

OZ6833

Saturn ACPI CardBus Controller

Features

- Single-chip CardBus-host adapter
- Supports 2 PCMCIA 2.1 and JEIDA 4.2 R2 cards or 2 CardBus cards
- Supports multiple FIFOs for PCI/CB data transfer
- Supports up to 33 MHz clock to CardBus cards
- Compliant with PCI spec. V2.1S, 1995 PC Card Standard and JEIDA 4.1
- ACPI-PCI Bus Power management Interface Specification Rev1.0 Compliant
- OZ6832/CL6832 pin compatible
- YentaTM -PCI to PCMCIA CardBus Bridge register compatible
- Programmable interrupt protocol: PCI, PCI/Way, or PC/PCI interrupt signaling modes
- Parallel or Serial interface to socket power control devices
- Zoomed Video Support
- 3V card protection during host system suspend mode with Auto Card VS# re-sensing
- Socket-to-socket transfer (bus master) capability
- Supports both 5V and 3.3V PC cards
- Supports PCMCIA_ATA Specification
- Supports Direct Memory Access for PC/PCI and PC/Way on Both PC Card sockets
- No buffers required for PC Card socket interface
- Win'97 IRQ and PC-97compliant
- PC 98 -Subsystem Vendor ID support.

Ordering Information

OZ6833T - 208pin TQFP

Description

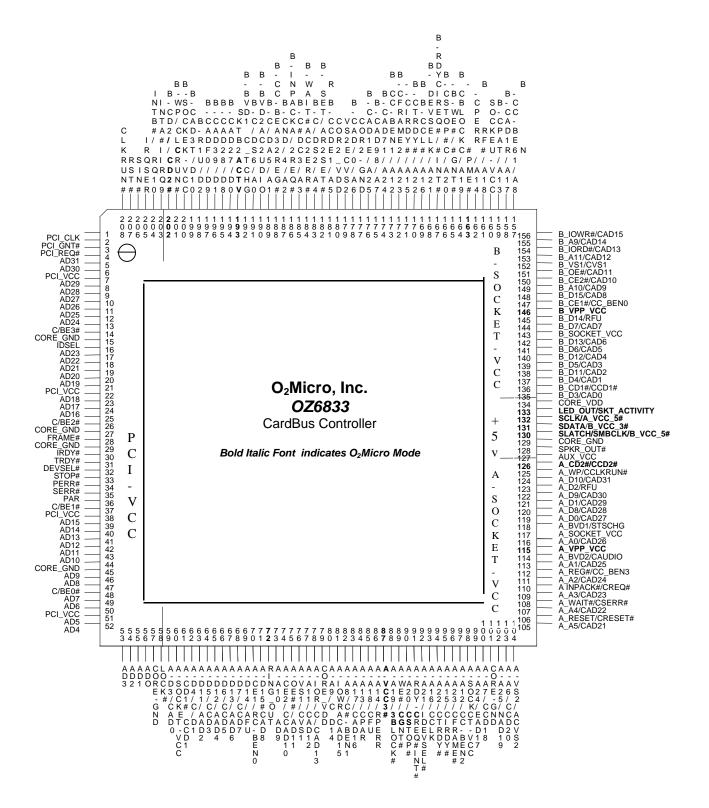
The OZ6833 Saturn ACPI CardBus controller provides a high performance, synchronous, 32-bit, bus master/target interface between computers and plug in PC Cards. CardBus is the new 32-bit interface standard of Personal Computer Memory Card International Association, PCMCIA. The CardBus provides 32-bit interface with multiplexed address and data lines. This will allow the addition of high performance computer system enhancements and new functions in a user-friendly way. Further, the expansion capability of the CardBus will provide benefits to the end user. CardBus is intended to support "temporal" add-in functions on PC Cards, such as Memory cards, Network interfaces, FAX/Modems and other wireless communication cards, etc. The high performance

and capability of the CardBus interface will enable the new development of many new functions and applications.

The OZ6833 CardBus controller is a 33 MHz PCI compliant master/target device which attaches to the PCI bus and manages two PC Card sockets. The PC Card sockets will support both 3.3v/5v of either 8/16-bit PCMCIA R2 card or 32-bit CardBus card. The support for the R2 card is compatible to an Intel 82365SL PCIC controller, and the support for the CardBus card is fully compatible to 1995 PC Card Standard CardBus specification. The OZ6833 is a stand alone device, which means that it does not require an additional buffer chip for the two PC Card socket interface. The OZ6833 implemented FIFO data buffer for the PCI and CardBus interface to provide better PCI bus access.

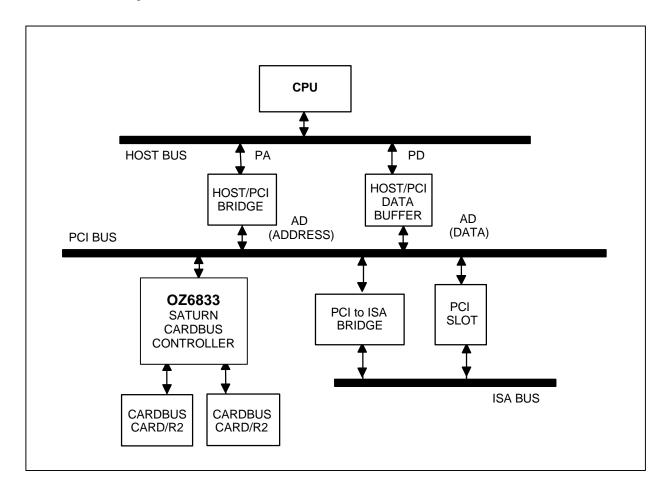
The FIFO buffers will allow the bridge to accept data from a target bus while trying to move data to it. This helps prevent deadlocks. In addition, the OZ6833 is equipped with dynamic PC Card hot insertion and removal, and auto configuration capabilities.

The OZ6833 Saturn ACPI provides mixed 5v/3.3v capability for power saving. An advanced CMOS process is utilized to minimize system power consumption. The device also provides a power-down mode to allow host software to reduce power consumption further while stopping internal clock distribution and the clocks on PC Card sockets. The OZ6833 is not only a CardBus bridge, but it is also a socket controller. The OZ6833 supports two master devices and arbitrates the priority of each. Further, the OZ6833 supports inter CardBus direct data transfer. The register set in the OZ6833 is the superset of the OZ67xx register set, assuring full compatibility with existing socket/card-services software and PC-card applications. The OZ6833 is a PCMCIA R2/CardBus controller, which provides the most advanced design flexibility for the PC Cards interface in notebook computer design.


To enhance the performance between the PCI bus and any CardBus card, 2 buffers (each composed of 16 double words) are added on both sides going from PCI to CB, or CB to PCI. By implementing these buffers, the OZ6833 will not refuse the data from a target bus while trying to move data to it and prevent deadlock situations.

In order to allow maximum flexibility for system designers, the CINT# of the PC card 32-bit could be programmed to be steered to either INTA# or INTB# of the PCI bus. Further, the interrupts may be programmed to routed through the bridge to either PCI INT lines or to IRQ interrupts on the ISA bus.

Tel: (408) 987-5920


Fax: (408) 987-5929

©OZ6833-DS-1.2

System Block Diagram

The following diagram is a typical system block diagram utilizing the OZ6833 "SATURN ACPI" CardBus controller with other related chipset.

Pin List

Bold Text = Normal Default Pin Name, Italic = Alternate Pin Function, Bold Italic = Alternate Pin Function is DEFAULT

PCI Bus Interface Pins

Name	Pin No.	Туре	Input	Power Rail	Drive (mA)	Definition
AD[31:0]	4-5, 7-12, 16-20, 22- 24, 38-43, 45-46, 48- 49, 51-56	I/O	TTL	4	PCI Spec	PCI Bus Address Input / Data Input/ Output
	PCI Bus Address Inp	ut / Data	input/out	put: These pins	connect to PC	I bus signals AD[31:0].
C/BE[3:0]#	13, 25, 36, 47	I/O	TTL	4	-	PCI Bus Command / Byte Enable
	address phase of a tra	nsaction, bles. The	C/BE[3:0]# byte enat	# are interpreted ples are to be va	I as the bus con alid for the entire	ables are multiplexed on the same pins. During the mmands. During the data phase, C/BE[3:0]# are ety of each data phase, and they indicate which bytes in
FRAME#	27	I/O	TTL	4	-	Cycle Frame
	Cycle Frame: This inp transfers continue. Wh					s beginning. While FRAME# is asserted, data is final phase.
IRDY#	29	I/O	TTL	4	-	Initiator Ready
	Initiator Ready: This is used in conjunction with			nitiating agent's	ability to comple	ete the current data phase of the transaction. IRDY# is
TRDY#	30	I/O	TTL	4	PCI Spec	Target Ready
	Target Ready: This or in conjunction with IRD		ates the C)Z6833's ability	to complete the	e current data phase of the transaction. TRDY# is used
STOP#	32	I/O	TTL	4	PCI Spec	Stop
	Stop: This output indic	cates the o	current tar	get is requesting	the master to	stop the current transaction.
IDSEL	15	1	TTL	4	-	Initialization Device Select
						onfiguration read and write transactions. This is a DSEL line (from the PCI bus arbiter or one of the HIGH-
DEVSEL#	31	I/O	TTL	4	PCI Spec	Device Select
	Device Select: The O to support, thereby act					decoded the PCI address as one that it is programmed
PERR#	33	TO	N/A	4	PCI Spec	Parity Error
	Parity Error: The OZ6	833 drive	s this outp	out active (LOW)	if it detects a	data parity error during a write phase.
SERR#	34	TO	N/A	4	PCI Spec	System Error
	System Error: This or	utput is pu	lsed by the	e OZ6833 to inc	licate an addres	ss parity error.
PAR	35	I/O	TTL	4	PCI Spec	Parity
		driven fron	n the cycle	after TRDY# is		sponding address or write data phase. For read the cycle after completion of each data phase. It
PCI_CLK	1 I		TTL	4	-	PCI Clock
	described in this table	(Table 2-1 Z6833 PC	1), except l	RST#, INTA#, II face timing para	NTB#, INTC#, a	to and from the OZ6833. All PCI bus interface signals and INTD#, are sampled and driven on the rising edge ined with respect to this edge. This input can be
RST#	207 I		TTL	1	-	Device Reset
	Device Reset: This in HIGH-impedance state		d to initializ	ze all registers a	and internal logi	c to their reset states and place most OZ6833 pins in a
RI_OUT	72 TO		N/A	1	4mA	Ring Indicate Out
	Ring Indicate Out: If input and PCI Configur					dicate output from a socket's BVD1/-STSCHG/-RI
CLKRUN#	208 I/O		TTL	4	PCI Spec	PCI Clock Run Request
						equest permission to stop the PCI clock or to slow it gnal, you need to enable ExCA register 3B bit[3:2].

PME#	163	TO	N/A	5	4mA	Power Management Event				
		a PCI function ca	n request a cha	nge of its po	wer consumption	a power management event is the state. Typically, a device uses a PME to				
SKTB_ACTV	193	TO	N/A	1	4mA	Socket B Activity				
	Socket B Activity Configuration Regi		cates that there	is any activi	ty on the socket B	et B read/write access. Refer to PCI				
INTA#	203	TO	N/A	4	PCI Spec	PCI Bus Interrupt A				
		there is no speci	fic mapping req	uirement for	connecting interru	nerated from any of a number of card pt lines from the OZ6833 to the system, a				
INTB#	204	TO	N/A	4	PCI Spec	PCI Bus Interrupt B				
	actions. Although	PCI Bus Interrupt B: This output indicates a programmable interrupt request generated from any of a number of card actions. Although there is no specific mapping requirement for connecting interrupt lines from the OZ6833 to the system, a common use is to connect this pin to the system PCI bus INTB# signal.								
SOUT#/ IRQSER	205	I/O	TTL	4	PCI Spec	Interrupt Request 5 / PCI Bus Interrupt C				
	SOUT#/ IRQSER: In PC/PCI Serial Interrupt Signaling mode, this pin is the serial interrupt output, SOUT#.In PC/Way mode, this pin is the IRQ serializer pin to the interrupt controller									
SIN#	206	I/O	TTL	4	PCI Spec	Interrupt Request 7 / PCI Bus Interrupt D				
	SIN#/:. In PC/PCI Serial Ir	terrupt Signaling	mode, this pin	is the serial	interrupt input, SIN	\#.				
GNT#	2	I	TTL	4	PCI Spec	Grant				
	Grant : This signa	indicates that a	ccess to the bus	has been g	ranted.					
REQ#	3	TO	N/A	4	PCI Spec	Request				
	Request : This sig	nal indicates to t	he arbiter that th	ne OZ6833 r	equests use of the	bus.				
LOCK#	58	I/O	TTL	4	PCI Spec	PCI Lock				
	PCI LOCK# : This prevent more than					to a target memory. LOCK# is used to				
PCI_VCC	6, 21, 37, 50	PWR		_						
		Table 2-1) will op				ly. The PCI bus interface pin outputs pendent of the voltage applied to other				

PCMCIA Sockets Interface Pins

Socket A pin number --- Socket B pin number

		Pin N	umber				
Pin Name ¹	Description ²	Socket A	Socket B	Qty.	I/O	Pwr.	Drive
-REG#/ CCBE3#	Register Access: During PCMCIA memory cycles, this output chooses between attribute and common memory. During I/O cycles for non-DMA transfers, this signal is active (low). During ATA mode, this signal is always inactive. For DMA cycles on the OZ6833 to a DMA-capable card, -REG is inactive during I/O cycles to indicate DACK to the PCMCIA card.	112	188	1	I/O	2 or 3	CardBus spec.
	In CardBus mode, this pin is the command and byte enables.						
A[25:24]/ CAD[19, 17]	PCMCIA socket address 25:24 outputs. In CardBus mode, these pins are the CardBus address/data bits 19 and 17, respectively.	102, 99	176, 174	2	I/O	2 or 3	CardBus spec.
A23/ CFRAME#	PCMCIA socket address 23 output. In CardBus mode, this pin is the CardBus FRAME# signal.	96	172	1	I/O	2 or 3	CardBus spec.
A22/ CTRDY#	PCMCIA socket address 22 output. In CardBus mode, this pin is the CardBus TRDY# signal.	94	170	1	I/O-PU	2 or 3	CardBus spec.
A21/ CDEVSEL#	PCMCIA socket address 21 output. In CardBus mode, this pin is the CardBus DEVSEL# signal.	92	168	1	I/O-PU	2 or 3	CardBus spec.
A20/ CSTOP#	PCMCIA socket address 20 output. In CardBus mode, this pin is the CardBus STOP# signal	90	166	1	I/O-PU	2 or 3	CardBus spec.
A19/ CBLOCK#	PCMCIA socket address 19 output. In CardBus mode, this signal is the CardBus LOCK# signal used for locked transactions.	88	164	1	I/O-PU	2 or 3	CardBus spec.
A18/ RFU	PCMCIA socket address 18 output. In CardBus mode, this pin is reserved for future use.	85	161	1	ТО	2 or 3	CardBus spec.
A17/ CAD16	PCMCIA socket address 17 output. In CardBus mode, this pin is the CardBus address/data bit 16.	83	158	1	I/O	2 or 3	CardBus spec.
A16/ CCLK#	PCMCIA socket address 16 output. In CardBus mode, this pin supplies the clock to the inserted card.	93	169	1	I/O	2 or 3	CardBus spec.
A15/ CIRDY#	PCMCIA socket address 15 output. In CardBus mode, this pin is the CardBus IRDY# signal.	95	171	1	I/O-PU	2 or 3	CardBus spec.
A14/ CPERR#	PCMCIA socket address 14 output. In CardBus mode, this pin is the CardBus PERR# signal.	86	162	1	I/O-PU	2 or 3	CardBus spec.
A13/ CPAR	PCMCIA socket address 13 output. In CardBus mode, this pin is the CardBus PAR signal.	84	159	1	I/O	2 or 3	CardBus spec.
A12/ CCBE2#	PCMCIA socket address 12 output. In CardBus mode, this pin is the CardBus C/BE2# signal.	97	173	1	I/O	2 or 3	CardBus spec.
A[11:9]/ CAD[12, 9, 14]	PCMCIA socket address 11:9 output. In CardBus mode, these pin are the CardBus address/data bits 12, 9 and 14, respectively.	77, 73, 80	153, 149, 155	3	I/O	2 or 3	CardBus spec.
A8/ CCBE1#	PCMCIA socket address 8 output. In CardBus mode, this pin is the CardBus C/BE1# signal.	82	157	1	I/O	2 or 3	CardBus spec.
A[7:0]/ CAD[18, 20- 26]]	PCMCIA socket address 7:0 outputs. In CardBus mode, these pins are the CardBus address/data bits 18 and 20-26, respectively	100, 103, 105, 107, 109, 111, 113, 116	175, 178, 181, 183, 185, 187, 189, 191	8	I/O	2 or 3	CardBus spec.
D15/ CAD8	PCMCIA socket data/0 bit 15. In CardBus mode, this pin is the CardBus address/data bit 8.	71	148	1	I/O	2 or 3	CardBus spec.
D14 RFU	PCMCIA socket data I/0 bit 14. In CardBus mode, this pin is reserved for future use.	69	145	1	I/O	2 or 3	2 mA

D[13:3]/ CAD[6, 4, 2, 31, 30, 28, 7, 5, 3, 1, 0]	PCMCIA socket data I/0 bits 13:3. In CardBus mode, this pin is the CardBus address/data bit 6 4, 2, 31, 30, 28, 7, 5, 3, 1, and 0, respectively.	67, 65, 63, 124, 122, 120, 68, 66, 64, 62, 59	142, 140, 138, 199, 197, 195, 144, 141, 139, 137, 135	11	I/O	2 or 3	CardBus spec.
D2/ RFU	PCMCIA socket data I/O bit 2. In CardBus mode, this pin is reserved for future use.	123	198	1	I/O	2 or 3	CardBus spec.
D[1:0]/ CAD[29,27]	PCMCIA socket data I/O bits 1:0. In CardBus mode, these pins are the CardBus address/data bits 29 and 27, respectively.	121, 119	196, 194	2	I/O	2 or 3	CardBus spec.
-OE/ CAD11	Output Enable: This output goes active (low) to indicate a memory read from the PCMCIA socket to the OZ6833. In CardBus mode, this pin is the CardBus address/data bit 11.	75	151	1	I/O	2 or 3	CardBus spec.
-WE/ CGNT#	Write Enable: This output goes active (low) to indicate a memory write from the OZ6833 to the PCMCIA socket. In CardBus mode, this pin is the CardBus GNT# signal.	89	165	1	ТО	2 or 3	CardBus spec.
-IORD/ CAD13	I/O Read: This output goes active (low) for I/O reads from the socket to the OZ6833. In CardBus mode, this pin is the CardBus address/data bit 13.	78	154	1	I/O	2 or 3	CardBus spec.
-IOWR/ CAD15	I/O Write: This output goes active (low) for I/O writes from the OZ6833 to the socket. In CardBus mode, this pin is the CardBus address/data bit 15.	81	156	1	I/O	2 or 3	CardBus spec.
WP/ -IOIS16/ CCLKRUN#	Write Protect / I/O Is 16-Bit: In Memory Card Interface mode, this inputs is interpreted as the status of the write protect switch on the PCMCIA card. In I/O Card Interface mode, this input indicates the size of the I/O data at the current address on the PCMCIA card. In CardBus mode, this pin is the CardBus CLKRUN# signal, which starts and stops the CardBus clock CCLK. To enable the CLKRUN# signal, you need to enable ExCA register 3B bit[3:2].	125	201	1	I/O-PU	2 or 3	CardBus spec.
-INPACK/ CREQ#	Input Acknowledge: The -INPACK function is not applicable in PCI bus environments. However, for compatibility with other Cirrus Logic products, this pin should be connected to the PCMCIA socket's -INPACK pin. In CardBus mode, this pin is the CardBus REQ# signal.	110	186	1	I-PU	2 or 3	CardBus spec.
RDY/ -IREQ/ CINT#	Ready / Interrupt Request: In Memory Card Interface mode, this input indicates to the OZ6833 that the card is either ready or busy. In I/O Card Interface mode, this input indicates a card interrupt request. In CardBus mode, this pin is the CardBus Interrupt Request signal. This signal is active-low and level-sensitive.	91	167	1	I-PU	2 or 3	CardBus spec.
-WAIT/ CSERR#	Wait: This input indicates a request by the card to the OZ6833 to halt the cycle in progress until this signal is deactivated. In CardBus mode, this pin is the CardBus SERR# signal.	108	184	1	I-PU	2 or 3	CardBus spec.
CD[2:1]/ CCD[2:1]#	Card Detect: These inputs indicate to the OZ6833 that a card is in the socket. They are internally pulled high to the voltage of the +5V power pin. In CardBus mode, these inputs are used in conjunction with CVS[2:1] to detect the presence and type of card.	126, 61	202, 136	2	I-PU- Schmit t	1	CardBus spec.
-CE2/ CAD10	Card Enable pin is driven low by the OZ6833 during card access cycles to control byte/word card accessCE1 enables even-numbered address bytes, and -CE2 enables odd-numbered address bytes. When configured for 8-bit cards, only -CE1 is active and A0 is used to indicate access of odd- or even-numbered bytes. In CardBus mode, this pin is the CardBus address/data bit 10.	74	150	1	I/O	2 or 3	CardBus spec.

