Advanced Configuration and Power
Interface Specification

Intel

Microsoft
Toshiba
Revision 1.0b
February 2, 1999

Intel Microsoft Toshiba

Copyright © 1996, 1997, 1998, 1999 Intel Corporation, Microsoft Corporation, Toshiba Corp.
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER
THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING ANY
WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.
NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.
INTEL, MICROSOFT, AND TOSHIBA, DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN
THIS SPECIFICATION. INTEL, MICROSOFT, AND TOSHIBA, DO NOT WARRANT OR REPRESENT THAT
SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

Microsoft, Win32, Windows, and Windows NT are registered trademarks of Microsoft Corporation.
I°C is atrademark of Phillips Semiconductors.
All other product names are trademarks, registered trademarks, or servicemarks of their respective owners.

Affected

Revision | Change Description Sections
Feb. 1999 | Fixed previous errata that deleted wrong paragraph in the RTC_EN description | 4.7.3.1.2
1.0b
Clarified P_BLK requirements on MP systems 4.7.2.6.3
Changed definition of SCI_INT pinin Table 5-5 525
Replaced section 5.2.8 adding new structures and clarifications to support MP 528
configurations.
Expanded Name Space description — clarified the name search rules, added 53
Parent operator to operator list, described name padding
Expanded ASL definition - defined global objects, clarification that OpRegion 55.3
accesses may block, Added description of the scope and life of variablesin
control methods.
Changed notify values 5.6.3
Added \ PIC method to table 5-33 and new section 5.8 5.65& 5.8
Added USB _ADR valuesto Table 6-1. 6.1.1
ACPI Control Method added for floppy enumeration (_ FDE) 10.8
ASL Grammar clarifications - initial and default SyncLevel values, ObjectType | 15.2.3
behavior for specific objects, usage of the RefOf operator and behavior of non-
package method evaluation.
Added top level AML definition 16.2
Changed concat arguments to be TermArgs resolving to data 16.2.4.4
Added the _GLK object and referenced it in the Smart Battery and the Control 6.5.6 &
Method Battery sections. 1114 &
1122 & 138
& 139
&13.12
Added Video Extensions as an Appendix Appendix A
1.0a Added PRT requirement for PCI root bridges. 1.7
Clarification H/W behavior - PM timer may be stopped when not inthe GO/SO0 | 4.7.2.1
state, Lid Switch behavior and correction of the RTC EN hit in Table 4-10
Clarification of tables - trailing blank required in signature in Table 5-1, 5.2.x
FLUSH_SIZE and FLUSH_STRIDE clarification Table 5-5
Clarified placement of APIC related structures and genera clean up, added 528
Interrupt source overrides
Various removals - figure 5-4, DCK_CAP flag from Table 5-6, _SBC and _SBS
methods from Table 5-33
Various additions - AC device PnP ID to table 5-32, _DDN (logical name 5.6.4
association) to Table 6-1, _ADR vauesfor floppy, _FDI —floppy configuration
info, requirements for _CRS used with bus devices, battery presence bit to
_STA definition, QWORD to Large Resource datatype, INI Method
Wake/Sleep clarifications- _PTS not executed for S5 and SCI cannot occur 9.1& 93
before enabled
Rewrote the IDE Controller Device section 10.8
Corrected the passive cooling equation for TC1 and TC2 12.3.7 (&8)
Removed requirement that PRx contain numeric lowest state 7.2x (0-2)
Removed Duplicate Section “ General Purpose Register Blocks’ 4743
Clarified that C1 isrequired and C2 & C3 are optiona and reiterate requirement | 4.7.2.6 &
for C1 processor state in Table 5-6 525
Clarified the Passive Cooling Equation 12.1.5
Numerous grammar updates and corrections. 15& 16
Added SxD objects 7.2&7.2.X
1.0 Origina Release

Contents
(L@]\ I = N 1S PRI 4
1. INTRODUCTION Lottt e e e e e e e e e e e e e e eaan e e eaneeennns 13
1.1 PEINCIPAI GOAIS ...ttt bbbt st e e be e e ree e e 13
1.2 Power Management RAtIONAIE............oouiiiiiiii e 13
1.3 =0 o (o 0] o] o [0 o AP T T O PP TP PP UOPPPPUPI 14
1.4 OEM IMpIementation STFATEOYcoiuieiiieiiie ittt e st e e nbeaeseee e e 15
15 POWEE aNd SIEEP BULLONSeiiiiiieitiie ittt ettt et ebb et e e be e e be e e e 15
1.6 ACPI Specification and the Structure Of ACPIcooiiiiii e 15
1.7 Minimum Requirements for OSPM/ACPT SYSTEMScouiiiiiiiiiiiiie i 17
1.8 L= (= N0 Lo [T o o TP P OUPPUPRUPRPPRN 17
1.9 DOCUMENT OFQANIZATIONcutiiiiiieitii ettt ettt et et e e s be e e ebbeeenbeeabeaanreee e 17
191 ALCPL OVEIVIBIW ...ttt ettt ettt ettt e bt e bt e e sh et e sate e s ab e e st e e e be e e ebee e embeesmbeeenbeeenbeeesaneas 18
19.2 Programming MOGEIScoouiiiii ettt sb e aee et sbe e 18
193 IMpPleMENtation DELAIIS..........oooiiiee bbb saee s 18
194 TeChNICAl REFEIENCEco e e 18
1.10 REIATEA DOCUMENES. ...tttk et b ettt ettt et e s bt e st et enb e e nbeenbeenbeenne e 19
2. DEFINITION OF TERMSo ees 21
2.1 General ACPI TermMiNOIOQYccuuiiiiiaiiie ittt et e tee e e 21
2.2 Global System State DefiNITIONS.coiiiiiiieiie e e 25
2.3 Device Power State DefiNitiONScuoiiiiiiiii et 27
2.4 Sleeping State DEfiNITIONScooiiiiieiii ettt e e e e eees 28
2.5 Processor Power State DefinitioNScoviiiiiieiieiiesie e 28
3. OVERVIEW e e e e e e e e e e e e e e e eaaneeees 29
3.1 SYStem POWEEN MaNAGEIMENTttt ettt ettt e e sbbe e e s sabb e e e e aabeeaeabeeeeaan 29
3.2 POWEE STALESttt ettt b e e e e 30
321 New Meanings for the POWEr BULLONcoiiiiiiiieiieeee et 31
322 Platform Power Management CharaCterisStiCSuoiueeiieiiiieeiie e 31

3.3 Device POWEE MaNAGEIMENT..........eiiiiie ittt ettt et e be e e sbbe e enbeeabeaasreee e 32

331 Power Management StANCaIaS...........ooiuee ittt 32
332 DEVICE POWES SEALES.......eeiteeiteeiteeitee sttt ettt ettt ettt ettt sb e b e b e b e sb e be e b e aeesne e e e nnees 32
333 Device Power State DEfiNitiONSoieiiiiiiiiieiie e 32
3.4 COoNtrolliNg DEVICE POWEKciiiiiiiiieeiei ettt ettt bb et e be e e nbeeentee e e 33
341 Getting Device Power CapabilitiES........ooeiiiiieiiei it 33
34.2 Setting DEVICE POWESN SEALESc..eiiiiii ettt ettt b et e st e e sbe e s sane e snneeans 33
34.3 Getting DeViCe POWES SEBLUSoiiieiiieie ittt sbee et e st e e rbe e s saee e snneeaa 34
344 WakKing the COMPULET...........eeiiiii ittt ettt sttt et e et e e sbe e e sab e e sabe e e be e e nbeeesaeeas 34
345 Example: Modem Device POWer ManagemMentoueeiieieiieeniee et 34
3.4.6 Getting the MO’ S POWEN SEALUS.........c.uiiiiieiiee ittt sbe e seee e sane e 36
3.5 Processor POWer Managemen...........oo.ueiiiiiiiieiiii ettt e et e e et e e e anbe e e e e 36
3.6 L (8o = aTo [] F- O UP R OPR PPN 37
3.6.1 Example: Configuring the MOGEMooiiii e e 37
3.7 SYSTEIM EVEINTS ...ttt ettt ettt e h et e e ettt e e s a bt e e e ekt e e e e ea bbb e e e ambbe e e e bbb e e e anbbneaan 37
3.8 Battery ManageMENTottt e e sttt e sa et e et b et e e abb e e e aabe e e e anees 38
381 CMBEL DIGOIBIMteiteeiieeitee ittt e e s e eesan e s anesaneenneennesanesane s 38
3.8.2 BaLLErY BEVENLS.ot b e e b b e e e e anre e s 38
383 S F 1S VA O o= o | YOSV 38
3.84 BaLLENY GaS GALGE. eeeeieieeeeiteee ettt e e sttt e e et et e e s aab et e e et be e e e sabeeeesasbe e e e abbeeesaabaeeesanreeeeanreaans 39
3.9 Thermal MANAQEIMENT...........i ittt ettt et e e e be e e sbe e e sbbeesnbeeanbeeabeaan 41
391 ACtiVe and PassiVe COOIING ...ccuveiiiiiiiiie et ee ettt ettt et e e sbe e smbe e smbe e s be e e sbeeesaeeas 41
392 PerformanCe VS, SIHENCE.ooieiieieeee e 42
3.9.3 Other Thermal ImMPleMENLaLIONSccoieiiiiie e sbe e sbe e e saee e saneea 44
394 MUItIPIE THEIMEl ZONES ...ttt sb et et e e 44
4. ACPI HARDWARE SPECIFICATION ...t 45
4.1 Fixed Hardware Programming MOGEIoccuoiiiiiiiiiiiiie e 45
4.2 Generic Programming MOGELc.oooiiiiiii e 45
4.3 (D)= To] = Lo gl =0T Lo L TP OP PP PPN 47
4.4 R CTo 1 e gl =T N [0] 7 U (o] o PP P P UP R OPR PP 47
4.5 The ACPI Hardware IMOEl ..o s 47
451 Hardware RESEIVEA BilSccueiiiiiieiieeiiee ittt 51
452 Hardware [gNOred BilS.......c.oouei ittt e sb e aee et sae e 51
453 Hardware WIte-OnNlY BitS.........cuii ittt ettt e sbe e saee e b e seeeeees 51
454 CroSS DEVIiCE DEPENAENCIES.coiuveeitii ettt ettt et sate et e bt e e be e e sbee e sabe e sbeeeabeeesaneesnneaans 51
4.6 ACPT FRATUIES........eiiiiiieie ettt s e s e ettt n e s 52
4.7 ACPT REGISTEE IMOUEB ...ttt ettt et e e ta e e anbeesneeas 53
47.1 ACP! REGISIEr SUMIMEIYetiiiiieetie ettt ettt ettt sttt e e s be e e sbe e e sbee e smbeesabeesnbeeeabeeesaneas 55
4.7.2 ReqUITed FIXEd FEAIUINES.ottt ettt sb e 57
4.7.3 Fixed Feature Space REGISIENSooiuii ettt 70
4.7.4 GENENIC ACAIESS SPACE..... ittt ettt ettt ettt e e be e e sbe e e sbee e sabe e snbeeenbeeesneeesaneeans 76

5. ACPI SOFTWARE PROGRAMMING MODEL......cccooiviiiiiiiiiiiiecceeeeeeeei e 83
5.1 Overview of the System Description Table ArchiteCturecccocoviiiiiiiiic e 83
5.2 Description Table SPeCifiCatioNS...........c.coiiiiiiii e 85
521 Reserved BitS and FIElaS.........ooiiiiiiieee s 85
522 ROt System DesCription POINEESc.eiiiiiiii et see e 86
523 System Description Table HEAOEYooueiiiiieiei e 86
524 ROt System DesCription TaDIe..........ooiiiiiiiiie e e 87
525 Fixed ACPI DeSCription Table......c.oeii ittt 88
526 Firmware ACPI CONIOl SITUCIUNE........eoiveiiteeitieiiee sttt sttt 93
527 DEfiNitioN BIOCKScveiitieiieeitie e 96
528 Multiple APIC DeSCription TabIe.........cuoiiiiiiiiieiie et 97
5.2.9 Global System INTEITUPL VECLOIS.eeiieeiii ettt 102
5210 SMart Battery Table.......ccuooieieee e 103
5.3 ACPT NGIME SPACE. ...ttt ettt e et e e e ea b bt e e e bbe e e e sabb e e e e anbneaeaneees 104
531 Defined ROOt NAIMES SPACES. ... veiiieietei ettt ettt ettt sae e et e st e s beeeees 105
532 L@ o] = ot £ T T PP T RS PP PP 106
5.4 Definition BIOCK ENCOOINGcoiuuiiiiiiiiiieiie ettt 106
55 Using the ACPI Control Method Source LangUAagEcovieiuieiiiiiiieeneie e 106
551 ASL SEAEEIMENES......eeveeteeitee sttt ettt b et b e b e e b e e s b e e sb e e sbe e sb e e sbe e sb e e nbe e b e e ne e nnnenneas 107
552 ASL IMIBEIOS. ...ttt 107
55.3 Control MethOd EXECULION.ccivieiieiieite ettt e 108
554 Control Method Arguments, Local Variables, and Return Values...........ccoocovvieiiiiiiiecnens 108
5.6 ACPI Event Programming MOGEocuoiiiiiiii e 109
5.6.1 ACPI Event Programming Model COMPONENES..........uieiiiiiiieeiee et 109
5.6.2 TYPES Of ACPI BEVENES ...ttt ettt b et saee e st e e s be e e be e snne s 110
5.6.3 Device ObjeCt NOLITICAIIONS.eiiieieiiie ettt be e b e 113
564 Device Class-SPeCifiC ODJECEScoiuiiiiiieiiie ettt et sae et e b e 115
5.6.5 Defined Generic Object and Control Methods..........oceviiiiiiiieiiee e 116
5.7 OS-DefiNed ODJECT NAIMESeiiiiieiiie ettt ettt e sbe e te e e be e e sbeeesbbeeanbeaabeaans 117
571 _GL GlOBEl LOCK MULEX.....c.teiitieiiieiiee sttt sttt 118
572 N OS NAME ODJECL ...ttt sttt e b e b b e s b e b e e b e e b e e e snnesneas 118
573 VL REV A ODJECEveeveeieeeitee sttt 118
5.8 System Configuration OBJECTSoouiiiiiiiii e 118
581 CPIC MEINOU. ... e 118
6. CONFIGURATION ..ot e e e e e e e e e e ea e e eaans 119
6.1 Device 1dentification ODJECTS........ciiiiiiieiie ettt aee e 119
6.1.1 LA DD R e e r e ne s 119
6.1.2 O 1 5 TP PP PP PPN 120
6.1.3 DN e r e r e ne s 120
6.1.4 I D e 120
6.1.5 SN R a ettt n e e r e ne s 120
6.1.6 DD e n e ne s 121

6.2 Device Configuration ODJECTS........ouuiiiieiiie ettt et see e 121

6.2.1 R S et E e r e re e ne s 121
6.2.2 DL S e n e re e ne s 122
6.2.3 PR T e ne s 122
6.2.4 PR S re e 123
6.2.5 R S e n e 124
6.3 Device Insertion and Removal ODjJECTS.........cccuuiiiiiiiiiiii e 125
6.3.1 B D e 126
6.3.2 B K e 127
6.3.3 O TP TP TRPP PR 127
6.3.4 RV IV e 127
6.3.5 B 1 NPT TP TP PP PPN 127
6.4 Resource Data TYPES FOr ACPLot 128
6.4.1 ASL Macros for RESOUICE DESCITPIONS.veiiieieitiee st e sitee et e ettt sbe e saee e e e s 128
6.4.2 SMEll RESOUICE DELA TYPE. . teeeteee ittt ettt ettt ettt ettt sbe e sae e e s abe e sbe e e be e e sbeeesnneesnreaaas 129
6.4.3 Large RESOUICE Dal@ TYPE. ...uei ettt ettt ettt ettt ettt e e ab e e e sbe e e e s eab e e e e snneee s 135
6.5 Other CoNtrol MENOTS.oiiiiii e 150
6.5.1 N e e n e ne s 150
6.5.2 D K et n e r e ne s 151
6.5.3 BN e n e r e ne s 151
6.5.4 RE G e ne s 151
6.5.5 B BIN e n e re e ne s 152
6.5.6 G T TP P PP PP PRTPN 152
7. POWER MANAGEMENT ...t e e e e e eeee 153
7.1 Declaring a POWErReSOUICE ODJECTcoiuiiiiiiiiii it 153
7.2 Device Power Management ODJECTScoiuiiiuiiiiieiiiee et 153
721 PRV e ne s 154
7.2.2 PRI e re s 155
7.2.3 PR e n e ne s 155
724 PR e ne s 155
7.25 S O T TP PP TR PP PPN 155
7.2.6 =1 1 LT P P U P TR PP PPTRN 155
7.2.7 S D TP PP P TR PP PPN 156
7.2.8 S| TP P PP PP PPN 156
7.29 D et ne e 156
7.2.10 S 5 T T TP PRSP P TR PP PPN 156
7.3 POWeEr RESOUICES TOF OF F ...ttt nree 156
731 IR e b e e r e ne s 156
7.32 P O N e re s 156
7.3.3 B s O TP PP TR PP PPN 156
734 P D e re s 157
7.35 B S TP PP TRPP PPN 157
7.3.6 P S e 157
7.3.7 B S G T TP PP TR PP PPN 157
7.4 Defined Child Objects for @ POWEr RESOUICEcccuviiiiieiiieiiie e 157
741 B 1 NPT TP TR PP PPN 158
742 O | TP T R T P TPR PR PPTR 158

74.3 O e 158

75 OEM-Supplied System Level Control Methodsoooiiiiiiiiiiniee e 158
751 \ PTSPrepare TO SIEEDoo ittt e b e sae e e sabe e s be e e 159
752 SYSEEM N SK SLAIES. ...ttt b e bt bbbt n e e n e e 159
753 VL WAK (SYSEEM WEKE) ...ttt 163

8. PROCESSOR CONTROLuiiiiiiiie et e e e e eeee 165

8.1 Declaring @ ProCeSSOE ODJECT.couiiiiiieiiie ittt sttt et see e 165

8.2 PrOCESSON POWEE STALESeeiiviiiiiiiiiii ettt st 165
821 Processor POWEr SAE CO........cccveviireiiiiieiii et 165
822 Processor POWEN SAEE ClL........cocuiiiiiiiiiiieiii st 165
823 Processor POWEN SEAEE C2........cccveviiieiiiiieiiie e 165
824 Processor POWEN SAEE C3........cocveiiieiiiiieii st 166

8.3 Processor State POHCY ... 166

9. WAKING AND SLEEPING ...t 171

9.1 Y =T o [0) F= L= PSR ROUPPUPRTPPROPRN 171
911 SL SIEEPING SEALE.....eeeuteeitee ettt ettt ettt et e sat e et e e be e e sbe e e eaee e sabe e sbe e e be e e areeenaneeanreaaa 173
9.1.2 S2 SIEEPING SEALE.....eeeuteeitee ettt ettt ettt ettt et et et e e sbe e e eaee e sabe e sbe e e be e e aree e enreeanreaan 173
9.1.3 S3 SIEEDING SEALE.....eeeiteeitee ettt ettt ettt ee ettt et e et e e ebe e e eaee e sabe e s be e e be e e aree e naneesnreaaa 174
914 A SIEEPING SEALE... ..o itee ittt ettt ettt ettt sttt et e e ebe e eaee e sabe e s be e e be e e aree e naneennreaa 175
9.15 S5 SOt Off SEBEveeeeeteeste ettt ne e r e e 175
9.1.6 Transitioning from the Working to the Sleeping Stateccoceeiiiiiii i, 176
9.1.7 Transitioning from the Working to the Soft Off State...........cooceeiiiiiiiierie e 176

9.2 FIUSNING CACNES ...ttt ettt et e s be e s abe et e e be e e aree e e 176

9.3 INITIAIIZATION ..ttt ettt 177
931 TUMNING ON ACP ...ttt a et e et e e e be e e sbee e sabe e sabeesnbeeeabaaesnneas 179
9.3.2 BIOS Initiaization Of MEMOIYocueiiiiieiiie ettt ees 179
9.33 OS LOAOING 1t ettt ettt ettt ettt b e b e bbbt b e bt bt e b e be e b e e b e e b e e areaar e eneeneereenre e 181
9.34 TUMNING OFf ACPL ...t r et sr e sr e e b e e sreesreesreenreens 182

10. ACPI-SPECIFIC DEVICE OBJECTS ... 183

10.1 _ ST SYSEEM INAICALOS ...ttt ettt ettt et e et e nte e e e 183
10.11 S S] TP TP TR PP PPN 183
10.1.2 L S G e ne s 183

