

MAKE_ISTRUCT_FIELD(Window_Type, row, "row", SLANG_INT_TYPE, 0),

MAKE_ISTRUCT_FIELD(Window_Type, col, "col", SLANG_INT_TYPE, 0),

MAKE_ISTRUCT_FIELD(Window_Type, width, "width", SLANG_INT_TYPE, 0),

MAKE_ISTRUCT_FIELD(Window_Type, height, "height", SLANG_INT_TYPE, 0),

SLANG_END_ISTRUCT_TABLE

};

More precisely, this defines the layout of the Window Type structure. Here, the title has been
declared as a read-only field. Using

MAKE_ISTRUCT_FIELD(Window_Type, title, "title", SLANG_STRING_TYPE, 0),

would allow read-write access.

Now suppose that My Window is a pointer to a Window Type object, i.e.,

Window_Type *My_Window;

We can make this variable available to the interpreter via the SLadd istruct table function:

if (-1 == SLadd_istruct_table (Window_Type_Field_Table,

(VOID_STAR) &My_Window,

"My_Win"))

exit (1);

This creates a S-Lang interpreter variable called My Win whose value corresponds to the My Win

structure. This would permit one to access the fields of My Window via S-Lang statements such as

define set_width_and_height (w,h)

{

My_Win.width = w;

My_Win.height = h;

}

It is extremely important to understand that the interface described in this section does not allow
the interpreter to create new instances of Window Type objects. The interface merely defines an
association or correspondence between an intrinsic structure pointer and a S-Lang variable. For
example, if the value of My Window is NULL, then My Win would also be NULL.

4.6. Signals 23

One should be careful in allowing read/write access to character string fields. If read/write
access is allowed, then the application should always use the SLang create slstring and
SLang free slstring functions to set the character string field of the structure.

4.6 Signals

If your program that embeds the interpreter processes signals, then it may be undesirable to allow
access to all signals from the interpreter. For example, if your program has a signal handler for
SIGHUP then it is possible that an interpreter script could specify a different signal handler, which
may or may not be desirable. If you do not want to allow the interpreter access to some signal, then
that signal can be made off-limits to the interpreter via the SLsig forbid signal function:

/* forbid a signal handler for SIGHUP */

SLsig_forbid_signal (SIGHUP, 1);

/* Allow a signal handler for SIGTERM */

SLsig_forbid_signal (SIGTERM, 0);

By default, all signals are allowed access from the interpreter.

4.7 Exceptions

24 Chapter 4. Interpreter Interface

Chapter 5

Keyboard Interface

S-Lang’s keyboard interface has been designed to allow an application to read keyboard input from
the user in a system-independent manner. The interface consists of a set of low routines for reading
single character data as well as a higher level interface (SLkp) which utilize S-Lang’s keymap facility
for reading multi-character sequences.

To initialize the interface, one must first call the function SLang init tty. Before exiting the
program, the function SLang reset tty must be called to restore the keyboard interface to its
original state. Once initialized, the low-level SLang getkey function may be used to read simgle
keyboard characters from the terminal. An application using the higher-level SLkp interface will
read charcters using the SLkp getkey function.

In addition to these basic functions, there are also functions to “unget” keyboard characters, flush
the input, detect pending-input with a timeout, etc. These functions are defined below.

5.1 Initializing the Keyboard Interface

The function SLang init tty must be called to initialize the terminal for single character input.
This puts the terminal in a mode usually referred to as “raw” mode.

The prototype for the function is:

int SLang_init_tty (int abort_char, int flow_ctrl, int opost);

It takes three parameters that are used to specify how the terminal is to be initialized.

The first parameter, abort char, is used to specify the interrupt character (SIGINT). Under MSDOS,
this value corresponds to the scan code of the character that will be used to generate the interrupt.
For example, under MSDOS, 34 should be used to make Ctrl-G generate an interrupt signal since
34 is the scan code for G. On other systems, the value of abort char will simply be the ascii value
of the control character that will be used to generate the interrupt signal, e.g., 7 for Ctrl-G. If -1
is passed, the interrupt character will not be changed.

Pressing the interrupt character specified by the first argument will generate a signal (SIGINT) that
may or not be caught by the application. It is up to the application to catch this signal. S-Lang
provides the function Slang set abort signal to make it easy to facilitate this task.

25

26 Chapter 5. Keyboard Interface

The second parameter is used to specify whether or not flow control should be used. If this parameter
is zero, flow control is enabled otherwise it is disabled. Disabling flow control is necessary to pass
certain characters to the application (e.g., Ctrl-S and Ctrl-Q). For some systems such as MSDOS,
this parameter is meaningless.

The third parameter, opost, is used to turn output processing on or off. If opost is zero, output
processing is not turned on otherwise, output processing is turned on.

The SLang init tty function returns -1 upon failure. In addition, after it returns, the S-Lang
global variable SLang TT Baud Rate will be set to the baud rate of the terminal if this value can be
determined.