-CE1/		70	147	1	I/O	2 or 2	CardBus
CCBE0#	Card Enable pin is driven low by the OZ6833 during card access cycles to control byte/word card accessCE1 enables even-numbered address bytes, and -CE2 enables odd-numbered address bytes. When configured for 8-bit cards, only -CE1 is active and A0 is used to indicate access of odd- or even-numbered bytes. In CardBus mode, this pin is the CardBus C/BEO# signal.	70	147	ı	1/0	2 or 3	spec.
RESET/ CRST#	Card Reset: This output is low for normal operation and goes high to reset the card. To prevent reset glitches to a card, this signal is high-impedance unless a card is seated in the socket, card power is applied, and the card's interface signals are enabled. In CardBus mode, this pin is the RST# input to the card, which is active-low.	106	182	1	ТО	2 or 3	CardBus spec.
BVD2/ -SPKR/ -LED/ CAUDIO	Battery Voltage Detect 2 / Speaker / LED: In Memory Card Interface mode, this input serves as the BVD2 (battery warning status) input. In I/O Card Interface mode, this input can be configured as a card's -SPKR binary audio input. For ATA or non-ATA (SFF-68) disk-drive support, this input can also be configured as a drive-status LED input. In CardBus mode, this pin is the AUDIO input from the card.	114	190	1	I-PU	2 or 3	-
BVD1/ -STSCHG/ -RI/ -CSTSCHG	Battery Voltage Detect 1 / Status Change / Ring Indicate: In Memory Card Interface mode, this input serves as the BVD1 (battery-dead status) input. In I/O Card Interface mode, this input is the -STSCHG input, which indicates to the OZ6833 that the card's internal status has changed. If bit 7 of the Interrupt and General Control register is set to `1`, this pin serves as the ring indicate input for wakeup-on-ring system power management support. In CardBus mode, this pin is the CardBus Status Change used by the card to alert the system to changes in READY, WP, and BVD [2:1].	118	192	1	I-PU	2 or 3	-
VS2/ CVS2	Voltage Sense 2: This pin is used in conjunction with VS1 to determine the operating voltage of the card. This pin is internally pulled high to the voltage of the +5V power pin under the combined control of the external data write bits and the CD pull up control bits. This pin connects to PCMCIA socket pin 57.	104	179	1	I/O-PU	1	CB-spec
VS1/ CVS1	Voltage Sense 1: This pin is used in conjunction with VS2 to determine the operating voltage of the card. This pin is internally pulled high to the voltage of the +5V power pin under the combined control of the external data write bits and the CD pull up control bits. This pin connects to PCMCIA socket pin 43.	76	152	1	I/O-PU	1	CB-spec
SOCKET_V CC	Connect these pins to the Vcc supply of the socket (pins 17 and 51 of the respective PCMCIA socket). These pins can be 0, 3.3, or 5 V, depending on card presence, card type, and system configuration. The socket interface outputs (listed in this table, Table 2-2) will operate at the voltage applied to these pins, independent of the voltage applied to other OZ6833 pin groups.	117, 98, 60	200, 160, 143	3	PWR	-	-

¹To differentiate the sockets in the pin diagram, all socket- specific pins have either A_ or B_ prepended to the pin names indicated. For example, A_A[25:0] and B_A[25:0] are the independent address buses to the sockets.

²When a socket is configured as an ATA drive interface, socket interface pin functions change.

Power Control and General Interface Pins

Name	Pin No.	Туре	Input	Power Rail	Drive (mA)	Definition	
SPKR_OUT	128	I/O	TTL	1	12mA	Speaker Output	
	and audi	o sound outpu	ıt. This out		setting the sock	speaker to allow a system to support PC Card fax/modem/voice ket's Misc Control 1 register bit 4 to "1" (for the socket whose).	
	This pin i	is used for cor	nfiguration i	nformation during	hardware rese		
LED_OUT /SKTA_ACTV	133	I/O	TTL	1	12 mA	LED Output/SKT_ACTV	
	pin has b In the O2	een programr	med for LEI 3B/7B bit 5	O support.) , this pin indicate		river to indicate disk activity when a socket's BVD2/-SPKR/-LED activity. The socket B activity refers to PCI Configuration	
CPWRCLK /A_VCC5#	132	I/O	TTL	1	12mA	Serial Clock / A_VCC5#	
	Card Power Clock: This input is used as a reference clock (10-100 kHz, usually 32 kHz) to control the serial interface of the socket power control chips. A_VCC5#: This active-LOW output controls the 5 -volt supply to the A socket's VCC pins. The active-LOW level of this output is mutually exclusive with that of -VCC_3.						
CPWRDATA/ SMBDATA /B_VCC3#	131	I/O	TTL	1	12mA	Serial Data / System Management Bus Data/B_VCC3#	
	interface with Intel B_VCC3	of Texas Insti 's System Ma	ruments' TI nagement I -LOW outp	PS2202IDF socke Bus used by Maxi ut controls the 3.3	et power control m's socket pow	s pin serves as output DATA pin when used with the serial chip and serves as a bi-directional pin SMBDATA when used er control chip. the A socket's VCC pins. The active-LOW level of this output	
CPWRLATC / SMBCLK /B_VCC5#	130	I/O	N/A	1	12mA	Serial Latch / System Management Bus Clock /B_VCC5#	
	Card Power Serial Latch / System Management Bus Clock: This pin serves as output LATCH pin when used with the se interface of Texas Instruments' TPS2202IDF socket power control chip and serves as a bi-directional pin SMBCLK when used with Intel's System Management Bus used by Maxim's socket power control chip. B_VCC5#: This active-LOW output controls the 5 -volt supply to the A socket's VCC pins. The active-LOW level of this output mutually exclusive with that of -VCC_3.						
A_VCC3#	87	TO	N/A	1	4mA	A_VCC3#	
						et's VCC pins. The active-LOW level of this output is mutually allel mode enabled	
A_VPP_VCC	115 VPP_VC	TO C: This active	N/ e-HIGH out	A 1 out controls the so	4mA ocket A VCC su	VPP_VCC pply to the socket's VPP1 and VPP2 pins. The active-HIGH is mode active only in SktPwr Parallel mode enabled	
B_VPP_VCC	146	TO	N/	A 1	4mA	VPP_VCC	
						pply to the socket's VPP1 and VPP2 pins. The active-HIGH is mode active only in SktPwr Parallel mode enabled	

Power, Ground, and Reserved Pins

Name	Pin No.	Type	Input	Power Rail	Drive (mA)	Definition		
Aux_Vcc	127	PWR	N/A	-	-	Auxiliary VCC		
	This pin is connected to the system's 5-volt power supply. In systems where 5 volts is not available, this pin can be connected to							
	the system's 3.3-volt supply if your PCI_VCC and CORE_VCC connected to 3.3V							
CORE_Vcc	134, 79,180	PWR	N/A	-	-	CORE_VCC		
	This pin provides power to the core circuitry of the OZ6833. It could be connected to a 3.3 power supply.							
CORE_GND	26, 14, 28, 44, 57, 101, 129, 177	N/A	-	-	CORE_GND			
	All OZ6833 ground pins should be connected to system ground.							

Legend

I/O Type	Description	Power Rail	Source of Output's Power
1	Input Pin	1	AUX_VCC: outputs powered from AUX_VCC
I-PU	Input pin with internal pull-up	2	A_SLOT_VCC: outputs powered from the socket A
0	Output	3	B_SLOT_VCC: outputs powered from the socket B
OD	Open-drain	4	PCI_VCC: outputs powered from PCI bus power supply
TO	Tri-state output	5	CORE_VCC: outputs powered from the CORE_VCC
TO-PU	Tri-state output with internal pull-up		
OD-PU	Open-drain output with internal pull-up		
PW	Power pin		

INTRODUCTION TO 0Z6833

Architectural Overview

This section gives a general overview of the architecture of O₂Micro's OZ6833. It describes the OZ6833's interface with PCI and PCMCIA sockets, windowing, built-in power management features, interrupts, Interface I/O and Register Addressing. The OZ6833 is a Yenta, PCI-2.1, PCMCIA 2.1, JEIDA-4.2, and ExCA compliant PCMCIA controller. O2Micro's OZ6833 is the solution for today's notebook PCs. It requires no external buffers and can be directly connected to the PC card sockets, thus ensuring the minimal real estate requirement of today's notebook or handheld market. The OZ6833 allows OEMs to design their systems to provide the PC user with a wide range of connectivity options (Modem, Twisted Pair Ethernet, Floppy disk, etc.) as well as eliminating rotating electro-mechanical media (via the widely abundant Flash Memory Cards on the market).

The OZ6833 maintains the 16-bit PC Card physical designs and provides backward compatibility with 16-bit PC cards. The OZ6833 detects when a 16-bit PC Card is inserted into a card socket and configures the socket to provide compatibility with the 16-bit PC Card. When a CardBus card is inserted into the card socket, the system configures the interface to provide the same enhanced capabilities available to 32-bit PCI devices (including bus mastering). The OZ6833 provides a point-to-point connection between the card socket and CardBus bridge which permits a maximum theoretical throughput of 132MB/second.

The OZ6833 allows memory and I/O devices to be inserted any time as exchangeable peripherals into

the PC sockets. OZ6833 provides 5 programmable memory windows and 2 programmable I/O windows to map the inserted PC cards into the system memory and I/O space. PC cards have both attribute and common memory. Attribute memory is used to indicate to host software the capabilities of the PC Card and to allow host software to change the configuration of the PC Card. Common memory can be used for any purpose that the host software can interpret (flash file system, system memory, floppy emulation, etc.). I/O PC Cards, such as Modem and Ethernet Cards, are supported as if they were I/O devices on the system motherboard. I/O devices, which usually requires generation of interrupts are not limited by interrupt lines that are available. Each interrupt generated by the PC Cards can be steered to several of the standard IRQ lines generated by the OZ6833.

PCI Interface

The OZ6833 is a PCI-To-CardBus bridge chip. The OZ6833 functions as a PCI slave device transferring I/O and memory cycles on PCI to PCMCIA for 16-bit PC Card Interface and for 32-bit CardBus card OZ6833 function as a PCI-TO-PCI bridge. The OZ6833 does a positive decode of the address provided by the memory and I/O window registers. The CardBus Socket registers and PCMCIA ExCA I/O internal registers are accessed by programming the PC Card Socket Status and Control Registers Base Address Register 0 and the 16-bit PC Card legacy Mode Base Address Register.

PCMCIA Socket Interface

The PCMCIA/JEIDA interface consists of 60 signals and 8 power connections that interface to PC cards

through a 68 pin socket. Each OZ6833 can be configured to support up to two PC cards sockets directly, with the provision to allow up to eight PC card sockets in multiples of two. The OZ6833 supports two PC card types (either memory or I/O) interchangeably. It accomplishes this by multiplexing some of the static signals that are defined differently for memory and I/O PC cards. These signal are configured appropriately by accessing the PC card's configuration registers.

Memory and I/O Window Mapping

Memory address mappings for the OZ6833 bridge are on 4Kbyte boundaries with a minimum mapping of 4 Kbytes. The OZ6833 may be mapped anywhere within the address space assigned to the bridge. The OZ6833 provides two memory base and limit register pairs which may be used for mapping memory mapped I/O or prefetchable memory space. Two I/O mapping register pairs are provided for each socket, allowing some fragmenting of I/O space on a card and interleaving of I/O space with other I/O devices. Multiple PC cards in a system can conflict if they try to utilize the same system memory and I/O range. The OZ6833 allows mapping of each PC card into a separate memory range, and a separate I/O range either through the use of the 5 programmable memory windows and the 2 programmable I/O windows for 16-bit PC cards or through two memory or I/O windows for 32-bit CardBus cards thus avoiding system configuration

conflicts. The OZ6833 provides memory paging, memory address mapping for both PC card attribute and common memory, and I/O address mapping. The OZ6833 includes registers to allow access to the card information structure and card configuration registers within the attribute memory described by the PCMCIA/JEIDA PC card Standard.

Power Management

The OZ6833 implements power management for each PC card socket. Socket power management is controlled through programming the POWER and RESETDRV control register.

The OZ6833 will automatically enter into lower power consumption state when memory windows

and I/O windows are disabled, and when sockets become empty.

A unique feature is provided by the OZ6833 to support the host system suspend/resume operation. During suspend mode, if an previously inserted 5V card is swapped with a lower voltage card, an improper voltage will then be applied to the new, lower voltage card thus damaging the PC card. The OZ6833 provides a mechanism internal to the chip to automatically resense the proper voltage that needs to be applied to the PC card once the system is resumed. This mechanism protects the PC cards from any accidental removal and insertion of the card during suspend mode when the controller is normally unaware of such change.

ACPI – PCI BUS Power Management Interface

The OZ6833 is compliant with the ACPI-PCI Bus Power Management Interface Specification for PCI to CardBus Bridges and Device Class Power Management Reference Specification -PC Card Controller Device Class. The OZ6833 supports the D0, D1, D2 and D3 states and PME# pin. The whole Power Management Register Block is located at PCI configuration register A0h and A4h. The ACPI O/S can program the OZ6833 into the different power saving states (D1 or D2 or D3) based on the whole system activity on the PCMCIA/CardBus interface. Any Wake Event will request the O/S to bring back to the full on state D0 through the PME#. Systems must route the PME# signal to the appropriate system logic to wake the system. For example, an ACPI compliant systems may route this signal to the SCI# interrupt. Please refer our PME# application note for detail.

Socket Power Control

The OZ6833 supports two types of Socket Power Control modes.

- Parallel Socket Power Control Mode.
- Serial Socket Power Control Mode.

Parallel Socket Power Control Mode:

The OZ6833 supports conventional parallel interface to socket power control devices. The

OZ6833 generates the four pins VPP_VCC, VPP_PGM, VCC_3#, VCC_5# for each socket to control the socket power.

Serial Socket Power Control Mode:

The OZ6833 provides two pins to serially control the socket power. Following are the three socket power control modes supported by the OZ6833.

- Texas Instruments TP2202IDF Serial Signaling Mode
- System Management Bus Signaling Mode

The socket power-control signaling mode is usually established during power-on reset the level on SDATA/SMBDATA and SLATCH/SMBCLK.

Texas Instruments TP2202IDF Serial Signaling Mode:

In this mode, the OZ6833 supports the Texas Instruments TP2202IDF dual-socket PC Card power interface switch. The OZ6833 uses three-pins for this mode. The pin SCLK is usually connected to 32-kHz clock which is available on the system. The SCLK serves as a reference clock for the OZ6833 and as a clock to the TP2202IDF. The data is serially transferred over SDATA and the latch signal is SLATCH.

System Management Bus Signaling Mode:

In this mode, the OZ6833 supports the Intel System management BUS (SMB) protocol. The serial data is available on the SMBDATA pin and the serial clock is on the SMBCLK pin. The SCLK pin is used as a reference clock for the OZ6833. The Maxim MAX 1601 dual-channel PC Card network supports the SMB protocol.

Interrupt Support

The OZ6833 has four different ways to generate the interrupts to the interrupt controller.

- PCI Interrupt Mode
- PC/PCI Interrupt Mode
- PCI/Way Interrupt Mode
- VESA Serialized IRQ

PCI Interrupt Mode:

In this mode, the internal IRQ interrupts are routed to the PCI INTA# and INTB#. The ten interrupts can be routed and be shared to PCI INTA# and

INTB# signals for socketA and socketB card status change interrupts and Card function interrupts.

PC/PCI Interrupt Mode:

This mode supports the mobile PC/PCI Extended Programming Mode. In this mode two pins are provided for SIN# and SOUT# which interface with SIC(serial interrupt controller to support all ISA IRQs. The SIC is clocked by PCI clock.

PCI/Way Interrupt Mode:

In this mode the OZ6833 provides a IRQ serializer pin to the interrupt controller. The IRQSER is simply a wired-or structure that replicates the state of each internal IRQ. This signal is bi-directional. With PCI INTA# & INTB# pins and IRQSER, the OZ6833 can support all ISA IRQs and PCI interrupts to meet Microsoft PC97 requirement.

VESA Serialized IRQ:

This is similar to PCI/WAY Interrupt mode. It uses only one IRQSER pin to cover all ISA interrupt IRQ0-IRQ15 and PCI INTA#, INTB#, INTC# and INTD#. You can enable this mode by PCI Configuration register 90h bit[16] and bit[12:10]

WIN'97 IRQ Support

In compliance to the latest PC 97 guidelines, $O_2Micro's$ OZ6833 supports simultaneous configuration of both ISA and PCI Interrupt modes for maximum design flexibility. With WIN97 IRQ Support bit (bit 10 of CardBus Socket Status & Control Register - Offset:28H), the OZ6833 CardBus Bridge is configurable to utilize ISA Interrupt mode for PC Card 16 cards and PCI Interrupt mode for PC Card 32 cards concurrently.

When WIN97 IRQ Support bit is set, R2 Card (PC Card 16 card) is in either PC/PCI or PCI/Way Interrupt modes selectable through the System Interrupt Mode bits (bit [1:0] of O₂Micro Mode Control D Register), while R3 Card (PC Card 32 card) is always in PCI Interrupt mode. For R2 Card with PC/PCI Interrupt mode, INTC# and INTD# are dedicated as SOUT# and SIN#, respectively. If R2 Card is configured for PCI/Way Interrupt mode, INTC# is used as IRQSER interrupt while INTD# is not used. For R3 Card in PCI Interrupt mode, INTA# and INTB# are used as interrupts for Socket A and Socket B, respectively.

Interface I/O Register Addressing

All the OZ6833 Socket Status & Control Registers for 32 Bit PC Cards can be accessed through PC Card Socket Status and Control Registers Base Address.

(Configuration Register 10h) offset 00h to 7FFh. The ExCA registers implemented in the OZ6833 can

be accessed via PC Card Socket Status and Control Registers Base Address (Configuration Register 10h) offset 800h to FFFh or via the 16-bit PC Card Legacy Mode Base Address Register (Configuration Register 44h) for 16-bit PC Cards.

For via the 16-bit PC Card Legacy Mode Base Address Register ,the first I/O address (16-bit PC Card Legacy Mode Base Address Register) is the OZ6833's index register. The second I/O address (16-bit PC Card Legacy Mode Base Address Register + 01) is the OZ6833's data register.