10.2 Control Method Battery DEVICE.oo ittt sbe e eee e 183

10.3 Control Method Li DBVICEcc.viiiiiiiiiiiiieete ettt 183
1031 B 5 TP TP PP PPN 184

104 Control Method Power and Sleep BUttON DEVICES.........cocuiiiiiiiiiieiiie e 184

10.5 Embedded Controller DEVICE...........ciuiiiiiiiiieie et nnee 184

10.6 [| B LV (o1 184

10.7 GENENIC BUS Bridge DBVICEeiiiiieiiiie ittt nbe e snbeaaeeaen 185
10.8 IDE CONTIOIEE DBVICE ...ttt ettt ettt b e b 185
10.8.1 _GTF (GEETASK FIIE) ..ot 186
10.8.2 _GTM (Get TIMING MOUE)coiueiieeiiiiiiiesiee sttt 187
10.8.3 _STM (Set TIMING MOE)......cciteiitiieitit ettt ettt sb et sae e e sabe e be e s b e e 187
10.9 FIOPPY CONTFOHEE DEVICE.......eiiieiieiiit ettt ettt st st et eebe e e sreeeeeee 188
10.9.1 _FDE - FIOpPY DiSK ENUMEIELE.eiiiteieiiiee ettt ettt ettt sae e sae e e sne e e 188
11. POWER SOURCE DEVICES ... 189
111 SMaArt Battery SUDSYSTEIMSottt e e e bee e 189
1111 ACPI Smart Battery Charger REQUINEIMENTSocueiiiiieiieeeiee et 190
11.1.2 ACPI Smart Battery Selector REQUIFEMENLSc.eieiueeiieeiieeesiee ettt e s 191
11.1.3 SMart Batery OBJECES.eeiiieieiii ettt st et e st e e sbe e e sane e snreaans 191
1114 Smart Battery Subsystem Control MethOdS..........ooeeeiieaiiiiiiieee e 191
11.2 COoNrol MEthod BATTEIIESveiiiiiiiiiiieeit ettt 193
1121 BaltEry EVENES. .. .eeeeeieeeiiee et 193
11.2.2 Battery Control MEENOOScoocuiiiiieei ettt be e 193
11.3 AC Adapters and POWer SOUFCE ODJECES.uiiiiieiiieiiie ittt 196
1131 P R e 196
1132 s © TP TP PP PR TR 197
114 Power Source Name Space EXAMPIE ..o 197
12. THERMAL MANAGEMENT ... e 199
12.1 THErmMal CONTIOLoiiiiii bbbttt ettt re e 199
1211 Active, Passive, and Critical POIICIESccoiiiiiiiiiiee s 199
121.2 Dynamically Changing Cooling TEMPEIatUrES.........cceuaueiaiieeiiee ettt 199
12.1.3 Hardware Thermal EVENTSooiiiiiieiee e 200
1214 ACtive CooliNg SFENGENeiiee e b e 200
1215 Passive COOlING EQUALTONuiiiiieiie ettt et ae et e e e 201
12.1.6 Critical SNUIHOWN. ...t e e 202
12.2 Other Implementation Of Thermal Controllable Devices.............ccccoiiiiiiiniiinicce 202
12.3 Thermal Control METNOGSccuiiiiii e 203
1231 A K ittt h e R R Rttt ne e re e ne s 203
12.3.2 B 0 TP TP PP PPN 204
12.3.3 O T TP PP T PP PP PPTRN 204
12.34 B s TP TP U PR PP PPN 204
12.35 P N e ne s 204
12.3.6 S O TP TP T PP PR TR 204
12.3.7 I TP PP TR PP PPTRN 204
12.3.8 T 2 e re e ne s 204
12.39 T I P n e r e ne s 204
12.3.10 T IS TR PR PPP PR PRPPRRUPPPRN 205

124 Thermal Block and Name Space Example for One Thermal Zone...........ccccooiiiiiiiiciiiennn. 206

10

125 Controlling Multiple Fans in @ Thermal ZONeccccoooiiiiiiiiiiee e 207
13. ACPI EMBEDDED CONTROLLER INTERFACE SPECIFICATION............ 209
131 Embedded Controller Interface DeSCriptiONcocuiiiiiaiiiiiiie e 209
13.2 Embedded Controller Register DeSCrIPLIONS.........coiiuiiiiiieiiie et 212
13.21 Embedded Controller Status, EC_SC (R)eeiieeiiiiiiie ittt 212
13.2.2 Embedded Controller Command, EC_SC (W) ...c.ueiiiiiiiiieiiee et 213
13.2.3 Embedded Controller Data, EC_DATA (RIW) ..ottt 213
13.3 Embedded Controller Command SETcocuiiiiiiiiiiiieicie e 213
13.31 Read Embedded Controller, RD_EC (0X80)c.couertereeriirierieeiesie st siesee e e see e 214
13.3.2 Write Embedded Controller, WR_EC (OX8L)ccuiiiieeiieeiiieesiie ettt 214
13.33 Burst Enable Embedded Controller, BE_EC (0X82)ccceeiuiiiieeiiiieiee e 214
13.34 Burst Disable Embedded Controller, BD_EC (OX83)c.ceeiuieiieeiieeeiee e 214
13.35 Query Embedded Controller, QR_EC (OX84)coiuieiieiiieeiiee ettt 215
134 SMBus Host Controller Notification Header (Optional), OS_SMB_EVTc.cccooiiiiiiiiiiiinnns 215
13.5 Embedded Controller FIFMWAEIE ..ot 215
13.6 INEETUPT IMOEL ...ttt et et saeeas 215
13.6.1 Event INterruPt MOGE]oooueiiie ettt et 216
13.6.2 Command INLErTUPE MOEL........cooueii et 216
13.7 Embedded Controller Interfacing AlgOrithmsccooviiiiiiii e 217
13.8 Embedded Controller Description INfOrmationccooiiiiiiiiiiiiceee e 217
13.9 SMBus Host Controller Interface via Embedded Controller.............cccoooiiiiiiiiiiiiiie, 217
1391 RS 0[S = g B L=< v o 1 o] o F RSSO 218
13.9.2 ProtOCOI DESCITILION. ...ttt ettt ettt ettt h et e et e e e ebe e e saee e sabe e sabeesbeeenees 221
13.9.3 SIMBUS REGISIEN SEL.....eetiieeieite sttt bbb b bbb b e e e e b e b sbeenne e e 224
13.10 SIMIBUS DIBVICES ...tttk eb ettt b et b e bbbt e b et e b e e st e abe e bneabneaneesrne s 225
13.10.1 SMBUS Device ACCESS RESITCHIONS.cveeiveeiieeiteeriee sttt 225
13.10.2 SMBus Device Command ACCESS RESTCHIONc..eereerieiiiiiie e 225
13.11 Defining an Embedded Controller Device in ACPI Name SPacecoocveiieinieeniienieennnn, 225
13111 Example EC Definition ASL COOE.......coooiiiiieieeniee ettt 226
13.12 Defining an EC SMBus Host Controller in ACPI Name SPace..........ccccvoveiieineieniieeniienen 226
13121 Example EC SMBus Host Controller ASL-COode.........ccoeiiiiieiiieiiee e 226
14. QUERY SYSTEM ADDRESS MAP ...t 229
141 INT 15H, E820H - Query System AdAress Map.........ccueeiiieiiieiiieiie et 229
14.2 ASSUMPLIONS @Nd LIMITATIONSooiiiiiiieiiie ettt e e 230
14.3 EXAMPIE AQUAFESS IMIAD ...ttt ettt e ettt e st e et e e e be e e nbe e e e 230

144 Sample Operating SYSTEM USAQEee ittt ettt et e s e abeeaeea e 231

11

15. ACPI SOURCE LANGUAGE (ASL) REFERENCE.........ccccooiiviiiiiieeceiii 233
151 ASL LanQUAGE GIraMIMALccoouiiiiiiiiiee ittt et e e aibe e e e s bbe e e e sabee e e e aabe e e e aabbe e e e anbeeaesasbneaeaeees 233
1511 ASL Grammar NOBLIONc.ueeiteerieerieeiteesteesiee e sttt e sbe e bt sbeesbeesseesneesbeesbeesseesneesneesneas 234
15.1.2 AASL NBITIES. ..ttt b bbb bt s b e b e e b e e s b e e sb e e b e e Re e eh e e b e e nn e e e nnn s 235
15.1.3 ASL Language @N0 TEIMMScoiiiiiieiieiieeeiee et e stee ettt et e e sbe e e saee e ssbe s sbeeesbee e sneeesnbeesnbeeenees 235
15.2 FUIT ASL RETEIEINCE......eitie ittt b et et sb et e sbeesbeesreeareea 248
1521 AASL NBITIES. ...ttt b bbb e s b e s b e s b e e s b e s b e e s be e s b e e b e e nn e n e e nnn s 248
15.2.2 ASL DELA TYPES. .. ettt sttt ettt ettt b et b e b e s b b e s b e s be e b e e be e b e e b e nn e e s 248
15.2.3 AASL TEIMIS. ..ttt bbb bbb s b e s bt e e b e s b e e s be e s b e e s Re e sR e e b e e e e ne e e s 249
16. ACPI MACHINE LANGUAGE (AML) SPECIFICATIONccoccevviiieeeeeiie, 289
16.1 NOTATION CONVENTIONS. ... ettt ettt et et et e e sbeeabeeabeesbeeabeesreesrnea 289
16.2 AML Grammar DefiNITION.coouiiiiiiiiie ettt nre e 290
16.2.1 TOP LEVE AL ..ottt r e b b sr e r e b e nr e nreenre e 290
16.2.2 Name OBJECtS ENCOTING -....cuveeiieiiieieiie ettt sbe e sae e et e b e b e e 290
16.2.3 Data ObJECES ENCOOINGceeuveeitiieiee ettt ettt ettt st et e sbe e sae e e sate e sabeeebeeenees 291
16.2.4 Package Length ENCOOING........cocueiiiiiii ettt 291
16.2.5 Term OBJECES ENCOOING -.....veeeeieeiiie ettt ettt ettt et sbe e sae e e st e e s be e e sbee e saeeas 292
16.2.6 Miscellaneous ObjECtS ENCOTINGccoiveieiiieiiieiiee ettt ettt 298
16.3 AML Byte Stream BYTe VAIUES.........coouiiiiiiiiieeiii ettt 299
16.4 AML Encoding of Names in the Name SPACE.........cccuueiiiiiiiiiiiie et 303
AP P EN D DX A e 305
101 (o]0 11103 A o] o FO S T ST TP T P T RSP PV P URRPRTR 305
DETINITIONS ...ttt b e bt b e bt ekt e e bt e e bt e e bt oo bt e e bt e ek e e bt e e bt e e bt e n bt e bt e et e e be e ne e te e 305
Booting and Waking from Sleep and Waking from Hibernate.............ccccoooiiiiiiiic e, 305
YN BB o To) {1 o T [T R TP PRUPRUPRRTPIN 306
AACPT NAIMESPACE. ... eeeee ettt ettt et et e e ekttt e e o bttt a4 ah ket e a4kt bt e e oa kbt e e e aabb e e e e abbe e e e anbbe e e e antbeaeeanbneans 306
DiSplay-SPECITIC IMEBTNOUS. ...ttt ettt e e be e e nbe e e eba e e snbeeeneeas 307
_DOS — Enable/Disable OULPUL SWITCHINGceeteiaiiiee ettt st sbe e sbe e sae e sane e saeeeen 307
_DOD - Enumerate all devices attached to the display adapterccoo i 308
_ROM — GEE ROM DLA......c.veeeeeieisieesiee sttt sttt sttt sttt e s e st s e e ean e ean e s aneean e e aneeaneenne s 309
Output Device-SPECITIC IMETNOUSocueiiiiie ittt sttt e et e steeeeees 310
_ADR - Return the unique ID fOr thiS OBVICE.........cii ittt 310
_BCL — Query list of brightness control 1evelS SUPPOIEdc.eiiiiiiiiieiiee e 310
_BCM — Set the BIrIghtNESS TEVEL ... saee e saae e 311
_DDC - Return the EDID for tRiSTEVICE. ...ttt e enees 311
_DCS — Return the Status Of OULPUL JEVICEceiiueieiiie ettt ettt sbe e e saee e sane e 312
_DGS - QUENY GraphiCS SEALE.....ceeueieiuieeiiee ettt ettt ettt et e ettt e e bt e e bt e e abee e saee e sabeesbeeeabeeesaneesaneea 312

DSS — DEVICE SEL SIAE.....uee i i ciiee ettt e e et e e e s e e e e ae e e e aareeaearreeeeanrees 313

12

1. Introduction

The Advanced Configuration and Power Interface (ACPl) specification is the key element in Operating System
Directed Power Management (OSPM). OSPM and ACPI both apply to all classes of computers, explicitly
including desktop, mobile, home, and server machines.

ACPI evolves the existing collection of power management BIOS code, APM APIs, PNPBIOS APIs, and so on
into a well-specified power management and configuration mechanism. It provides support for an orderly
transition from existing (legacy) hardware to ACPI hardware, and it allows for both mechanismsto existin a
single machine and be used as needed.

Further, new system architectures are being built that stretch the limits of current Plug and Play interfaces.
ACPI evolves the existing motherboard configuration interfaces to support these advanced architecturesin a
more robust, and potentially more efficient manner.

This document describes the structures and mechanisms necessary to move to operating system (OS) directed
power management and enable advanced configuration architectures—that is, the structures and mechanisms
necessary to implement ACPI-compatible hardware and to use that hardware to implement OSPM support.

1.1 Principal Goals
ACPI isthe key element in implementing OSPM. ACPI is intended for wide adoption to encourage hardware
and software vendors to build ACPI-compatible (and, thus, OSPM-compatible) implementations.

The principal goals of ACPlI and OSPM are to:
1. Enable al PCsto implement motherboard configuration and power management functions, using
approprl ate cost/function tradeoffs.

PCs include mobile, desktop, workstation, server, and home machines.
Machine implementers have the freedom to implement a wide range of solutions, from the very smple
to the very aggressive, while still maintaining full OS support.
Wide implementation of power management will make it practical and compelling for applicationsto
support and exploit it. It will make new uses of PCs practical and existing uses of PCs more
economical.

2. Enhance power management functionality and robustness.

- Power management policies too complicated to implement in a ROM BIOS can be implemented and
supported in the OS, allowing inexpensive power managed hardware to support very elaborate power
management policies.

Gathering power management information from users, applications, and the hardware together into the
OS, will enable better power management decisions and execution.
Unification of power management algorithms in the OS will reduce opportunities for miscoordination
and will enhance reliability.

3. Facilitate and accel erate industry-wide implementation of power management.

- OSPM and ACPI will reduce the amount of redundant investment in power management throughout
the industry, as this investment and function will be gathered into the OS. Thiswill alow industry
participants to focus their efforts and investments on innovation rather than simple parity.

The OS can evolve independently of the hardware, allowing all ACPI-compatible machines to gain the
benefits of OS improvements and innovations.
The hardware can evolve independently from the OS, decoupling hardware ship cycles from OS ship
cycles and allowing new ACPI-compatible hardware to work well with prior ACPI-compatible
operating systems.

4. Create arobust interface for configuring motherboard devices.
Enable new advanced designs not possible with existing interfaces.

1.2 Power Management Rationale
It is necessary to move power management into the OS and to use an abstract interface (ACPI) between the OS
and the hardware to achieve the principal goals set forth above.

Intel Microsoft Toshiba

14

Today, power management only exists on a subset of PCs. This inhibits application vendors from

supporting or exploiting it.
Moving power management functionality into the OS makes it available on every machine that the OS
isinstalled on. The level of functionality (power savings, etc) will vary from machine to machine, but
users and applications will see the same power interfaces and semantics on all OSPM machines.
Thiswill enable application vendors to invest in adding power management functionality to their
products.

Today, power management algorithms are restricted by the information available to the BIOS that

implements them. This limits the functionality that can be implemented.
Centralizing power management information and directives from the user, applications, and hardware
in the OS allows implementation of more powerful functionality. For example, an OS could have a
policy of dividing 1/0 operations into normal and lazy. Lazy 1/O operations (such as aword processor
saving files in the background) would be gathered up into clumps and done only when the required I/O
deviceis powered up for some other reason. A non-lazy 1/0 request when the required device was
powered down would cause the device to be powered up immediately, the non-lazy 1/0 request to be
carried out, and any pending lazy /O operations to be done. Such a policy requires knowing when 1/0
devices are powered up, knowing which application 1/O requests are lazy, and being able to assure that
such lazy 1/0 operations do not starve.
Appliance functions, such as answering machines, require globally coherent power decisions. For
example, atelephone answering application could call the OS and assert, “I am waiting for incoming
phone calls; any sleep state the system enters must allow me to wake up and answer the telephonein 1
second.” Then, when the user presses the “off” button, the system would pick the deepest sleep state
consistent with the needs of the phone answering service.

BIOS code has become very complex to deal with power management, it is difficult to make work with an

OS and is limited to static configurations of the hardware.

- Thereis much less state for the BIOS to retain and manage (because the OS managesit).
Power management algorithms are unified in the OS, yielding much better integration between the OS
and the hardware.
Because additional ACPI tables are loaded when docks, and so on are connected to the system, the OS
can deal with dynamic machine configurations.
Because the BIOS has fewer functions and they are simpler, it is much easier (and, therefore, cheaper)
to implement.

The existing structure of the PC platform constrains OS and hardware designs.
Because ACPI is abstract, the OS can evolve separately from the hardware and, likewise, the hardware
from the OS.
ACPI is by nature more portable across operating systems and processors. ACPI’s command methods
allow very flexible implementations of particular features.

1.3 Legacy Support
ACPI provides support for an orderly transition from legacy hardware to ACPI hardware, and allows for both
mechanisms to exist in a single machine and be used as needed.

Table 1-1 Hardware Type vs. OS Type Interaction

Hardware \ 0OS Legacy OS OSPM/ACPI OS
Legacy hardware A legacy OS on legacy hardware If the OS lacks legacy support, legacy
does what it always did. support is completely contained within the

hardware functions.

Legacy and ACPI It worksjust like alegacy OS on During boot, the OS tells the hardware to

hardware support in legacy hardware. switch from legacy to OSPM/ACPI mode

machine and from then on the system has full
OSPM/ACPI support.

ACPI-only hardware There is no power management. Thereis full OSPM/ACPI support.

15

Planned future versions of the Microsoft® Windows 95® and Windows NT® operating systems are examples
of ACPI-compatible operating systems categorized in the right-most column of the previous table. Future
ACPI-compatible versions of Windows 95 will provide the same legacy support as the current version of
Windows 95.

1.4 OEM Implementation Strategy

Any OEM is, as always, free to build hardware as they want. Given the existence of the ACPI specification, two

general implementation strategies are possible.
An OEM can adopt the OS vendor-provided ACPI driver and implement the hardware part of the ACPI
specification (for a given platform) in one of many possible ways.
An OEM can develop adriver and hardware that are not ACPI-compatible. This strategy opens up even
more hardware implementation possibilities. However, OEMs who implement hardware that is OSPM-
compatible but not ACPI-compatible will bear the cost of developing, testing, and distributing drivers for
their implementation.

1.5 Power and Sleep Buttons

OSPM provides a new appliance interface to consumers. In particular, it provides for a sleep button that isa
“soft” button that does not turn the machine physically off but signals the OS to put the machine in a soft off or
deeping state. ACPI defines two types of these “soft” buttons: one for putting the machine to sleep and one for
putting the machine in soft off.

This gives the OEM two different ways to implement machines: A one button model or atwo button model.
The one button model has a single button that can be used as a power button or a sleep button as determined by
user settings. The two-button model has an easily accessible sleep button and a separate power button. In either
model, an override feature that forces the machine off or reset without OS consent is also needed to deal with
various rare, but problematic, situations.

1.6 ACPI Specification and the Structure Of ACPI
This specification defines the ACPI interfaces; that is, the interfaces between the OS software, the hardware,
and BIOS software. This specification also defines the semantics of these interfaces.

Figure 1-1 lays out the software and hardware components relevant to ACPI and how they relate to each other.
This specification describes the interfaces between components, the contents of the ACPI Tables, and the
related semantics of the other ACPI components. Note that the ACPI Tables, which describe a particular
platform’s hardware, are at heart of the ACPI implementation and the role of the ACPI BIOS is primarily to
supply the ACPI Tables (rather than an API).

ACPI isnot a software specification, it is not a hardware specification, although it addresses both software and
hardware and how they must behave. ACPI is, instead, an interface specification.

16

Applications

Kernel

oS
Dependent
Application
APIs

OSPM System Code

OS Specific
technologies,

Device ACPI Driver/)
Driver AML Interpreter interfaces, and code.
0S
ACPI ACPI Table Independent
Register Interface technologies,
Interface interfaces,
ACPI BIOS code, and
o . Interface hardware.
Existing
industry
standard
register ACPI BIOS ACPI Tables
interfaces to:
CMOS, PIC,
PITs, ...