Example:

if (-1 == SLang_init_tty (7, 0, 0)) /* For MSDOS, use 34 as scan code */

{

fprintf (stderr, "Unable to initialize the terminal.\n");

exit (1);

}

SLang_set_abort_signal (NULL);

Here the terminal is initialized such that flow control and output processing are turned off. In
addition, the character Ctrl-G1 has been specified to be the interrupt character. The function
SLang set abort signal is used to install the default S-Lang interrupt signal handler.

5.2 Resetting the Keyboard Interface

The function SLang reset tty must be called to reset the terminal to the state it was in before the
call to SLang init tty. The prototype for this function is:

void SLang_reset_tty (void);

Usually this function is only called before the program exits. However, if the program is suspended
it should also be called just before suspension.

5.3 Initializing the SLkp Routines

Extra initialization of the higher-level SLkp functions are required because they are layered on top
of the lower level routines. Since the SLkp getkey function is able to process function and arrow
keys in a terminal independent manner, it is necessary to call the SLtt get terminfo function to
get information about the escape character sequences that the terminal’s function keys send. Once
that information is available, the SLkp init function can construct the proper keymaps to process
the escape sequences.

This part of the initialization process for an application using this interface will look something like:

1For MSDOS systems, use the scan code 34 instead of 7 for Ctrl-G

5.4. Setting the Interrupt Handler 27

SLtt_get_terminfo ();

if (-1 == SLkp_init ())

{

SLang_doerror ("SLkp_init failed.");

exit (1);

}

if (-1 == SLang_init_tty (-1, 0, 1))

{

SLang_doerror ("SLang_init_tty failed.");

exit (1);

}

It is important to check the return status of the SLkp init function which can failed if it cannot
allocate enough memory for the keymap.

5.4 Setting the Interrupt Handler

The function SLang set abort signal may be used to associate an interrupt handler with the
interrupt character that was previously specified by the SLang init tty function call. The prototype
for this function is:

void SLang_set_abort_signal (void (*)(int));

This function returns nothing and takes a single parameter which is a pointer to a function taking an
integer value and returning void. If a NULL pointer is passed, the default S-Lang interrupt handler
will be used. The S-Lang default interrupt handler under Unix looks like:

static void default_sigint (int sig)

{

SLsignal_intr (SIGINT, default_sigint);

SLKeyBoard_Quit = 1;

if (SLang_Ignore_User_Abort == 0)

SLang_set_error (SL_UserBreak_Error);

}

It simply sets the global variable SLKeyBoard Quit to one and if the variable
SLang Ignore User Abort is non-zero, the error state is set to indicate a user break condi-
tion. (The function SLsignal intr is similar to the standard C signal function except that
it will interrupt system calls. Some may not like this behavior and may wish to call this
SLang set abort signal with a different handler.)

Although the function expressed above is specific to Unix, the analogous routines for other operating
systems are equivalent in functionality even though the details of the implementation may vary
drastically (e.g., under MSDOS, the hardware keyboard interrupt int 9h is hooked).

28 Chapter 5. Keyboard Interface

5.5 Reading Keyboard Input with SLang getkey

After initializing the keyboard via SLang init tty, the S-Lang function SLang getkey may be
used to read characters from the terminal interface. In addition, the function SLang input pending

may be used to determine whether or not keyboard input is available to be read.

These functions have prototypes:

unsigned int SLang_getkey (void);

int SLang_input_pending (int tsecs);

The SLang getkey function returns a single character from the terminal. Upon failure, it returns
0xFFFF. If the interrupt character specified by the SLang init tty function is pressed while this
function is called, the function will return the value of the interrupt character and set the S-Lang
global variable SLKeyBoard Quit to a non-zero value. In addition, if the default S-Lang interrupt
handler has been specified by a NULL argument to the SLang set abort signal function, the error
state of the library will be set to SL UserBreak Error unless the variable SLang Ignore User Abort

is non-zero.

The SLang getkey function waits until input is available to be read. The SLang input pending

function may be used to determine whether or not input is ready. It takes a single parameter that
indicates the amount of time to wait for input before returning with information regarding the
availability of input. This parameter has units of one tenth (1/10) of a second, i.e., to wait one
second, the value of the parameter should be 10. Passing a value of zero causes the function to
return right away. SLang input pending returns a positive integer if input is available or zero if
input is not available. It will return -1 if an error occurs.