The index register and the data register are read/write registers. The OZ6833 will not respond to a data register read or write operation or to an index register read operation unless the index register has first been written to with a valid index. Refer to PCI Memory Address Space Table.

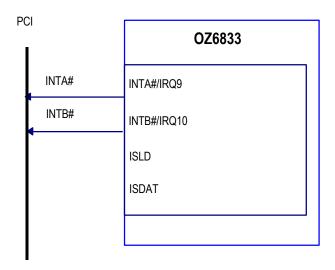
Programmable Output pin for Ringout, SocketA-Activity & SocketB-Activity

The OZ6833 can provide the programmable pin location mux with IRQs for Ring-out, SocketA-Activity and SocketB-Activity.

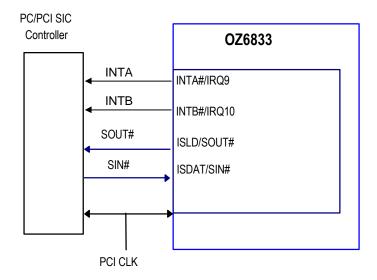
The Ring-out pin pulse mode directly reflects PCMCIA/CardBus Ring-in pin. This Ring-out pin is for system wake-up during suspend mode. The ACPI/PC97 requires this Ring-out function and feature.

SocketA-Activity and SocketB-Activity can be directly connected to system core logic chipset as external peripheral activity for suspend/ resume or you can use these two outputs to drive the LCD Icon Display driver for PCMCIA/ CardBus activity.

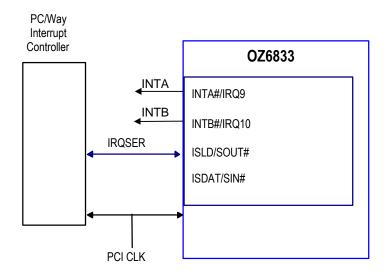
Refer to PCI Configuration Register 90h (Mux Control Register)


PCI 2.1 Subsystem Vendor ID to meet PC 98 requirements

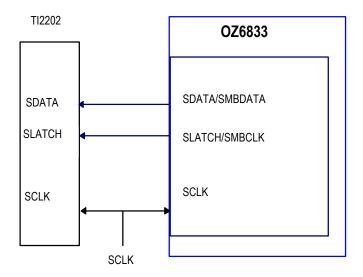
The OZ6833 meets the PC 98 requirements for Subsystem Vendor ID support. There are two methods to implement a subsystem vendor ID: a device vendor can either use serial ROMs to fill the value into the registers, or program the Subsystem Vendor ID using BIOS. Two designs using the BIOS method meet PC 98 requirements:


- Make a copy of the Subsystem Vendor ID in PCI user-defined space. Any writes to this location will change both the copy and the Subsystem Vendor ID field. Any writes to the Subsystem Vendor ID are discarded.
- Make a write-enable bit in the PCI user-defined space. The BIOS can turn this bit on, change the Subsystem Vendor ID, then turn it off.

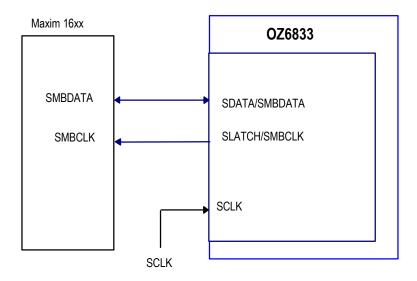
Refer to the Subsystem Vendor ID application note for detail.


Interrupt Modes for OZ6833:

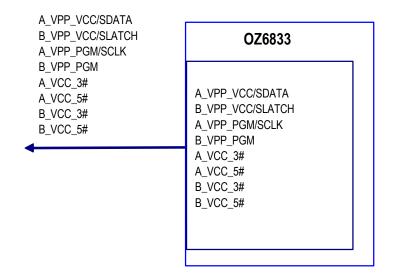
PCI Interrupt Mode



PC /PCI Interrupt Mode

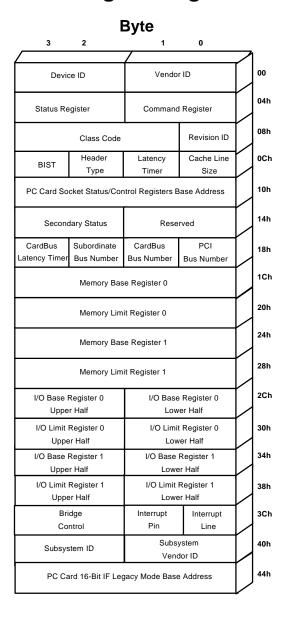


PCI/Way Interrupt Mode


Socket Power Control Modes for OZ6833:

Texas Instruments TPS2202IDF Serial Signaling Mode

System Management Bus Signaling Mode


PCMCIA Power Control Parallel Mode

PCI CONFIGURATION REGISTERS

The OZ6833 has two separate configurated spaces. There is one implemented for each socket. The second socket is the second function and starts at 100h. When configured as a two slot CardBus bridge, the bridge has two configuration spaces, Function 0 is for Socket A(0), Function 1 is the CardBus configuration for Socket B(1). The OZ6833 has been defined as closely as possible to PCI-to PCI Bridge. PCMCIA ExCA registers are accessed though either Memory Base Address Register or the Legacy Mode Base Address Register.

CAUTION: If bits indicated as read only (R:) are to be written to, they should be written to zero.

CardBus Bridge Configuration Registers

Vendor ID and Device ID (Offset :00h, 100h)

BIT POSITION	NAME	DESCRIPTION
15-0	Vendor ID	This read-only field is the Vendor identification assigned to O₂Micro by the PCI Special Interest Group. This field will always read back 1217h.
31-16	Device ID	This read-only field is the device identification assigned to this device by O ₂ Micro. This field will always read back 6832 for the OZ6833. (Revision number identification for the OZ6833 part itself is indicated by the Revision ID field in the Revision ID and Class Code register at offset 08h.

Command and Status/Offset : 04h 104h)

	d and Status(Of	1361.04	
BIT POSITION	NAME		DESCRIPTION
0	8	0	The I/O space for the OZ6833 is disabled. Any reads or writes to the I/O space will be ignored. This applies to both the I/O registers of the OZ6833 itself as well as any I/O windows that might have been enabled to the PCMCIA sockets. The I/O specs for the OZ6833 is enabled and will respond to reads and writes to the I/O address range defined in Base Address 0 register as well as any I/O window addresses.
1	PCI Memory Space Enable	0	The memory space for the OZ6833 is disabled. Any reads or writes to the memory space will be ignored. This applies to both the memory registers of the OZ6833 itself, as well as any memory windows which might have been enabled to the PCMCIA sockets.
		1	The memory space for the OZ6833 is enabled, allowing memory window access.
4	Capabilities List	1	This bit indicates a list of new PCI Power Management Capabilities is implemented. Register at 14h provides an offset into the PCI Configuration Space pointing to the location of the first item in the Capabilities list.
6	Parity Error Check/Report Enable	0	Disables parity checking reporting in the OZ6833.
		1	Enables parity checking reporting in the OZ6833.
7	Wait Cycle Enable		I always read "1", indicating that the OZ6833 employs address stepping.
8	System Error (SERR#) Enable	parity erro	ables the OZ6833's reporting of system errors by assertion of the SERR# pin when address rs occur. Bit 6 must also be set to "1" to allow detecting of conditions that allow SERR# See also description of bit 30. Disables activation of SERR# on address parity error.
		1	Enables SERR# activation whenever an address parity error is internally detected (slave mode).
16-19	Read Only	0h	Reserved
20	Read Only	1 (default)	Capabilities List - This bit indicates whether this function implements a list of extended capabilities such as PCI Power Management. When set this bit indicates the presence of a Capabilities List. OZ6833 supports the Capabilities List.
21-23	Reserved	0h	This bit is Reserved and will always read "0".
24	Master Data Parity Error Reported	This bit is	Reserved and will always read "0".
26-25	DEVSEL# Timing	The OZ68	33 always responds as a medium-speed device. Thus, this field always reads back "01".
30	System Error (SERR#) Generated	This bit is error. Bit 8 address pa	set whenever the OZ6833 asserts SERR# because of internal detection of a PCI address parity of this register must be set before system errors can be reported, and bit 6 must be set to allow arity errors to be detected. The OZ6833 only asserts SERR# if address parity errors occur. No or system action will cause SERR# to be driven active. SERR# not asserted by this device.
31	Address/Data Parity Error Detected	This bit inc	SERR# was asserted by this device, indicating a PCI address parity error. licates whether a parity error was detected, independent of whether the OZ6833 is in bus master hether bit 6 of this register is a "1".
		0	No data parity errors detected. Address or data parity error detected.

Revision ID and Class Code (Offset: 08h, 108h)

BIT NAME DESCRIPTION

POSITION		
7-0	Revision ID	This read-only field identifies the revision level of the OZ6833 chip. It will read back 3xh
31-8	Class Code	This read-only field identifies the OZ6833 as a PCI-to PCMCIA bridge device. It will read back 060700h.

Cache Line Size, Latency Timer, Header Type, and BIST (Offset: 0Ah, 10Ah)

BIT POSITION	NAME	DESCRIPTION
23-16	Header Type	This read-only field specifies that OZ6833 is a multi-function PCI to CardBus device. It will always read back 82h.

Base Address 0 (Offset: 10h. 110h)

Dase Address & Consett for, Front		Consect for, from
BIT POSITION	NAME	DESCRIPTION
31-0	Base Address	This register points to the memory mapped I/O space that contains both the CardBus and 16-bit Status and Control registers. CardBus Status and Control registers start at offset 000h and the 16-bit card registers start at offset 800h. Bits [31:11] are R/W. Bits [11:00] are hardwired to zero. This indicates to configuring software that the bridge wants 4K bytes of non-prefetchable memory space, starting on a 4K boundary, that can be mapped anywhere in memory. This register's bits adhere to the definitions set out in the PCI Local Bus Specification.

Capabilities Pointer, Cap Ptr (Offset: 14, 114h)

BIT POSITION	NAME	DESCRIPTION	
7-0	Cap_Ptr	Default Read Only value is A0h. This register provides an offset into the PCI's Configuration Space for the location of the first item in the Capabilities Linked List.	

(Offset: 15h, 115h)

BIT POSITION	NAME	DESCRIPTION
15-0	Reserved	Read back 0000h

Secondary Status (Offset: 16h, 116h)

BIT POSITION	NAME	DESCRIPTION
31-16	Secondary Status	The Secondary Status Register is similar in function to the Primary Status Register but contains information relating to the CardBus. Bit 14 of this register is defined differently than the Primary. When set it indicates that the bridge has detected SERR# asserted on the CardBus. This function is identical to that specified in the PCI to PCI bridge specification.

PCI Bus Number (Offset: 18h. 118h)

	. 6. 246 . 4		
BIT POSITION	NAME	DESCRIPTION	
7-0	PCI Bus Number	The Primary Bus Number identifies the number of the PCI Bus on the Primary side of the bridge. This is set by the appropriate configuration software.	

CardBus Bus Number (Offset: 19h, 119h)

BIT	NAME	DESCRIPTION

POSITION		
15-8	CardBus Bus	The CardBus Bus Number identifies the number of the CardBus attached to the socket. This is set by PCI BIOS
	Number	configuration software or Socket Services software. This register is called the "secondary Bus Number" on a PCI to
		PCI bridge.

Subordinate Bus Number (Offset: 1Ah, 11Ah)

BIT POSITION	NAME	DESCRIPTION
23-16	Subordinate Bus Number	The Subordinate Bus Number is a register defined for PCI to PCI bridges. It holds the number of the bus at the lowest part of the hierarchy behind the bridge. Normally, a CardBus bridge will be at the bottom of the bus hierarchy and this register will hold the same value as the CardBus Bus Number register.

CardBus Latency Timer (Offset: 1Bh, 11Bh)

BIT POSITION	NAME	DESCRIPTION	
31-24	CardBus	The CardBus Latency Timer has the same functionality of the primary PCI Bus Latency Timer but applies to the	
31-24			
	Latency Timer	CardBus attached to this specific socket.	
		This is set by PCI BIOS configuration software or Socket Services Software.	

Memory Base #0(Offset : 1Ch, 11Ch)

BIT POSITION	NAME	DESCRIPTION
31-0	Memory Base #0	The Memory Base register defines the bottom address of a memory mapped I/O space. The upper 20 bits of this register correspond to AD[31:12]. The bottom 12 bits of this register are read only and return zero when read. This window is enabled by bit #1 of the Command register. Prefetching within this window is controlled by bit #8 of the Bridge Control register. The default is enabled and should only be cleared if Memory Reads will cause side effects on the installed cards.

Memory Limit #0 (Offset : 20h, 120h)

BIT POSITION	NAME	DESCRIPTION
31-0	Memory Limit #0	The Memory Limit register defines the top address of a memory mapped I/O space. The upper 20 bits of this register correspond to AD[31:12]. The bottom 12 bits of this register are read only and return zeros when read. The bridge assumes the bottom address bits [11:0] are ones to determine the range defined. Both Memory Windows are enabled by Command register bit #1. To disable either windows individually, the Limit register of that range should be set below the Base. This will cause the bridge to never detect a hit on that window.

Memory Base #1(Offset: 24h, 124h)

momery base in (Gilbert 2 m) 12 m)		
BIT POSITION	NAME	DESCRIPTION
31-0	Memory Base	The Memory Base has the same functionality as Memory Base 0. This window is enabled by bit #1 of the
	#1	Command register. Prefetching within this window is controlled by bit #9 of the Bridge Control register. The
		default is enabled and should only be cleared if Memory Reads will cause side effects on the installed card.

Memory Limit #0(Offset: 28h, 128h)

········			
BIT POSITION	NAME	DESCRIPTION	
31-0	Memory Limit #0	The Memory Limit 1 register has the same functionality as the Memory Limit 0 register.	

I/O Base #0 (Offset : 2Ch, 12Ch)

BIT POSITION	NAME	DESCRIPTION
15-0	I/O Base #0 (Lower 16 Bits)	The I/O Base register defines the bottom address of an address range that is used by the bridge to determine when to forward an I/O transaction to the CardBus. The bits in this register correspond to AD[15:0]. Bits AD[1:0] are used to indicate whether the bridge implements 16 or 32 bit I/O addressing.
		For address decoding, if only 16 bit addressing is implemented the bridge must determine that the upper 16 bits of address are zeros before accepting an access. Address bits AD[15:2] provide the 4 byte granularity required by CardBus. This I/O mapping varies from a PCI to PCI bridge, in that it allows mapping the windows on a 4 byte boundary with a minimum size of 4 bytes. A PCI to PCI bridge maps I/O windows on 4K boundaries with a minimum 4 Kbyte size.

I/O Base #0 (Offset :2Eh, 12Eh)

., o bacc c	(0001.22	··, ·==·· <i>,</i>
BIT POSITION	NAME	DESCRIPTION
31-16	I/O Base #0 (Upper 16 Bits)	This optional register is an extension to the I/O Base Register. It defines bits AD[31:16]. The I/O Limit Upper 16 Bits Register are not implemented. I/O devices behind the bridge will all be mapped below 0001 000h and the bridge validates that bits AD[31:16] are all set to zero before accepting an access.

I/O Limit #0 (Offset :30h, 130h)

BIT POSITION	NAME	DESCRIPTION
15-0	I/O Limit #0 (Lower 16 Bits)	The I/O Limit register defines the top address of the address range that is used by the bridge to determine when to forward an I/O access to the CardBus. The bits in this register correspond to AD[15:00].

I/O Limit #0(Offset :32h, 132h)

BIT POSITION	NAME	DESCRIPTION
31-16	I/O Limit #0 (Upper 16 Bits)	This optional register is an extension to the I/O Limit Register.

I/O Base #1 (Offset :34h, 134h)

BIT POSITION	NAME	DESCRIPTION
15-0	I/O Base #1 (Lower 16 Bits)	The I/O Base register defines the bottom address of an address range that is used by the bridge to determine when to forward an I/O transaction to the CardBus. The bits in this register correspond to AD[15:0]. Bits AD[1:0] are used to indicate whether the bridge implements 16 or 32 bit I/O addressing. For address decoding, if only 16 bit addressing is implemented the bridge must determine that the upper 16 bits of address are zeros before accepting an access. Address bits AD[15:2] provide the 4 byte granularity required by CardBus. This I/O mapping varies from a PCI to PCI bridge, in that it allows mapping the windows on a 4 byte boundary with a minimum size of 4 bytes. A PCI to PCI bridge maps I/O windows on 4K boundaries with a minimum 4 Kbyte size.

I/O Base #1(Offset :36h, 136h)

BIT POSITION	NAME	DESCRIPTION
31-16	I/O Base #1 (Upper 16 Bits)	This optional register is an extension to the I/O Base Register. It defines bits AD[31:16]. The I/O Limit Upper 16 Bits Register are not implemented. I/O devices behind the bridge will all be mapped below 0001 000h and the
	(00001102110)	bridge validates that bits AD[31:16] are all set to zero before accepting an access.

I/O Base #1(Offset :38h, 138h)

BIT POSITION	NAME	DESCRIPTION
15-0	I/O Limit #1 (Lower 16 Bits)	The I/O Limit register defines the top address of the address range that is used by the bridge to determine when to forward an I/O access to the CardBus. The bits in this register correspond to AD[15:00].

Interrupt Line, Interrupt Pin, Min Gnt, and Max Lat (Offset: 3Ch, 13Ch)

interrupt Eme, interru		iiio, iiitoii a	pt 1 111, 11111_011t, and max_tat (01100t 1 0011, 10011)
	BIT	NAME	DESCRIPTION
	POSITION		
	7-0	Interrupt Line	This register is used in the manner defined in the PCI Local Bus Specification and PCI to PCI Bridge Specification.
	15-8	Interrupt Pin	Read only register. Bit definition adheres to the PCI Local Bus Specification and PCI to PCI Bridge Specification.
	31-24	Reserved	

Bridge Control Register (Offset: 3Eh. 13Eh)

bridge oc	mili oi Negistei	(Oliset . Seli, 13eli)
BIT POSITION	NAME	DESCRIPTION
0	Parity Error Response Enable	Controls the response to parity errors on the CardBus. When 0 parity errors are ignored. When set parity on the CardBus is checked and errors reported. Default on reset is zero (disabled).
1	SERR# Enable	Controls forwarding of SERR# signals indicated on the CardBus. When set the bridge will forward to the PCI bus a SERR# indication on the CardBus. Default on reset is zero (disabled).
2	ISA Enable	This applies only to addresses that are enabled by the I/O Base and Limit registers and are also in the first 64 Kbytes of PCI I/O space. When set the bridge will block forwarding from PCI to CardBus I/O transactions addressing the last 768 byte in each 1 Kbyte block. In the opposite direction (CardBus to PCI) I/O transactions will be forwarded if they address the last 768 byte in each 1 K block. Default on reset is zero (disabled).
3	VGA Enable	Modifies the bridge's response to VGA compatible addresses. When the VGA enable bit is set the bridge will forward transactions to the following ranges:
		Memory: 0A 0000h to 0B FFFFh
		I/O: Addresses where AD[9:0] are in the ranges 3B0h to 3bbh and 3C0h to 3dFh (inclusive of ISA address aliases; AD[15:10] are not decoded.
		When the VGA Enable bit is set forwarding of these accesses is independent of both the I/O and memory address ranges. Forwarding is also independent of the setting of the ISA Enable bit in the Control register or the VGA Snoop bit in the Command register. Forwarding of these accesses IS affected by the I/O and Memory Enable bits in the Command register. Default on reset is zero (disabled).
4	Reserved	Returns zero on read.
5	Master Abort Mode	Controls the behavior of the bridge when a master abort occurs on either PCI or CardBus interface when the bridge is master.
		When not set the bridge must return all ones if a master abort occurs during a read. During a write the data should be dropped in the bit bucket.
		When the bridge signals a target abort to the requesting master when the corresponding transaction on the opposite bus terminates with a master abort and the transaction on the source side is not complete (reads and non-posted writes). If the transaction on the source bus is complete, and SERR# is enabled in the Command register, the bridge must assert SERR# on the PCI Bus. Default on reset is zero.