Platform Hardware

- ACPI Spec Covers this area.
- OS specific technology, not part of ACPI.
- Hardware/Platform specific technology, not part of ACPI.

Figure 1-1 OSPM/ACPI Global System

There are three runtime components to ACPI:
ACPI Tables - These tables describe the interfaces to the hardware. Some descriptions limit what can be
built (for example, some controls are embedded in fixed blocks of registers, and the table specifies the
address of the register block). Most descriptions alow the hardware to be built in arbitrary ways, and can
describe arbitrary operation sequences needed to make the hardware function. ACPI Tables can make use
of ap-code type of language, the interpretation of which is performed by the OS. That is, the OS contains
and uses an AML interpreter that executes procedures encoded in AM and stored in the ACPI tables; ACPI
Machine Language (AML) is a compact, tokenized, abstract kind of machine language.
ACPI Registers - The constrained part of the hardware interface, described (at least in location) by the
ACPI Tables.
ACPI BIOS - Refers to the portion of the firmware that is compatible with the ACPI specifications.
Typically, thisis the code that boots the machine (as legacy BIOSs have done) and implements interfaces

17

for deep, wake, and some restart operations. It is called rarely, compared to alegacy BIOS. The ACPI
Description Tables are aso provided by the ACPI BIOS. Note that in the figure above, the boxes labeled
“BIOS’ and “ACPI BIOS’ refer to the same component on a platform; the box labeled “ACPI BIOS’ is
broken out to emphasize that a portion of the BIOS is compatible with the ACPI specifications.

1.7 Minimum Requirements for OSPM/ACPI Systems

The minimum requirements for an OSPM/ACPI-compatible system are:
- A power-management timer (for more information, see section 4.7.2.1).
A power or sleep button (for more information, see section 4.7.2.2).
A real time clock wakeup alarm, (for more information, see section 4.7.2.4).
Implementation of at least one system sleep state (for more information, see section 9.1).
Interrupt events generate System Control Interrupts (SCIs) and the GP_STS hardware registers are
implemented (for more information, see section 4.7.4.3).
A Description Table provided in firmware (in the ACPI BIOS) for the platform system (main) board. For
more information, see section 5.2)
A user accessible fail-safe mechanism to either unconditionally reset or turn off the machine.
A _PRT method for al root PCI bridges (For more information, see section 6.2.3.)

The minimum requirements for an OSPM/A CPI-compatible operating system are:

Support for the following interfaces.

Interfaces specific to the |A platform:
The ACPI extended E820 memory reporting interface (for more information, see section 14).

Smart Battery, Selector, and Charger specifications.
All ACPI devices defined within this specification (for more information, see section 5.6.4).
The ACPI thermal model.
The power button as implemented in the fixed feature space (for more information, see section
4.7.2.2).

ACPlI AML interpreter.

Plug and Play configuration support.

OS-driven power management support (device drivers are responsible for restoring device context as

described by the Device Power Management Class Specifications).

Support the S1-S3 system sleeping states.

1.8 Target Audience
This specification is intended for the following users:
- OEMswho will be building ACPI-compatible hardware.
Suppliers of ACPI-compatible operating systems, device drivers, and so on.
Builders of ACPI descriptor tables and builders of toolsto aid in constructing such tables.
Authors of BIOS and Firmware codes.
CPU and chip set vendors.
Peripheral vendors.

1.9 Document Organization

The ACPI specification document is organized into four parts.

- Thefirst part of the specification (sections 1, 2, and 3) introduces ACPI and provides an executive
overview.
The second part of the specification (sections 4 and 5) defines the ACPI hardware and software
programming models.
The third part (sections 6 through 13) specifies the ACPI implementation details; this part of the
specification is primarily for devel opers.
The fourth part (sections 14 through 16) are technical reference sections; section 15 is the ACPI Source
Language (ASL) reference, parts of which are referred to by most of the other sections in the document.

18

1.9.1 ACPI Overview

The first three sections of the specification provide an executive overview of ACPI.

- Section 1. Introduction: Discusses the purpose and goals of the specification, presents an overview of the
ACPI-compatible system architecture, specifies the minimum requirements for an ACPI-compatible
system, and provides references to related specifications.

Section 2. Definition of terms. Defines the key terminology used in this specification. In particular, the
global system states (Mechanical Off, Soft Off, Sleeping, Working, and Non-Volatile Sleep) are defined in
this section, along with the device power state definitions: Fully Off (D3), D2, D1, and Fully-On (DO).
Section 3. Overview: Gives an overview of the ACPI specification in terms of the functional areas covered
by the specification: system power management, device power management, processor power management,
Plug and Play, handling of system events, battery management, and thermal management.

1.9.2 Programming Models

Sections 4 and 5 define the ACPI hardware and software programming models. This part of the specification is
primarily for system designers, developers, and project managers.

All of the implementation-oriented, reference, and platform example sections of the specification that follow
(al the rest of the sections of the specification) are based on the models defined in sections 4 and 5. These
sections are the heart of the ACPI specification. There are extensive cross-references between the two sections.
Section 4. Hardware: Defines a set of hardware interfaces that meet the goals of this specification.
Section 5. Software: Defines a set of software interfaces that meet the goals of this specification.

1.9.3 Implementation Details

The third part of the specification defines the implementation detail s necessary to actually build components

that work on an ACPI-compatible platform. This part of the specification is primarily for devel opers.

- Section 6. Configuration: Defines the reserved Plug and Play objects used to configure and assign resources
to devices, and share resources and the reserved objects used to track device insertion and removal. Also
defines the format of ACPI-compatible resource descriptors.

Section 7. Power Management: Defines the reserved device power management objects and the reserved
system power management objects.

Section 8. Processor Control: Defines how the OS manages the processors power consumption and other
controls while the system is in the working state.

Section 9. Implementing Waking/Sleeping: Defines in detail the transitions between system working and
dleeping states and their relationship to wake-up events. Refers to the reserved objects defined in sections 6,
7, and 8.

Section 10: ACPI-Specific Devices: Lists the integrated devices that need support for some device-specific
ACPI controls, along with the device-specific ACPI controls that can be provided. Most device objects are
controlled through generic objects and control methods and have generic device IDs; this section discusses
the exceptions.

Section 11. Power Source Devices: Defines the reserved battery device and AC adapter objects.

Section 12. Thermal Management: Defines the reserved thermal management objects.

Section 13. Embedded Controller and SMBus: Defines the interfaces between an ACPI-compatible OS and
an embedded controller and between an ACPI-compatible OS and an SMBus controller.

1.9.4 Technical Reference

The fourth part of the specification contains reference material for developers.

- Section 14. Query System Address Map. Explainsthe specia INT 15 call for usein ISA/EISA/PCI bus-
based systems. This call suppliesthe OS with a clean memory map indicating address ranges that are
reserved and ranges that are avail able on the motherboard.

Section 15. ACPI Source Language (ASL) Reference. Defines the syntax of all the ASL statements that can
be used to write ACPI control methods, along with example syntax usage.

Section 16. ACPlI Machine Language (AML) Specification: Defines the grammar of the language of the
ACPI virtual machine language. An ASL translator (compiler) outputs AML.

19

1.10 Related Documents
Power management and Plug and Play specifications for legacy hardware platforms are the following, available
from http://www.microsoft.com/hwdev/specs
Advanced Power Management (APM) BIOS Specification, Revision 1.2
Plug and Play BIOS Specification, Version 1.0a
Other specifications relevant to the ACPI specification are:
Smart Battery Charger Specification, Revision 1.0, Duracell/Intel, Inc., June, 1996
Smart Battery Data Specification, Revision 1.0, Duracell/Intel, Inc., February, 1995
Smart Battery System Windows Programming Interface, Revision 1.0, Intel Inc., February, 1995
System Management Bus BIOS Interface Specification, Revision 1.0, February, 1995
System Management Bus Specification, Revision 1.0, Intel, Inc., February, 1995
System Management Bus Windows Programming Interface, Revision 1.0, Intel Inc., February, 1995
The 12C-Bus and How To Use It (includes the specification), Philips Semiconductors, January 1992

Documentation and specifications for the “On Now” power management initiative available from
http://mww.microsoft.com/hwdev/onnow.htm:
Toward the “On Now” Machine: The Evolution of the PC Platform.
Device Class Power Management Specifications:
- Device Class Power Management Reference Specification: Audio Device Class
Device Class Power Management Reference Specification: Communications Device Class
Device Class Power Management Reference Specification: Display Device Class
Device Class Power Management Reference Specification: Input Device Class
Device Class Power Management Reference Specification: Network Device Class
Device Class Power Management Reference Specification: PC Card Controller Device Class
Device Class Power Management Reference Specification: Storage Device Class

21

2. Definition of Terms

This specification uses a particular set of terminology, defined in this section. This section has three parts:

- General ACPI terms are defined (the definitions are presented as an alphabetical list).
The ACPI global system states (working, sleeping, soft off, and mechanical off) are defined. Global system
states apply to the entire system, and are visible to the user.
The ACPI device power states are defined. Device power states are states of particular devices; as such,
they are generally not visible to the user. For example, some devices may be in the off state even though
the system as awhole isin the working state. Device states apply to any device on any bus.

2.1 General ACPI Terminology

ACPI:
Advanced Configuration and Power Interface - as defined in this document, a method for describing
hardware interfaces in terms abstract enough to allow flexible and innovative hardware implementations
and concrete enough to allow shrink-wrap OS code to use such hardware interfaces.

ACPI Hardware:
Computer hardware with the features necessary to support OSPM and with the interfaces to those features
described using the Description Tables as specified by this document.

ACPI Name Space:
The ACPI Name Space is a hierarchical tree structure in OS-controlled memory that contains named
objects. These objects may be data objects, control method objects, bus/device package objects, etc. The
OS dynamically changes the contents of the Name Space at run time by loading and/or unloading definition
blocks from the ACPI Tables that reside in the ACPI BIOS. All the information in the ACPl Name Space
comes from the Differentiated System Description Table, which contains the Differentiated Definition
Block, and one or more other definition blocks.

AML:
ACPI control method Machine Language. Pseudocade for a virtual machine supported by an ACPI-
compatible operating system and in which ACPI control methods are written. The AML encoding
definition is provided in section 16.

ASL:
ACPI control method Source Language. The programming language equivalent for AML. ASL is compiled
into AML images. The ASL statements are defined in section 15.

Control Method:
A control method is a definition of how the OS can perform a ssimple hardware task. For example, the OS
invokes control methods to read the temperature of athermal zone. Control methods are written in an
encoded language called AML that can be interpreted and executed by the ACPI-compatible OS. An ACPI-
compatible system must provide aminimal set of control methods in the ACPI tables. The OS provides a
set of well-defined control methods that ACPI table developers can reference in their control methods.
OEMs can support different revisions of chip sets with one BIOS by either including control methods in the
BIOS that test configurations and respond as needed or by including a different set of control methods for
each chip set revision.

CPU, or processor:
The central processor unit (CPU), or processor, is the part of a platform that executes the instructions that
do the work. An ACPI-compatible OS can balance processor performance against power consumption and
thermal states by manipulating the processor clock speed and cooling controls. The ACPI specification
defines aworking state, labeled GO, in which the processor executes instructions. Processor low power
states, labeled C1 through C3, are also defined. In the low power states the processor executes no
instructions, thus reducing power consumption and, potentially, operating temperatures. For more
information, see section 8.

Definition Block:
A definition block contains information about hardware implementation and configuration detailsin the
form of data and control methods, encoded in AML. An OEM can provide one or more definition blocksin

22

the ACPI Tables. One definition block must be provided: the Differentiated Definition Block, which
describes the base system. Upon loading the Differentiated Definition Block, the OS inserts the contents of
the Differentiated Definition Block into the ACPI Name Space. Other definition blocks, which the OS can
dynamically insert and remove from the active ACPI Name Space, can contain references to the
Differentiated Definition Block. For more information, see section 5.2.7.

Device:
Hardware components outside the core chip set of a platform. Examples of devices are LCD panels, video
adapters, IDE CD-ROM and hard disk controllers, COM ports, etc. In the ACPI scheme of power
management, buses are devices. For more information, see section 3.3.2.

Device Context:
The variable data held by the device; it is usually volatile. The device might forget this information when
entering or leaving certain states (for more information, see section 2.3), in which case the OS software is
responsible for saving and restoring the information. Device Context refers to small amounts of information
held in device peripherals. See System Context.

Differentiated System Description Table:
An OEM must supply a Differentiated System Description Table (DSDT) to an ACPI-compatible OS. The
DSDT contains the Differentiating Definition Block, which supplies the implementation and configuration
information about the base system. The OS aways inserts the DSDT information into the ACPl Name
Space at system boot time, and never removesit.

Embedded Controller:
Embedded controllers are the general class of microcontrollers used to support OEM-specific
implementations, mainly in mobile environments. The ACPI specification supports embedded controllersin
any platform design, as long as the microcontroller conforms to one of the models described in this section.
The embedded controller performs complex low-level functions, through a simple interface to the host
Mi Croprocessor(s).

Embedded Controller Interface:
ACPI defines a standard hardware and software communications interface between an OS driver and an
embedded controller. This allows any OS to provide a standard driver that can directly communicate with
an embedded controller in the system, thus allowing other drivers within the system to communicate with
and use the resources of system embedded controllers (for example, Smart Battery and AML code). Thisin
turn enables the OEM to provide platform features that the OS and applications can use.

Firmware ACPI Control Structure:
The Firmware ACPI Control Structure (FACY) is a structure in read/write memory that the BIOS uses for
handshaking between the firmware and the OS, and is passed to an ACPI-compatible OS via the Fixed
ACPI Description Table (FACP). The FACS contains the system’ s hardware signature at last boot, the
firmware waking vector, and the global lock.

Fixed ACPI Description Table:
An OEM must provide a Fixed ACPI Description Table (FACP) to an ACPI-compatible OS in the Root
System Description Table. The FACP contains the ACPI Hardware Register Block implementation and
configuration details the OS needs to direct management of the ACPI Hardware Register Blocks, as well as
the physical address of the Differentiated System Description Table (DSDT) that contains other platform
implementation and configuration details. The OS aways inserts the name space information defined in the
Differentiated Definition Block in the DSDT into the ACPI Name Space at system boot time, and the OS
never removesit.

Fixed Features:
A set of features offered by an ACPI interface. The ACPI specification places restrictions on where and
how the hardware programming model is generated. All fixed features, if used, are implemented as
described in this specification so that the ACPI driver can directly access the fixed feature registers.
Fixed Feature Events:
A set of eventsthat occur at the ACPI interface when a paired set of status and event bitsin the fixed
feature registers are set at the same time. While afixed feature event occurs an SCI israised. For ACPI
fixed-feature events, the ACPI driver (or an ACPI-aware driver) acts as the event handler.

23

Fixed Feature Registers:
A set of hardware registersin fixed feature register space at specific address locations in system 10 address
space. ACPI defines register blocks for fixed features (each register block gets a separate pointer from the
FACP ACPI table). For more information, see section 4.6.

General Purpose Event (GPE) Registers:
The general purpose event registers contain the event programming model for generic features. All generic
events generate SCls.

Generic Feature:
A generic feature of a platform is value-added hardware implemented through control methods and
general-purpose events..

Global System States:
Globa system states apply to the entire system, and are visible to the user. The various global system states
are labeled GO through G3 in the ACPI specification. For more information, see section 2.2.

Ignored Bits:
Some unused bitsin ACPI hardware registers are designated as “Ignored” in the ACPI specification.
Ignored bits are undefined and can return zero or one (in contrast to reserved bits that always return zero).
Software ignores ignored bitsin ACPI hardware registers on reads and preserves ignored bits on writes.

Intel Architecture-Personal Computer (IA-PC):
A general descriptive term for computers built with processors conforming to the architecture defined by
the Intel processor family based on the 486 instruction set and having an industry-standard PC architecture.
Legacy:
A computer state where power management policy decisions are made by the platform hardware/firmware
shipped with the system. The legacy power management features found in today’ s systems are used to
support power management in a system that uses alegacy OS that does not support the OS-directed power
management architecture.

Legacy Hardware:
A computer system that has no ACPI or OSPM power management support.

Legacy OS:
An operating system that is not aware of and does not direct power management functions of the system.
Included in this category are operating systems with APM 1.x support.

Multiple APIC Description Table:
The Multiple APIC Description Table (APIC) is used on systems supporting the APIC to describes the
APIC implementation. Following the Multiple APIC Description Table isalist of APIC structures that
declare the APIC features of the machine.

Object:
The nodes of the ACPI Name Space are objects inserted in the tree by the OS using the information in the
system definition tables. These objects can be data objects, package objects, control method objects, etc.
Package objects refer to other objects. Objects aso have type, size, and relative name.

Object name:
Object names are part of the ACPI Name Space. Thereis a set of rules for naming objects.

OSPM:
OS-Directed Power Management is amodel of power (and system) management in which the OS plays a
central role and uses global information to optimize system behavior for the task at hand.

Package:
A set of objects.

Persistent System Description Table:
Persistent System Description Tables are Definition Blocks, similar to Secondary System Description
Tables, except a Persistent System Description Table can be saved by the OS and automatically loaded at
every boot.

24

Power Button:
A user push button that switches the system from the sleeping/soft off state to the working state, and signals
the OS to transition to a sleeping/soft off state from the working state.

Power Management:
Mechanisms in software and hardware to minimize system power consumption, manage system thermal
limits, and maximize system battery life. Power management involves tradeoffs among system speed,
noise, battery life, processing speed, and AC power consumption. Power management is required for some
system functions, such as appliance (e.g. answering machine, furnace control) operations.

Power Resources:
Power resources are resources (for example, power planes and clock sources) that a device requires to

operate in a given power state.

Power Sources:
The battery and AC adapter that supply power to a platform.

P-Code:
P-code isakind of simple “virtual machine language” that ACPI uses to describe control methods. Its
principal advantages are that it is portable, compact, and powerful. There are many kinds of p-code; ACPI
defines its own for reasons of simplicity. The ACPI specification defines an ACPI Source Language (ASL)
and an ACPI Machine Language (AML). Control methods are writtenin ASL, for which thereisa
relatively simple specification. A compiler converts the ASL form of the p-code to the AML form. The
ACPI-compatible OS contains a p-code interpreter for the AML form of the language.

Register Grouping:
A register grouping consists of two register blocks (it has two pointers to two different blocks of registers).
The fixed-position bits within a register grouping can be split between the two register blocks. This allows
the bits within aregister grouping to be split between two chips.

Reserved Bits:
Some unused bitsin ACPI hardware registers are designated as “Reserved” in the ACPI specification. For
future extensibility, hardware register reserved bits always return zero, and data writes to them have no side
affects. ACPI drivers are designed such that they will write zeros to all reserved bits in enable and status
registers and preserve bitsin control registers.

Root System Description Pointer:
An ACPI compatible system must provide a Root System Description Pointer in the systems low address
space. This structure’ s only purpose is to provide the physical address of the Root System Description
Table.

Root System Description Table:
The Root System Description Table starts with the signature ‘RSDT,’ followed by an array of physica
pointers to the other System Description Tables that provide various information on other standards that are
defined on the current system. The OS locates that Root System Description Table by following the pointer
in the Root System Description Pointer structure.

Secondary System Description Table:
Secondary System Description Tables are a continuation of the Differentiated System Description Table.
Multiple Secondary System Description Tables can be used as part of a platform description. After the
Differentiated System Description Table isloaded into ACPI name space, each secondary description table
with aunique OEM Table ID isloaded. This allows the OEM to provide the base support in one table,
while adding smaller system optionsin other tables. Note: Additional tables can only add data, they cannot
overwrite data from previous tables.

Sleep Button:
A user push button that switches the system from the sleeping/soft off state to the working state, and signals
the OS to transition to a sleeping state from the working state.

Smart Battery Subsystem:

25

A battery subsystem that conforms to the following specifications:. --battery, charger, selector list—and the
additional ACPI requirements.

Smart Battery Table:
An ACPI table used on platforms that have a Smart Battery Subsystem. This table indicates the energy
levels trip points that the platform requires for placing the system into different sleeping states and
suggested energy levels for warning the user to transition the platform into a sleeping state.

SMBus:
SMBusis atwo-wire interface based upon the I12C protocol. The SMBus is alow-speed bus that provides
positive addressing for devices, as well as bus arbitration.

SMBus Interface:
ACPI defines a standard hardware and software communications interface between an OS bus driver and an
SMBus Controller via an embedded controller.

System Context:
The volatile datain the system that is not saved by a device driver.

System Control Interrupt (SCI):
A system interrupt used by hardware to notify the OS of ACPI events. The SCI is a active low, shareable,
level interrupt.