Here is a simple example that reads keys from the terminal until one presses Ctrl-G or until 5
seconds have gone by with no input:

#include <stdio.h>

#include <slang.h>

int main ()

{

int abort_char = 7; /* For MSDOS, use 34 as scan code */

unsigned int ch;

if (-1 == SLang_init_tty (abort_char, 0, 1))

{

fprintf (stderr, "Unable to initialize the terminal.\n");

exit (-1);

}

SLang_set_abort_signal (NULL);

while (1)

{

fputs ("\nPress any key. To quit, press Ctrl-G: ", stdout);

fflush (stdout);

if (SLang_input_pending (50) == 0) /* 50/10 seconds */

{

fputs ("Waited too long! Bye\n", stdout);

break;

5.6. Reading Keyboard Input with SLkp getkey 29

}

ch = SLang_getkey ();

if (SLang_get_error () == SL_UserBreak_Error)

{

fputs ("Ctrl-G pressed! Bye\n", stdout);

break;

}

putc ((int) ch, stdout);

}

SLang_reset_tty ();

return 0;

}

5.6 Reading Keyboard Input with SLkp getkey

Unlike the low-level function SLang getkey, the SLkp getkey function can read a multi-character
sequence associated with function keys. The SLkp getkey function uses SLang getkey and S-Lang’s
keymap facility to process escape sequences. It returns a single integer which describes the key that
was pressed:

int SLkp_getkey (void);

That is, the SLkp getkey function simple provides a mapping between keys and integers. In this
context the integers are called keysyms.

For single character input such as generated by the a key on the keyboard, the function returns the
character that was generated, e.g., ’a’. For single characters, SLkp getkey will always return an
keysym whose value ranges from 0 to 256. For keys that generate multiple character sequences, e.g.,
a function or arrow key, the function returns an keysym whose value is greater that 256. The actual
values of these keysyms are represented as macros defined in the slang.h include file. For example,
the up arrow key corresponds to the keysym whose value is SL KEY UP.

Since it is possible for the user to enter a character sequence that does not correspond to any key.
If this happens, the special keysym SL KEY ERR will be returned.

Here is an example of how SLkp getkey may be used by a file viewer:

switch (SLkp_getkey ())

{

case ’ ’:

case SL_KEY_NPAGE:

next_page ();

break;

case ’b’:

case SL_KEY_PPAGE:

previous_page ();

break;

case ’\r’:

case SL_KEY_DOWN:

30 Chapter 5. Keyboard Interface

next_line ();

break;

.

.

case SL_KEY_ERR:

default:

SLtt_beep ();

}

Unlike its lower-level counterpart, SLang getkey, there do not yet exist any functions in the library
that are capable of “ungetting” keysyms. In particular, the SLang ungetkey function will not work.

5.7 Buffering Input

S-Lang has several functions pushing characters back onto the input stream to be read again later
by SLang getkey. It should be noted that none of the above functions are designed to push back
keysyms read by the SLkp getkey function. These functions are declared as follows:

void SLang_ungetkey (unsigned char ch);

void SLang_ungetkey_string (unsigned char *buf, int buflen);

void SLang_buffer_keystring (unsigned char *buf, int buflen);

SLang ungetkey is the most simple of the three functions. It takes a single character a pushes it
back on to the input stream. The next call to SLang getkey will return this character. This function
may be used to peek at the character to be read by first reading it and then putting it back.

SLang ungetkey string has the same function as SLang ungetkey except that it is able to push
more than one character back onto the input stream. Since this function can push back null (ascii
0) characters, the number of characters to push is required as one of the parameters.

The last of these three functions, SLang buffer keystring can handle more than one charater but
unlike the other two, it places the characters at the end of the keyboard buffer instead of at the
beginning.

Note that the use of each of these three functions will cause SLang input pending to return right
away with a non-zero value.

Finally, the S-Lang keyboard interface includes the function SLang flush input with prototype

void SLang_flush_input (void);

It may be used to discard all input.

Here is a simple example that looks to see what the next key to be read is if one is available:

int peek_key ()

{

int ch;

if (SLang_input_pending (0) == 0) return -1;

ch = SLang_getkey ();

SLang_ungetkey (ch);

5.8. Global Variables 31

return ch;

}

5.8 Global Variables

Although the following S-Lang global variables have already been mentioned earlier, they are gath-
ered together here for completeness.

int SLang Ignore User Abort; If non-zero, pressing the interrupt character will not result in the
libraries error state set to SL UserBreak Error.

volatile int SLKeyBoard Quit; This variable is set to a non-zero value when the interrupt char-
acter is pressed. If the interrupt character is pressed when SLang getkey is called, the interrupt
character will be returned from SLang getkey.

int SLang TT Baud Rate; On systems which support it, this variable is set to the value of the
terminal’s baud rate after the call to SLang init tty.

32 Chapter 5. Keyboard Interface

Chapter 6

Screen Management

The S-Lang library provides two interfaces to terminal independent routines for manipulating the
display on a terminal. The highest level interface, known as the SLsmg interface is discussed in
this section. It provides high level screen management functions for manipulating the display in
an optimal manner and is similar in spirit to the curses library. The lowest level interface, or the
SLtt interface, is used by the SLsmg routines to actually perform the task of writing to the display.
This interface is discussed in another section. Like the keyboard routines, the SLsmg routines are
platform independent and work the same on MSDOS, OS/2, Unix, and VMS.