6	CardBus Reset	When set the bridge will assert and hold CRST#. When cleared the bridge will deassert CRST#. This bit may be set by software. It will also be set by hardware when the controller executes the powerdown sequence. This bit is cleared only by software. CRST# is a wire-OR of this control bit and PCIRST#.
7	IREQ-INT Enable	When set this bit enables the IRQ routing register for 16 bit cards. When cleared IRQ interrupts will be routed to the INT pin indicated by the Interrupt Pin register. This bit should be cleared by PCIRST#.
8	Memory 0 Prefetch Enable	When set enables Read prefetching from the memory window defined to by the Memory Base 0 and Memory Limit 0 registers. Default on reset is one (enabled).
9	Memory 1 Prefetch Enable	When set enables Read prefetching from the memory window defined to by the Memory Base 1 and Memory Limit 1 registers. Default on reset is one (enabled).
10	Write Posting Enable	Enables posting of Write data to and from the socket. If this bit is not set the bridge must drain any data in its buffers before accepting data for or from the socket. Each data word must then be accepted by the target before the bridge can accept the next from the source master. The bridge must not release the source master, until the last word is accepted by the target. Operating with write posting disabled will inhibit system performance,
11-15	Reserved	Return zero on read.

Subsystem Vendor ID(Offset :40h, 140h)

BIT POSITION	NAME	DESCRIPTION
15-0	Subsystem Vendor	This optional register is identical to that described in Revision 2.1 of the PCI specification. Must return zeros if not implemented. For PC 98 compliance, please see the Subsystem Vendor ID section

Subsystem ID (Offset :42h, 142h)

BIT POSITION	NAME	DESCRIPTION
15-0	Subsystem ID	This optional register is identical to that described in Revision 2.1 of the PCI specification. Must return zeros if not implemented. For PC 98 compliance, please see the Subsystem Vendor ID section

PC Card 16 Bit IF Legacy Mode Base Address(Offset :44h, 144h)

BIT POSITION	NAME	DESCRIPTION
0-31	PC Card 16 Bit IF Legacy Mode Base Address	This optional register points to the index and data registers that resided at 3E1 and 3E0 in the 82365. This register is intended only for legacy mode operation. It is not recommended that this mode be used by new software. New mode should use the PC Card Socket Status and Control registers Base Address space to address the registers directly. This register is cleared and disabled by PCIRST#. It must not respond to the PCI cycles unless specifically loaded with a non-zero address after PCIRST# is deasserted. When this register is enabled memory mapped accesses to the Socket and Control registers, via PC Card Socket Status and Control registers Base Address register, are disabled. This makes useage of this mode and the memory mapped mode mutually exclusive This register's bits adhere to the definitions set out in the PCI Local Bus Specification. Note: The implementation of this optional register does not remove the requirement to support direct memory mapped access to the 16 bit IF Control and Status registers via the PC Card Socket Status and Control registers Base Address at 10h.

Mux Control Register (Offset :90h)

BIT POSITION	NAME	DESCRIPTION
3-0	RING_OUT_MUX	RING_OUT Enable bits: "0000" - Disable "1111" - Enable Ring_Out function also need to set ExCA 03h/43h bit[7] and 16h/56h bit[4] & 39h/79h bit[7]
7-4	SKTB_ACTV_MUX	These bits determine the B_SOCKET_ACTIVITY function To enable the output, bit 9 has to be set to "1". "0000" - Reserved (Default: disabled) "1011" - Enable (to enable the output, bit 9 has to be set to 1).
8	SKTA_ACTV_Enable	"0" = Disable socket A activity LED Output (default) "1" Enable Socket A activity LED Output
9	SKTB_ACTV_Enable	"0" = Disable socket B activity LED Output (default) "1" Enable Socket B activity LED Output
12-10	Serial IRQ (PCI/Way) Hardware interrupt routing table	When Serial IRQ is enabled and PCI interrupts are routed to use serial IRQ outputs, the PCI interrupts can be routed to serial IRQ INTA, INTB, INTB or INTD. These bits determine the routing method: "000" - Socket A interrupt will use Serial IRQ INTA; Socket B interrupt will use Serial IRQ INTB. "001" - Socket A interrupt will use Serial IRQ INTB; Socket B interrupt will use Serial IRQ INTC. "010" - Socket A interrupt will use Serial IRQ INTC:
		Socket B interrupt will use Serial IRQ INTD. "011" - Socket A interrupt will use Serial IRQ INTD; Socket B interrupt will use Serial IRQ INTA. "100" - Socket A and Socket B will both use Serial IRQ INTA. "101" - Socket A and Socket B will both use Serial IRQ INTB. "110" - Socket A and Socket B will both use Serial IRQ INTC. "111" - Socket A and Socket B will both use Serial IRQ INTD.
13	Reserved	
15-14	Reserved	
16	Include_PCI_IRQ	"0" = (default) PCI interrupts are routed to PCI_INTAN (pin# 248) and PCI_INTBN (pin#249) "1" PCI Interrupts are routed to serial IRQ output. Bit 12 to 10 determine the routing method.
19-18	SKTA_Turbo	"00" – default the PCMCIA command active width 165ns "01" – PCMCIA command active width 80ns "10" PCMCIA command active width 40ns "11" - Reserved
21-20	SKTB_Turbo	"00" – default the PCMCIA command active width 165ns "01" – PCMCIA command active width 80ns "10" PCMCIA command active width 40ns "11"- Reserved
22	Aux_VCC5N	"0" – default . the Aux_VCC power rail is connected to +5V "1" – The Aux_VCC is connected to 3.3V
23	PCI_VCC3N	"0" – default . the PCI_VCC power rail is connected to +3.3V "1" – The PCI_VCC is connected to 5V
27-24	PME_MUX	These bits determine the PME# function and PCI Configuration register A4h bit[8] "1000" - Reserved (Default: disabled) "1100" – Enable
28	Reserved	
29	Reserved	
31-30	Reserved	

Power Mangement Register (Offset :A0h)

	onor mangomon noglotor		(011001 171011)	
Bits	Default Value	Read/Write	Description	
31:27	01110b	Read Only	PME_Support - This five bit field indicates the power states in which the function may assert PME#. A value of 0b for any bit indicates that the function is not capable of asserting the PME# signal while in that power state.	
			bit(27) XXXX0b - PME# cannot be asserted from D0 bit(28) XXX1Xb - PME# can be asserted from D1 bit(29) XX1XXb - PME# can be asserted from D2 bit(30) X1XXXb - PME# can be asserted from D3hot bit(31) 0XXXXb - PME# cannot be asserted from D3cold	
26	1b	Read Only	D2_Support - If this bit is a "1", this function supports the D2 Power Management State.	
25	1b	Read Only	D1_Support - If this bit is a "1", this function supports the D1 Power Management State.	
24	0b	Read Only	Dyn_Data_Support - Dynamic Data is not support.	
23:22	00b	Read Only	Reserved	
21	0b	Read Only	No Device Specific Initialization is required.	
20	0b	Read Only	Auxiliary Power Source - Function does not support.	
19	0b	Read Only	PME Clock - No PCI clock is required for this function to generate PME#.	
18:16	001b	Read Only	Version - A value of 001b indicates that this function complies with the Revision 1.0 of the PCI Power Management interface Specification.	
15:8	00h	Read Only	Next Item Pointer - No additional items in the Capabilities List.	
7:0	01h	Read Only	ID - This field, when "01h" identifies the linked list item as being the PCI Power Management Registers.	

Additional Power Management Register (Offset :A4h)

Aaaitior	nai Power i	Management R	egister (Offse	t :A4n)		
Bits	Default Value	Read/Write		Description		
31-24	00h	Read Only	Data - This register	r is used to report the state dependen	nt data requested by t	the Data_Select
			field. The value of	this register is scaledby the value rep	ported by the Data_So	ale field.
			Value in	Data Reported	Data_Scale	Units/
			Data_Select		Interpretation	Accuracy
			0	D0 Power consumed		
			1	D1 Power consumed		
			2	D2 Power consumed	0= Unknown	
			3	D3 Power consumed	1= 0.1x	Watts
			4	D0 Power dissipated	2= 0.01x	
			5	D1 Power dissipated	3= 0.001x	
			6	D2 Power dissipated		
			7	D3 Power dissipated		
			8	Common logic power		
				consumption (Multi-function PCI		
				devices, Function 0 only)		
			9-15	Reserved (function 0 of a multi-	0= Unknown	TBD
				function device)	1-3 = TBD	
			8-15	Reserved (single function PCI	0= Unknown	TBD
				devices and other functions	1-3 = TBD	
				(greater than function 0) within a multi-function device)		
23:16	00h	Read Only	Bridge Support Ext	tensions: Not support		
15	0b	Read/ Wr-Clear	_	bit is set when the function would n state of the PME_En bit.	ormally assert the PM	1E# signal
			Writing a "1" to this Writing a "0" has n	bit will clear it and cause the function of effect.	on to stop asserting a	PME# (if enabled).
			This bit defaults to	"0" if the function does not support I	PME# generation from	n D3cold.
				oorts PME# from D3cold then this bit stem each time the operating system	,	e explicitly cleared

14:13	00b	Read Only	Data_Scale - This two bit read-only field indicates the scaling factor to be used when interpreting the value of the Data register. The value & meaning of this field will vary depending on which data value has been selected by the Data_Select field.
12:09	0000b	Read/Write Data_Select - This four bit field is used to select which data is to be reported through the register and Data Scale field.	
08	0b	Read/Write	PME_En - "1" enables the function to assert PME#. When "0" PME# assertion is disabled.
07:05	000b	Read Only	Reserved
04	0b	Read/Write	Ddata_PME_En - Dynamic Data PME Enable is not support.
03:02	00b	Read Only	Reserved
01:00	00b	Read/Write	PowerState - This two bit field is used both to determine the current power state of a function and to set the function into a new power state. The definition of the field values is given below. 00b - D0 01b - D1 10b - D2 11b - D3hot

CardBus Socket Status & Control Register

These registers must be mapped into memory space to allow faster access than would be possible if they were in configuration space. All of these registers shall be initialized by PCIRST#.

Status Event Register (Offset: 00h)

The Status Event Register indicates a change in socket status has occurred. CSTCHG# is driven, by the controller, based on the bits in this register. These bits do not indicate what the change is, only that one has occurred. Software must read the Socket Present State Register for current status. All of the bits in this register can be cleared by writing a one to that bit. These bits can be set o a one by software through writing a one to the corresponding bit in the Force Register. All bits in this register are cleared by PCIRST#.

They may be immediately set again, if when coming out of CRST# the bridge finds the status unchanged (i.e. CSTSCHG reasserted or Card Detects still true). Software needs to clear this register before enabling interrupts. If it is not cleared, when interrupts are enabled an interrupt will be generated based on any bit set but not masked.

BIT POSITION	NAME	DESCRIPTION
0	CSTSCHG/ WAKEUP	Card Status Change and/or Wakeup bit. This bit indicates that the CSTSCHG and/or WAKEUP signal has been asserted. It only indicates the assertion event. It is not a reflection of the CSTSCHG bit from the card. It will be latched by the controller and must be explicitly cleared by the appropriate software. The status change interrupt, driven the controller, must be based on this event bit rather than the Present Value register. When a card is powered this bit indicates a status change and is driven continuously by the card. When a socket is powered down, this bit is a WAKEUP bit. A card might only drive it for 1 ms to limit drain on a battery. To be used in this manner a card must haven an external supply or battery. Deassertion of CSTSCHG is controlled by software or reset clearing the signal on the bus. Indicating that change would not be useful. This bit will not be set if an event is detected during the time period when the bridge has started the power up cycle of the socket but has not yet signaled a Power Up Complete interrupt. This prevents spurious signals form a card, during powerup, generating invalid events. This bit will be reenabled when the Power Complete interrupt is generated. During the power down sequence the card is responsible for preventing glitches.
1-2	CCD1 & CCD2	Card Detects 1 and 2. Indicate a change has occurred in the corresponding Card Detect bit.
3	Power Cycle	The bridge has completed powering up the CardBus socket. The Present State register should be read to determine that the voltage requested was actually applied. The bridge will not allow an unsupported voltage to be applied to a CardBus card. This bit is meaningless when an 16-bit card is installed.
4-31	Reserved	

Status Mask Register (Offset: 04h)

This register gives software the ability to control what status change interrupts are generated by the bridge. If the Card Detect Changed bit is enabled at the time a card is removed, interrupt will be generated then this register is cleared automatically. This is to prevent spurious interrupts while cards are removed. If it is desired to have the bridge generate an interrupt at the time of a new cards insertion, software must again set the Card Detect Changed mask bit. This register is cleared by a PCIRST#.

BIT POSITION	NAME	DESCRIPTION
0	CSTSCHG/ WAKEUP	When set enables an interrupt based on the CSTSCHG signal being asserted by a CardBus card. This bit is meaningless when an 16-bit card is installed. CSTSCHG interrupts generated by 16-bit cards are controlled via registers in that IF's register space. Default = 0 (disabled).
1-2	Card Detect Changed	When set enables an interrupt when the bridge detects change. Default = 00 (disabled).
3	Power Cycle Complete	When set the bridge will generate an interrupt 256 cycles after powering up a socket. Default = 0 (disabled).
4-31	Reserved	

Present State Register (Offset: 08h)

The Socket Present State Register reflects the present value of the socket's status. Some of the bits in this register are merely reflections of interface signals while others are flags set to indicate a status change.

BIT POSITION	NAME	DESCRIPTION
0	CSTSCHG/ WAKEUP	Card Status Change bit. This bit reflects the current status of the CSTSCHG/WAKEUP pin on the CardBus interface.
1-2	CCD1# and CCD2#	Card Detects 1 and 2. Provide for detection of a PC card insertion/removal/presence. Also used by the bridge, in conjunction with CVS1 and CVS2, to determine card type (16-bit vs. CardBus). They are reflections of the CCD1 and CCD2 pins.
3	PowerCycle	When set indicates the interface is powered up. When cleared the socket is powered down. Set to zero by PCIRST#.
4	16-bit PC Card	When set indicates that the Card Detect state machine determined a PCMCIA card was inserted. This bit is cleared when another card is inserted that isn't 16-bit. This bit is set to zero by a PCIRST#.
5	CBCard	When set indicates that the Card Detect state machine determined a CardBus card was inserted. This bit is cleared when another card is inserted that isn't CardBus. This bit is set to zero by PCIRST#. NOTE: This bit and the 16-bit Card bit do not indicate that a card is installed. They only indicate what kind of card was last installed. The Card Detect bits indicate if a card is currently in the socket.
6	Interrupt	When set to one indicates the inserted card is driving its interrupt pin true. This bit is not a registered bit and its assertion/deassertion must follow the interrupt pin from the card.
7	NotACard	Indicates that an unsupported card is installed in the socket. The bridge will not allow power to be applied to the socket if this bit is set. Set to zero by PCIRST#.
8	DataLost	Indicates that a card was removed while the interface was active. Data may have been lost. Any data in the bridge's data buffers when this occurs is lost. Set to zero by PCIRST#. WHY: To allow software to fail in a graceful manner, if it chooses to, when this happens.
9	BadVccReq	Software attempted to apply an unsupported or incorrect voltage level to a socket. This bit is set to zero by PCIRST#.
10	5VCard	When set the card installed requires and/or supports 5.0V operation. This bit is set by the state machine used to detect card voltage requirements. This bit is set to zero by PCIRST#.
11	3V Card	When set the card installed requires and/or supports 3.3V operation. This bit is set by the state machine used to detect card voltage requirements. This bit is set to zero by PCIRST#.
12	XVCard	Unused. Returns 0.
13	YVCard	Unused. Returns 0.
14-27	Reserved	Return zero when read
28-31	Vcc Voltage Available	Indicates the Vcc voltages available for the sockets in this machine

Vcc Voltage Available

Bit #31	Bit #30	Bit #29	Bit #28
YV	XV	3V	5V

Force Register (Offset 0Ch)

The Force Register is a phantom register. Its bits are merely control bits. They are not registered and need no clearing. It provides software the ability to force various status and event bits in the bridge. This gives software the ability to test and restore status. Writing a one to a bit in this register sets the corresponding bit in the Socket Event Register and/or the Present State Register.

BIT POSITION	NAME	DESCRIPTION	
0 CSTSCHG Sets the		Sets the Card Status Change bit in the Event Register. The Present State Register remains unchanged	
1-2 Card Detect Sets the Card Status Change bit in the Event Register. The Present State Register remains Changed		Sets the Card Status Change bit in the Event Register. The Present State Register remains unchanged	
3	Power Up	Sets the PowerCycle bit in the Event Register. The Present State Register remains unchanged.	
4	16-bit Card	Sets the 16-bit Card bit in the Present State Register. If a card is installed in the socket, writes to this bit are ignored.	
5	CBCard	Sets the CBCard bit in the Present State Register. If a card is installed in the socket, writes to this bit are ignored.	
6	Reserved		
7 NotACard Sets the NotACard bit in the Present State Register. If a card is installed in the socket, writes ignored.		Sets the NotACard bit in the Present State Register. If a card is installed in the socket, writes to this bit are ignored.	
8 Data Lost This bit will cause the Data Lost bit to be set in the Present State Register. 9 BadVccReq - This bit will cause the BadVccReq bit in the Present State Register to be set		This bit will cause the Data Lost bit to be set in the Present State Register.	
		BadVccReq - This bit will cause the BadVccReq bit in the Present State Register to be set.	
10	5VCard	This bit will cause the 5VCard bit in the Present State Register to be set. Writes to this bit disables the bridge's ability to power up the socket. To change the voltage of a card, after forcing this bit, the bridge must either receive a PCIRST# or reset the card's supported voltages. The latter can be accomplished by forcing the CV Test bit. This is necessary to prevent software from applying an incorrect voltage to the bridge.	
11 3VCard This bit will cause the 3VCard bit in the Present State Register to be set. Writes to this bit disable bridge's ability to power up the socket. To change the voltage of a card, after forcing this bit, the be either receive a PCIRST# or reset the card's supported voltages. The latter can be accomplished		This bit will cause the 3VCard bit in the Present State Register to be set. Writes to this bit disables the bridge's ability to power up the socket. To change the voltage of a card, after forcing this bit, the bridge must either receive a PCIRST# or reset the card's supported voltages. The latter can be accomplished by forcing the CV Test bit. This is necessary to prevent software from applying an incorrect voltage to the bridge.	
12-13	Reserved		
14	CV Test	Causes the controller to test the VS and CCD lines to determine card type and voltages supported. This test is run automatically when a new card is inserted.	
15-31	Reserved		

Control Register(Offset: 10h)

The Socket Control Register provides control of the socket's Vcc and Vpp. All bits in this register should be set to zero by PCIRST# and power removed from the socket

BIT POSITION	NAME	DESCRIPTION
0-1	Vpp Control	Used to switch the Vpp power using external Vpp control logic. The bridge has no knowledge of a card's Vpp voltage requirement. Software must determine the needed voltage from the card's CIS.
3	Unused	Unused - Returns zero when read.
4-6	VCC Control	Used to control the power to the PC Card via external control logic. The bridge determines the voltages that can be applied by decoding the CD and VS signals per the CardBus specification. Those bits and the voltages available in the system determine the correct Vcc options. The value written to this register must agree with the value needed to apply the correct value of Vcc. The bridge must not allow an incorrect VCC voltage to be applied to a socket. The voltages available are shown in the Status Register.
7	StopClock	When set causes the bridge to stop the CardBus clock (CCLK) using the CLKRUN# protocol. This allows software control of the CLKRUN# protocol in those systems that do not support CLKRUN# on the host side of the controller. Default is 0.
8-31	Unused	Returns zero when read.