System Management Interrupt (SMI):
An OS-transparent interrupt generated by interrupt events on legacy systems. By contrast, on ACPI
systems, interrupt events generate an OS-visible interrupt that is shareable (edge-style interrupts will not
work). Hardware platforms that want to support both legacy operating systems and ACPI systems must
support away of re-mapping the interrupt events between SMIs and SCIs when switching between ACPI
and legacy models.

Thermal States:
Thermal states represent different operating environment temperatures within thermal zones of a system. A
system can have one or more thermal zones; each thermal zone is the volume of space around a particular
temperature sensing device. The transitions from one thermal state to another are marked by trip points,
which are implemented to generate a System Control Interrupt (SCI) when the temperature in athermal
zone moves above or below the trip point temperature.

2.2 Global System State Definitions
Globa system states (Gx states) apply to the entire system and are visible to the user.
Global system states are defined by six principal criteria:

Does application software run?

What is the latency from external events to application response?

What is the power consumption?

Isan OS reboot required to return to aworking state?

Isit safe to disassemble the computer?

Can the state be entered and exited electronically?

Following isalist of the system states:

G3 - Mechanical Off:
A computer state that is entered and left by a mechanical means (e.g. turning off the system’s power
through the movement of alarge red switch). This operating mode is required by various government
agencies and countries. It isimplied by the entry of this off state through a mechanical means that the no
electrical current is running through the circuitry and it can be worked on without damaging the hardware
or endangering the service personnel. The OS must be restarted to return to the Working state. No hardware
context is retained. Except for the real time clock, power consumption is zero.

G2/S5 - Soft Off:
A computer state where the computer consumes a minimal amount of power. No user mode or system
mode code isrun. This state requires alarge latency in order to return to the Working state. The system’s

26

context will not be preserved by the hardware. The system must be restarted to return to the Working state.
It is not safe to disassemble the machine.

G1 - Sleeping:

A computer state where the computer consumes a small amount of power, user mode threads are not being
executed, and the system “appears’ to be off (from an end user’s perspective, the display is off, etc.).
Latency for returning to the Working state varies on the wakeup environment selected prior to entry of this
state (for example, should the system answer phone calls, etc.). Work can be resumed without rebooting the
OS because large elements of system context are saved by the hardware and the rest by system software. It
is not safe to disassemble the machine in this state.

GO - Working:

A computer state where the system dispatches user mode (application) threads and they execute. In this
state, devices (peripherals) are dynamically having their power state changed. The user will be able to
select (through some user interface) various performance/power characteristics of the system to have the
software optimize for performance or battery life. The system responds to external eventsin real time. It is
not safe to disassemble the machine in this state.

S4 - Non-Volatile Sleep:

4 Non-Volatile Sleep (NVS) isa special global system state that allows system context to be saved and
restored (relatively slowly) when power islost to the motherboard. If the system has been commanded to
enter 4, the OS will write all system context to a non-volatile storage file and |eave appropriate context
markers. The machine will then enter the $4 state. When the system |leaves the Soft Off or Mechanical Off
dtate, transitioning to Working (GO) and restarting the OS, arestore from a NV S file can occur. Thiswill
only happen if avalid NV S data set is found, certain aspects of the configuration of the machine has not
changed, and the user has not manually aborted the restore. If al these conditions are met, as part of the OS
restarting it will reload the system context and activate it. The net effect for the user is what looks like a
resume from a Sleeping (G1) state (albeit slower). The aspects of the machine configuration that must not
change include, but are not limited to, disk layout and memory size. It might be possible for the user to
swap a PC Card or a Device Bay device, however.

Note that for the machine to transition directly from the Soft Off or Sleeping states to $4, the system
context must be written to non-volatile storage by the hardware; entering the Working state first so the OS
or BIOS can save the system context takes too long from the user’ s point of view. The transition from
Mechanical Off to S4islikely to be done when the user is not there to seeit.

Because the $4 state relies only on non-volatile storage, a machine can save its system context for an
arbitrary period of time (on the order of many years).

Table 2-1 Summary of Global Power States

Global System Software Latency | Power OS restart | Safe to Exit state
State Runs Consumption | required disassemble | electronically
computer
G0 —Waorking Yes 0 Large No No Yes
G1 - Sleeping No >0, varies | Smaller No No Yes
with sleep
state.
G2/Sb - Soft Off No Long Very near 0 Yes No Yes
G3 — Mechanica No Long RTC battery Yes Yes No
Off

Note that the entries for G2/S5 and G3 in the Latency column of the above table are“Long.” Thisimpliesthat a
platform designed to give the user the appearance of “instant-on,” similar to a home appliance device, will use
the GO and G1 states amost exclusively (the G3 state may be used for moving the machine or repairing it).

27

2.3 Device Power State Definitions
Device power states are states of particular devices; as such, they are generally not visible to the user. For
example, some devices may be in the Off state even though the system as awholeis in the Working state.

Device states apply to any device on any bus. They are generally defined in terms of four principal criteria:
- Power consumption - how much power the device uses.
Device context - how much of the context of the deviceis retained by the hardware. The OSis responsible
for restoring any lost device context (this may be done by resetting the device).
Device driver - what the device driver must do to restore the device to full on.
Restore time - how long it takes to restore the device to full on.

The device power states are defined below. These states are defined very generically here. Many devices do not
have al four power states defined. Devices may be capable of severa different low power modes, but if thereis
no user-perceptible difference between the modes only the lowest power mode will be used. The Device Class
Power Management Specifications, which are separate documents from this specification, describe which of
these power states are defined for a given type (class) of device and define the specific details of each power
state for that device class. For alist of the available Device Class Power Management Specifications, see
section 1.10.

D3 - Off:
Power has been fully removed from the device. The device context islost when this state is entered, so the
OS software will reinitialize the device when powering it back on. Since device context and power are lost,
devicesin this state do not decode their addresses lines. Devices in this state have the longest restore times.
All classes of devices define this state.

D2:
The meaning of the D2 Device State is defined by each class of device; it may not be defined by many
classes of devices. In general, D2 is expected to save more power and preserve less device context than D1
or DO. Buses in D2 may cause the device to loose some context (i.e., by reducing power on the bus, thus
forcing the device to turn off some of its functions).

D1:
The meaning of the D1 Device State is defined by each class of device; it may not be defined by many
classes of devices. In general, D1 is expected to save less power and preserve more device context than D2.

DO - Fully-On:
This state is assumed to be the highest level of power consumption. The device is completely active and
responsive, and is expected to remember all relevant context continuously.

Table 2-2 Summary of Device Power States

Device State | Power Device Context Driver Restoration
Consumption Retained

DO - Fully- As needed for All None

On operation.

D1 D0>D1>D2>D3 | >D2 <D2

D2 D0>D1>D2>D3 | <D1 >D1

D3 - Off 0 None Full init and load

Note: Devices often have different power modes within a given state. Devices can use these modes as long as
they can automatically switch between these modes transparently from the software, without violating the rules
for the current Dx state the deviceisin. Low power modes that affect performance (i.e., low speed modes) or
that are not transparent to software cannot be done automatically in hardware; the device driver must issue
commands to use these modes.

28

2.4 Sleeping State Definitions

Sleeping states (Sx states) are types of deeping states within the global sleeping state, G1. The Sx states are
briefly defined below. For a detailed definition of the system behavior within each Sx state, see section 7.5.2.
For a detailed definition of the transitions between each of the Sx states, see section 9.1.

S1 Sleeping State:
The S1 deeping state is alow wake-up latency sleeping state. In this state, no system context islost (CPU
or chip set) and hardware maintains all system context.

S2 Sleeping State
The S2 deeping state is alow wake-up latency sleeping state. This state is similar to the S1 deeping state
except the CPU and system cache context is lost (the OS is responsible for maintaining the caches and CPU
context). Control starts from the processor’ s reset vector after the wake-up event.

S3 Sleeping State:
The S3 deeping state is alow wake-up latency sleeping state where all system context is lost except system
memory. CPU, cache, and chip set context are lost in this state. Hardware maintains memory context and
restores some CPU and L 2 configuration context. Control starts from the processor’ s reset vector after the
wake-up event.

S4 Sleeping State:
The $4 deeping state is the lowest power, longest wake-up latency sleeping state supported by ACPI. In
order to reduce power to aminimum, it is assumed that the hardware platform has powered off all devices.
Platform context is maintained.

S5 Soft Off State:
The S5 state is similar to the $4 state except the OS does not save any context nor enable any devices to
wake the system. The system isin the “soft” off state and requires a complete boot when awakened.
Software uses a different state value to distinguish between the S5 state and the $4 state to allow for initial
boot operations within the BIOS to distinguish whether or not the boot is going to wake from a saved
memory image.

2.5 Processor Power State Definitions

Processor power states (Cx states) are processor power consumption and thermal management states within the
global working state, GO. The Cx states are briefly defined below. For a more detailed definition of each Cx
state from the software perspective, see section 8.2. For a detailed definition of the Cx states from the hardware
perspective, see section 4.7.1.12.

CO0 Processor Power State:
While the processor isin this state, it executes instructions.

C1 Processor Power State
This processor power state has the lowest latency, The hardware latency on this state is required to be low
enough that the operating software does not consider the latency aspect of the state when deciding whether
to use it. Aside from putting the processor in a non-executing power state, this state has no other software-
visible effects.

C2 Processor Power State:
The C2 state offers improved power savings over the C1 state. The worst-case hardware latency for this
state is declared in the FACP Table and the operating software can use this information to determine when
the C1 state should be used instead of the C2 state. Aside from putting the processor in a non-executing
power state, this state has no other software-visible effects.

C3 Processor Power State:
The C3 state offers improved power savings of the C1 and C2 states. The worst-case hardware latency for
this state is declared in the FACP Table, and the operating software can use this information to determine
when the C2 state should be used instead of the C3 state. While in the C3 state, the processor’ s caches
maintain state but ignore any snoops. The operating software is responsible for ensuring that the caches
maintain coherency.

3. Overview
The ACPI interface gives the operating system (OS) direct control over the power management and Plug and
Play functions of a computer. When it starts, the ACPI OS takes over these functions from legacy BIOS
interfaces such as the APM BIOS and the PNPBIOS. Having done this, the OS is responsible for handling Plug
and Play events as well as controlling power and thermal states based on user settings and application requests.
ACPI provides low-level controls so the OS can perform these functions. The functional areas covered by the
ACPI specification are:
- System power management - ACPI defines mechanisms for putting the computer as a whole in and out of
system sleeping states. It also provides a genera mechanism for any device to wake the computer.
Device power management - ACPI tables describe motherboard devices, their power states, the power
planes the devices are connected to, and controls for putting devicesinto different power states. This
enables the OS to put devicesinto low-power states based on application usage.
Processor power management - While the OSisidle but not sleeping, it will use commands described by
ACPI to put processors in low-power states.
Plug and Play - ACPI specifies information used to enumerate and configure motherboard devices. This
information is arranged hierarchically so when events such as docking and undocking take place, the OS
has precise, a priori knowledge of which devices are affected by the event.
System Events - ACPI provides a general event mechanism that can be used for system events such as
thermal events, power management events, docking, device insertion and removal, etc. Thismechanismis
very flexible in that it does not define specifically how events are routed to the core logic chipset.
Battery management - Battery management policy moves from the APM BIOS to the ACPI OS. The OS
determines the Low battery and battery warning points, and the OS a so calcul ates the battery remaining
capacity and battery remaining life. An ACPI-compatible battery device needs either a Smart Battery
subsystem interface, which is controlled by the OS directly through the embedded controller interface, or a
Control Method Battery (CMBatt) interface. A CMBatt interface is completely defined by AML control
methods, allowing an OEM to choose any type of the battery and any kind of communication interface
supported by ACPI.
Thermal management - Since the OS controls the power states of devices and processors, ACPI aso
addresses system thermal management. It provides a simple, scaleable model that allows OEMs to define
thermal zones, thermal indicators, and methods for cooling thermal zones.
Embedded Controller - ACPI defines a standard hardware and software communications interface
between an OS bus enumerator and an embedded controller. This alows any OS to provide a standard bus
enumerator that can directly communicate with an embedded controller in the system, thus allowing other
drivers within the system to communicate with and use the resources of system embedded controllers. This
in turn enables the OEM to provide platform features that the OS and applications can use.
System Management Bus Controller - ACPI defines a standard hardware and software communi cations
interface between an OS bus driver and an SMBus Controller. This alows any OS to provide a standard
bus driver that can directly communicate with SMBus Devices in the system. Thisin turn enables the OEM
to provide platform features that the OS and applications can use.

3.1 System Power Management

Under OS-directed power management (OSPM), the operating system directs all system and device power state
transitions. Employing user preferences and knowledge of how devices are being used by applications, the OS
puts devices in and out of low-power states. Devices that are not being used can be turned off. Similarly, the
OS uses information from applications and user settings to put the system as awhole into alow- power state.
The OS uses ACPI to control power state transitions in hardware.

Intel Microsoft Toshiba

30

3.2 Power States
From a user-visible level, the system can be thought of as being in one of the states in the following diagram:

Power
Failure

CDROM CPU
DX]

G3 -Mech
Off

BIOS
Routine

GO (SO0) -
Working

Sleeping

cVACHE
Soft Off

Figure 3-1 Global System Power States and Transitions

(See section 2.2 for detailed definitions of these states)

In general use, computers alternate between the Working and Sleeping states. In the Working state, the
computer is used to do some work. User-mode application threads are dispatched and running. Individual
devices can be in low-power (Dx) states and processors can be in low-power (Cx) states if they are not being
used. Any device the system turns off because it is not actively in use can be turned on with short latency.
(What “short” means depends on the device. An LCD display needs to come on in sub-second times, whileit is
generally acceptable to wait afew seconds for a printer to wake up.)

The net effect of thisisthat the entire machine is functional in the Working state. Various Working sub-states
differ in speed of computation, power used, heat produced, and noise produced. Tuning within the Working
stateis largely about tradeoffs between speed, power, heat, and noise.

When the computer isidle or the user has pressed the power button, the OS will put the computer into one of
the sleeping (Sx) states. No user-visible computation occurs in a sleeping state. The sleeping sub-states differ in
what events can arouse the system to a Working state, and how long this takes. When the machine must awaken
to al possible events and/or do so very quickly, it can enter only the sub-states that achieve a partial reduction
of system power consumption. However, if the only event of interest is a user pushing on a switch and alatency
of minutesis allowed, the OS could save al system context into a non-volatile storage (NVS) file and transition
the hardware into a Soft Off state. In this state, the machine draws almost zero power and retains system context
for an arbitrary period of time (years or decades if needed).

The other states are used less often. Computers that support legacy BIOS power management interfaces boot in
the Legacy state and transition to the Working state when an ACPI OS loads. A system without legacy support
(e.g., aRISC system) transitions directly from the Mechanical Off state to the Working state. Users put

31

computers into the Mechanical Off state by flipping the computer’ s mechanical switch or by unplugging the
computer.

3.2.1 New Meanings for the Power Button

In legacy systems, the power button typically either forces the machine to Soft Off or Mechanical Off or, on a
laptop, forces it to some sleeping state. No allowance is made for user policy (such as the user wants the
machine to “come on” in less than 1 second with al context as it was when the user turned the machine “ off”),
system alert functions (such as the system being used as an answering machine or fax machine), or application
function (such as saving a user file).

In an OSPM system, there could be two switches. Oneis to transition the system to the Mechanical Off state. A
mechanism to stop current flow is required for legal reasons in some jurisdictions (for example, in some
European countries). The other isthe “main” power button. Thiswill be in some obvious place (for example,
beside the keyboard on a laptop). Unlike today’ s on/off button, al it doesis send a request to the system. What
the system does with this request depends on policy issues derived from user preferences, user function
requests, and application data.

3.2.2 Platform Power Management Characteristics

3.2.2.1 Mobile PC
Mobile PCswill continue to have aggressive power management functionality. Going to OSPM/ACPI will
allow enhanced power savings techniques and more refined user policies.

Aspects of mobile PC power management in the ACPI specification are therma management (see section 12)
and the embedded controller interface (see section 13).

3.2.2.2 Desktop PCs

Power-managed desktops will really be of two types, though the first type will migrate to the second over time.
Ordinary “Green PC” - Here, new appliance functions are not the issue. The machine isreally only used for
productivity computations. At least initially, such machines can get by with very minimal function. In
particular, they need the norma ACPI timers and controls, but don’'t need to support elaborate sleeping
states, etc. They, however, do need to allow the OS to put as many of their devices/resources as possible
into device standby and device off states, as independently as possible (to alow for maximum compute
speed with minimum power wasted on unused devices). Such PCs will also need to support wake-up from
the Soft-Off state by means of atimer, because this allows administrators to force them to turn on just
before people are to show up for work.
Home PC - Computers are moving into home environments where they are used in entertainment centers
and to perform tasks like answering the phone. A home PC needs all of the functionality of the Ordinary
Green PC. Infact, it has all of the ACPI power functionality of alaptop except for docking and lid events
(and need not have any legacy power management).

3.2.2.3 Multiprocessor and Server PCs
Perhaps surprisingly, server machines will often get the largest absolute power savings. Why? Because they
have the largest hardware configurations, and it’s not practical for somebody to hit the off switch when they
leave at night.
Day Mode - In day mode, serverswill get power managed much like a corporate Ordinary Green PC,
staying in the Working state all the time, but putting unused devices into low power states whenever
possible. Because servers can be very large and have, for example, many disk spindles, power management
can result in large savings. OS-driven power management allows careful tuning of when to do this, thus
making it workable.
Night Mode - In night mode, serverslook like Home PCs. They sleep as deeply as they can sleep and till
be able to wake up and answer service requests coming in over the network, phone links, etc, within
specified latencies. So, for example, a print server might go into deep sleep until it receivesaprint job at 3
A.M., a which point it wakes up in perhaps less than 30 seconds, prints the job, and then goes back to

32

deep. If the print request comes over the LAN, then this scenario depends on an intelligent LAN adapter
that can wake up the system in response to an interesting received packet.

3.3 Device Power Management

This section describes ACPI-compatible device power management. The ACPI device power states are
introduced, the controls and information an ACPI-compatible OS needs to perform device power management
are discussed, the Wakeup operation devices use the wake the computer from a sleeping state is described, and
an example of ACPI-compatible device management, using a modem, is given.

3.3.1 Power Management Standards

To manage power of all the devicesin the system, the OS needs standard methods for sending commands to a
device. These standards define the operations used to manage power of devices on a particular bus and the
power states that devices can be put into. Defining these standards for each bus creates a base-line level of
power management support the OS can utilize. IHVs do not have to spend extra time writing software to
manage power of their hardware; because ssmply adhering to the standard gains them direct OS support. For OS
vendors, the bus standards allow the power management code to be centralized in each bus driver. Finaly, bus-
driven power management allows the OS to track the states of al devices on a given bus. When al the devices
arein agiven state (e.g. D3 - off), the OS can put the entire bus into the power supply mode appropriate for that
state (e.g. D3 - off).

Bus-level power management specifications are being written for the following busses:
PCI
CardBus
UsB
|EEE 1394

3.3.2 Device Power States
To unify nomenclature and provide consistent behavior across devices, standard definitions are used for the
power states of devices. Generaly, these states are defined in terms of two criteria
Power consumption - how much power the device uses.
Device context - how much of the context of the deviceis retained by the hardware. The OSis responsible
for restoring any lost device context (this can be done by resetting the device).
Device driver - what the device driver must do to restore the device to full on.
Restore latency - how long it takes to restore the device to full on.

More specifically, power management specifications for each class of device (e.g., modem, network adapter,
hard disk, etc) more precisely define the power states and power policy for the class. See section 2.3 for the
detailed description of the four general device power states (DO-D3).

3.3.3 Device Power State Definitions
The device power state definitions are device independent, but classes of devices on a bus must support some
consistent set of power-related characteristics. For example, when the bus-specific mechanism to set the device
power state to a given level isinvoked, the actions a device might take and the specific sorts of behaviors the
OS can assume while the device is in that state will vary from device type to device type. For afully integrated
device power management system, these class-specific power characteristics must also be standardized:
Device Power State Characteristics. Each class of device has a standard definition of target power
consumption levels, state-change latencies, and context loss.
Minimum Device Power Capabilities. Each class of device has a minimum standard set of power
capabilities.
Device Functional Characteristics. Each class of device has a standard definition of what subset of device
functionality or features is available in each power state (for example, the net card can receive, but cannot
transmit; the sound card is fully functional except that the power amps are off, etc.).
Device Wake-Up Characteristics. Each class of device has a standard definition of its wake-up policy.

Microsoft’ s Device Class Power Management specifications define these power state characteristics for each
class of device.