The screen management, or SLsmg, routines are initialized by function SLsmg init smg. Once ini-
tialized, the application uses various SLsmg functions to write to a virtual display. This does not
cause the physical terminal display to be updated immediately. The physical display is updated to
look like the virtual display only after a call to the function SLsmg refresh. Before exiting, the
application using these routines is required to call SLsmg reset smg to reset the display system.

The following subsections explore S-Lang’s screen management system in greater detail.

6.1 Initialization

The function SLsmg init smg must be called before any other SLsmg function can be used. It has
the simple prototype:

int SLsmg_init_smg (void);

It returns zero if successful or -1 if it cannot allocate space for the virtual display.

For this routine to properly initialize the virtual display, the capabilities of the terminal must be
known as well as the size of the physical display. For these reasons, the lower level SLtt routines
come into play. In particular, before the first call to SLsmg init smg, the application is required to
call the function SLtt get terminfo before calling SLsmg init smg.

The SLtt get terminfo function sets the global variables SLtt Screen Rows and SLtt Screen Cols

to the values appropriate for the terminal. It does this by calling the SLtt get screen size func-
tion to query the terminal driver for the appropriate values for these variables. From this point
on, it is up to the application to maintain the correct values for these variables by calling the

33

34 Chapter 6. Screen Management

SLtt get screen size function whenever the display size changes, e.g., in response to a SIGWINCH

signal. Finally, if the application is going to read characters from the keyboard, it is also a good
idea to initialize the keyboard routines at this point as well.

6.2 Resetting SLsmg

Before the program exits or suspends, the function SLsmg reset smg should be called to shutdown
the display system. This function has the prototype

void SLsmg_reset_smg (void);

This will deallocate any memory allocated for the virtual screen and reset the terminal’s display.

Basically, a program that uses the SLsmg screen management functions and S-Lang’s keyboard
interface will look something like:

#include <slang.h>

int main ()

{

SLtt_get_terminfo ();

SLang_init_tty (-1, 0, 0);

SLsmg_init_smg ();

/* do stuff */

SLsmg_reset_smg ();

SLang_reset_tty ();

return 0;

}

If this program is compiled and run, all it will do is clear the screen and position the cursor at the
bottom of the display. In the following sections, other SLsmg functions will be introduced which may
be used to make this simple program do much more.

6.3 Handling Screen Resize Events

The function SLsmg reinit smg is designed to be used in conjunction with resize events.

Under Unix-like operating systems, when the size of the display changes, the application will be sent
a SIGWINCH signal. To properly handle this signal, the SLsmg routines must be reinitialized to use
the new display size. This may be accomplished by calling SLtt get screen size to get the new
size, followed by SLsmg reinit smg to reinitialize the SLsmg interface to use the new size. Keep in
mind that these routines should not be called from within the signal handler. The following code
illustrates the main ideas involved in handling such events:

static volatile int Screen_Size_Changed;

static sigwinch_handler (int sig)

{

6.4. SLsmg Functions 35

Screen_Size_Changed = 1;

SLsignal (SIGWINCH, sigwinch_handler);

}

int main (int argc, char **argv)

{

SLsignal (SIGWINCH, sigwinch_handler);

SLsmg_init_smg ();

.

.

/* Now enter main loop */

while (not_done)

{

if (Screen_Size_Changed)

{

SLtt_get_screen_size ();

SLsmg_reinit_smg ();

redraw_display ();

}

.

.

}

return 0;

}

6.4 SLsmg Functions

In the previous sections, functions for initializing and shutting down the SLsmg routines were dis-
cussed. In this section, the rest of the SLsmg functions are presented. These functions act only on
the virtual display. The physical display is updated when the SLsmg refresh function is called and
not until that time. This function has the simple prototype:

void SLsmg_refresh (void);

6.4.1 Positioning the cursor

The SLsmg gotorc function is used to position the cursor at a given row and column. The prototype
for this function is:

void SLsmg_gotorc (int row, int col);

The origin of the screen is at the top left corner and is given the coordinate (0, 0), i.e., the top row
of the screen corresponds to row = 0 and the first column corresponds to col = 0. The last row of
the screen is given by row = SLtt Screen Rows - 1.

It is possible to change the origin of the coordinate system by using the function
SLsmg set screen start with prototype:

void SLsmg_set_screen_start (int *r, int *c);

36 Chapter 6. Screen Management

This function takes pointers to the new values of the first row and first column. It returns the
previous values by modifying the values of the integers at the addresses specified by the parameter
list. A NULL pointer may be passed to indicate that the origin is to be set to its initial value of 0.
For example,

int r = 10;

SLsmg_set_screen_start (&r, NULL);

sets the origin to (10, 0) and after the function returns, the variable r will have the value of the
previous row origin.

6.4.2 Writing to the Display

SLsmg has several routines for outputting text to the virtual display. The following points should be
understood:

• The text is output at the position of the cursor of the virtual display and the cursor is advanced
to the position that corresponds to the end of the text.