Bit #2	Bit #1	Bit #0	VPP Requested
0	0	0	0V
0	0	1	12.0V
0	1	0	5.0V
0	1	1	3.3V
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	Reserved

Bit #6	Bit #5	Bit #4	Vcc Requested
0	0	0	0V
0	0	1	Reserved
0	1	0	5.0V
0	1	1	3.3V
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	Reserved

Socket Zoomed Video Control Register(Offset: 20h)

The Zoomed Video Control Register provide control of each socket zoomed video mode enable . All bits in this register should be set to zero by PCIRST# . This register bit 0 will directly reflect at bit 3 of Index Register 3A/7A.

BIT POSITION	NAME	DESCRIPTION			
0	Zoomed	0: socket address lines are nomal.			
	Video	1: socket address lines A[25:4] are High-Impedance			
		IOIS16#, INPACK# and BVD2/SPKR# are ignored by the OZ6833 while in ZV Port mode.			
31-1	Unused	Unused - Returns zero when read.			

Socket Interrupt and MHPG DMA Control Register(Offset: 24h)

The Socket Interrupt and MHPG DMA Control Register provide control of each socket status change and CINT# interrupt enable. This register bit [4:0] will directly reflect at bit [4:0] of Index Register 3C/7C.

BIT POSITION	NAME	DESCRIPTION
2-0	MHPG DMA Channel #	Define the DMA channel number from 0h-7h
3	CINT# Enable	Bit is "0" indicates that when CardBus CINT# active will not generate the Interrupt Bit is "1" indicates that when CardBus CINT# active will generate the Interrupt (Default)
4	Status Change Interrupt Enable	Bit is "0" indicates that when Socket Status changes will not generate the Interrupt Bit is "1" indicates that when Socket Status changes will generate the Interrupt (Default)
31-5	Unused	Unused - Returns zero when read.

O₂MICRO MISC CONTROL Register (Offset: 28h)

This register bit [1:0] will directly reflect at bit [6:5] of Index Register 38/78.

This register bit [9:8] will directly reflect at bit [1:0] of Index Register 3B/7B.

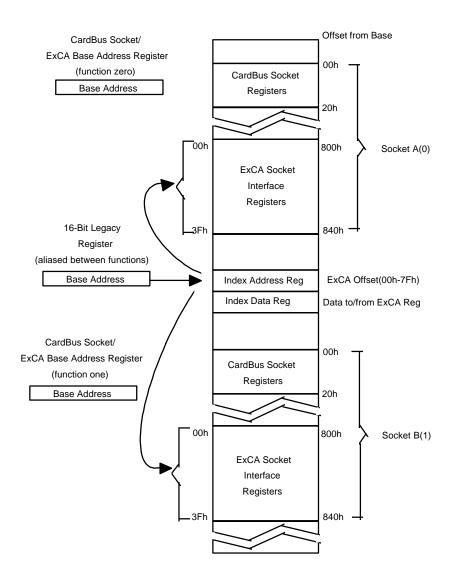
This register bit [11:10] will directly reflect at bit [7:6] of Index Register 3B/7B.

This register bit [16] will directly reflect at bit [4] of Index Register 3D/7D.

This register bit [23:22] will directly reflect at bit [7:6] of Index Register 3D/7D.

This register bit [25:24] will directly reflect at bit [1:0] of Index Register 3E/7E.

This register bit [28:27] will directly reflect at bit [4:3] of Index Register 3E/7E


.BIT POSITI	NAME	DESCRIPTION
ON		
[1:0]	Pwrchip	00 =>Reserved
		01 => parallel socket pwr
		10 => TI TPS2202IDF
		11 => SMBUS MAX1601
[7:2]	Reserved	Return zero when read
[9:8]	System Interrupt	These bits indicate the type of interrupt mode selected in PCI-Compatible interrupt mode
	Mode	00 => PC/PCI interrupt mode
		01 => Reserved
		10 => PCI/Way interrupt mode
		11 => PCI interrupt mode(Default)
10	WIN97 IRQ	Bit is "1", indicates CardBus 32 bit card is using PCI interrupt & PC 16 bit card using ISA Serial mode to
	Support	support WIN97
		Bit is "0", indicates Interrupt Mode is decided by system Interrupt Mode
11	ISA Legacy	Bit is "1", indicates ISA-legacy interrupt mode
		Bit is "0", indicates PCI-compatible interrupt mode(Default)
[15:12]	Unused	Unused - Returns zero when read.
16	PCI_FIFO	Bit is "1", indicates PCI side Word buffer enabled
		Bit is "0", indicates PCI side Dword buffer disabled
[17:21]	Unused	Unused - Returns zero when read.
22	MEM_POSTWR	Bit is "0" indicates that Cardbus bridge memory post write function disabled
		Bit is "1" indicates that Cardbus bridge memory post write function enabled
23	Buffer Enable	Bit is "0" indicates that CardBus bridge memory FIFO full buffer disabled
		Bit is "1" indicates that CardBus bridge memory FIFO full buffer Enabled
24	MHPG DMA	"0" indicates that MHPG DMA Mode not enabled.
	MODE	"1" indicates that MHPG DMA MODE Enabled
25	SPKR_OUT	"1" indicates that enable the output for pin SPKR_OUT(Default)
	Enable	"0" indicates that disable the output for pin SPKR_OUT
26	Reserved	
27	LED_OUT	"1" indicates that enable the output for pin LED_OUT(Default)
	Enable	"0" indicates that disable the output for pin LED_OUT
28	SKTA_ACTV	Bit is "0" indicates LED_OUT/SKT_ACTV pin is Led_Out
		Bit is "1" indicates LED_OUT/SKT_ACTV pin is SocketA_Activity
		SocketB_Activity pin refer to PCI Configuration Register 90h
31-29	Unused	Unused - Returns zero when read.

ExCA REGISTERS

The ExCA registers implemented in the OZ6833 are registered compatible with Intel 82365SL-DF PCMCIA Controller .The OZ6833 provides two ways for accessing the ExCA-compatible register.

- (1) Via the CardBus Socket/ ExCA Base Address Register (Configuration offset : 10h) and mapped directly into memory address space. ExCA registers, offset by 800h
- (2) Via the 16-bit PC Card Legacy Mode Base Address Register (Configuration offset: 44h)

PCI Memory Address Space

Index Register Table

All the registers', except index 00h/40h, default value are 00h.

Socket A	Socket A I/O	Socket B Memory	Socket B I/O	Register Name		
Memory Offset	Offset	Offset	Offset			
	GENERAL SETUP REGISTERS					
800h	00h	800h	40h	Identification and Revision		
801h	01h	801h	41h	Interface Status		
802h 804h	02h 04h	802h 804h	42h 44h	Power and RESETDRV Control		
806h	06h	806h	46h	Card Status Change Address Window Enable		
816h	16h	816h	56h	Card Detect and General Control Register		
81Eh	1Eh	81Eh	5Eh	Global Control Register		
01211	1211	OTEN	INTERRUPTS REG			
803h	03h	803h	43h	Interrupt and General Control		
805h	05h	805h	45h	Card Status Change Interrupt Configuration		
00311	0011	00011	I/O REGISTERS	Oard Otates Change Interrupt Coringulation		
807h	07h	807h	47h	I/O Control		
808h	08h	808h	48h	I/O Address 0 Start LOW Byte		
809h	09h	809h	49h	I/O Address 0 Start HIGH Byte		
80Ah	0Ah	80Ah	4Ah	I/O Address 0 Stop LOW Byte		
80Bh	0Bh	80Bh	4Bh	I/O Address 0 Stop HIGH Byte		
80Ch	0Ch	80Ch	4Ch	I/O Address 1 Start LOW Byte		
80Dh	0Dh	80Dh	4Dh	I/O Address 1 Start HIGH Byte		
80Eh	0Eh	80Eh	4Eh	I/O Address 1 Stop LOW Byte		
80Fh	0Fh	80Fh	4Fh	I/O Address 1 Stop HIGH Byte		
			MEMORY REGISTE	RS		
810h	10h	810h	50h	System Memory Address 0 Mapping Start LOW Byte		
811h	11h	811h	51h	System Memory Address 0 Mapping Start HIGH Byte		
812h	12h	812h	52h	System Memory Address 0 Mapping Stop LOW Byte		
813h	13h	813h	53h	System Memory Address 0 Mapping Stop HIGH Byte		
814h	14h	814h	54h	Card Memory Offset Address 0 LOW Byte		
815h	15h	815h	55h	Card Memory Offset Address 0 HIGH Byte		
840h	17h 18h	840h 818h	57h 58h	System Memory Address 0 Mapping Start Upper Byte System Memory Address 1 Mapping Start LOW Byte		
818h	19h		59h	1		
819h 81Ah	1Ah	819h 81Ah	5Ah	System Memory Address 1 Mapping Start HIGH Byte System Memory Address 1 Mapping Stop LOW Byte		
81Bh	1Bh	81Bh	5Bh	System Memory Address 1 Mapping Stop LOW Byte System Memory Address 1 Mapping Stop HIGH Byte		
81Ch	1Ch	81Ch	5Ch	Card Memory Offset Address 1 LOW Byte		
81Dh	1Dh	81Dh	5Dh	Card Memory Offset Address 1 HIGH Byte		
841h	1Fh	841h	5Fh	System Memory Address 1 Mapping Start Upper Byte		
820h	20h	820h	60h	System Memory Address 2 Mapping Start LOW Byte		
821h	21h	821h	61h	System Memory Address 2 Mapping Start HIGH Byte		
822h	22h	822h	62h	System Memory Address 2 Mapping Stop LOW Byte		
823h	23h	823h	63h	System Memory Address 2 Mapping Stop HIGH Byte		
824h	24h	824h	64h	Card Memory Offset Address 2 LOW Byte		
825h	25h	825h	65h	Card Memory Offset Address 2 HIGH Byte		
826h	26h	826h	66h	Reserved		
842h	27h	842h	67h	System Memory Address 2 Mapping Start UPPER Byte		
828h	28h	828h	68h	System Memory Address 3 Mapping Start LOW Byte		
829h	29h	829h	69h	System Memory Address 3 Mapping Start HIGH Byte		
82Ah	2Ah	82Ah	6Ah	System Memory Address 3 Mapping Stop LOW Byte		
82Bh	2Bh	82Bh	6Bh	System Memory Address 3 Mapping Stop HIGH Byte Card Memory Offset Address 3 LOW Byte		
82Ch 82Dh	2Ch 2Dh	82Ch 82Dh	6Ch 6Dh	Card Memory Offset Address 3 LOW Byte Card Memory Offset Address 3 HIGH Byte		
82Eh	2Eh	82Eh	6Eh	Reserved		
843h	2Fh	843h	6Fh	System Memory Address 3 Mapping Start UPPER Byte		
830h	30h	830h	70h	System Memory Address 4 Mapping Start LOW Byte		
831h	31h	831h	71h	System Memory Address 4 Mapping Start HIGH Byte		
832h	32h	832h	72h	System Memory Address 4 Mapping Stop LOW Byte		
833h	33h	833h	73h	System Memory Address 4 Mapping Stop HIGH Byte		
834h	34h	834h	74h	Card Memory Offset Address 4 LOW Byte		
835h	35h	835h	75h	Card Memory Offset Address 4 HIGH Byte		
836h	36h	836h	76h	Reserved		
<mark>837h</mark>	<mark>37h</mark>	837h	<mark>77h</mark>	Reserved		
838h	38h	838h	78h	O ₂ Micro Mode Control A		
839h	39h	839h	79h	O ₂ Micro Mode Control B		
83Ah	3Ah	83Ah	7Ah	O ₂ Micro Mode Control C		
83Bh	3Bh	83Bh	7Bh	O ₂ Micro Mode Control D		
83Ch	3Ch	83Ch	7Ch	MHPG DMA Register		
83Dh	3Dh	83Dh	7Dh	FIFO Enable Register		
83Eh	3Eh	83Eh	7Eh	O ₂ Micro Mode Control E		
<mark>844h</mark>	<mark>3Fh</mark>	<mark>844h</mark>	<mark>7Fh</mark>	System Memory Address 4 Mapping Start UPPER Byte		

General Setup Registers

IDENTIFICATION AND REVISION REGISTER (READ ONLY)

Socket A: Index Value (Base + 00h) Socket B: Index Value (Base + 40h)

The Identification and Revision register is used by the system software to determine the type of PC Cards supported, and to identify what version of the OZ6833 is present. System software reads the identification and revision Register and then compares the result value against existing revision numbers (83h for Intel365SL Step B; 84h for Intel365SL Step C; and 87h for OZ6833; this register default can be programmed by O₂Micro Control B Register)

BIT POSITION	NAME	DESCRIPTION			
[7:6]	OZ6833 Interface ID bit	These bits indicate the type of PC Cards supported by the OZ6833 at the particular socket.			
	[1:0]	ID[1] ID[0] Interface			
		0 0 I/O Only			
		0 1 Memory Only			
		1 0 Memory & I/O			
		1 1 Reserved			
		NOTE: These bits will read back as 10			
[5:4]	Reserved	These bits will be read back as "0"s			
[3:0]	OZ6833 Revision	These four bits indicate the current revision level of the OZ6833.			
	bit [3:0]	The revision code will be 0010.			

INTERFACE STATUS REGISTER (READ ONLY)

Socket A: Index Value (Base + 01h) Socket B: Index Value (Base + 41h)

The Interface Status Register provides the current status of the PC Card socket interface signals.

BIT	NAME	DESCRIPTION					
POSITION							
7	Reserved	Read as "0".					
6	PC Card Power Active	Indicates the current power status of the socket. If bit is set to "0", power to the socket is turned off (Vcc, Vpp1, and Vpp2 will not be actively driven by the proper voltage supply). If bit is set to "1", power is provided to the socket (Vcc = 5V and Vpp1 and Vpp2 are set according to bits 3-0 in the power control register).					
5	Ready/Busy#	Indicates the ready condition of the PC Memory Card. If bit is set to "1", the PC Card is ready to accept a new data transfer. If bit is "0", the PC Card is busy processing a previous command, or performing initialization for IO Card, this bit is default to HIGH.					
4	Memory write protect	Bit value is the logic level of the WP signal on the memory PC Card interface. This bit is set to "0" when WP = "0". However, memory write access to the slot will not be blocked unless the write protect bit in the associated Card Memory Offset Address Register HIGH byte register is set to "1".					
[3:2]	Card Detect 2 and 1	Together they indicate whether card is present at the socket and fully seated. Bits are set to ones if the CD1#, CD2# signal on the PC Card interface are active. Bits are set to "0" if the CD1#, CD2# signals on the PC Card interface is inactive.					
[1:0]	Battery Voltage Detect	BVD1	BVD2	STATUS			
	2 and 1	0	0	Battery Dead			
		0	1	Battery Dead			
		1	0	Warning			
		1	1	Battery Good			
		For I/O PC Cards, bit "0" indicates the current status of the (BVD1/STSCHG#) signal from the PC Card . For I/O PC Cards bit 0 indicates the current state SPKR# signal from the PC Card. Refer to interrupt General Control Register (03h, 43h) bit 7 for more details.					

POWER AND RESETDRV CONTROL REGISTER (READ/WRITE)

Socket A: Index Value (Base + 02h) Socket B: Index Value (Base + 42h)

This register controls the PC card power and resetting of OZ6833 registers.

BIT POSITION	NAME	DESCRIPTION					
7	Output Enable	If this bit is set to "0", the PC card outputs listed below are tri-stated.					
		A[25:0], CE2#. CE1#, IORD#, IOWR#, OE#, REG#, RESET, WE#					
6	Reserved						
5	Auto Pwr Switch	If bit is set to "0", automatic socket power switching based on card detects is disabled. If bit is set to					
	Enable	"1", automatic socket power switching based on card detects is enabled. Automatic socket power switching function controls the VCC_3#, VCC_5#, VPP_VCC and VPP_PGM output pins.					
4	PC card Power	If bit is set to "0", all power to the PC card is disabled. When bit is set to "1", power will be supplied to					
	Enable	the sockets through VCC_3# and VCC_5# pin depending on the type of voltage the card needs.					
3	Vcc3.3V	This bit determines which output pin is to be used to enable Vcc power to the socket when card power					
		is to be applied; it is used in conjunction with bit 5-4 the Power Control register.					
		- Vcc_5 activated when card power is to be applied.					
		1 - Vcc_3 activated when card power is to be applied.					
2	Reserved	This bit will be read back as "0"s.					
[1:0]	Vpp Control Bits	These bits control the VPP_VCC and VPP_PGM output pins of the OZ6833.					
		[1] [0] VPP_PGM VPP_VCC PCMCIA Intended Socket Function					
		0 0 Inactive LOW Inactive LOW Zero volts to socket Vpp1 pin					
		0 1 Inactive LOW Active HIGH Selected card Vcc to socket Vpp1 pin					
		1 0 Active HIGH Inactive LOW +12V to socket Vpp1 pin					
		1 1 Inactive LOW Inactive LOW Zero volts to socket Vpp1 pin					

The table below describes the slot power control function.

PWRGOOD Level	Bit 4 (VCC Bit 5 (Auto Power)		CD1# and CD2# Active LOW	Interface Status Register	VCC_3# and VCC_5# Levels	VPP1_PGM and VPP1_VCC Levels
20701				Bit 6 (Card Power On)		
LOW	X	X	X	0	Inactive HIGH	Inactive HIGH
HIGH	0	X	Χ	0	Inactive HIGH	Inactive HIGH
HIGH	1	0	Х	1	Activated with supply voltage depend on VS# input pin.	Activated with supply VPP voltage depend on Power Control register bits "1" and "0".
HIGH	1	1	No	0	Inactive HIGH	Inactive HIGH
HIGH	1	1	Yes	1	Activated with supply voltage depend on VS# input pin.	Activated with supply VPP voltage depend on Power Control register bits "1" and "0"

CARD STATUS CHANGE REGISTER (READ/WRITE)

Socket A: Index Value (Base + 04h) Socket B: Index Value (Base + 44h)

This register contains the status of the sources for the card status change interrupts. These sources can be enabled to generate a card status change interrupt by setting the corresponding bit in the Card Status Change Interrupt Configuration Register. The bits in this register will be read back as "0", when the Card Status Enable bits are set to "0" in the Card Status Change Interrupt Configuration Register for the various sources of the card status change interrupts.

If the Explicit write Back Card Status Change Acknowledge bit is set in the Global Control Register, the acknowledgment of sources for the card status change interrupt will be done by writing back "1" to the appropriate bit in the Card Status Change register that was read as a "1". Once acknowledged, that particular bit in the Card Status Change register will be read back as "0". The interrupt signal caused by card status change, if enabled on a system IRQ line, will be active until all of the bits in this register are"0".

If the Explicit write Back Card Status Change Acknowledge bit is not set, the card status change interrupt when enabled on a system IRQ line, will remain active until the Card Status Change register is read. The read operation to the Card Status Change Register will reset all the bits in that register.

In the case that there are two or more card status change interrupts pending, and a card status change interrupt condition occurs while serving one source of card status change, the OZ6833 will not generate a second interrupt pulse.

Therefore, in explicit write back acknowledge mode, the Host System interrupt service routine needs to acknowledge each Card Status Change Interrupt source by writing "1"s to the respective bits in the Card Status Change Register. While in the standard acknowledge mode, the SW interrupt service routine must first read the Card Status Change register to store all the card status change sources and service them in terms.

In both modes, the Interrupt Service Routine needs the Card Status Change register to make sure that all interrupt requests are serviced before emitting the service routines.

NOTE: bit descriptions in parenthesis indicate valid signals after the interface is configured for I/O type PC cards.