33

3.4 Controlling Device Power

ACPI provides the OS the controls and information needed to perform device power management. ACPI
describes the capabilities of all the devicesit controls to the OS. It also gives the OS the control methods used to
set the power state or get the power status for each device. Finally, it has a general scheme for devices to wake
up the machine.

Note: Some devices on the main board are enumerated by other busses. For example, PCl devices are reported
through the standard PCI enumeration mechanisms. The ACPI table lists legacy devices that cannot be reported
through their own bus specification, the root of each bus in the system, and devices that have additional power
management or configuration options not covered by their own bus specification. Power management of these
devicesis handled through their own bus specification (in this case, PCl). All other devices are handled through
ACPI.

For more detailed information see section 7.

3.4.1 Getting Device Power Capabilities
Asthe OS enumerates devices in the system, it gets information about the power management features that the
device supports. The Differentiated Definition Block given to the OS by the BIOS describes every device
handled by ACPI. This description contains the following information:
A description of what power resources (power planes and clock sources) the device needs in each power
state that the device supports. For example, a device might need a high power bus and a clock in the DO
state but only alow power bus and no clock in the D2 state.
A description of what power resources a device needsin order to wake the machine (or none to indicate
that the device does not support wakeup). The OS can use this information to infer what device and system
power states the device can support wakeup from.
The optional control method the OS can use to set the power state of the device and to get and set
resources.

In addition to describing the devices handled by ACPI, the table lists the power planes and clock sources
themselves and the control methods for turning them on and off. For detailed information, see section 7.

3.4.2 Setting Device Power States
The Set Power State operation is used by the OS to put a device into one of the four power states.

When adeviceis put in alower power state, it configures itself to draw as little power from the bus as possible.
The OS will track the state of all devices on the bus, and will put the bus into the best possible power state
based on the current device requirements on that bus. For example, if al devices on abus are in the D3 state,
the OS will send a command to the bus control chip set to remove power from the bus (thus putting the bus
itself in the D3 state). Or if a particular bus supports alow power supply state, the OS will put the bus into that
dtate if al deviceswereinthe D1 or D2 state. Whatever power state a device is put into, the OS must be able to
issue a Set Power State command to can resume the device. Note: The device does not need to have power to
do this. The OS must turn on power to the device before it can send any commands to the device.

The Set Power State operation is also used by the OS to enable power management features like wakeup
(described in section 7).

When adeviceisto be set in aparticular power state using the ACPI interface, the OS first decides which
power resources will be used and which can be turned off. The OS will track all the devices on a given power
resource. When all the devices on aresource have been turned off, the OS will turn off that power resource by
running a control method. If a power resource is turned off and one of the devices on that resource needs to be
turned on, the OS will first turn on the power resource using a control method and then signal the device to turn
on. The time that the OS must wait for the power resource to stabilize after turning it on or off is described in
the description table. The OS uses the time base provided by the Power Management Timer to measure these
timeintervals.

Once the power resources have been switched, the OS executes the appropriate control method to put the device
in that power state. Note that this might not mean that power is removed from the device. If other active devices
are sharing a power resource, the power resources will remain on.

34

3.4.3 Getting Device Power Status

The Get Power Status operation is used by the OS to determine the current power configuration (states and
features), as well as the status of any batteries supported by the device. The device can signal a System Control
Interrupt (SCI) to inform the OS of changes in power status. For example, a device can trigger an interrupt to
inform the OS that the battery has reached low power level.

Devices use the ACPI event model (see below) to signal power status changes (battery status changes, for
example), the ACPI chip set signals the OS via the SCI interrupt. An SCI interrupt status bit is set to indicate
the event to the OS. The OS runs the control method associated with the event. This control method signalsto
the OS which device has changed.

ACPI supports two types of batteries: batteries that report only basic battery status information, and batteries
that support the Intel/Duracell Smart Battery Specification. For batteries that report only basic battery status
information (such astotal capacity and remaining capacity), the OS uses control methods from the battery’s
description table to read this information. To read status information for Smart Batteries, the OS can use a
standard Smart Battery driver that directly interfaces to Smart Batteries through the appropriate bus enumerator.

3.4.4 Waking the Computer

The Wakeup operation is used by devices to wake the computer from a sleeping power state. This operation
must not depend on the CPU because the CPU will not be powered. When it puts the computer in a sleeping
power state, the OS will enable wakeup on those devices that the user’ s applications need to wake the machine.
The OS will also make sure any bridges between the device and the core logic are in the lowest power state in
which they can till forward the wakeup signal. When a device with wakeup enabled decides to wake the
machine, it sends the defined signal on its bus. Bus bridges must forward this signal to upstream bridges using
the appropriate signal for that bus. Thus, the signal eventually reaches the core chip set (e.g. an ACPI chip set),
which in turn wakes the machine.

Before putting the machine in a sleeping power state, the OS determines which devices are needed to wake the
machine based on application requests, and then enables wakeup on those devices. The OS enables the wakeup
feature on devices by setting that device's SCI Enable bit. The location of this bit islisted in the device' s entry
in the description table. Only devices that have their wakeup feature enabled can wake the machine. The OS
will keep track of what power states the wakeup devices are capable of and will keep the machine in a power
state in which the wakeup can still wake the machinel (based on capabilities reported in the Description Table).

When the computer isin the Sleeping power state and a wakeup device decides to wake the machine, it signals
to the ACPI chip set. The SCI status bit corresponding to the device waking the machine will be set, and the
ACPI chip set will resume the machine. Once the OSis up and running again, it will clear the bit and handle the
event that caused the wakeup. The control method for this event then uses the Notify command to tell the OS
which device caused the wakeup.

3.4.5 Example: Modem Device Power Management

To illustrate how these power management methods function in ACPI, consider an integrated modem. (This
exampleis greatly ssimplified for the purposes of this discussion). The power states of a modem are defined as
follows (thisis an excerpt from the Modem Device Class Power Management Specification):

DO - Modem controller on
Phoneinterface on
Speaker on
Can be on hook or off hook
Can be waiting for answer
D1 - Modem controller in low power mode (context retained by device)
Phone interface powered by phone line or in low power mode
Speaker off
Must be on hook
D2 - SameasD3

1 Some OS policies may require the OS to put the machine into a global system state for which the device can
no longer wake the system. Such as avery low battery situation.

35

D3 - Modem controller off (context lost)
Phone interface powered by phone line or off

Speaker off
On hook

The power policy for the modem are defined as follows:

D3> DO COM port opened

DO,D1 > D3 COM port closed

DO -> D1 Modem put in answer mode

D1 -> DO Application requests dial or the phone rings while the modem isin answer mode

The wakeup policy for the modem is very simple: when the phone rings and wakeup is enabled, wake the
machine.

Based on that information, the modem and the COM port it is attached to can be implemented in hardware as

shown in Figure 3-2. Thisisjust an example for illustrating features of ACPI. This exampleis not intended to
describe how OEMSss should build hardware.

PWR1 PWR2
T 5 B =
Sz 53
] zs zs
PWR1_EN ———
[
PWR2 EN — - ﬁ
\
MDM_D3
MDM D1
COM_D3
- v A A
ACPI core /o /o o Bh
chipset COM port Modem Phone one
(UART) controller Control interface line
RI
WAKE <

Figure 3-2 Example Modem and COM Port Hardware

Note: Although not shown above, each discrete part has someisolation logic so that the part is isolated when
power isremoved from it. Isolation logic controls are implemented as power resourcesin the ACPI
Differentiated Description Block so that devices are isolated as power planes are sequenced off.

3.4.5.1 Getting the Modem’s Capabilities
The OS determines the capabilities of this modem when it enumerates the modem by reading the modem’s

entry in the Differentiated Definition Block. In this case, the entry for the modem would report:
The device supports DO, D1, and D3:
DO requires PWR1 and PWR2 as power resources
D1 requires PWR1 as a power resource
(D3 implicitly requires no power resources)
To wake the machine, the modem needs no power resources (implying it can wake the machine from
DO, D1, and D3)
Control methods for setting power state and resources

3.4.5.2 Setting the Modem’s Power State

While the OS is running (GO state), it will switch the modem to different power states according to the power
policy defined for modems.

36

When an application opens the COM port, the OS will turn on the modem by putting it in the DO state. Then if
the application puts the modem in answer mode, the OS will put the modem in the D1 state to wait for the call.
To make this state transition, the ACPI first checks to see what power resources are no longer needed. In this
case, PWR2 is not needed. Then it checks to make sure no other device in the system requires the use of the
PWR2 power resource. If the resource is no longer needed, the ACPI driver uses the _OFF control method
associated with that power resource in the Differentiated Definition Block to turn off the PWR2 power plane.
This control method sends the appropriate commands to the core chip set to stop asserting the PWR2_EN line.
Then, the ACPI driver runs a control method (_PS1) provided in the modem’ s entry to put the device in the D1
state. This control method asserts the MDM_D1 signal that tells the modem controller to go into alow power
mode.

The ACPI driver does not always turn off power resources when a given deviceis put into alower power state.
For example, assume that the PWR1 power plane also powers an LPT port that is active. Suppose the user
terminates the modem application causing the COM port to be closed, therefore causing the modem to be shut
off (state D3). As always, the ACPI driver checks to see which power resources are no longer needed. Because
the LPT port is still active, PWR1 isin use. The ACPI driver will not turn off the PWR1 resource. It will
continue the state transition process by running the modem'’s control method to switch the device to the D3
power state. The control method will cause the MDM_D3 line to be asserted. The modem controller now turns
off all its major functions so that it draws little power, if any, from the PWR1 line. Because the COM port is
now closed, the same sequence of events would take place to put it into the D3 state. Note that these registers
might not be in the deviceitself. For example, the control method could read the register that controls
MDM_D3.

3.4.6 Getting the Modem’s Power Status

Being an integrated modem, the device has no batteries. The only power status information for the deviceisthe
power state of the modem. To determine the modem’s current power state (D0-D3), the ACPI driver runsa
control method (_PSC) supplied in the modem’s entry in the Differentiated Definition Block. This control
method reads from whatever registers are necessary to determine the modem’s power state.

3.4.6.1 Waking the Computer

As indicated in the capabilities, this modem can wake the machine from any device power state. Before putting
the computer in a sleep state, the OS will enable wakeup on any devices that applications have requested to
wake the machine. Then, it will choose the lowest sleeping state that can till provide the power resources
necessary to alow all enabled wakeup devices to wake the machine. Next, the OS puts each of those devicesin
the appropriate power state, and puts all other devicesin the D3 state. In this case, the OS would put the modem
in the D3 state because it supports wake up from that state. Finally, the OS saves a resume vector and puts the
machine to sleep through an ACPI register.

Waking the computer via modem starts with the modem'’ s phone interface asserting its ring indicate (RI) line
when it detects aring on the phone line. Thislineisrouted to the core chip set to generate a wake-up event.
The chip set then awakens the system and the hardware will eventually pass control back to the OS (the waking
mechanism differs depending on the sleeping state). Once the OS is running, it will put the device in the DO
state and begin handling interrupts from the modem to process the event.

3.5 Processor Power Management

To further save power in the Working state, the OS puts the CPU into low-power states (C1, C2, and C3) when
the OSisidle. In these low-power states, the CPU does not run any instructions, and wakes when an interrupt,
such as the pre-empt interrupt, occurs.

The OS determines how much time is being spent in itsidle loop by reading the ACPI Power Management
Timer. Thistimer runs at a known, fixed frequency and allows the OS to precisely determineidle time.
Depending on thisidle time estimate, the OS will put the CPU into different quality lower power states (which
vary in power and latency) when it entersitsidle loop.

The CPU states are defined in detail in section 8.

37

3.6 Plug and Play

In addition to power management, ACPI provides controls and information so that the OS can direct Plug and
Play on the motherboard. The Differentiated Description Table describes the motherboard devices. The OS
enumerates motherboard devices ssmply by reading through the Differentiated Description Table looking for
devices with hardware IDs.

Each device enumerated by ACPI includes control methods that report the hardware resources the device could
occupy and those that are currently used, and a control method for configuring those resources. The information
is used by the Plug and Play system to configure the devices.

ACPI is used only to enumerate and configure motherboard devices that do not have other hardware standards
for enumeration and configuration. For example, PCI devices on the motherboard must not be enumerated by
ACHI, therefore Plug and Play information for these devices is not included in the Differentiated Description
Table. However, power management information for these devices can till appear in the table if the devices
power management is to be controlled through ACPI.

Note: When preparing to boot a computer, the BIOS only needs to configure boot devices. This includes boot
devices described in the ACPI description tables as well as devices that are controlled through other standards.

3.6.1 Example: Configuring the Modem
Returning to the modem device example above, the OS will find the modem and load a driver for it when the
OSfindsit in the Differentiated Description Table. This table will have control methods that tell the OS the
following information:

The device can use IRQ 3, 1/0O 3F8-3FF or IRQ 4, 1/0 2E8-2EF

The deviceis currently using IRQ 3, 10O 3F8-3FF

The OS configures the modem'’ s hardware resources using Plug and Play algorithms. It chooses one of the
supported configurations that does not conflict with any other devices. Then, the ACPI driver configures the
device for those resources by running a control method supplied in the modem’ s section of the Differentiated
Definition Block. This control method will write to any 1/O ports or memory addresses necessary to configure
the device to the given resources.

3.7 System Events
ACPI includes a general event model used for Plug and Play, Thermal, and Power Management events. There
are two registers that make up the event model: an event status register, and an event enable register.

When an event occurs, the core logic sets a bit in the status register to indicate the event. If the corresponding
bit in the enable register is set, the core logic will assert the SCI to signa the OS. When the OS receivesthis
interrupt, it will run the control methods corresponding to any bits set in the event status register. These control
methods use AML commandsto tell the OS what event occurred.

For example, assume a machine has al of its Plug and Play, Thermal, and Power Management events connected
to the same pin in the core logic. The event status and event enable registers would only have one bit each: the
bit corresponding to the event pin.

When the computer is docked, the core logic would set the status bit and fire the SCI. The OS, seeing the status
bit set, runs the control method for that bit. The control method checks the hardware and determines the event
was a docking event (for example). It then signals to the OS that a docking event has occurred, and can tell the
OS specifically where in the device hierarchy the new devices will appear.

Since the event model registers are generalized, they can describe many different platform implementations.
The single pin model above isjust one example. Another design might have Plug and Play, Thermal, and
Power Management events wired to three different pins so there would be three status bits (and three enable
bits). Y et another design might have every individual event wired to its own pin and status bit. This design, at
the opposite extreme from the single pin design, allows very complex hardware, yet very simple control
methods. Countless variationsin wiring up events are possible.

38

3.8 Battery Management

Battery management policy moves from the APM BIOS to the ACPI-compatible OS. The OS determines the
low battery point and battery warning point. The OS also calcul ates the remaining battery capacity and
remaining battery life.

An ACPI-compatible battery device needs either a Smart Battery subsystem interface or a Control Method

Battery (CMBatt) interface.

- Smart Battery is controlled by the OS directly through the embedded controller (EC). For more information
about the ACPI Embedded Controller SMBus interface, see section 13.9.
CMBatt is completely accessed by AML code control methods, alowing the OEM to choose any type of
battery and any kind of communication interface supported by ACPI. For more information about battery
device control methods, see section 11.2.2.

This section describes how a CMBatt interface works and what kind of AML code interface is needed .

3.8.1 CMBatt Diagram

CMBatt is accessed by an AML code interface so a system hardware designer can choose any communication
interface at the hardware level. One example is shown in Figure 3-3. The battery has built-in information and
can communicate with embedded controller (EC) using the 1°C interface. The AML code interface returns the
battery information stored in the RAM of the EC. The OS can set the battery trip point at which an SCI will be
generated.

Designed Battery capacity
Designed Voltage
Designed Warning capacity
Designed Low battery capacity
Latest Full charged capacity

EC P o P-code Present Remaining capcacity
41» interface Present drain rate

Present Voltage 0os

(or Present Battery Status and

other etc. Drivers
controller) P

1

Battery

Battery capacity trip point

Figure 3-3 Control Method Battery Diagram

3.8.2 Battery Events
The AML code that handles an SCI for a battery event notifies the system of the batteries upon which the status
might have changed.

When a battery device isinserted into the system or removed from the system, the hardware asserts a GP event.
The AML code handler for this event will issue a Notify(, 0x00) on the battery device to initiate the standard
device Plug and Play actions.

When the present state of the battery has changed or when the trip point set by the _BTP control method is
crossed, the hardware will assert a GP event. The AML code handler for this event issues a Notify(,0x80) on the
battery device.

3.8.3 Battery Capacity

CMBatt reports the designed capacity, the latest full-charged capacity, and the present remaining capacity.
Battery remaining capacity decreases during usage, and it also changes depending on the environment.
Therefore, the OS must use latest full-charged capacity to calculates the battery percentage.

39

A system must use either [mA] or [mW] for the unit of battery information calculation and reporting. Mixing
[mA] and [mW] is not allowed on a system.

CMBatt reports the OEM-designed initial warning capacity and OEM-designed initial low capacity . An ACPI-
compatible OS determines independent warning and low battery capacity based on these initial capacities.

! 1 D R Designed Capacity
L EEE R Last Full charged capacity
""" QL Present Remaining Capacity
| e OEM designed initial capacity for warning
-- _ - - OEM designed initial capacity for Low

Figure 3-4 Reporting Battery Capacity

3.8.4 Battery Gas Gauge
At the most basic level, the OS calculates Remaining Battery Percentage [%] using the following formula:

- Battery Remaining Capacity [mAh/mWh]
Remaining Battery Percentage[%] = * 100

Last Full Charged Capacity [mAh/mWh]

CMBatt also reports the Present Drain Rate [mA or mW] for calculating the remaining battery life. At the most
basic level, Remaining Battery lifeis calculated by following formula:

Battery Remaining Capacity [mMAh/mWh]
Battery Present Rate [mMA/mW]

Remaining Battery Life [h]=

Note that when the battery is a primary battery (a non-rechargeable battery such as an Alkaline-Manganese
battery) and cannot provide accurate information about the battery to use in the calculation of the remaining
battery life, the CMBatt can report the percentage directly to OS. Reporting the “Last Full Charged capacity
=100" and " BatteryPresentRate=OxFFFFFFFF" means that " Battery remaining capacity” is a battery percentage
and the its value should be in the range 0 through 100 as follows.
Remaining Battery Percentage[%] = Battery Remaining Capa(.:lty 20 ~ 100] * 100
Last Full Charged Capacity [=100]

o . Battery Remaining Capacity [mAh/mWh]
Remaining Battery Life [h] = = unknown
Battery Present Rate [=OxFFFFFFFF]

CMBatt have an OEM-designed initial capacity for warning and initial capacity for low. An ACPI-compatible
OS can determine independent warning and low battery capacity values based on the designed warning capacity
and designed low capacity shown in Figure 3-5 and Table 3-1.

40

Full
ull Last Full charged capacity
________ < . OJS selects low battery warning capacity according to the grid
o - - - Warning | OEM designed initial capacity for warning (Minimum)
--------- OIS selects low battery capacity according to the grid
h ~L9_N_ OEM designed initial capacity for Low (Minimum)
Critical — OEM defined Battery Critical flag

Figure 3-5 Low Battery and Warning
CMBatt and an ACPI-compatible OS manage the three battery level shown in Table 3-1.

Table 3-1 Low Battery Levels

Level Description

Warning The battery is approaching and is close to the Low level. Thisis an early warning; the
battery is not yet in the Low capacity.

The OS can determine a built-in low battery warning point that will not fall below the
OEM-defined initial remaining-capacity for warning. The OS will use thiswarning level
to notify the user viaUl.

Low The Battery islow.

The OS determines a built-in low battery level that will not fall below the OEM-defined
initial remaining-capacity for low. At thislevel , the OS will transition the system to a
user defined state (i.e., a sleep state , shutdown).

If the remaining capacity is not accurate and hardware detects the low battery before the
remaining capacity reaches the OS-specified low level, CMBatt can report the
remaining-capacity as same as (or less than) OEM-designed initial capacity to aert the
OS that the battery islow.

Critical Battery isfully discharged and cannot supply any more power to the system. Thislevel
does not mean battery failure. The system cannot use the battery until it has been re-
charged or replaced.

The system reports this condition by setting the “Critical” flag in the Battery State field
of the _BST (battery status) object. Thisisan emergency situation because there is not
enough time for anormal shutdown procedure. Therefore, the OS runs its emergency
shutdown at this point.

Critical battery level is defined by the OEM.

Note: The amount of time taken to complete its emergency shutdown procedure depends
on the OS and the system configuration.

If any battery in a system reaches a critical state (and it is a secondary battery) and is aso discharging (as
reported by the BST control method), the OS will initiate an orderly but critical shutdown of the system. If
there are multiple batteriesin the system, the OS will continue to run even if one or more batteries reach critical
so long as a critical battery device is not also discharging.