• Text does not wrap at the boundary of the display— it is trucated. This behavior seems to
be more useful in practice since most programs that would use screen management tend to be
line oriented.

• Control characters are displayed in a two character sequence representation with ^ as the first
character. That is, Ctrl-X is output as ^X.

• The newline character does not cause the cursor to advance to the next row. Instead, when a
newline character is encountered when outputting text, the output routine will return. That
is, outputting a string containing a newline character will only display the contents of the
string up to the newline character.

Although the some of the above items might appear to be too restrictive, in practice this is not seem
to be the case. In fact, the design of the output routines was influenced by their actual use and
modified to simplify the code of the application utilizing them.

void SLsmg write char (char ch); Write a single character to the virtual display.

void SLsmg write nchars (char *str, int len); Write len characters pointed to by str to the
virtual display.

void SLsmg write string (char *str); Write the null terminated string given by pointer str to
the virtual display. This function is a wrapper around SLsmg write nchars.

void SLsmg write nstring (char *str, int n); Write the null terminated string given by
pointer str to the virtual display. At most, only n characters are written. If the length of the
string is less than n, then the string will be padded with blanks. This function is a wrapper around
SLsmg write nchars.

void SLsmg printf (char *fmt, ...); This function is similar to printf except that it writes
to the SLsmg virtual display.

void SLsmg vprintf (char *, va list); Like SLsmg printf but uses a variable argument list.

6.4. SLsmg Functions 37

6.4.3 Erasing the Display

The following functions may be used to fill portions of the display with blank characters. The
attributes of blank character are the current attributes. (See below for a discussion of character
attributes)

void SLsmg erase eol (void); Erase line from current position to the end of the line.

void SLsmg erase eos (void); Erase from the current position to the end of the screen.

void SLsmg cls (void); Clear the entire virtual display.

6.4.4 Setting Character Attributes

Character attributes define the visual characteristics the character possesses when it is displayed.
Visual characteristics include the foreground and background colors as well as other attributes such
as blinking, bold, and so on. Since SLsmg takes a different approach to this problem than other
screen management libraries an explanation of this approach is given here. This approach has been
motivated by experience with programs that require some sort of screen management.

Most programs that use SLsmg are composed of specific textual objects or objects made up of line
drawing characters. For example, consider an application with a menu bar with drop down menus.
The menus might be enclosed by some sort of frame or perhaps a shadow. The basic idea is to
associate an integer to each of the objects (e.g., menu bar, shadow, current menu item, etc.) and
create a mapping from the integer to the set of attributes. In the terminology of SLsmg, the integer
is simply called an object .

For example, the menu bar might be associated with the object 1, the drop down menu could be
object 2, the shadow could be object 3, and so on.

The range of values for the object integer is restricted from 0 up to and including 255 on all systems
except MSDOS where the maximum allowed integer is 151. The object numbered zero should not
be regarding as an object at all. Rather it should be regarded as all other objects that have not
explicitly been given an object number. SLsmg, or more precisely SLtt, refers to the attributes of
this special object as the default or normal attributes.

The SLsmg routines know nothing about the mapping of the color to the attributes associated with
the color. The actual mapping takes place at a lower level in the SLtt routines. Hence, to map an
object to the actual set of attributes requires a call to any of the following SLtt routines:

void SLtt_set_color (int obj, char *name, char *fg, char *bg);

void SLtt_set_color_object (int obj, SLtt_Char_Type attr);

void SLtt_set_mono (int obj, char *, SLtt_Char_Type attr);

Only the first of these routines will be discussed briefly here. The latter two functions allow more fine
control over the object to attribute mapping (such as assigning a “blink” attribute to the object).
For a more full explanation on all of these routines see the section about the SLtt interface.

The SLtt set color function takes four parameters. The first parameter, obj, is simply the integer
of the object for which attributes are to be assigned. The second parameter is currently unused by

1This difference is due to memory constraints imposed by MSDOS. This restriction might be removed in

a future version of the library.

38 Chapter 6. Screen Management

these routines. The third and forth parameters, fg and bg, are the names of the foreground and
background color to be used associated with the object. The strings that one can use for the third
and fourth parameters can be any one of the 16 colors:

"black" "gray"

"red" "brightred"

"green" "brightgreen"

"brown" "yellow"

"blue" "brightblue"

"magenta" "brightmagenta"

"cyan" "brightcyan"

"lightgray" "white"

The value of the foreground parameter fg can be anyone of these sixteen colors. However, on most
terminals, the background color will can only be one of the colors listed in the first column2.

Of course not all terminals are color terminals. If the S-Lang global variable SLtt Use Ansi Colors

is non-zero, the terminal is assumed to be a color terminal. The SLtt get terminfo will try to
determine whether or not the terminal supports colors and set this variable accordingly. It does
this by looking for the capability in the terminfo/termcap database. Unfortunately many Unix
databases lack this information and so the SLtt get terminfo routine will check whether or not the
environment variable COLORTERM exists. If it exists, the terminal will be assumed to support ANSI
colors and SLtt Use Ansi Colors will be set to one. Nevertheless, the application should provide
some other mechanism to set this variable, e.g., via a command line parameter.