BIT POSITION	NAME	DESCRIPTION
[7:5]	Reserved	These reserved bits always read "0".
4	Reserved	Read as "0".
3	Card detect Change	Bit is set to "1" when a change has been detected on either the CD1# or CD2# signals.
2	Ready Change	Bit is set to "1" when a LOW to HIGH transition has been detected on the READY/BUSY# signal indicating that the memory PC Card is ready to accept a new data transfer. Bit reads "0" for I/O Cards
1	Battery Warning	Bit is set to "1"when a battery warning condition has been detected. Bit reads "0" for I/O PC Cards.
0	Battery Dead (VD1/STSCHG#)	For memory PC Cards, bit is set to "1" when a battery dead condition has been detected. For I/O PC Cards, bit is set to "1" if ring indicate enable bit in the Interrupt and General Control register is set to "0" and the (VD1/STSCHG#) signal from the I/O PC Card has been pulled LOW. The system software then has to read the status change register in the PC Card to determine the cause of the status change signal (STSCHG#). This bit reads "0" for I/O PC Cards if the ring indicate enable bit in the Interrupt and General Control register is set to "1".

ADDRESS WINDOW ENABLE REGISTER (READ/WRITE)

Socket A: Index Value (Base + 06h) Socket B: Index Value (Base + 46h)

This register controls the enabling of the memory and I/O mapping windows to the PC Card memory or I/O

For CS# controlled power-down mode to function properly, all the memory I/O window enable bits in this register need to be set to "0" before the OZ6833 enters the power-down mode.

BIT POSITION	NAME	DESCRIPTION
7	I/O Window 1 Enable	If bit is set to "0", an I/O access within the I/O address 1 window will inhibit the card enable signals to the PC Card. If bit is set to "1", an I/O access within the I/O address 1 window will generate the card enables to the PC Card. I/O accesses pass addresses from the system bus directly through to the PC Card. The start and stop register pairs must all be set to the desired window values before setting bit to "1".
6	I/O Window 0 Enable	If bit is set to "0", an I/O access within the I/O address 0 window will inhibit the card enable signals to the PC Card. If bit is set to "1", an I/O access within the I/O address 0 window will generate the card enables to the PC Card. I/O accesses pass addresses from the system bus directly through to the PC Card. The start and stop register pairs must all be set to the desired window values before setting bit to "1".
5	MEMCS16 # Decode A23-A12	If this bit is set to "0", MEMCS16# is generated from a decode of the system (ISA) address lines A23-A17 only. This means that at a minimum, a 128K block of system (ISA) memory address space is set aside as 16-bit memory only. If this bit is set to a"1", MEMCS16# is generated from decode of the system (ISA address lines A23-A12).
4	Memory Window 4 Enable	If bit is set to "0", a memory access within the memory address 4 window will inhibit the card enable signals to the PC Card. If bit is set to "1", a memory access within the system memory address 4 window will generate the card enables to the PC Card. The start, stop, and offset registers pairs must all be set to the desired window values before setting bit to "1". When bits is set to "1" and the system address is within the window, the computed address will be generated to the PC Card.
3	Memory Window 3 Enable	If bit is set to "0", a memory an I/O access within the memory address 3 window will inhibit the card enable signals to the PC Card. If bit is set to "1", a memory access within the system memory address 3 window will generate the card enables to the PC Card. The start, stop, and offset registers pairs must all be set to the desired window values before setting bit to "1". When bits is set to "1" and the system address is within the window, the computed address will be generated to the PC Card.
2	Memory Window 2 Enable	If bit is set to "0", a memory access within the memory address 2 window will inhibit the card enable signals to the PC Card. If bit is set to "1", a memory access within the system memory address 2 window will generate the card enables to the PC Card. The start, stop, and offset registers pairs must all be set to the desired window values before setting bit to "1". When bits is set to "1" and the system address is within the window, the computed address will be generated to the PC Card.
1	Memory Window 1 Enable	If bit is set to "0", a memory access within the memory address 1 window will inhibit the card enable signals to the PC Card. If bit is set to "1", a memory access within the system memory address 1 window will generate the card enables to the PC Card. The start, stop, and offset registers pairs must all be set to the desired window values before setting bit to "1". When bits is set to "1" and the system address is within the window, the computed address will be generated to the PC Card.
0	Memory Window 0 Enable	If bit is set to "0", a memory access within the memory address 0 window will inhibit the card enable signals to the PC Card. If bit is set to "1", a memory access within the system memory address 1 window will generate the card enables to the PC Card. The start, stop, and offset registers pairs must all be set to the desired window values before setting bit to "1". When bits is set to "1" and the system address is within the window, the computed address will be generated to the PC Card.

GLOBAL CONTROL REGISTER (READ/WRITE)

Socket A: Index Value (Base + 1Eh) Socket B: Index Value (Base + 5Eh)

This register is not duplicated per slot. Thus, this register can be accessed from either the slot A or slot B index.

BIT POSITION	NAME	DESCRIPTION
[7:4]	Reserved	These bits are reserved.
3	IRQ14 Pulse Mode Enable	Setting this bit to a "1" and bit 1 (level mode interrupt enable bit) to "0" will enable the OZ6833 to use IRQ14 to support PC card with pulse mode interrupt on IREQ# while other IRQ's are still supporting edge-trigger interrupts (from either card status change interrupts, or PC card IREQ#). If bit 1 is set to "1", then this bit has no effect.
2	Explicit Write Back Card Status Change Acknowledge	Setting this bit to a "1", will require an explicit write of a "1" to the Card status change Register bit which indicates an interrupting condition. When this bit is set to "0" (default state), the card status change interrupt is acknowledged by reading the Card Status Change Register, and the register bits are cleared upon a read.
1	Level Mode Interrupt Enable	If this bit is set to "1", then all the IRQ outputs are configured to be active LOW level mode interrupts. In this mode, an IRQ will remain tristated until there is either a card status change interrupt or an I/O card interrupt steered to that particular IRQ and active, at which time the IRQ output will go LOW. For the interrupt caused by the IREQ# active (LOW) from a PC Card, IRQ will remain LOW until IREQ# become inactive, then IRQX will be deasserted. For the interrupt caused by the card status change, it will remain LOW until interrupt is acknowledged (serviced). Once serviced the IRQ output will go from LOW to tristate.
		If this bit is set to its default state of "0", the IRQ outputs will be configured to be LOW to HIGH edge triggered interrupts. In this mode, the IRQs will remain tristated until the particular IRQ is enabled, at which time the IRQ output will go LOW. The output will stay LOW until there is a card status change interrupt or I/O card interrupt which will cause the IRQ output to HIGH. For the interrupt caused by the IREQ# active (LOW) from a PC Card, IRQx will remain HIGH until IREQ# becomes inactive, then IRQ will be LOW again. For the interrupt caused by the card status change, it will remain HIGH until interrupt is acknowledged (serviced), then goes LOW. In either case, IRQs will then remain LOW until they are disabled (through interrupt and general control register). When disabled, IRQ will become tristated.
0	Power Down	When it is set to "1", and all I/O memory windows are disabled, and CS# signal is driven to inactive HIGH, the OZ6833 enters the CS# controlled power-down. During CS# controlled power-down, all OZ6833's internal registers are inaccessible, outputs are disabled, and the OZ6833 is at minimum power consumption level. IRQ's and RI_OUT# will still be active to monitor the card detect, and RI# status for resume indication.

CARD DETECT AND GENERAL CONTROL REGISTER (READ/WRITE)

Socket A: Index Value (Base + 16h) Socket B: Index Value (Base + 56h)

BIT	NAME	DESCRIPTION
POSITION		
[7:6]	Reserved	These bits are reserved.
5	Software card detect Interrupt	If the Card Detect enable bit is set to "1" in the Card Status Change Interrupt Configuration Register, then writing a "1" to this bit will cause a card detect card status change interrupt for the associated slot. The functionality and acknowledgment of this software interrupt will work the same way as the hardware generated interrupt.
		NOTE: The functionality of the hardware card detect card status change interrupt will not be affected. The previous state of the CD1# and CD2# inputs will be latched, such that while a S/W card detect card change interrupt occurs and is serviced, and a change from the previous state occurs on the CD1# and CD2# inputs, a H/W card detect card status change interrupt will be generated.
		If the Card Detect Enable bit is set to "0" in the Card Status Change Interrupt Configuration Register, then writing a "1" to the S/W Card Detect Interrupt bit has no effect.
		The S/W Card Detect Interrupt bit will always read back as a "0".
4	Card Detect Resume Enable	The default state of this bit is "0". If this bit is set to "1", then once a card detect change has been detected on the CD1# and CD2# inputs, the RI_OUT# output will go from HIGH to LOW and the Card Detect Change bit in the Card Status Change Register will be set to "1". The RI_OUT# output will remain LOW until either a read or a write of "1" to the Card Detect Change bit in the Card Status Change register, (acknowledge cycle) which will cause the Card Detect Change bit to be cleared and the RI_OUT# output to go from LOW to HIGH. The Card Detect Enable bit must be set in the Card Status Change Interrupt Configuration Register in order to generate the RI_OUT#.
		If the card status change is routed to the IRQ signals, the setting of Card Detect Resume Enable bit to "1" will prevent IRQ signal from going active as a result of card status change. Once the resume software has detected a card detect change interrupt from RI_OUT#(by reading the Card status Change register), the software should initiate a software card detect change so the card detect change condition will generate active interrupt on the IRQ signals (depending on the active configuration).
		If this bit is set to "0", then the card detect resume functionality is disabled. This means that the RI_OUT# output will not go LOW due to a card detect change.
		The RI_OUT# output will be the logical AND of all the active LOW sources for ring indicate output including the RI# inputs from slot A and slot B and the card detect changes on CD1#, CD2# from both slots.
3	Reserved	Read as "0".
2	Reserved	Read as "0".
0	16-Bit Memory Delay Inhibit	The default state of this bit is "0". This is not programmable on a per window basis. If it is set to "0" and a system memory window is set up to be 16-bit by setting the Data Size bit in the System Memory Address Mapping Start HIGH Byte Register to "1", the falling edge of the control strobes WE# and OE# for the corresponding slot will be delayed synchronously by SYSCLK. The falling edge of the control strobes will be generated from the first falling edge of SYSCLK after the falling edge of MEMW# or MEMR# gated by a valid system memory window decode. The rising edge of the control strobes will be generated from the rising edge of MEMW# or MEMR#.
		If the 16-bit Memory Delay Inhibit is set to "1" and system memory window is set up to be 16-bit, the control strobes WE# and OE# for the corresponding slot will not be synchronously delayed by SYSCLK.

Index	
(Base + Slot A/Slot B)	
Base + 03h/43h	Interrupt and General Control
Base $+ 06h/46h$	Address Window Enable (Except 'MEMCS16# Decode A23-A12 ' bit)
Base + 07h/47h	I/O Control
Base + 08h/48h	I/O Address 1 Start LOW Byte
Base + 09h/49h	I/O Address 1 Start HIGH Byte
2450 . 6512 .511	2 o Hudioso I State Holl Byte
Base + 0Ah/4Ah	I/O Address 1 Stop LOW Byte
Base + 0Bh/4Bh	I/O Address 1 Stop HIGH Byte
Base + 0Ch/4Ch	I/O Address 2 Start LOW Byte
Base $+ 0Dh/4Dh$	I/O Address 2 Start HIGH Byte
Base + 0Eh/4Eh	I/O Address 2 Stop LOW Byte
Base + 0Fh/4Fh	I/O Address 2 Stop HIGH Byte
Base + 10h/50h	System Memory Address 0 Mapping Start LOW Byte
Base + 11h/51h	System Memory Address 0 Mapping Start HIGH Byte
Base + 12h/52h	System Memory Address 0 Mapping Stop LOW Byte
Base + 13h/53h	System Memory Address 0 Mapping Stop HIGH Byte
Base + 14h/54h	Card Memory Offset Address 0 LOW Byte
Base + 15h/55h	Card Memory Offset Address 0 HIGH Byte
Base + 18h/58h	System Memory Address 1 Mapping Start LOW Byte
Base + 19h/59h	System Memory Address 1 Mapping Start HIGH Byte
Base + 1Ah/5Ah	System Memory Address 1 Mapping Stop LOW Byte
Base + 1Bh/5Bh	System Memory Address 1 Mapping Stop HIGH Byte
Base + 1Ch/5Ch	Card Memory Offset Address 1 LOW Byte
Base + 1Dh/5Dh	Card Memory Offset Address 1 HIGH Byte
	·
Base + 20h/60h	System Memory Address 2 Mapping Start LOW Byte
Base + 21h/61h	System Memory Address 2 Mapping Start HIGH Byte
Base + 22h/62h	System Memory Address 2 Mapping Stop LOW Byte
Base + 23h/63h	System Memory Address 2 Mapping Stop HIGH Byte
Base + 24h/64h	Card Memory Offset Address 2 LOW Byte
Base + 25h/65h	Card Memory Offset Address 2 HIGH Byte
Base + 28h/68h	System Memory Address 3 Mapping Start LOW Byte
Base + 29h/69h	System Memory Address 3 Mapping Start HIGH Byte
Base + 2Ah/6Ah	System Memory Address 3 Mapping Stop LOW Byte
Base + 2Bh/6Bh	System Memory Address 3 Mapping Stop HIGH Byte
Base + 2Ch/6Ch	Card Memory Offset Address 3 LOW Byte
Base + 2Dh/6Dh	Card Memory Offset Address 3 HIGH Byte
Base + 30h/70h	System Memory Address 4 Mapping Start LOW Byte
Base + 31h/71h	System Memory Address 4 Mapping Start HIGH Byte
Base + 32h/72h	System Memory Address 4 Mapping Stop LOW Byte
Base + 33h/73h	System Memory Address 4 Mapping Stop HIGH Byte
Base + 34h/74h	Card Memory Offset Address 4 LOW Byte
Base + 35h/75h	Card Memory Offset Address 4 HIGH Byte

Interrupt Registers

INTERRUPT AND GENERAL CONTROL REGISTER (READ/WRITE)

Socket A: Index Value (Base + 03h) Socket B: Index Value (Base + 43h)

The Interrupt and General Control Register controls the interrupt steering for the PC card I/O interrupt as well as general control of the OZ6833.

BIT POSITION	NAME	DESCRIPTION						
7	Ring Indicate Enable	If bit is set to "1" and the PC card Type bit (Bit 5), is set to "1" (I/O PC Card), the (VD1/STSCHG#) signal from the I/O PC Card is used as a ring indicator signal and is passed through to the RI_OUT# output pin of the OZ6833. this function will still work when the OZ6833 is powered at 3.3V as long as the DC conditions for 3.3V operation are met.						
		If bit is set to "0" and the PC Card type bit is set to "1" (I/O PC Card), the (VD1/STSCHG#) signal from the I/O PC Card is used as the status change signal (STSCHG#). The current status of the signal is then available to be read from the Interface status Register (01H) and this signal can be configured as a source for the card status change interrupt. The ring indicate enable bit has no function when the PC Card type bit is set to "0" (memory PC Card). Bit Function						
			0		0	No Function		
			0		1	STSCHG#		
			1		0	No Function		
			1		1	RI#> RI_OUT#		
6	PC Card RESET#	Card.	This is software reset to the PC Card. Setting bit to "0" activates the RESET signal to the PC Card. The RESET signal will remain active until bit is set to "1".					
5	PC Card Type	Settin	g bit to "	1" sele	cts an I/C	PC Card which enables the PC Card interface multiplexed for		
	(Memory or I/O)	routing of PC Card I/O signals. Setting bit to "0" selects a Memory PC Card.						
4	Reserved	Read as "0"						
[3:0]	IRQ Level Selection (I/O cards Only)	PC card IREQ# Interrupt Steering Table These bits select the redirection of the PC Card interrupt.						
	.,	IRQ	IRQ	IRQ	IRQ	Interrupt		
		Bit 3	Bit 2	Bit 1	Bit 0	Request Level		
		0	0	0	0	IRQ Not selected		
		0	0	0	1	Reserved		
		0	0	1	0	Reserved		
		0	0	1	1	IRQ3 Enabled		
		0	1	0	0	IRQ4 Enabled		
		0	1	0	1	IRQ5 Enabled		
		0	1 1	1 1	0 1	Reserved IRQ7 Enabled		
		1	0	0	0	Reserved		
		1	0	0	1	IRQ9 Enabled		
		li	0	1	Ö	IRQ10 Enabled		
		l i	Ö	1	1	IRQ11 Enabled		
		1	1	0	0	IRQ12 Enabled		
		1	1	Ö	1	Reserved		
		1	1	1	0	IRQ14 Enabled		
		1	1	1	1	IRQ15 Enabled		

CARD STATUS CHANGE INTERRUPT CONFIGURATION REGISTER (READ/WRITE)

Socket A: Index Value (Base + 05h) Socket B: Index Value (Base + 45h)

This register controls interrupt steering of the card status change interrupt and the card status change interrupt enables.

BIT	NAME					DE	SCRIPTION		
POSITION									
[7:4]	IRQs	Interrupt Steering for the Card Status Change Interrupt See Card Status Change Interrupt Steering table for the routing of card status change interrupts.							
		INTR# Enable Bit (Interrupt & Gen Cntl Reg)	IRQ IF Bit 3 Bit				nterrupt uest Level		
		0	0	0	0	0	IRQ Not Selected		
		o o	0	0	Ö	1	Reserved		
		0	Ö	Ö	1	0	Reserved		
		0	0	Ö	1	1	IRQ3 Enabled		
		0	0	1	0	0	IRQ4 Enabled		
		0	0	1	0	1	IRQ5 Enabled		
		0	0	1	1	0	Reserved		
		0	0	1	1	1	IRQ7 Enabled		
		0	1	0	0	0	Reserved		
		0	1	Ö	0	1	IRQ9 Enabled		
		0	1	Ö	1	0	IRQ10 Enabled		
		0	1	Ö	1	1	IRQ11 Enabled		
		0	1	1	0	0	IRQ12 Enabled		
		0	1	1	0	1	Reserved		
		0	1	1	1	0	IRQ14 Enabled		
		0	1	1	1	1	IRQ15 Enabled		
3	Card Detect	Setting bit to "1"	enables a c	ard sta	atus cha	ange ir	nterrupt when a change has been detected on the CD1#		
	Enable					_	generation of a card status change interrupt when the		
		CD1#, CD2# sig					ů i		
2	Ready Enable				atus cha	ange ir	nterrupt when a LOW to HIGH transition has been		
_							o "0" disables the generation of a card status change		
		interrupt when a	LOW to HI	GH tra	nsition	nas be	een detected on the Read/Busy# signal.		
		Bit is ignored wh	en the inter	rface is	config	ured fo	or I/O PC cards.		
1	Battery	Setting bit to "1"	enables a c	ard sta	atus cha	ange ir	nterrupt when a battery warning condition has been		
	Warning						on of a card status change interrupt when a battery		
	Enable	warning condition			_		ů i ,		
0	Battery Dead					ables	a card status change interrupt when a battery dead		
	Enable	condition has be					,,,,,		
	(STSCHG#)	F== 1/O DO ====1			والماميد	- 070	000 to somewhat a could status about intermediate with a		
	,,						833 to generate a card status change interrupt if the		
							y I/O PC card, assuming that the ring indicate enable bit		
							set to "0". Setting bit to "0" disables the generation of the		
					0		n the interface is configured for I/O PC cards and the		
]	King Indicate En	adie dit in t	ne inte	rrupt ar	ıa Ger	neral Control register is set to "1".		