41

3.9 Thermal Management

ACPI moves the hardware cooling policies from the firmware to the OS. With the operating software watching
over the system temperature, new cooling decisions can be made based on application load on the CPU as well
as the thermal heuristics of the system. The OS will aso be able to gracefully shutdown the computer in case of
high temperature emergencies.

The ACPI thermal design is based around regions called thermal zones. Generally, the entire PC is one large
thermal zone, but an OEM can partition the system into several thermal zones if necessary. Figure 3-6 isan
example mobile PC diagram that depicts a standard single thermal zone with a central processor as the thermal-
coupled device. In this example, the whole notebook is covered as one large thermal zone. This notebook uses
one fan for active cooling and the CPU for passive cooling.

Thermal oreoe comme le—g—»{ CPU/ °
assive Cooling Memory/ A
M
Zone CPU & < PCI Bridge
2 y o
"] (Active Cooling) Y Bridge ;j
- D LCD
= || Graphics
M l—»(> CRT
P 8 USB
‘ 1P 4L Docking
Famemary ‘
v Vv <&»] Keyboard
FO: PIC, PITs, F2: Embedded
DMA, RTC, EIO, .| USB Controller PS/2
P ports
Mouse
F1: BM
IDE
DPRO P
L 2 s|o: < FDD

EPROM COMs, D17zl
LPT, 4—’| |<—N) COM

FDC, ———— () LPT
ACPI

Figure 3-6 Thermal Zone
The following sections are an overview of the thermal control and cooling characteristics of a computer. For
some thermal implementation examples on an ACPI platform, see section 12.4.

3.9.1 Active and Passive Cooling

ACPI defines two cooling methods, Active and Passive:
Passive cooling: OS reduces the power consumption of the processor to reduce the thermal output of the
machine.
Active cooling: OS takes a direct action such as turning on a fan.

Cooling method is a user-defined function that can be set in the OS through a control panel. These two cooling
methods are inversely related to each other. Active cooling requires increased power to reduce the heat within
the system while Passive cooling requires reduced power to decrease the temperature. The effect of this
relationship is that Active cooling alows maximum CPU performance, but it creates fan noise, while Passive
cooling reduces system performance, but it is quiet. (Note: Exceptions can be made. For example a battery
charger, athough it reduces the power to reduce heat, can be implemented as an active cooling device. For
more information, see section 12. The significance of alowing the user to choose energy utilization is most
critical to the operator of a mobile computer where battery charge preservation often has higher priority over
maximum system performance. A mobile PC user is also more likely to be in alocale where quietness of the

42

system is preferable over CPU performance. With these two cooling methods a PC user will be able to have a
choice of performance versus quietness and some control over the rate of battery drain.

3.9.2 Performance vs. Silence
An ACPI-compatible OS offers a cooling choice to the end user at run-time that allows the user to adjust the
rate of battery discharge between maximum and less than maximum. This flexibility is most important to a
mobile PC user. For example, if auser istaking notes on her PC in aquiet environment, such as alibrary or a
corporate meeting, she might want to set the cooling mode to Silence. Thiswill sacrifice CPU speed, but it will
turn off the fan to make the system quiet. Since the user is using the CPU to edit text, high CPU performance is
probably not needed. On the other hand, another user might be in alab running a graphics-intensive application
and will need to set the cooling mode to Performance to utilize the maximum CPU bandwidth. Either cooling
mode will be activated only when the thermal condition requiresit. When the thermal zoneis at an optimal
temperature level where it does not warrant any cooling, both modes will run the CPU at maximum speed and
keep the fan turned off.

M

@ o ©

_ACX —»

g O 0o O g1 O Ul © U O

W A b g o =

w
o

PR NN
o g o u

[&)]

()

Figure 3-7 Active and Passive Policy Settings
To design a balanced thermal implementation, ACPI reservesthe _ACx and _PSV objects to handle the two
separate cooling modes. An OEM must choose the temperature value for each object so the OS will initiate the
cooling policies at the desired target temperatures. (The ACPI specification defines Kelvin as the standard for
temperature. All thermal control methods and objects must report temperatures in Kelvin. All figures and
examplesin this section of the specification use Celsius for reasons of clarity. ACPI allows Kelvin to be
declared in precision of 1/10" of a degree (e.g, 310.5). Kelvin is expressed as g/K = T/°C + 273.2.)

As shown in Figure 3-7, both control methods can return any temperature value that the OEM designates. But
most importantly, the OEM can create each of the Performance and Silence modes by assigning different
temperatures to each control method. Generally, if _ACx is set lower than _PSV, then it effectively becomes a
Performance cooling mode. Conversely, if _PSV is set lower than _ACx, then it becomes a Silence cooling
mode.

3.9.2.1 Cooling Mode: Performance

Figure 3-8 is an example of a performance-centric cooling model on an optimally implemented hardware.
Besides setting the _ACx astheinitia cooling policy, this system notifies the OS of atemperature change by
raising an SCI every 5 degrees.

43

)

<— CRT

@D 0 ©

%

<— _PSV

a o o o g o

in)

-4— _ACx

P ¢)]

NN W W b

%

O O ¢ O g O W

E

|

-4— Policy
™ SCl Event

C

Figure 3-8 Performance Mode Example
This example turns the fan on when the OS receives an SCI at 50 degrees. If for some reason the fan does not
reduce the system temperature, then at 60 degrees the OS will start throttling the CPU while running the fan. 1f
the temperature continues to climb, the OS will be notified of a critical temperature at 90 degrees, at which
point it will quickly shutdown the system.

3.9.2.2 Cooling Mode: Silence
Figure 3-9 is an example of a cooling model where quietness is the desired behavior of the system. The _PSV is
set astheinitial cooling policy. Inthisexample, the OSis notified of atemperature change by raising an SCI

every 5 degrees.
M

<— CRT

~N @© ® ©

-4— _ACx

<— _PSV

Qo g O g O g o g o

N W WA N OO D
a1

£

[N
o g o

E

|

-4— Policy
» SCl Event

C

Figure 3-9 Silence Mode Example
This example initiates system cooling by CPU throttling when the OS receives an SCI at 45 degrees. If the
throttling is not enough to reduce the heat, the OS will turn the fan on at 60 degrees while throttling the CPU. If
the temperature continues to climb, the OS will be notified of a critical temperature at 90 degrees, at which
point it will quickly shutdown the system.

44

3.9.3 Other Thermal Implementations

The ACPI thermal control model alows flexibility in thermal event design. An OEM that needs a less elaborate
thermal implementation might consider some other design. For example, Figure 3-10 shows three other
possibilities for implementing a thermal feedback design. These are only examples; many other designs are
possible.

M = =

——» 90| -4—_CRT —» |84 | -a—_CRT

J1

| 60 | e ACX —»

-—_ACx

B
© b

——> 40| <= _psv

-4— Policy

> SCl Event

O O U

Figure 3-10 Example Thermal Cooling Implementations

3.9.4 Multiple Thermal Zones

The basic thermal management model defines one thermal zone, but in order to provide extended thermal
control in a complex system ACPI specifies a multiple thermal zone implementation. Under a multiple thermal
zone model the OS will independently manage several thermal-coupled devices and a designated thermal zone
for each thermal-coupled device, using Active and/or Passive cooling methods available to each thermal zone.
Each thermal zone can have more than one Passive and Active cooling device. Furthermore, each zone might
have unique or shared cooling resources. In a multiple thermal zone configuration, if one zone reaches a critical
state then the OS must shut down the entire system.

45

4. ACPI Hardware Specification

ACPI defines a standard mechanism for an ACPI-compatible OS to communicate to an ACPI-compatible
hardware platform. This section describes the hardware aspects of ACPI.

ACPI defines “hardware” as a programming model and its behavior. ACPI strives to keep much of the existing
legacy programming model the same; however, to meet certain feature goals, designated features conform to a
specific addressing and programming scheme (hardware that falls within this category isreferred to as “fixed”).
Although ACPI strives to minimize these changes, hardware engineers should read this section carefully to
understand the changes needed to convert alegacy-only hardware model to an ACPI/Legacy hardware model or
an ACPI-only hardware model.

ACPI classifies hardware into two categories: Fixed or Generic. Hardware that falls within the fixed category
meets the programming and behavior specifications of ACPI. Hardware that falls within the generic category
has awide degree of flexibility in itsimplementation.

4.1 Fixed Hardware Programming Model
Because of the changes needed for migrating legacy hardware to the fixed category, ACPI limits features that
go into fixed space by the following criteria:

Performance sensitive features.

Features drivers require during wakeup.

Features that enable catastrophic failure recovery.
CPU clock control and the power management timer are in fixed space to reduce the performance impact of
accessing this hardware, which will result in more quickly reducing athermal condition or extending battery
life. If this logic were allowed to reside in PCI configuration space, for example, several layers of drivers would
be called to access this address space. This takes along time and will either adversely affect the power of the
system (when trying to enter alow power state) or the accuracy of the event (when trying to get atime stamp
value).
Access to fixed space by the ACPI driver allows the ACPI driver to control the wakeup process without having
to load the entire OS. For example, if a PCI configuration space access is needed, the bus enumerator is loaded
with all drivers used by the enumerator. Having this hardware in the fixed space at addresses with which the
OS can communicate without any other driver’s assistance, allows the ACPI driver to gather information prior
to making a decision as to whether it continues loading the entire OS or putsit back to sleep.
When the system has crashed, the ACPI driver can only access address spaces that need no driver support. In
such a situation, the ACPI driver will attempt to honor fixed power button requests to transition the system to
the G2 state.

4.2 Generic Programming Model
Although the fixed programming model requires registers to be defined at specified address locations, the
generic programming model alows registersto reside in most address spaces. The ACPI driver directly
accesses the fixed feature set registers, but ACPI relies on OEM-provided “ pseudo code” (ASL-code) to access
generic register space.
ASL code iswritten by the OEM in the ACPI System Language (ASL) to control generic feature control and
event logic. The ASL language enables a number of things:

Abstracts the hardware from the ACPI driver.

Buffers OEM code from the different OS implementations.
One goal of ACPI isto alow the OEM “value added” hardware to remain basically unchanged in an ACPI
configuration. One attribute of value-added hardwareisthat it is all implemented differently. To enable the
ACPI driver to execute properly on different types of value added hardware, ACPI defines higher level “control
methods’ that it calls to perform an action. The OEM provides ASL code, which is associated with control
methods, to be executed by the ACPI driver. By providing ASL-code, generic hardware can take on almost any
form.
Another important goal of ACPI isto provide OS independence. To do this the OEM code would have to
execute the same under any ACPI-compatible OS. ACPI alows for this by making the AML-code interpreter
part of the OS. This allows the OS to take care of synchronizing and blocking issues specific to each particular
os.

46

The ASL language provides many of the operators found in common object-oriented programming languages,
but it has been optimized to enable the description of platform power management and configuration hardware.
An ASL compiler converts ASL source code to ACPlI Machine Language (AML), which is a very compact
machine language that the ACPI AML code interpreter executes.

The generic feature model is represented in the following block diagram. In this model the generic feature is
described to the ACPI driver through AML code. This description takes the form of an object that sitsin ACPI
name space associated with the hardware that it is adding value to.

ACPI Driver

and AML-
Interpreter

ontrol
vents

GP Event Statug
" - Generic
Generic Child Control
Event Status Logic

Generic Event
Logic

Figure 4-1 Generic Feature Model

As an example of a generic control feature, a platform might be designed such that the IDE HDD’ s D3 state has
valued-added hardware to remove power from the drive. The IDE drive would then have areference to the
AML PowerResource object (which controls the value added power plane) in its name space, and associated
with that object would be control methods that the ACPI driver calls to control the D3 state of the drive:
_ON A control method to sequence the IDE drive to the DO state
_OFF A control method to sequence the IDE drive to the D3 state
_STA A control method that returns the status of the IDE drive (on or off)
The control methods under this object provide an abstraction layer between the OS and the hardware. The OS
understands how to control power planes (turn them on or off or to get their status) through its defined power
resource object, while the hardware has platform-specific AML code (contained in the appropriate control
methods) to perform the desired function. In this example, the platform would describe its hardware to the
ACPI OS by writing and placing the AML code to turn the hardware off within the _OFF control method. This
enables the following sequence:
1. When the OS decides to place the IDE drive in the D3 state, it calls the IDE driver and tells it to place the
drive into the D3 state (at which point the driver saves the device' s context).
2. When the driver returns control, the OS callsthe ACPI driver to place the drive in the D3 state.
3. The ACPI driver finds the object associated with the HDD and then finds within that object any AML code
associated with the D3 state.
4. The ACPI driver executes the appropriate _OFF control method to control the value-added “ generic”
hardware to place the HDD into an even lower power state.
As an example of a generic event feature, a platform might have a docking capability. In this case, it will want
to generate an event. Notice that all ACPI events generate a System Control Interrupt, or SCI, which can be
mapped to any shareable system interrupt. In the case of docking, the event is generated when a docking has
been detected or when the user requests to undock the system. This enables the following sequence:
1. TheACPI driver respondsto the SCI and callsthe AML code event handler associated with that generic
event. The ACPI table associates the hardware event with the AML code event handler.
2. The AML-code event handler collects the appropriate information and then executes an AML Notify
operation to indicate to the ACPI driver that a particular bus needs re-enumeration.
The following sections describe the fixed and generic feature set of ACPI. These sections enable areader to
understand the following:
Which hardware is required or optional.
How to design fixed features.
How to design generic features.

47

The ACPI Event Model.

4.3 Diagram Legends

The hardware section uses simplified logic diagrams to represent how certain aspects of the hardware are
implemented. The following symbols are used in the logic diagrams to represent programming bits.

@ Write-only control bit

® Enable, control or status bit.

X sticky status bit.

Query Value

The half round symbol with an inverted “V” represents awrite-only control bit. This bit has the behavior that it
generates its control function when a HIGH value is programmed to it. Readsto write-only bits are treated as
ignore by software (the bit position is masked off and ignored).

The round symbol with an “X” represents a programming bit. As an enable or control bit, software writing this
bit HIGH or LOW will result in the bit being read as HIGH or LOW (unless otherwise noted). As a status bit it
directly represents the value of the signal.

The square symbol represents a sticky status bit. A sticky status bit represents a bit set by a hardware signal’s
HIGH level (thisbit is set by the level of the signal, not an edge). The bit is only cleared by software writing a
one to its bit position.

The rectangular symbol represents a query value from the embedded controller. Thisis the value the embedded
controller returns to the system software upon a query command in response to an SCI event. The query value
is associated with the event control method routine that will be scheduled to be executed upon an embedded
controller event.

4.4 Register Bit Notation

Throughout this section there are logic diagrams that reference bits within registers. These diagrams use a

notation that easily references the register name and bit position. The notation is as follows:
Registername.Bit

Registername contains the name of the register asit appearsin this specification

Bit contains a zero-based decimal value of the bit position.

For example, the SLP_EN bit residesin the PM1x_CNT register bit 13 and would be represented in diagram

notation as:
SLP_EN
PMLX_CNT. 13

4.5 The ACPI Hardware Model

The ACPI hardware is provided to alow the OS and hardware to sequence the platform between the various
global system states (GO-G3) asiillustrated in the following figure. Upon first power-up the platform finds itself
in the global system state G3 or “Mechanical Off”. This state is defined as one where power consumption is
very closeto zero -- the power plug has been removed; however, the real-time clock device still runs off a
battery. The G3 state is entered by any power failure, defined as accidental or user-initiated power loss.

The G3 state transitions into either the GO working state or the Legacy state depending on what the platform
supports. If the platform isan ACPI only platform, then it allows a direct boot into the GO working state by
always returning the status bit SCI_EN HIGH (for more information, see section 4.7.2.5). If the platform
supports both legacy and ACPI operations (which is necessary for supporting a non-ACPI OS), then it would
always boot into the Legacy state (illustrated by returning the SCI_EN LOW). In either case, atransition out of
the G3 state requires atotal boot of the OS.

The Legacy system state is the global state where a non-ACPI OS executes. This state can be entered from
either the G3 “Mechanical Off,” the G2 “ Soft Off,” or the GO “Working” states only if the hardware supports
both Legacy and ACPI modes. Inthe Legacy state, the ACPI event model is disabled (no SCls are generated)
and the hardware uses legacy power management and configuration mechanisms. While in the Legacy state, an
ACPI-compliant OS can request a transition into the GO working state by performing an ACPI mode request.
The OS performs this transition by writing the ACPI_ENABLE value to the SMI_CMD which generates an
event to the hardware to transition the platform to its ACPI mode. When hardware has finished the transition it

48

setsthe SCI_EN bit HIGH and returns control back to the OS. While in the GO “working state,” the OS can
request atransition to Legacy mode by writing the ACPI_DISABLE vaue to the SMI_CMD register, which
results in the hardware going into legacy mode and resetting the SCI_EN bit LOW (for more information, see
section 4.7.2.5).

The GO “Working” state isthe normal operating environment of an ACPI machine. In this state different
devices are dynamically transitioning between their respective power states (DO, D1, D2 or D3) and processors
are dynamically transitioning between their respective power states (CO, C1, C2 or C3). In this state, the OS
can make a policy decision to place the platform into the system G1 “dleeping” state. The platform can only
enter asingle sleeping state at atime (referred to as the global G1 state); however, the hardware can provide up
to four system sleeping states that have different power and exit latencies represented by the S1, S2, S3, or $4
states. When the OS decides to enter a sleeping state it picks the most appropriate sleeping state supported by
the hardware (OS policy examines what devices have enabled wakeup events and what sleeping these support).
The OS initiates the sleeping transition by enabling the appropriate wakeup events and then programming the
SLP_TYPx field with the desired slegping state and then setting the SLP_ENXx bit HIGH. The system will then
enter a sleeping state; when one of the enabled wakeup events occurs, it will transition the system back to the
working state (for more information, see section 9).

Another global state transition option while in the GO “working” state is to enter the G2 “ soft off” or the G3
“mechanical off” state. These transitions represent a controlled transition that allows the OS to bring the system
down in an orderly fashion (unloading applications, closing files, and so on). The policy for these types of
transitions can be associated with the ACPI power button, which when pressed generates an event to the power
button driver. When the OS is finished preparing the operating environment for a power lossit will either
generate a pop-up message to indicate to the user to remove power in order to enter the G3 “Mechanical Off”
dtate, or it will initiate a G2 “ soft-off” transition by writing the value of the S5 “ soft off” system state to the
SLP_TYPx register and then setting the SLP_ENXx bit HIGH.

The G1 deeping state is represented by five possible sleeping states that the hardware can support. Each
deeping state has different power and wakeup latency characteristics. The sleeping state differs from the
working state in that the user’ s operating environment is frozen in alow power state until awakened by an
enabled wakeup event. No work is performed in this state, that is, the processors are not executing instructions.
Each system sleeping state has requirements about who is responsible for system context and wakeup sequences
(for more information, see section 9).

The G2 “soft off” stateis an OS initiated system shutdown. This state isinitiated similar to the sleeping state
transition (SLP_TYPx is set to the S5 value and setting the SLP_ENXx bit HIGH initiates the sequence). Exiting
the G2 soft-off state requires rebooting the OS. In this case, an ACPI-only machine will re-enter the GO state
directly (hardware returns the SCI_EN bit HIGH), while an ACPI/Legacy machine transitions to the Legacy
state (SCI_EN bit is LOW).

49

Power
Failure

CDROM CPU

DX} D3 D3
D2 D2
D1 D1
(D]0] DO
ACPI

Boot
(SCI_EN=1)

Legacy
Boot
(SCI_EN=0)

S4BIOS_F —_ BIOS

S4BIOS RZQ Routine

ACPI_ENABLE

(SCI_EN=1) \

GO (S0) -

Working
\ACPI_DISABLE/

(SCI_EN=0)

ACPI

Boot

Legacy (SCI_EN=1)
Boot

(SCI_EN=0)

SLP_TYPx=S
5
and
SLP_EN
or
PWRBTN_OR

e

Figure 4-2 Global States and Their Transitions

The ACPI architecture defines mechanisms for hardware to generate events and control logic to implement this
behavior model. Events are used to notify the OS that some action is needed, and control logic is used by the
OS to cause some state transition. ACPI-defined events are “hardware” or “interrupt” events. A hardware event
isone that causes the hardware to unconditionally perform some operation. For example, any wakeup event will
sequence the system from a sleeping state (S1, S2, S3, and $4 in the global G1 state) to the GO working state
(see Figure 10-1).

An interrupt event causes the execution of an event handler (AML code or an ACPI-aware driver), which
allows the software to make a policy decision based on the event. For ACPI fixed-feature events, the ACPI
driver or an ACPl-aware driver acts as the event handler. For generic logic events the ACPI driver will schedule
the execution of an OEM-supplied AML handler associated with the event.