When the SLtt Use Ansi Colors variable is zero, all objects with numbers greater than one will be
displayed in inverse video3.

With this background, the SLsmg functions for setting the character attributes can now be defined.
These functions simply set the object attributes that are to be assigned to subsequent characters
written to the virtual display. For this reason, the new attribute is called the current attribute.

void SLsmg set color (int obj); Set the current attribute to those of object obj.

void SLsmg normal video (void); This function is equivalent to SLsmg set color (0).

void SLsmg reverse video (void); This function is equivalent to SLsmg set color (1). On
monochrome terminals, it is equivalent to setting the subsequent character attributes to inverse
video.

Unfortunately there does not seem to be a standard way for the application or, in particular, the
library to determine which color will be used by the terminal for the default background. Such
information would be useful in initializing the foreground and background colors associated with
the default color object (0). FOr this reason, it is up to the application to provide some means for
the user to indicate what these colors are for the particular terminal setup. To facilitate this, the
SLtt get terminfo function checks for the existence of the COLORFGBG environment variable. If this
variable exists, its value will be used to initialize the colors associated with the default color object.
Specifically, the value is assumed to consist of a foreground color name and a background color name

2This is also true on the Linux console. However, it need not be the case and hopefully the designers of

Linux will someday remove this restriction.
3This behavior can be modified by using the SLtt set mono function call.

6.5. Variables 39

separated by a semicolon. For example, if the value of COLORTERM is lightgray;blue, the default
color object will be initialized to represent a lightgray foreground upon a blue background.

6.4.5 Lines and Alternate Character Sets

The S-Lang screen management library also includes routines for turning on and turning off alter-
nate character sets. This is especially useful for drawing horizontal and vertical lines.

void SLsmg set char set (int flag); If flag is non-zero, subsequent write functions will use
characters from the alternate character set. If flag is zero, the default, or, ordinary character set
will be used.

void SLsmg draw hline (int len); Draw a horizontal line from the current position to the column
that is len characters to the right.

void SLsmg draw vline (int len); Draw a horizontal line from the current position to the row
that is len rows below.

void SLsmg draw box (int r, int c, int dr, int dc); Draw a box whose upper right corner
is at row r and column c. The box spans dr rows and dc columns. The current position will be left
at row r and column c.

6.4.6 Miscellaneous Functions

void SLsmg touch lines (int r, int n); Mark screen rows numbered r, r + 1, ... r + (n -

1) as modified. When SLsmg refresh is called, these rows will be completely redrawn.

int SLsmg char at(SLsmg Char Type *ch); Returns the character and its attributes at the current
position. The SLsmg Char Type object is a structure.

6.5 Variables

The following S-Lang global variables are used by the SLsmg interface. Some of these have been
previously discussed.

int SLtt Screen Rows; int SLtt Screen Cols; The number of rows and columns of the physical
display. If either of these numbers changes, the functions SLsmg reset smg and SLsmg init smg

should be called again so that the SLsmg routines can re-adjust to the new size.

int SLsmg Tab Width; Set this variable to the tab width that will be used when expanding tab
characters. The default is 8.

int SLsmg Display Eight Bit This variable determines how characters with the high bit set are
to be output. Specifically, a character with the high bit set with a value greater than or equal to
this value is output as is; otherwise, it will be output in a 7-bit representation. The default value
for this variable is 128 for MSDOS and 160 for other systems (ISO-Latin).

int SLtt Use Ansi Colors; If this value is non-zero, the terminal is assumed to support ANSI
colors otherwise it is assumed to be monochrome. The default is 0.

40 Chapter 6. Screen Management

int SLtt Term Cannot Scroll; If this value is zero, the SLsmg will attempt to scroll the physical
display to optimize the update. If it is non-zero, the screen management routines will not perform
this optimization. For some applications, this variable should be set to zero. The default value is
set by the SLtt get terminfo function.

6.6 Hints for using SLsmg

This section discusses some general design issues that one must face when writing an application
that requires some sort of screen management.

Chapter 7

Signal Functions

Almost all non-trivial programs must worry about signals. This is especially true for programs that
use the S-Lang terminal input/output and screen management routines. Unfortunately, there is no
fixed way to handle signals; otherwise, the Unix kernel would take care of all issues regarding signals
and the application programmer would never have to worry about them. For this reason, none of
the routines in the S-Lang library catch signals; however, some of the routines block the delivery of
signals during crucial moments. It is up to the application programmer to install handlers for the
various signals of interest.