I/O Registers

I/O CONTROL REGISTER (READ/WRITE)

Socket A: Index Value (Base + 07h) Socket B: Index Value (Base + 47h)

BIT POSITION	NAME	DESCRIPTION
7	I/O Window 1 Wait State	If this bit is set to "1", 16-bit system accesses occur with 1 wait state (4 SYSCLKs). Standard 16-bit I/O cycle completes in 3 SYSCLKs with IOCHRDY HIGH.
6	I/O Window 1 ZeroWait State	If bit is set to 1, 8-bit system I/O accesses completes in 3 SYSCLKs, with ZEROWS# signal asserted to the system bus. If bit is set to "0", the 8-bit system I/O access will complete in 6 SYSCLKs when PC card asserts no WAIT# signal, or more when WAIT# signal is asserted (cause IOCHRDY deasserted). The WAIT# signal will override this bit. Bit has no meaning for 16-bit I/O access. Such access will always occur with either 3 SYSCLK standard cycle when WAIT# is not active, or more when WAIT# is active, or Bit 7 is set.
5	I/O Window 1 IOCS16# Source	If bit is set to "0", the OZ6833 generates IOCS16# based on the value of the data size bit. If bit is set to "1", the OZ6833 generates IOCS16# based on the IOIS16# signal from the PC Card and data size bit is ignored.
4	I/O Window 1 Data Size	A "0" selects an 8-bit I/O data path to the PC Card, and a "1" selects a 16-bit I/O data path to the PC Card.
3	I/O Window 0 Wait State	Same as bit 7, but for I/O Window 0.
2	I/O Window 0 ZeroWait State	Same as bit 6, but for I/O Window 0 .
1	I/O Window 0 IOCS16# Source	Same as bit 5, but for I/O Window 0.
0	I/O Window 0 Data Size	Same as bit 4, but for I/O Window 0.

I/O ADDRESS 1 START LOW BYTE REGISTER (READ/WRITE)

Socket A: Index (Base + 08h) Socket B: Index (Base + 48h)

This register contains the low order address bits used to determine the start address of I/O address window 0.

This provides a minimum 1 byte window for I/O address window 0.

BIT POSITION	NAME	DESCRIPTION			
[7:0]	Address [7:0]	I/O Window 0 Start Address A7:A0			

I/O ADDRESS 1 START HIGH BYTE REGISTER (READ/WRITE)

Socket A: Index (Base + 09h) Socket B: Index (Base + 49h)

This register contains the high order address bits used to determine the start address of I/O address window 0.

BIT POSITION	NAME	DESCRIPTION			
[7:0]	Address [15:8]	I/O Window 0 Start Address A15:A8			

I/O ADDRESS 1 STOP LOW BYTE REGISTER (READ/WRITE)

Socket A: Index (Base + 0Ah) Socket B: Index (Base + 4Ah)

This register contains the high order address bits used to determine the stop address of I/O address window 0. This provides a minimum 1 byte window for I/O address window 0.

NOTE: Do not attempt to overlay the I/O window over the top of the OZ6833 registers. This will cause the OZ6833 access type to change.

	BIT POSITION NAME [7:0] Address [7:0]		DESCRIPTION
			I/O Window 0 Stop Address A7:A0

I/O ADDRESS 1 STOP HIGH BYTE REGISTER (READ/WRITE)

Socket A: Index (Base + 0Bh) Socket B: Index (Base + 4Bh)

This register contains the high order address bits used to determine the stop address of I/O address window 0.

BIT POSITION	NAME	DESCRIPTION
[7:0]	Address [15:8]	I/O Window 0 Start Address A15:A8

I/O ADDRESS 2 START LOW BYTE REGISTER (READ/WRITE)

Socket A: Index (Base + 0Ch) Socket B: Index (Base + 4Ch)

This register contains the low order address bits used to determine the start address of I/O address window 1.

This provides a minimum 1 byte window for I/O address window 1.

BIT POSITION NAME		DESCRIPTION
[7:0]	Address [7:0]	I/O Window 1 Start Address A7:A0

I/O ADDRESS 2 START HIGH BYTE REGISTER (READ/WRITE)

Socket A: Index (Base + 0Dh) Socket B: Index (Base + 4Dh)

This register contains the high order address bits used to determine the start address of I/O address window 1.

BIT POSITION NAME		DESCRIPTION
[7:0]	Address [15:8]	I/O Window 1 Start Address A15:A8

Memory Registers

SYSTEM MEMORY ADDRESS 0 MAPPING START LOW BYTE REGISTER (READ/WRITE)

Socket A: Index (Base + 10h) Socket B: Index (Base + 50h)

These registers contain the low order address bits used to determine the start address of the corresponding system memory address mapping window. This provides a minimum memory mapping window of 4 Kbytes.

A memory PC Card is selected when the following conditions are satisfied:

- 1. The system memory address mapping window is enabled;
- 2. The (ISA) system memory address is greater than or equal to the system memory address mapping start register A23:A12 (high and low byte);
- 3. The (ISA) system memory address is less than or equal to the system memory address mapping stop register

A23:A12 (high and low byte).

The system memory address mapping windows can all be configured by software to be independently used, or used in concert to perform mapping for special memory mapping requirements, like LIM/EMS (Lotus-Intel-Microsoft/Extended Memory Specification) or XIP (Execute in Place).

NOTE: A memory window can not be set up below the first 64K of address space.

BIT POSITION	NAME	DESCRIPTION
[7:0]	Address [19:12]	System Memory Window Start Address A19:A12

SYSTEM MEMORY ADDRESS 0 MAPPING START HIGH BYTE REGISTER (READ/WRITE)

Socket A: Index (Base + 11h) Socket B: Index (Base + 51h)

These registers contain the high order address bits used to determine the start address of the corresponding system memory address mapping window. Each system memory window has a data path size associated with it which is controlled by a bit in this register. Accesses to each system memory window have the potential to occur with zero additional states which is also controlled by a bit in the register.

BIT POSITION	NAME	DESCRIPTION		
7	Data Size	A "0" selects an 8-bit memory data path to the PC Card, and a "1" selects a 16-bit memory data path to the PC Card.		
6	Zero wait State	If bit is set to "1", an 8-bit or 16-bit system memory accesses complete in 3 SYSCLKs or 2 SYSCLKs respectively, with internal ZEROWS# signal asserted to the PCI interfaces. If the bit is set to "0", the 8-bit or 16-bit memory access will complete in 6 SYSCLKs or 3 SYSCLKs with internal IOCHRDY asserted HIGH.		
		If internal IOCHRDY becomes deasserted by internal wait state generation, or WAIT# signal, then setting this bit to "0" will cause 16-bit memory cycles to complete in more than 3 SYSCLKs.		
		If internal IOCHRDY becomes deasserted by internal WAIT# signal, then setting this bit to "0" will cause 8-bit memory cycles to complete in more than 6 SYSCLKs.		
		When the Zero wait State bit is set to "1" in the system Memory Address Mapping Start HIGH Byte Register, then the internal ZEROWS# output will be held HIGH for accesses to a 8-bit system memory window with both A0 and SBHE# equal to "0".		
		NOTE: A logic LOW on IOCHRDY, either caused by an internal wait state generator or by WAIT# will force the ZEROWS# output HIGH.		
[5:4]	Scratch Bits	These bits can be used for general purpose register storage and retrieval		
[3:0]	Address [23:20]	System Memory Window start Address Start Address A23:A20 HIGH order address bits used to determine the start address of the corresponding system memory address mapping window.		

SYSTEM MEMORY ADDRESS 0 MAPPING STOP LOW BYTE REGISTER (READ/WRITE)

Socket A: Index (Base + 12h) Socket B: Index (Base + 52h)

These registers contain the low order address bits used to determine the stop address of the corresponding system memory address mapping window. This provides a minimum memory mapping window of 4 Kbytes.

BIT POSITION	NAME	DESCRIPTION
[7:0]	Address [19:12]	System Memory Window Stop Address A19:A12

SYSTEM MEMORY ADDRESS 0 MAPPING STOP HIGH BYTE REGISTER (READ/WRITE)

Socket A: Index (Base + 13h) Socket B: Index (Base + 53h)

These registers contain the high order address bits used to determine the stop address of the corresponding system memory address mapping window. Each system memory window has the ability to extend a 16-bit system bus cycle by inserting wait states. Two bits in each of these register selects the number of wait states for a 16-bit access to the system memory window.

BIT POSITION	NAME		DESCRIPTION				
[7:6] Wait State(s) select bits[1:0]		me ins be sup WA	mory window. The in erted for an 8-bit sys pulled HIGH by the 0 ports the WAIT# sig	sternal wait state generatern access even if be OZ6833 before the synal, wait states will be 5 should be set to "C	erator will not cause ac oth bits are set to "1" I ystem samples IOCHF e generated by the PC		
			Wait State Bit 1	Wait State Bit 0	Number of Additional Wait States	of SYSCLKs per Access	
			0	0	Standard 16-bit Cycle	3	
			0	1	1	4	
			1	0	2	5	
			1	1	3	6	
[5:4]	Reserved						
[3:0]	Address [23:20]	HÍC				e corresponding system	

CARD MEMORY OFFSET ADDRESS 0 LOW BYTE REGISTER (READ/WRITE)

Socket A: Index (Base + 14h) Socket B: Index (Base + 54h)

These registers contain the low order address bits which are added to the system address bits A19:A12 to generate the memory address for the PC card.

BIT POSITION	NAME	DESCRIPTION
[7:0] Address [19:12]		Card Memory Offset Address A19:A12

CARD MEMORY OFFSET ADDRESS 0 HIGH BYTE REGISTER (READ/WRITE)

Socket A: Index (Base + 15h) Socket B: Index (Base + 55h)

These registers contain the high order address bits which are added to the system address bits **A23:A20** to generate the memory address for the PC Card. The software write protect of the PC Card memory for the corresponding system memory window is controlled by this register. This register also controls if the corresponding system memory window is mapped to attribute or common memory on the PC Card.

BIT POSITION	NAME	DESCRIPTION		
7	Write Protect	If bit is set to "1", write operations to the PC Card through the corresponding system memory window are inhibited. if bit is set to "0", write operations to the PC Card through the corresponding system memory window are allowed. WP Switch on the memory card alone will not block the memory write cycle, but only set the Memory Write Protect bit in the Interface Status register.		
6	Reg Active	If bit is set to "1", accesses to the system memory window will result in attribute memory on the PC Card being accessed by asserting REG# to LOW. If bit is set to "0", accesses to the system memory will result in common memory on the PC card being accessed by driving REG# to HIGH.		
[5:0]	Address [23:20]	Card Memory Offset Address A25:A20 Bits A25 and A24 will be added to the system address bits A23:A20 to generate the memory address for the PC Card.		

CARD MEMORY ADDRESS 0 MAPPING START UPPER BYTE REGISTER (READ/WRITE)

Socket A: Index (Base + 17h) Socket B: Index (Base + 57h)

These registers are used in comparing PCI address bit 31:24 for each R2 memory windows. It decides which 16-Mbyte page memory region in the 4Gbyte PCI address space.

BIT POSITION	NAME	DESCRIPTION
[7:0]	Address [31:24]	mapping start upper address byte A[31:24] are compared to PCI address.

SYSTEM MEMORY ADDRESSES 1-4 MAPPING REGISTERS (READ/WRITE)

System Memory Addresses 1-4 register functions duplicate Address 0. Below are the register addresses of each of the registers.

```
System Memory Address 1 Mapping Start Register LOW Byte
 Socket A: Index (Base + 18h)
 Socket B: Index (Base + 58h)
System Memory Address 1 Mapping Start Register HIGH Byte
 Socket A: Index (Base + 19h)
 Socket B: Index (Base + 59h)
System Memory Address 1 Mapping Stop Register LOW Byte
 Socket A: Index (Base + 1Ah)
 Socket B: Index (Base + 5Ah)
System Memory Address 1 Mapping Stop Register HIGH Byte
 Socket A: Index (Base + 1Bh)
 Socket B: Index (Base + 5Bh)
Card Memory Offset Address 1 LOW Byte
 Socket A: Index (Base + 1Ch)
 Socket B: Index (Base + 5Ch)
Card Memory Offset Address 1 HIGH Byte
 Socket A: Index (Base + 1Dh)
 Socket B: Index (Base + 5Dh)
System memory Address 1 Mapping Start Upper Byte
 Socket A: Index (Base + 1Fh)
 Socket B: Index (Base + 5Fh)
System Memory Address 2 Mapping Start Register LOW Byte
 Socket A: Index (Base + 20h)
 Socket B: Index (Base + 60h)
System Memory Address 2 Mapping Start Register HIGH Byte
 Socket A: Index (Base + 21h)
 Socket B: Index (Base + 61h)
System Memory Address 2 Mapping Stop Register LOW Byte
 Socket A: Index (Base + 22h)
 Socket B: Index (Base + 62h)
System Memory Address 2 Mapping Stop Register HIGH Byte
 Socket A: Index (Base + 23h)
 Socket B: Index (Base + 63h)
Card Memory Offset Address 2 LOW Byte
 Socket A: Index (Base + 24h)
 Socket B: Index (Base + 64h)
Card Memory Offset Address 2 HIGH Byte
 Socket A: Index (Base + 25h)
 Socket B: Index (Base + 65h)
System memory Address 2 Mapping Start Upper Byte
 Socket A: Index (Base + 27h)
 Socket B: Index (Base + 67h)
```

```
System Memory Address 3 Mapping Start Register LOW Byte
 Socket A: Index (Base + 28h)
 Socket B: Index (Base + 68h)
System Memory Address 3 Mapping Start Register HIGH Byte
 Socket A: Index (Base + 29h)
 Socket B: Index (Base + 69h)
System Memory Address 3 Mapping Stop Register LOW Byte
 Socket A: Index (Base + 2Ah)
 Socket B: Index (Base + 6Ah)
System Memory Address 3 Mapping Stop Register HIGH Byte
 Socket A: Index (Base + 2Bh)
 Socket B: Index (Base + 6Bh)
Card Memory Offset Address 3 LOW Byte
 Socket A: Index (Base + 2Ch)
 Socket B: Index (Base + 6Ch)
Card Memory Offset Address 3 HIGH Byte
 Socket A: Index (Base + 2Dh)
 Socket B: Index (Base + 6Dh)
System memory Address 3 Mapping Start Upper Byte
 Socket A: Index (Base + 2Fh)
 Socket B: Index (Base + 6Fh)
System Memory Address 4 Mapping Start Register LOW Byte
 Socket A: Index (Base + 30h)
 Socket B: Index (Base + 70h)
System Memory Address 4 Mapping Start Register HIGH Byte
 Socket A: Index (Base + 31h)
 Socket B: Index (Base + 71h)
System Memory Address 4 Mapping Stop Register LOW Byte
 Socket A: Index (Base + 32h)
 Socket B: Index (Base + 72h)
System Memory Address 4 Mapping Stop Register HIGH Byte
 Socket A: Index (Base + 33h)
 Socket B: Index (Base + 73h)
Card Memory Offset Address 4 LOW Byte
 Socket A: Index (Base + 34h)
 Socket B: Index (Base + 74h)
Card Memory Offset Address 4 HIGH Byte
 Socket A: Index (Base + 35h)
 Socket B: Index (Base + 75h)
System memory Address 4 Mapping Start Upper Byte
 Socket A: Index (Base + 3Fh)
 Socket B: Index (Base + 7Fh)
```

The O₂Micro Mode

O₂MICRO MODE CONTROL A REGISTER (READ/WRITE)

Socket A: Index (Base + 38h) Socket B: Index (Base + 78h)

During power-on reset or hardware reset, bit 6 is loaded with value of pin 131 (SDATA/SMBDATA), and bit 5 is loaded with value of pin 130 (SLATCH/SMBCLK). These values can be preset using pull-down and pull-up resistors

BIT POSITION	NAME	DESCRIPTION
7	Reserved	
[6:5]	Pwrchip	00 => Reserved 01 => parallel socket pwr 10 => TI TPS2202IDF 11 => SMBUS MAX1601
[4:0]	Reserved	

O₂MICRO MODE CONTROL B REGISTER (READ/WRITE)

Socket A: Index (Base + 39h) Socket B: Index (Base + 79h)

This register contains Chip ID setting, which directly load the Intel365SL B step or C step or O_2 Micro mode software driver.

7	RI_OUT	"0": Indicates to disable the output for pin RI_OUT.			
	Enable	"1": Indicates to enable the output for pin RI_OUT.			
6 - 4	Reserved	This bit is reserved.			
3	VS2#	This bit is connected to PCMCIA pin 57. Cards that will only operate at 3.3V will drive this pin to a "0". Note that this bit is provided for possible future PCMCIA specifications. "0": 3.3V card detected. "1": Old or 5V card detected.			
2	5V Detect (VS1#)	This bit is connected to PCMCIA pin 34. Cards that will only operate at 3.3V will drive this pin to a "0". Note that this bit is provided for possible future PCMCIA specifications. "0": 3.3V card detected. "1": Old or 5V card detected.			
[1:0]	Chip ID parameter	These bits set the Chip ID, index 00h/40h, Read only register setting: Bit 1 Bit 0 Chip ID 1 1 Reserved (Default) 1 0 O ₂ Micro Mode 0 1 Intel365SL C Step 0 0 Intel365SL B Step			

O2MICRO MODE CONTROL C REGISTER (READ/WRITE)

Socket A: Index (Base + 3Ah) Socket B: Index (Base + 7Ah)

BIT POSITION	NAME	DESCRIPTION
[7:4]	Reserved	
[3]	Zvideo	"0" : socket address lines are normal "1" : socket address lines A[25:4] are HIGH-Impedance
[1:0]	DREQ Select/Enable	00 : Disable 01 : INPACK# 10 : WP/IOIS16 11 : BVD2/SPKR#

O₂MICRO MODE CONTROL D REGISTER (READ/WRITE)

Socket A: Index (Base + 3Bh) Socket B: Index (Base + 7Bh)

During power-on reset or hardware reset, bit 1 is loaded with value of pin 133 (LED_OUT), and bit 0 is loaded with value of pin 128 (SPKR_OUT). These values can be preset using pull-down and pull-up resistors.

BIT POSITION	NAME	DESCRIPTION
7-4	Reserved	Read as "0100"
3	CardBus Clkrun# enable	Bit is "1", indicates Clkrun# support enabled on PCI Bus. Bit is "0", indicates Clkrun# support disabled on PCI Bus (Default).
2	PCI Clkrun# enable	Bit is "1", indicates Clkrun# support enabled on PCI Bus. Bit is "0", indicates Clkrun# support disabled on PCI Bus (Default).
1-0	System Interrupt Mode	These bits indicate the type of interrupt mode selected in PCI-Compatible interrupt mode 00=> PC/PCI interrupt mode 01=> Reserved 10=> PCI/Way interrupt mode 11=> PCI interrupt mode (Default)

MHPG DMA REGISTER (READ/WRITE)

Socket A: Index (Base + 3Ch) Socket B: Index (Base + 7Ch)

BIT POSITION	NAME	DESCRIPTION
[7:5]	Reserved	Read as "000"
4	Status Change Interrupt Enable	bit is "0" indicates that when Socket Status changes will not generate the Interrupt bit is "1" indicates that when Socket Status changes will generate the Interrupt (Default)
3	CINT# Enable	bit is "0" indicates that when CardBus CINT# active will not generate the Interrupt bit is "1" indicates that when CardBus CINT# active will generate the Interrupt (Default)
2-0	MHPG DMA Channel #	Define the DMA channel number from 0h-7h

FIFO ENABLE REGISTER (READ/WRITE)

Socket A: Index (Base + 3Dh) This register bits are shared by Socket A and B

Socket B: Index (Base + 7Dh)

BIT POSITION	NAME	DESCRIPTION
7	Buffer Enable	bit is "0" indicates that CardBus bridge memory FIFO full buffer disabled
		bit is "1" indicates that CardBus bridge memory FIFO full buffer enabled
6	MEM_POSTWR	bit is "0" indicates that Cardbus bridge memory post write function disabled
		bit is "1" indicates that Cardbus bridge memory post write function enabled
5	Reserved	
4	PCI_FIFO	bit is "1", indicates PCI side Dword buffer enabled
		bit is "0", indicates PCI side Dword buffer disabled
[3:0]	Reserved	

O2 MODE CONTROL REGISTER E (READ/WRITE)

Socket A: Index (Base + 3Eh). This register bits are shared by Socket A and B.