For legacy systems, an event normally generates an OS-transparent interrupt, such as an System Management
Interrupt, or SMI. For ACPI systems the interrupt events need to generate an OS-visible interrupt that is
shareable; edge-style interrupts will not work. Hardware platforms that want to support both legacy operating
systems and ACPI systems support away of re-mapping the interrupt events between SMIs and SCIs when
switching between ACPI and legacy models. Thisisillustrated in the following block diagram.

50

- Legacy Only Event Logic

De_l_/_ice Idle - ACPl/Legacy Event Logic
Imers - ACPI Only Event Logic
Device { - ACPl/Legacy Generic Control Features
Traps - ACPIl/Legacy Fixed Control Features
Timer X
1|
PWRBTN User a
LID Interface SCI Arbiter SCI#
Sleep/Wake
Logic

Power Plane

DOCK

Control
STS_CHG HE:/deVI:tasre — - SMiEvents Generic Space
RI - SCI/SMI Events
— - Wake-up Events CPU Clock

Figure 4-3 Example Event Structure for a Legacy/ACPI Compatible Event Model

Control

This example logic illustrates the event model for a sample platform that supports both legacy and ACPI event
models. This example platform supports a number of external events that are power-related (power button, LI1D
open/close, thermal, ring indicate) or Plug and Play-related (dock, status change). The logic represents the three
different types of events:

1. OS Transparent Events. These events represent OEM-specific functions that have no OS support and use
software that can be operated in an OS-transparent fashion (that is, SMIs).

2. Interrupt Events. These events represent features supported by ACPI-compatible operating systems, but
are not supported by legacy operating systems. When alegacy OSis loaded, these events are mapped to the
transparent interrupt (SMI# in this example), and when in ACPI mode they are mapped to an OS-visible
shareable interrupt (SCI#). Thislogic is represented by routing the event logic through the decoder that
routes the events to the SMI# arbiter when the SCI_EN bit is cleared, or to the SCI# arbiter when the
SCI_EN hit is set.

3. Hardware events. These events are used to trigger the hardware to initiate some hardware sequence such
as waking-up, resetting, or putting the machine to sleep unconditionally

In this example, the legacy power management event logic is used to determine device/system activity or

idleness based on device idle timers, device traps, and the global standby timer. Legacy power management

models use the idle timers to determine when a device should be placed in alow-power state becauseitisidle —
that is, the device has not been accessed for the programmed amount of time. The device traps are used to
indicate when adevice in alow power state is being accessed by the OS. The global standby timer is used to
determine when the system should be allowed to go into a deeping state because it isidle —that is, the user
interface has not been used for the programmed amount of time.

Thistraditional idle timers, trap monitors, and global standby timer are not used by the OSin the ACPI mode.

Thiswork is now handled by different software structuresin an ACPI-compatible OS. For example, the driver

model of an ACPI-compatible OSis responsible for placing its device into alow power state (D1, D2, or D3)

and transitioning it back to the On state (DO) when needed. And the OS is responsible for determining when the
systemisidle by profiling the system (using the PM Timer) and other knowledge it gains through its operating
structure environment (which will vary from OS to OS). When the system is placed into the ACPl mode, these
events no longer generate SMIs, as this function is now handled by the drivers. These events are disabled
through some OEM-proprietary method.

On the other hand, many of the hardware events are shared between the ACPI and legacy models (docking, the

power button, and so on) and this type of interrupt event changes to an SCI event when enabled for ACPI. The

ACPI OS will generate arequest to the platform’s hardware (BIOS) to enter into the ACPI mode. The BIOS

51

setsthe SCI_EN bit to indicate that the system has successfully entered into the ACPI mode, so thisisa
convenient mechanism to map the desired interrupt (SMI or SCI) for these events (as shown in Figure 4-3).
The ACPI architecture requires some dedicated hardware not required in the legacy hardware model: the power
management timer (PM Timer). Thisis afree running timer that the ACPI OS usesto profile system activity.
The frequency of thistimer is explicitly defined in this specification and must be implemented as described.
Although the ACPI architecture reuses most legacy hardware asis, it does place restrictions on where and how
the programming model is generated. If used, all fixed features are implemented as described in this
specification so that the ACPI driver can directly access the fixed feature registers.
Generic location features are manipulated by ACPI control methods principally residing in the ACPl name
space. These bits are made to be very flexible; however, their use is limited by the defined ACPI control
methods (for more information, see section 10). These bits are normally associated with output bits that control
power planes, buffer isolation, and device reset resources. Additionally, “child” interrupt status bits can reside
in generic address space; however, they have a“ parent” interrupt status bit in the GP_STSregister. ACPI
defines five address spaces that these feature bits can reside in the following:

System 1/O space

System memory space

PCI configuration space

Embedded controller space

SMBus device space
Generic location feature bit space is described in the ACPI BIOS programming model. These power
management features can be implemented by spare 1/0 ports residing in any of these 1/0O spaces. The ACPI
specification defines an optional embedded controller and SMBus interfaces needed to communicate with these
1/O spaces.

4.5.1 Hardware Reserved Bits

ACPI hardware registers are designed such that reserved bits always return zero, and data writes to them have
no side affects. ACPI drivers are designed such that they will write zeros to reserved bits in enable and status
registers and preserve bitsin control registers, and they will treat these bits as ignored.

4.5.2 Hardware Ignored Bits

ACPI hardware registers are designed such that ignored bits are undefined and are ignored by software.
Hardware-ignored bits can return zero or one. When software reads a register with ignored bits, it masks off
ignored bits prior to operating on the result. When software writes to a register with ignored bit fields, it
preserves the ignored bit fields.

4.5.3 Hardware Write-Only Bits

ACPI hardware defines a number of write-only control bits. These bits are activated by software writing a1 to
their bit position. Reads to write-only bit positions generate undefined results. Upon reads to registers with
write-only bits software masks out all write-only bits.

4.5.4 Cross Device Dependencies

Cross Device Dependency is a condition in which an operation to a device interferes with the operation of other
unrelated devices, or alows other unrelated devicesto interfere with its behavior. This condition is not
supportable and can cause platform failures. ACPI provides no support for cross device dependencies and
suggests that devices be designed to not exhibit this behavior. The following sections give two examples of
cross device dependencies:

45.4.1 Example 1

This example illustrates a cross device dependency where a device interferes with the proper operation of other
unrelated devices. A system has two unrelated devices A and B. Device A has a dependency that when it is
being configured it blocks all accesses that would normally be targeted for Device B. Thus, the device driver
for Device B cannot access Device B while Device A is being configured; therefore, it would need to
synchronize access with the driver for Device A. High performance, multithreaded operating systems cannot
perform this kind of synchronization without seriously impacting performance.

52

To further illustrate the point, assume that device A isaserial port and device B is an hard drive controller. If
these devices demonstrate this behavior, then when a software driver configures the seria port, accesses to the
hard drive need to block. This can only be done if the hard disk driver synchronizes access to the disk
controller with the serial driver. Without this synchronization, hard drive data will be lost when the serial port is
being configured.

4.5.4.2 Example 2

This example illustrates a cross-device dependency where a device demonstrates a behavior that allows other
unrelated devices to interfere with its proper operation. Device A exhibits a programming behavior that requires
atomic back-to-back write accesses to successfully write to its registers; if any other platform accessis able to
break between the back-to-back accesses, then the write to device A isunsuccessful. If the device A driver is
unable to generate atomic back-to-back accessesto its device, then it relies on software to synchronize accesses
to its device with every other driver in the system; then a device cross dependency is created and the platformis
proneto device A failure.

4.6 ACPI Features
This section describes the different features offered by the ACPI interface. These features are categorized as the
following:

Fixed Features

Generic Features
Fixed location features reside in system 1/0O space at the locations described by the ACPI programming model.
Generic location features reside in one of five address spaces (system 1/0O, system memory, PCI configuration,
embedded controller, or seria device I/O space) and are described by the ACPI name space.
Fixed features have exact definitions for their implementation. Although many fixed features are optiona, if
implemented they must be implemented as described. Thisis required because a standard OS driver istalking to
these registers and expects the defined behavior.
Generic feature implementation is flexible. Thislogic is controlled by OEM-supplied ASL/AML-code (for
more information, see section 5), which can be written to support awide variety of hardware. Also, ACPI
provides specialized control methods that provide capabilities for specialized devices. For example, the Notify
command can be used to notify the OS from the generic event handler that a docking or thermal event has taken
place. A good understanding of this section and section 5 of this specification will give designers a good
understanding of how to design hardware to take full advantage of an ACPI-compatible OS.
Note that the generic features are listed for illustration only, the ACPI specification can support many types of
hardware not listed.

Table 4-1 Feature/Programming Model Summary

Feature Name Description Requirements Programming Model
Power 24-bit/32-bit free running timer. | Required for ACPI Fixed Feature Control
Management Timer compatibility. Logic.

Power Button User pushes button to switch the | Must have either a power | Fixed Feature Event and
system between the working and | button or asleep button. | Control Logic or Generic
deeping states. Event and Logic

Sleep Button User pushes button to switch the | Must have either a power | Fixed Feature Event and
system between the working and | button or asleep button. | Control Logic or Generic
deeping state. Event and Logic.

Power Button User sequence (press the power | Thisor asimilar function

Over-ride button for 4 seconds) to turn off | required.

a hung system.
Real Time Clock Programmed time to wake-up Required for ACPI Optional Fixed Feature
Alarm the system. compatibility (for S1-S3; | Event?
optiona for $4).
Sleep/Wake L ogic used to transition the Required for ACPI Fixed Feature Control

2 RTC wake-up alarm is required, the fixed feature status bit is optional.

53

Feature Name

Description

Requirements

Programming Model

Control Logic

system between the slegping and

compatibility. At least

and Event Logic.

working states. one sleeping state needs
to be supported.
Embedded ACPI Embedded Controller Optional. Generic Event Logic,

Controller Interface

protocol and interface, as
described in section 13.

must reside in the
general purpose register
block.

Legacy/ACPI Status bit to indicates the system | Required. Status bit Fixed feature Control
Select isusing the legacy or ACPI indicates the mode of a Logic.
power management model legacy/ACPI platform.
(SCI_EN).
Lid switch Button used to indicate whether | Optional, strongly Generic Event Feature.
the system’slid is open or closed | recommended for mobile
(mobile systems only). systems.
C1 Power State Processor instruction to place the | Thisisarequired Processor 1SA.
processor into alow-power state. | feature.
C2 Power Control Logic to place the processor into | Optional, strongly Fixed Feature Control
a C2 power state. recommended for mobile | Logic.
systems.
C3 Power Control Logic to place the processor into | Optional, strongly Fixed Feature Control
a C3 power state. recommended for mobile | Logic.
systems.
Thermal Control Logic to generate thermal events | Optional Generic Event and

at specified trip points.

Control Logic. See
description of thermal
logic in section 3.9.

Device Power Control logic for switching Optional, strongly Generic control logic.
Management between different device power | recommended for mobile
states. systems.
AC Adapter Logic to detect theinsertionand | Optional Generic event logic
removal of the AC adapter.
Docking/device Logic to detect deviceinsertion | Optional Generic event logic
insertion and and removal events
removal

4.7 ACPI Register Model
ACPI hardware resides in one of five 1/O spaces:

System /0

System memory

PCI configuration

SMBus

Embedded controller space
D|fferent implementations will result in different address spaces being used for different functions; however, all
ACPI implementations are required to support system 1/O space (the other address spaces are optional). The
ACPI specification consists of “fixed registers’ and general purpose registers. The fixed register spaceis
required to be implemented by all ACPI-compatible hardware. The general purpose register spaceis required
for any events generated by value-added hardware.
ACPI defines aregister block. An ACPI-compatible system will have an ACPI table (the FACP, built in
memory at boot-up) that has alist of 32-bit pointersto the different register blocks used by the ACPI driver.
The bits within these registers have attributes defined for the given register block. The types of registers that
ACPI defines are:

Status/Enable Registers (for events)

Control Registers

54

If aregister block is of the status/enable type, then it will contain a register with status bits, and a corresponding
register with enable bits. The status and enable bits have an exact implementation definition that needs to be
followed (unless otherwise noted), which isillustrated by the following diagram:

Status Bit

Event Input >—®—:>—> Event Output

Enable Bit é

Figure 4-4 Block Diagram of a Status/Enable Cell

Note that the status bit, which hardware sets by the Event Input being HIGH in this example, can only be
cleared by software writing a 1 to its bit position. Also, the enable bit has no effect on the setting or resetting of
the status bit; it only determines if the SET status bit will generate an “Event Output,” which generates an SCI
when high if its enable bit is set.

ACPI aso defines register groupings. A register grouping consists of two register blocks, with two pointers to
two different blocks of registers, where each bit location within a register grouping is fixed and cannot be
changed. The bits within aregister grouping, which have fixed bit positions, can be split between the two
register blocks. This allows the bits within aregister grouping to reside in either or both register blocks,
facilitating the ability to map bits within several different chip partitioning and providing the programming
model with a single register grouping bit structure.

The ACPI driver treats aregister grouping as a single register; but located in multiple places. To read aregister
grouping, the ACPI driver will read the “A” register block, followed by the “B” register block, and then will
logically “OR” the two results together (the SLP_TYPfield is an exception to this rule). Reserved bits, or
unused bits within aregister block always return zero for reads and have no side affects for writes (whichisa
reguirement).

The SLP_TYPx field can be different for each register grouping. The respective sleeping object \ _Sx contains a
SLP_TYPaandaSLP TYPbhfield. That is, the object returns a package with two integer values of 0-7 init. The
ACPI driver will dwayswritethe SLP_TY Pavalueto the*A” register block followed by the SLP_TYPb value
within the field to the “B” register block. All other bit locations will be written with the same value. Also, the
ACPI driver does not read the SLP_TY Px value but throws it away.

&0 ¢ @l &°
l l ll l Register

Figure 4-5 Example Fixed Feature Register Grouping

Register Block a

Register Block b

As an example, the above diagram represents a register grouping consisting of register block a and register
block b. Bits“a” and “d” are implemented in register block b and register block areturns a zero for these bit
positions. Bits“b”, “c” and “€” are implemented in register block a and register block b returns a zero for these
bit positions. All reserved or ignored bits return their defined ACPI values.

When accessing this register grouping, software will read register block a, followed by reading register block b.
Software then does alogical OR of the two registers and then operates on the results.

When writing to this register grouping, software will write the desired value to register group afollowed by
writing the same value to register group b.

ACPI defines the following register blocks for fixed features. Each register block gets a separate pointer from
the FACP ACPI table. These addresses are set by the OEM as static resources, so they are never changed -- the
Plug and Play driver cannot re-map ACPI resources. The following register blocks are defined:

55

Registers Register Blocks Register Groupings

PM1a_STS
PM1a EN ~ F——PM1la_EVT BLK

:>— PM1 EVT Grouping
PM1b_STS ~ F——PM1b_EVT BLK

PM1b_EN

PMla_CNT PM1a_CNT_BLK
:>— PM1 CNT Grouping
PM1b_CNT PM1b_CNT_BLK
PM2_CNT PM2_CNT_BLK PM2 Control Block
PM_TMR PM_TMR_BLK PM Timer Block
P_CNT
P_LVL2 37 P_BLK Processor Block
P_LVL3
GEEEBSEE ~ F——— GPEO_BLK General Purpose Event 0
= Block
GPE1 STS
GPEL_EN _J GPEL_BLK General Purpose Event 1
Block

Figure 4-6 Register Blocks versus Register Groupings

The PM1 EVT grouping consists of the PM1a EVT and PM1b_EVT register blocks, which contain the fixed
feature event bits. Each event register block (if implemented) contains two registers: a status register and an
enable register. Each register grouping has a defined bit position that cannot be changed; however, the bit can
be implemented in either register block (A or B). The A and B register blocks for the events allow chipsetsto
vary the partitioning of eventsinto two or more chips. For read operations, the OS will generate aread to the
associated A and B registers, OR the two values together, and then operate on this result. For write operations,
the OS will write the value to the associated register in both register blocks. Therefore, there are a number of
rules to follow when implementing event registers:

Reserved or unimplemented bits always return zero (control or enable).

Writes to reserved or unimplemented bits have no affect.
The PM1 CNT grouping contains the fixed feature control bits and consist of the PM1a CNT_BLK and
PM1b CNT_BLK register blocks. Each register block is associated with a single control register. Each register
grouping has a defined bit position that cannot be changed; however, the bit can be implemented in either
register block (A or B). There are a number of rulesto follow when implementing CNT registers:

Reserved or unimplemented bits always return zero (control or enable).

Writes to reserved or unimplemented bits have no affect.
The PM2_CNT_BLK register block currently contains a single bit for the arbiter disable function
The general-purpose event register contains the event programming model for generic features. All generic
events, just as fixed events, generate SCIs. Generic event status bits can reside anywhere; however, the top level
generic event resides in one of the general -purpose register blocks. Any generic feature event status not in the
general-purpose register space is considered a child or sibling status bit, whose parent status bit isin the
general-purpose event register space. Note that it is possible to have N levels of general-purpose events prior to
hitting the GPE event status.
The general-purpose event register space is contained in two register blocks: The GPEQ_BLK or the
GPE1_BLK. Each register block has a separate 32-bit pointer within the FACP ACPI table. Each register block
is further broken into two registers: GPEx_STS and GPEx_EN. The status and enable registers in the general-
purpose event registers follows the event model for the fixed-event registers.

4.7.1 ACPI Register Summary
The following tables summarize the ACPI registers:

56

Table 4-2 PM1 Event Registers

Register Size (Bytes) Address (relative to register block)
~PMla STS | PM1 EVT _LEN/2 | <PM1la EVT BLK >
PMla EN PM1 EVT _LEN/2 | <PMla EVT BLK >+PM1 EVT_LEN/2
PM1b STS PM1 EVT LEN/2 | <PM1b EVT BLK >
PM1b EN PM1 EVT LEN/2 | <PM1b EVT BLK >+PM1 EVT LEN/2
Table 4-3 PM1 Control Registers
Register Size (Bytes) Address (relative to register block)
PM1 CNTa | PM1 CNT_LEN <PM1la CNT_BLK >
PM1 CNTb PM1 CNT_LEN <PM1b CNT_BLK >
Table 4-4 PM2 Control Register
Register Size (Bytes) Address (relative to register block)
PM2 _CNT PM2 CNT _LEN <PM2 CNT BLK >
Table 4-5 PM Timer Register

Register Size (Bytes) Address (relative to register block)
PM_TMR PM_TMR LEN <PM_TMR BLK >

Table 4-6 Processor Control Registers
Register Size (Bytes) Address (relative to register block)
P_CNT 4 <P BLK>
P LVL2 1 <P_BLK>+4h
P LVL3 1 <P BLK>+5h

Table 4-7 General-Purpose Event Registers

Register Size (Bytes) Address (relative to register block)
GPEQ_STS GPEO_LEN/2 <GPEQ BLK>
GPEO_EN GPEO_LEN/2 <GPEO BLK>+GPEQ LEN/2
GPE1 _STS GPE1_LEN/2 <GPE1l BLK>
GPE1 EN GPE1 LEN/2 <GPE1 BLK>+GPE1 LEN/2

4.7.1.1 PM1 Event Registers

The PM1 event register grouping contains two register blocks: the PM1a EVT_BLK isarequired register block
that must be supported, and the PM1b EVT_BLK isan optional register block. Each register block has a unique
32-hit pointer in the Fixed ACPI Table (FACP) to alow the PM1 event bitsto be partitioned between two chips.
If the PM1b EVT_BLK is not supported, its pointer contains a value of zero in the FACP table.

Each register block in the PM 1 event grouping contains two registers that are required to be the same size: the
PM1x_STSand PM1x_EN (where x can be“a’ or “b"). The length of the registersis variable and is described
by the PM1_EVT_LEN field in the FACP table, which indicates the total length of the register block in bytes.
Henceif alength of “4” is given, thisindicates that each register contains two bytes of 1/0 space. The PM1
event register block has a minimum size of 4 bytes.

4.7.1.2 PM1 Control Registers
The PM1 control register grouping contains two register blocks: the PM1a CNT_BLK isarequired register
block that must be supported, and the PM1b_CNT_BLK isan optional register block. Each register block has a

57

unique 32-bit pointer in the Fixed ACPI Table (FACP) to allow the PM1 event bits to be partitioned between
two chips. If the PM1b CNT_BLK is not supported, its pointer contains a value of zero in the FACP table.
Each register block in the PM 1 control grouping contains a single register: the PM1x_CNT. The length of the
register is variable and is described by the PM1_CNT_LEN field in the FACP table, which indicates the total
length of the register block in bytes. The PM1 control register block must have a minimum size of 2 bytes.