If the application makes use of the interpreter, then a signal handler for SIGINT should be installed
to allow the user to break out of the interpreter via, e.g., Ctrl-C. In order for this to work, the
signal handler should call SLang set error to generate a SL UserBreak Error exception, i.e.,

void sigint_handler (int sig)

{

if (SLang_Ignore_User_Abort == 0)

SLang_set_error (SL_UserBreak_Error);

}

Applications that use the tty getkey routines or the screen management routines must worry about
signals such as:

SIGINT interrupt

SIGTSTP stop

SIGQUIT quit

SIGTTOU background write

SIGTTIN background read

SIGWINCH window resize

It is important that handlers be established for these signals while the either the SLsmg routines or
the getkey routines are initialized. The SLang init tty, SLang reset tty, SLsmg init smg, and
SLsmg reset smg functions block these signals from occuring while they are being called.

Since a signal can be delivered at any time, it is important for the signal handler to call only
functions that can be called from a signal handler. This usually means that such function must be
re-entrant. In particular, the SLsmg routines are not re-entrant; hence, they should not be called

41

42 Chapter 7. Signal Functions

when a signal is being processed unless the application can ensure that the signal was not delivered
while an SLsmg function was called. This statement applies to many other functions such as malloc,
or, more generally, any function that calls malloc. The upshot is that the signal handler should not
attempt to do too much except set a global variable for the application to look at while not in a
signal handler.

The S-Lang library provides two functions for blocking and unblocking the above signals:

int SLsig_block_signals (void);

int SLsig_unblock_signals (void);

It should be noted that for every call to SLsig block signals, a corresponding call should be made
to SLsig unblock signals, e.g.,

void update_screen ()

{

SLsig_block_signals ();

/* Call SLsmg functions */

.

.

SLsig_unblock_signals ();

}

See demo/pager.c for examples.

Chapter 8

Searching Functions

The S-Lang library incorporates two types of searches: Regular expression pattern matching and
ordinary searching.

8.1 Simple Searches

S-Lang’s SLsearch interface functions a convenient interface to the famous Boyer-Moore fast
searching algrothim. The searches can go in either a forward or backward direction and and may
be performed with or without regard to case. Moreover, UTF-8 encoded strings are fully supported
by the interface.

8.2 Regular Expressions

!!! No documentation available yet !!!

43

44 Chapter 8. Searching Functions

Appendix A

S-Lang 2 API NEWS and

UPGRADE information

The S-Lang API underwent a number for version 2. In particular, the following interfaces have
been affected:

SLsmg

SLregexp

SLsearch

SLrline

SLprep

slang interpreter modules

More detail of the changes is presented below. Other changes include:

• UTF-8 encoded strings are now supported at both the C library level and the interpreter.

• Error handling by the interpreter has been rewritten. Now applications may define application-
specific error codes.

• The library may be compiled with large-file-support.

See the relevant chapters in this manual for more information.

A.1 SLang Error

The SLang Error variable is nolonger part of the API. Change code such as

SLang_Error = foo;

if (SLang_Error == bar) ...

to

SLang_set_error (foo);

if (bar == SLang_get_error ()) ...

45

46 Appendix A. S-Lang 2 API NEWS and UPGRADE information

A.2 SLsmg/SLtt Functions

The changes to these functions were dictated by the new UTF-8 support. For the most part, the
changes should be transparent but some functions and variables have been changed.

• SLtt Use Blink For ACS is nolonger supported. I think only DOSEMU uses this.

• Prototypes for SLsmg draw object and SLsmg write char were changed to use wide characters
(SLwchar Type).

• SLsmg Char Type was changed from an unsigned short to a structure. This change was
necessary in order to support combining characters and double width unicode characters.
This change may affect the following functions:

SLsmg_char_at

SLsmg_read_raw

SLsmg_write_raw

SLsmg_write_color_chars

• The SLSMG BUILD CHAR macro has been removed. The SLSMG EXTRACT CHAR macro will con-
tinue to work as long as combining characters are not present.

• The prototype for SLsmg char at changed to

int SLsmg_char_at (SLsmg_Char_Type *);

A.3 SLsearch Functions

SLsearch Type is now an opaque type. Code such as

SLsearch_Type st;

SLsearch_init (string, 1, 0, &st);

.

.

s = SLsearch (buf, bufmax, &st);

which searches forward in buf for string must be changed to

SLsearch_Type *st = SLsearch_open (string, SLSEARCH_CASELESS);

if (st == NULL)

return;

.

.

s = SLsearch_forward (st, buf, bufmax);

.

.

SLsearch_close (st);

A.4. Regular Expression Functions 47

A.4 Regular Expression Functions

The slang v1 regular expression API has been redesigned in order to facilitate the incorporation of
third party regular expression engines.

New functions include:

SLregexp_compile

SLregexp_free

SLregexp_match

SLregexp_nth_match

SLregexp_get_hints

The plan is to migrate to the use of the PCRE regular expressions for version 2.2. As such, you may
find it convenient to adopt the PCRE library now instead of updating to the changed S-Lang API.