Socket B: Index (Base + 7Eh)

BIT POSITION	NAME	DESCRIPTION
[7:5]	Reserved	
4	SKTA_ACTV	bit is "0" indicates LED_OUT/SKT_ACTV pin is Led_Out bit is "1" indicates LED_OUT/SKT_ACTV pin is SocketA_Activity
3	LED_OUT Enable	"1" indicates that enable the output for pin LED_OUT(Default) "0" indicates that disable the output for pin LED_OUT
2	Reserved	
1	SPKR_OUT Enable	"1" indicates that enable the output for pin SPKR_OUT(Default) "0" indicates that disable the output for pin SPKR_OUT
0	MHPG DMA MODE	"0" indicates that MHPG DMA Mode not enabled. "1" indicates that MHPG DMA MODE Enabled

DC CHARACTERISTICS

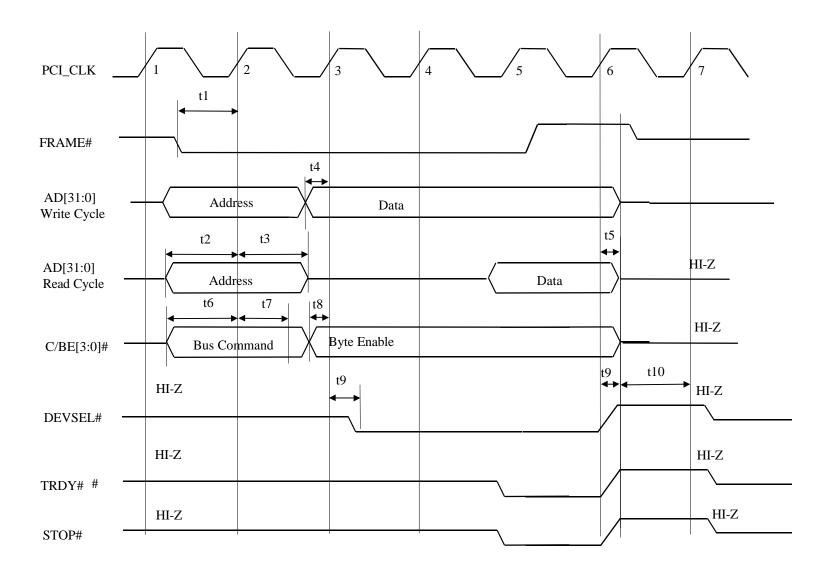
DC Table for Vcc = 4.5V to 5.5V

Symbol	Parameter	Min	Max	Units
V _{cc}	Power Supply Voltage	4.5	5.5	
V _{IH}	Input HIGH Voltage	2.0	$V_{CC} + 0.3$	V
VII	Input LOW Voltage	-0.3	0.8	V
V _{OH}	Output HIGH Voltage	2.4		V
V _{oL}	Output LOW Voltage		0.4	V
I _{IL}	Maximum Input Leakage Current		+/- 10	uA
I _{OL}	Maximum Output Leakage		+/- 10	uA
I _{cc}	Supply Current		50	mA
I _{CC1}	Supply Current / Power Down Mode	35	-	uA
	[Outputs Tri-stated, Internal Clock stop]			

DC Table for Vcc = 3.0V to 3.6V

Symbol	Parameter	Min	Max	Units
V _{cc}	Power Supply Voltage	3.0	3.6	
V _{IH}	Input HIGH Voltage	2.0	$V_{CC} + 0.3$	V
VII	Input LOW Voltage	-0.3	0.8	V
V _{OH}	Output HIGH Voltage	2.4		V
V _{oL}	Output LOW Voltage		0.4	V
I _{IL}	Maximum Input Leakage Current		+/- 10	uA
I _{OL}	Maximum Output Leakage		+/- 10	uA
I _{cc}	Supply Current		30	mA
I _{CC1}	Supply Current / Power Down Mode [Outputs Tri-stated, Internal Clock stop]	20	-	uA

Capacitance


Symbol	Parameter	0 Degree C to 70 Degree C	Units
C _{IN}	Maximum Input Capacitance	10	рF
C _{out}	Maximum Output Capacitance	10	pF
C _{IO}	Maximum I/O Capacitance	10	pF

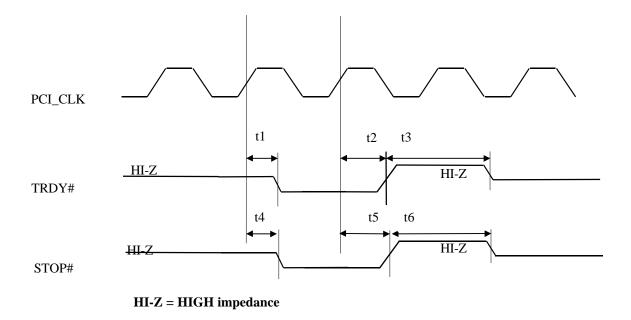
Absolute Maximum Ratings

Symbol	Parameter	Value	Units
V _{cc}	DC Power Supply Voltage	-0.5 to + 7.0	V
V _{IN,} V _{OUT}	DC Input, Output Voltage	-0.5 to V _{DD} + 0.5	V
I	DC Current Drain V _{DD} and V _{SS} Pins	100	mA
T _{STG}	Storage Temperature	-55 to +150	Degree C
TL	Lead Temperature	250	Degree C
T _{OPER}	Operation Temperature	0 to +70	Degree C

AC CHARACTERISTICS

PCI Bus Timing

HI-Z = HIGH impedance


FRAME#, AD[31:0], C/BE[3:0]#, DEVSEL#, TRDY# and STOP# (PCI Bus)

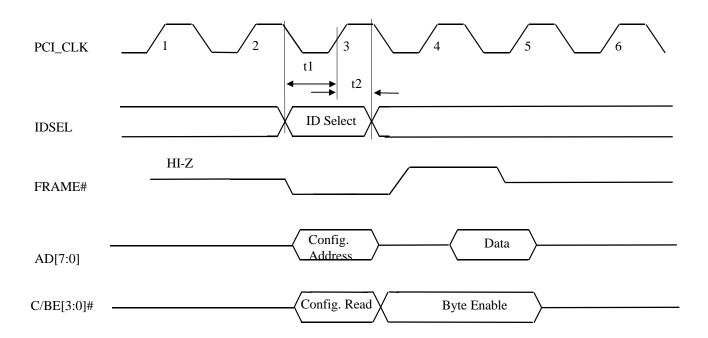
CONFIDENTIAL

©OZ6833-DS-1.2

TRDY#,STOP# Timing

Symbol	Parameter	MIN	MAX	MIN	MAX	Units
t1	TRDY# active delay from PCI_CLK	-	11	-	11	ns
t2	TRDY# inactive delay from PCI_CLK	-	11	-	11	ns
t3	TRDY# HIGH before HI-Z	1	-	1	-	PCI_CLK
t4	STOP# active delay from PCI_CLK	-	11	-	11	ns
t5	STOP# inactive delay from PCI_CLK	-	11	-	11	ns
t6	STOP# HIGH before HI-Z	1	-	1	-	PCI_CLK

TRDY# and STOP# Delay (PCI Bus)

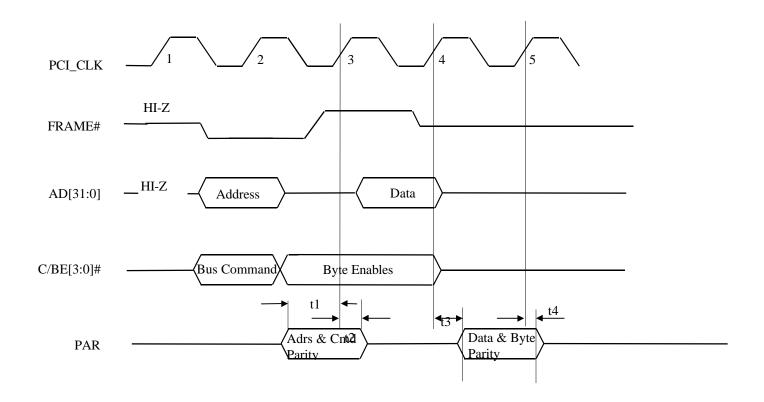

Tel: (408) 987-5920

Fax: (408) 987-5929

©OZ6833-DS-1.2

IDSEL Timing in a Configuration Cycle

Symbol	Parameter	MIN	MAX	Units
t1	IDSEL setup to PCI_CLK	7	-	ns
t2	IDSEL hold from PCI_CLK	0	-	ns

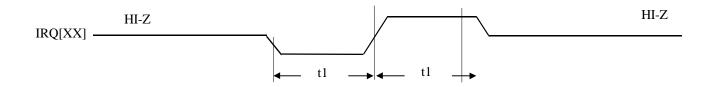


HI-Z = HIGH impedance

IDSEL Timing in a Configuration Cycle (PCI Bus)

PAR Timing

Symbol	Parameter	MIN	MAX	Units
t1	PAR setup to PCI_CLK (input to CL-PD6730)	7	-	ns
t2	PAR hold from PCI_CLK (input to OZ6833)	0	-	ns
t3	PAR valid delay from PCI_CLK (output from OZ6833)	-	11	ns
t4	PAR hold from PCI_CLK (output from OZ6833)	0	-	ns

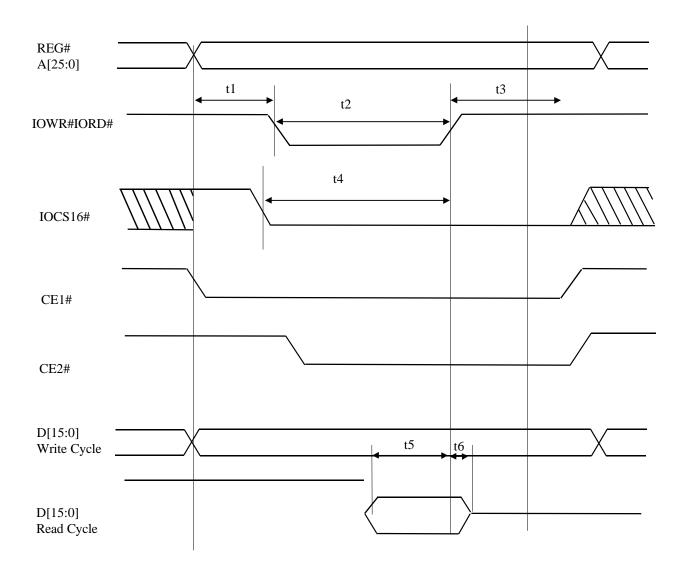

PAR goes HIGH or LOW depending on AD[31:0] and C/BE[3:0]# values.

PAR Timing (PCI Bus)

System Interrupt Timing

Pulse Mode Interrupt Timing

Symbol	Parameter	MIN	MAX	Units
t1	IRQ[XX] LOW or HIGH	16	16	PCI_CLK

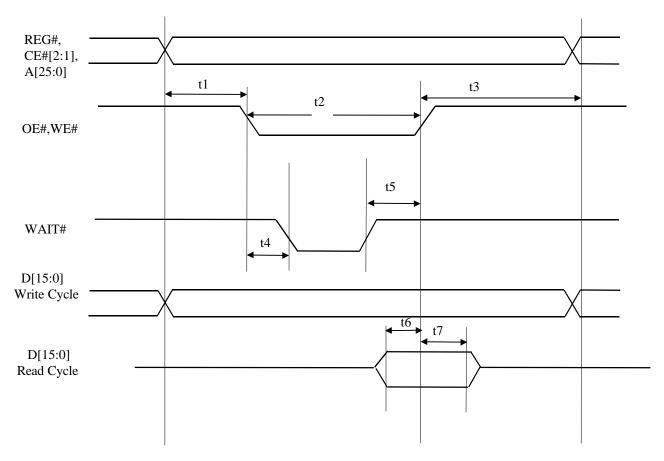


HI-Z = HIGH impedance

Pulse Mode Interrupt Timing

I/O Read/Write Timing

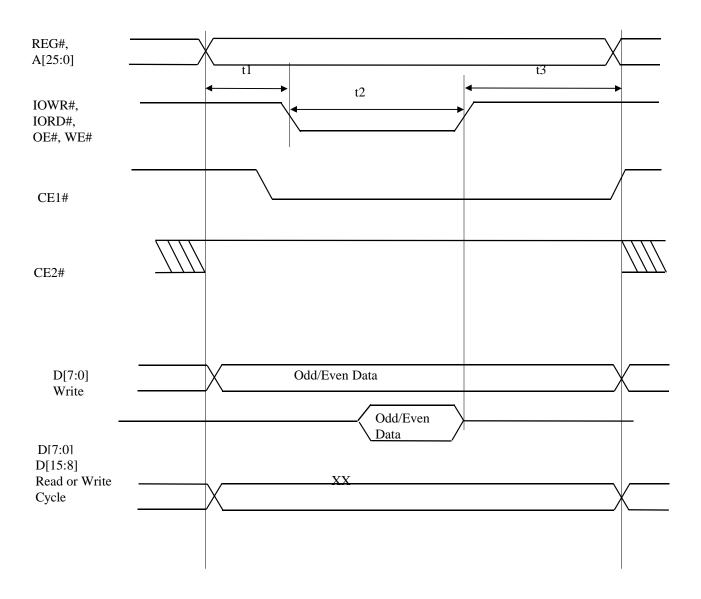
Symbol	Parameter	MIN	MAX	Units
t1	REG# or Address setup to Command active	70		ns
t2	Command pulse width	165		ns
t3	Address hold and Write Data valid from Command inactive	20		ns
t4	Card IOCS16# delay from valid Address(PC Card specification)		35	ns
t5	Data setup before IORD# inactive	60		ns
t6	Data hold after IORD# inactive	0		ns



Memory I/O Read/Write Timing

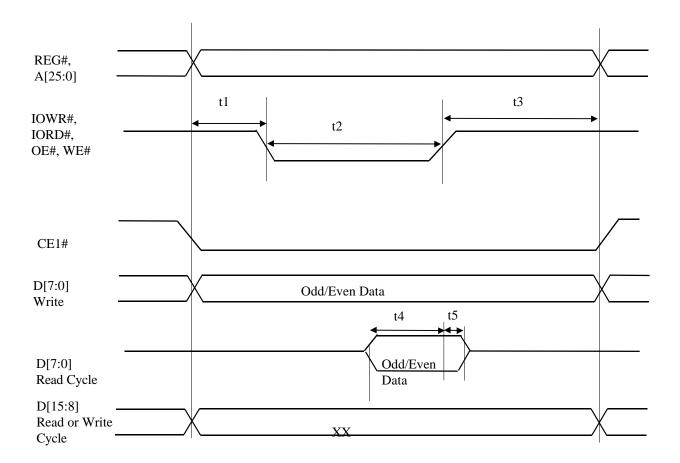
PC Card Bus Timing

Memory Read/Write Timing


Symbol	Parameter	MIN	MAX	Units
t1	REG#, CE[2:1]#; Address, and Write Data setup to Command active	30		ns
t2	Command pulse width	150		ns
t3	Address hold and Write Data valid from Command inactive	20		ns
t4	WAIT# active from Command active		35	ns
t5	Command hold from WAIT# inactive	0		ns
t6	Data setup before OE# inactive	80		ns
t7	Data hold after OE# inactive	30		ns

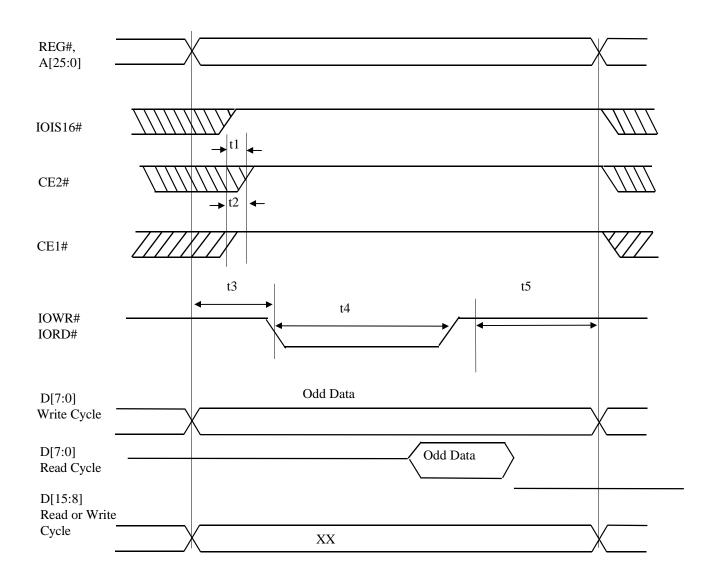
Memory Read/Write Timing

Normal Byte Read/Write Timing

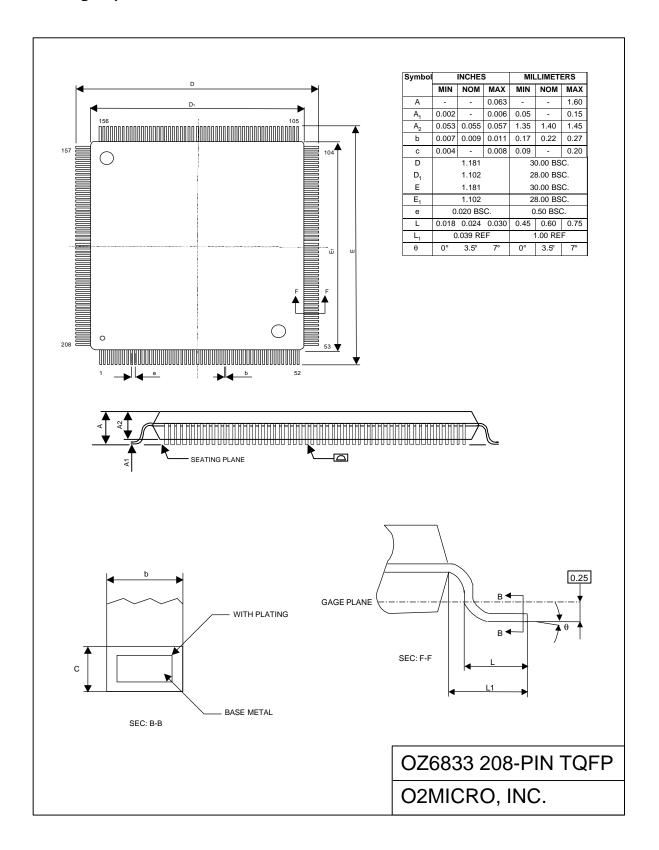

Symbol	Parameter	MIN	MAX	Units
t1	Address setup to Command active	70		ns
t2	Command pulse width	165		ns
t3	Address hold from Command inactive	20		ns

Normal Byte Read/Write Timing

PC Card Read/Write Timing when System is 8-Bit


Symbol	Parameter	MIN	MAX	Units
+1	REG# or Address setup to Command active	70		ns
t2	Command pulse width	165		ns
t3	Address hold from Command inactive	20		ns
t4	Data setup before Command inactive	60		ns
t5	Data hold after command inactive	0		ns

PC Card Read/Write Timing when System is 8 Bit (SBHE Tied HIGH)


16-Bit System to 8-Bit I/O Card: Odd Byte Timing

Symbol	Parameter	MIN	MAX	Units
t1	IOIS16# inactive to CE2# inactive		20	ns
t2	IOIS16# inactive to CE1# active		20	ns
t3	Address setup to Command active	70		ns
t4	Command pulse width	165		ns
t5	Address hold from Command inactive	20		ns

16-Bit System to 8-Bit I/O Card: Odd Byte Timing

Package Specifications