A.5 Readline Functions

The readline interface has changed in order to make it easier to use. Using it now is as simple as:

SLrline_Type *rli;

rli = SLrline_open (SLtt_Screen_Cols, flags);

buf = SLrline_read_line (rli, prompt, &len);

/* Use buf */

.

.

SLfree (buf);

SLrline_close (rli);

See how it is used in slsh/readline.c.

A.6 Preprocessor Interface

SLPreprocess Type has been renamed to SLprep Type and made opaque. New functions include:

SLprep_new

SLprep_delete

SLprep_set_flags

SLprep_set_comment

SLprep_set_prefix

SLprep_set_exists_hook

SLprep_set_eval_hook

If you currently use:

SLPreprocess_Type pt;

SLprep_open_prep (&pt);

.

48 Appendix A. S-Lang 2 API NEWS and UPGRADE information

.

SLprep_close_prep (&pt);

Then change it to:

SLprep_Type *pt;

pt = SLprep_new ();

.

.

SLprep_delete (pt);

A.7 Functions dealing with the interpreter C API

• SLang pop double has been changed to be more like the other SLang pop * functions. Now,
it may be used as:

double x;

if (-1 == SLang_pop_double (&x))

.

.

• All the functions that previously took an ”unsigned char” to specify a slang data type have
changed to require an SLtype. Previously, SLtype was typedefed to be an unsigned char,
but now it is an int.

• The SLang Class Type object is now an opaque type. If you were previously accessing its
fields directly, then you will have to change the code to use one of the accessor functions.

A.8 Modules

• In order to support the loading of a module into multiple namespaces, a module’s init function
may be called more than once. See modules/README for more information.

• The init <module> module function is no longer supported because it did not support names-
paces. Use the init <module> module ns function instead.

Appendix B

Copyright

The S-Lang library is distributed under the terms of the GNU General Public License.

B.1 The GNU Public License

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change
free software–to make sure the software is free for all its users. This General Public License applies
to most of the Free Software Foundation’s software and to any other program whose authors commit
to using it. (Some other Free Software Foundation software is covered by the GNU Library General
Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for this service if you wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs; and that you know you can do these
things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or
to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if
you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can get
the source code. And you must show them these terms so they know their rights.

49

50 Appendix B. Copyright

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed
on, we want its recipients to know that what they have is not the original, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The ”Program”,
below, refers to any such program or work, and a ”work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term ”modification”.) Each licensee
is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the Program (independent of
having been made by running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in

whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.

B.1. The GNU Public License 51

c) If the modified program normally reads commands interactively

when run, you must cause it, when started running for such

interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice and a

notice that there is no warranty (or else, saying that you provide

a warranty) and that users may redistribute the program under

these conditions, and telling the user how to view a copy of this

License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on

the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works
in themselves, then this License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with
a work based on the Program) on a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a) Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sections

1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer

to distribute corresponding source code. (This alternative is

allowed only for noncommercial distribution and only if you

received the program in object code or executable form with such

an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus

52 Appendix B. Copyright

any associated interface definition files, plus the scripts used to control compilation and installation
of the executable. However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution
of the source code, even though third parties are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based
on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipients’
exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties
to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit royalty-free redistribution of the
Program by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

B.1. The GNU Public License 53

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this Li-
cense may add an explicit geographical distribution limitation excluding those countries, so that
distribution is permitted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and ”any later version”, you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software Foundation; we sometimes make ex-
ceptions for this. Our decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

54 Appendix B. Copyright

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least
the ”copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than ‘show w’ and
‘show c’; they could even be mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
”copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Library General Public
License instead of this License.

	Introduction
	Error Handling
	Unicode Support
	Interpreter Interface
	Embedding the Interpreter
	Calling the Interpreter
	Loading Files
	Loading Strings

	Intrinsic Functions
	Restrictions on Intrinsic Functions
	Adding a New Intrinsic
	More Complicated Intrinsics

	Intrinsic Variables
	Aggregate Data Objects
	Arrays
	Structures

	Signals
	Exceptions

	Keyboard Interface
	Initializing the Keyboard Interface
	Resetting the Keyboard Interface
	Initializing the SLkp Routines
	Setting the Interrupt Handler
	Reading Keyboard Input with SLang_getkey
	Reading Keyboard Input with SLkp_getkey
	Buffering Input
	Global Variables

	Screen Management
	Initialization
	Resetting SLsmg
	Handling Screen Resize Events
	SLsmg Functions
	Positioning the cursor
	Writing to the Display
	Erasing the Display
	Setting Character Attributes
	Lines and Alternate Character Sets
	Miscellaneous Functions

	Variables
	Hints for using SLsmg

	Signal Functions
	Searching Functions
	Simple Searches
	Regular Expressions

	S-Lang 2 API NEWS and UPGRADE information
	SLang_Error
	SLsmg/SLtt Functions
	SLsearch Functions
	Regular Expression Functions
	Readline Functions
	Preprocessor Interface
	Functions dealing with the interpreter C API
	Modules

	Copyright
	The GNU Public License