4.7.1.3 PM2 Control Register

The PM2 control register is contained in the PM2_CNT_BLK register block. The FACP table contains alength
variable for thisregister block (PM2_CNT_LEN) that is equal to the size in bytes of the PM2_CNT register (the
only register in this register block). Thisregister block is optional, if not supported its block pointer and length
contains a value of zero.

4.7.1.4 PM Timer Register

The PM timer register is contained in the PM_TMR_BLK register block. This register block contains the
register that returns the running value of the power management timer. The FACP table also contains a length
variable for thisregister block (PM_TMR_LEN) that is equal to the size in bytes of the PM_TMR register (the
only register in this register block).

4.7.1.5 Processor Control Block

Thereis an optional processor control register block for each processor in the system. This is a homogeneous
feature, so al processors must have the same level of support. The ACPI OS will revert to the lowest common
denominator of processor control block support. The processor control block contains the processor control
register (P_CNT—a 32-hit clock control configuration register), and the P_LVL2 and P_L VL3 clock control
registers. The 32-hit register controls the behavior of the processor clock logic for that processor, the P_LVL2
register is used to force the CPU into the C2 state, and the P_LV L3 register is used to force the processor into
the C3 state.

4.7.1.6 General-Purpose Event Registers

The general-purpose event registers contain the root level eventsfor all generic features. To facilitate the
flexibility of partitioning the root events, ACPI provides for two different general-purpose event blocks:
GPEO_BLK and GPE1 BLK. These are separate register blocks and are not a register grouping, because there
is no need to maintain an orthogonal bit arrangement. Also, each register block contains its own length variable
in the FACP table, where GPEO_LEN and GPE1_L EN represent the length in bytes of each register block.
Each register block contains two registers of equal length: GPEx_STS and GPEx_EN (wherex isQ or 1). The
length of the GPEO_STS and GPEO_EN registersis equal to half the GPEO_L EN. The length of the GPE1_STS
and GPE1_EN registersis equal to half the GPE1 LEN. If ageneric register block is not supported then its
respective block pointer and block Iength values in the FACP table contain zeros. The GPEO_LEN and
GPEL LEN do not need to have the same size.

4.7.2 Required Fixed Features
This section describes the ACPI required fixed features. These features are required in every ACPI-compatible
system.

4.7.2.1 Power Management Timer

The ACPI specification requires a power management timer that provides an accurate time value used by
system software to measure and profile system idleness (along with other tasks). The power management timer
provides an accurate time function while the system isin the working (G0) state. To allow software to extend
the number of bitsin the timer, the power management timer generates an interrupt when the last bit of the
timer changes (from O to 1 or 1 to 0). ACPI supports either a 24-bit or 32-bit power management timer. The PM
Timer is accessed directly by the ACPI driver, and its programming model is contained in fixed register space.
The programming model can be partitioned in up to three different register blocks. The event bits are contained
inthe PM1 _EVT register grouping, which has two register blocks, and the timer value can be accessed through
the PM_TMR_BLK register block. A block diagram of the power management timer isillustrated in the
following figure:

58

TMR_STS
T PM1x_STS.0
Counter | —{] PMTMR_PME
3579545 MHZY>— P 1S(23/31-0)
- 24/32 TMR_EN
® PM1x_EN.O

TMR_VAL
PM_TMR.0-23/0-31

Figure 4-7 Power Management Timer

The power management timer is a 24-bit or 32-bit fixed rate free running count-up timer that runs off a
3.579545 MHz clock. The ACPI OS checks the FACP table to determine whether the PM Timer is a 32-bit or
24-hit timer. The programming model for the PM Timer consists of event logic, and aread port to the counter
value. The event logic consists of an event status and enable bit. The status bit is set any time the last bit of the
timer (bit 23 or bit 31) goes from HIGH to LOW or LOW to HIGH. If the TMR_EN bit is set, then the setting
of the TMR_STS will generate an ACPI event inthe PM1_EVT register grouping (referred to as

PMTMR_PME in the diagram). The event logic is only used to emulate a larger timer.

The ACPI usesthe read-only TMR_VAL field (in the PM TMR register grouping) to read the current value of
the timer. The OS never assumes an initial value of the TMR_VAL field; instead, it reads an initial TMR_VAL
upon loading the OS and assumes that the timer is counting. . It is allowable to stop the Timer when the system
transitions out of the working (G0/S0) state. The only timer reset requirement is that the timer functions while
in the working state.

The PM Timer’s programming model isimplemented as a fixed feature to increase the accuracy of reading the
timer.

4.7.2.2 Buttons
ACPI defines user-initiated events to request the OS to transition the platform between the GO working state
and the G1 (dleeping), G2 (soft off) and G3 (mechanical off) states. ACPI aso defines arecommended
mechanism to unconditionally transition the platform from a hung GO working state to the G2 soft-off state.
ACPI operating systems use power button events to determine when the user is present. As such, these ACPI
events are associated with buttonsin the ACPI specification.
The ACPI specification supports two button models:
A single-button model that generates an event for both sleeping and entering the soft-off state. The function
of the button can be configured using the OS UI.
A dual-button model where the power button generates a soft-off transition request and a sleeping button
generates a sleeping transition request. The function of the button isimplied by the type of button.
Control of these button eventsis either through the fixed programming model or the generic programming
model (control method based). The fixed programming model has the advantage that the OS can access the
button at any time, including when the system is crashed. 1n a crashed system with a fixed-feature power
button, the OS can make a“best” effort to determine whether the power button has been pressed to transition to
the system to the soft-off state, because it doesn’t require the AML interpreter to access the event bits.

4.7.2.2.1 Power Button

The power button logic can be used in one of two models: single button or dual button. In the single-button
model, the user button acts as both a power button for transitioning the system between the GO and G2 states
and a sleeping button for transitioning the system between the GO and G1 states. The action of the user pressing
the button is determined by software policy or user settings. In the dual-button model, there are separate buttons
for deeping and power control. Although the buttons still generate events that cause software to take an action,
the function of the button is now dedicated: the sleeping button generates a deeping request to the OS and the
power button generates a waking request.

Support for a power button is indicated by a combination of the PWR_BUTTON flag and the power button
device object, as shown in the following:

Indicated Support PWR_BUTTON Flag Power Button Device Object

No power button Set HIGH Absent

59

Fixed feature power button Set LOW Absent

Control method power button Set HIGH Present

The power button can also have an additional capability to unconditionally transition the system from a hung
working state to the G2 soft-off state. In the case where the OS event handler is no longer able to respond to
power button events, the power button over-ride feature provides a back-up mechanism to unconditionally
transition the system to the soft-off state. This feature can be used when the platform doesn’t have a mechanical
off button, which can aso provide this function. ACPI defines that holding the power button active for four
seconds or longer will generate a power button over-ride event.

4.7.2.2.1.1 Fixed Power Button

. . PWRBTN
PWRBTN# DEIENIES PRI P Over-ride
Logic Statemachine

PWRBTN Event

PWRBTN_STS
PM1x_STS.8

PWRBTN_EN
PM1x_EN.8

Figure 4-8 Fixed Power Button Logic

The fixed power button has its event programming model in the PM1x_EVT_BLK. Thislogic consists of a
single enable bit and sticky status bit. When the user presses the power button, the power button status bit
(PWRBTN_STY) is unconditionally set. If the power button enable bit (PWRBTN_EN) is set and the power
button status bit is set (PWRBTN_STS) due to a button press while the system isin the GO state, then an SCI is
generated. The ACPI driver responds to the event by clearing the PWRBTN_STS bit. The power button logic
provides debounce logic that sets the PAWWRBTN_STS bit on the button press “edge.”

While the system isin the G1 or G2 global states (S1, S2, S3, $4 or S5 states), any further power button press
after the button press that transistioned the system into the sleeping state unconditionally sets the power button
status bit and awakens the system, regardless of the value of the power button enable bit. The ACPI driver
responds by clearing the power button status bit and awakening the system.

4.7.2.2.1.2 Control Method Power Button
The power button programming model can also use the generic programming model. This allows the power
button to reside in any of the generic address spaces (for example, the embedded controller) instead of fixed
space. If the power button programming model uses the generic programming maodel, then the OEM needs to
define the power button as a device with an _HID object value of “PNPOCOC,” which then identifies this device
as the power button to the ACPI driver. The AML event handler then generates a Notify command to notify the
OS that a power button event was generated. While the system is in the working state, a power button pressis a
user request to transition the system into either the sleeping (G1) or soft-off state (G2). In these cases, the power
button event handler issues the Notify command with the device specific code of 0x80. Thisindicatesto the
ACPI driver to pass control to the power button driver (PNPOCOC) with the knowledge that a transition out of
the GO state is being requested. Upon waking up from a G1 deeping state, the AML event handler generates a
notify command with the code of 0x2 to indicate it was responsible for waking up the system.
The power button device needs to be declared as a device within the ACPI name space for the platform and only
requiresan _HID. An example definition follows.
This example ASL code does the following:

Cresates a device named “PWRB” and associates the Plug and Play identifier (through the _HID object) of

The Plug and Play identifier associates this device object with the power button driver.
Creates an operational region for the control method power button’s programming model:

System 1/0O space at 0x200.

Unaccessed fields are written as Zeros. These status bits clear upon writing a 1 to their bit

position, therefore preserved would fail in this case.
Creates afield within the operational region for the power button status bit (called PBP). In this case the
power button status bit is a child of the general-purpose status bit 0. This bit iswritten HIGH to be cleared
and is the responsibility of the ASL-codeto clear (the ACPI driver clears the general-purpose status bits).
The address of the status bit is 0x200.0 (bit O at address 0x200).

60

Cresates an additional status bit called PBW for the power button wakeup event. Thisisthe next bit and its
physical address would be 0x200.1 (bit 1 at address 0x200).
Generates an event handler for the power button that is connected to bit O of the general-purpose status
register 0. The event handler does the following:
Clears the power button status bit in hardware (writes a one to it)
Notifies the OS of the event by calling the Notify command passing the power button object and
the device specific event indicator 0x80.

/1 Define a control nethod power button
Devi ce(\ _SB. PVRB) {

Name(_HI D, El SAI D(“PNPOCOC"))

}

Oper ati onRegi on(\ Pho, Systeml O, 0x200, 0x1)
Fi el d(\ Pho, ByteAcc, NoLock, WiteAsZeros){
PBP, 1, Il sleep/off request
PBW 1 /1 wakeup request
} /1 end of power button device object

Scope(\ _GPE) { /! Root |evel event handlers
Met hod(_LOO){ // uses bit 0 of GPO_STS register
| f (PBP) {
St ore(One, PBP) /] clear power button status
Noti fy(PWRB, 0x80) // Notify OS of event

}

| F(PBW {
St ore(One, PBW
Noti fy(PWRB, 0x2)

}
} /1 end of _LOO handl er
} /1 end of _GPE scope

4.7.2.2.1.3 Power Button Over-ride

The ACPI specification also allows that if the user presses the power button for more than four seconds while
the system isin the working state, a hardware event is generated and the system will transition to the soft-off
state. This hardware event is called a power button over-ride. In reaction to the power button over-ride event,
the hardware clears the power button status bit (PWRBTN_STS).

4.7.2.2.2 Sleep Button

When using the two button model, ACPI supports a second button that when pressed will request the OS to
transition the platform between the GO working and G1 sleeping states. Support for a sleep button is indicated
by a combination of the SLEEP BUTTON flag and the sleep button device object:

Indicated Support SLEEP BUTTON Flag | Sleep Button Device Object
No sleep button Set HIGH Absent
Fixed feature sleep button Set LOW Absent
Control method sleep button Set HIGH Present

4.7.2.2.2.1 Fixed Sleeping Button

SLPBTN_STS
PM1x_STS.9

SLPBTN# Defs;zce > . Stastlégizllw\‘ine
SLPBTN Event
SLPBTN_EN
PM1x_EN.9

Figure 4-9 Fixed Sleep Button Logic

The fixed sleep button has its event programming model in the PM1x_EVT_BLK. Thislogic consists of a
single enable bit and sticky status bit. When the user presses the sleep button, the sleep button status bit
(SLPBTN_STS) isunconditionally set. Additionaly, if the dleep button enable bit (SLPBTN_EN) is set, and the
dleep button status bit is set (SLPBTN_STS, due to a button press) while the system isin the GO state, then an

61

SCI is generated. The ACPI driver responds to the event by clearing the SLPBTN_STS bit. The sleep button
logic provides debounce logic that sets the SLPBTN_STS bit on the button press “edge.”

While the system is sleeping (in either the SO, S1, S2, S3 or $4 states), any further sleep button press (after the
button press that caused the system transition into the sleeping state) sets the sleep button status bit
(SLPBTN_STS) and awakens the if the SLP_EN bit isset. The ACPI driver responds by clearing the sleep
button status bit and awakening the system.

4.7.2.2.2.2 Control Method Sleeping Button
The sleep button programming model can also use the generic programming model. This allows the sleep
button to reside in any of the generic address spaces (for example, the embedded controller) instead of fixed
space. If the slegp button programming model resides in generic address space, then the OEM needs to define
the sleep button as a device with an _HID object value of “PNPOCOE”, which then identifies this device as the
deep button to the ACPI driver. The AML event handler then generates a Notify command to notify the OS
that a deep button event was generated. While in the working state, a sleep button pressis a user request to
trangition the system into the sleeping (G1) state. 1n these cases the sleep button event handler issues the Notify
command with the device specific code of 0x80. Thiswill indicate to the ACPI driver to pass control to the
dleep button driver (PNPOCOE) with the knowledge that a transition out of the GO state is being requested by the
user. Upon waking-up from a G1 sleeping state, the AML event handler generates a Notify command with the
code of 0x2 to indicate it was responsible for waking up the system.
The sleep button device needs to be declared as a device within the ACPI name space for the platform and only
requires an _HID. An example definition is shown below.
The AML code below does the following:

Creates adevice named “SLPB” and associates the Plug and Play identifier (through the HID abject) of

The Plug and Play identifier associates this device object with the sleep button driver.
Creates an operational region for the control method sleep button’ s programming model
System 1/0O space at 0x201.
Unaccessed fields are written as Ones (these status bits clear upon writing a one to their bit
position, hence preserved would fail in this case).
Creates afield within the operational region for the dleep button status bit (called PBP). In this case the
dleep button status bit is a child of the general-purpose status bit 0. This bit is written HIGH to be cleared
and is the responsibility of the AML codeto clear (the ACPI driver clears the general-purpose status bits).
The address of the status bit is 0x201.0 (bit O at address 0x201).
Creates an additional status bit called PBW for the sleep button wakeup event. Thisisthe next bit and its
physical address would be 0x201.1 (bit 1 at address 0x201).
Generates an event handler for the sleep button that is connected to bit O of the general-purpose status
register 0. The event handler does the following:
Clears the sleep button status bit in hardware (writes aoneto it)
Notifies the OS of the event by calling the Notify command passing the sleep button object and
the device specific event indicator 0x80.

62

/1 Define a control nethod sleep button

Devi ce(\ _SB. SLPB) {
Name(_HI D, El SAI D(“PNPOCOE"))
Oper ati onRegi on(\ Boo, System O, 0x201, 0x1)
Fi el d(\ Boo, ByteAcc, NoLock, WiteAsZeros){

SBP, 1, /Il sleep request
SBW 1 /1 wakeup request
} /1 end of sleep button device object
}
Scope(\ _GPE) { /1 Root |evel event handlers
Met hod(_LO1){ // uses bit 1 of GPO_STS register
| f (SBP) {
St ore(One, SBP) /Il clear sleep button status
Noti fy(SLPB, 0x80) /1 Notify OS of event
}
I F(SBW {

St ore(One, SBW
Noti fy(SLPB, 0x2)

}
} /1 end of _LO1 handl er
} /1 end of _GPE scope

4.7.2.3 Sleeping/Wake Control

The sleeping/wake logic consists of logic that will sequence the system into the defined low-power hardware
deeping state (S1-$4) or soft-off state (S5) and will awaken the system back to the working state upon a wake
event. Note that the SABIOS state is entered in a different manner (for more information, see section 9.1.4.2).

SLP_EN SLP_TYP:3
PM1x_CNT.S4.13 PM1x_CNT.S4.[10-12]
X
Lo WAK_STS
PM1x_STS.S0.15
Sleeping D—E
"OR" or all
Wake Wake-up/
Events
Sleep
Logic
PWRBTN_OR

Figure 4-10 Sleeping/Wake Logic

Thelogic is controlled by two bit fields: Sleep Enable (SLP_EN) and Sleep Type (SLP_TY Px). The type of
dleep state desired is programmed into the SLP_TY Px field and upon assertion of the SLP_EN the hardware
will sequence the system into the defined leeping state. The ACPI driver gets values for the SLP_TY Px field
from the\ Sx objects defined in the static definition block. If the object is missing the ACPI driver assumes the
hardware does not support that sleeping state. Prior to entering the desired sleeping state, the ACPI driver will
read the designated _Sx object and place thisvaluein the SLP_TYP field.

Additionally ACPI defines afail-safe Off protocol called the “ power switch override,” which allows the user to
initiate an Off sequence in the case where the system software is no longer able to recover the system (the
system has hung). ACPI defines that this sequence be initiated by the user pressing the power button for over 4
seconds, at which point the hardware unconditionally sequences the system to the Off state. Thislogicis
represented by the PWRBTN_OR signal coming into the sleep logic.

While in any of the sleeping states (G1), an enabled “Wake” event will cause the hardware to sequence the
system back to the working state (G0). The “Wake Status’ bit (WAK_STS) is provided for the ACPI driver to
“gpin-on” after setting the SLP_EN/SLP_TY P hit fields. When waking from the S1 sleeping state, execution
control is passed backed to the ACPI driver immediately, whereas when waking from the S2-S5 states
execution control is passed to the BIOS software (execution begins at the CPU’ s reset vector). The WAK_STS
bit provides a mechanism to separate the ACPI driver’s sleeping and waking code during an S1 sequence.
When the hardware has sequenced the system into the sleeping state (defined here as the processor is no longer
able to execute instructions), any enabled wakeup event is allowed to set the WAK_STS bit and sequence the
system back on (to the GO state). If the system does not support the S1 deeping state, the WAK_STS bit can
always return zero.

The sleeping/wake logic is required for ACPI compatibility, however only a single sleeping state is required to
be supported (S1-$4). If more than a single slegping state is supported, then the deeping/wake logic is required

63

to be able to dynamically sequenced between the different sleeping states by waking the system, programming
the new sleep state into the SLP_TY P field, and then by setting the SLP_EN bit.

4.7.2.4 Real Time Clock Alarm

The ACPI specification requires that the Real Time Clock (RTC)alarm generate a hardware wake-up event
from the deeping state. The RTC can be programmed to generate an alarm. An enabled RTC alarm can be used
to generate a wake event when the system isin a sleeping state. The ACPI provides for additional hardware to
support the ACPI driver in determining that the RTC was the source of the wakeup event: the RTC_STS and
RTC_EN bits. Although these hits are optional, if supported they must be implemented as described here. If the
RTC_STSand RTC_EN bits are not supported, the OS will attempt to identify the RTC as a possible wakeup
source; however, it might miss certain wakeup events. The RTC wake-up feature is required to work in the
following sleeping states: S1-S3. $4 wakeup is optiona and supported through the RTC_$4 flag within the
FACP table (if set HIGH, then the platform supports RTC wakeup in the $4 state)®.

When the RTC generates an alarm event the RTC_STS bit will be set. If the RTC_EN bit isset, an RTC
hardware power management event will be generated (which will wake the system from a sleeping state,
provided the battery low signal is not asserted).

RTC_STS
PM1x_STS.10

Real Time Clock
(RTC) & RTC Wake-up
Event
RTC_EN
PM1x_EN.10

Figure 4-11 RTC Alarm

The RTC wakeup event status and enable bits within the fixed feature space is optional, and a flag within the
FACP table (FIXED_RTC) indicatesif the register bits are to be used by the ACPI driver or not. Having the
RTC wakeup event in fixed feature space allows the ACPI driver to determine if the RTC was the source of the
wakeup event without loading the entire OS. If the fixed feature event bits are not supported, then the OS will
attempt to determine this by reading the RTC' s status field.
The ACPI driver supports enhancements over the existing RTC device (which only supports a 99 year date and
24-hour alarm). Optional extensions are provided for the following features:
- Day Alarm. The DAY_ALRM field points to an optional CMOS RAM location that selects the day within
the month to generate an RTC alarm.
Month Alarm. The MON_ALRM field points to an optional CMOS RAM location that selects the month
within the year to generate an RTC alarm.
Centenary Value. The CENT field points to an optional CMOS RAM location that represents the
centenary value of the date (thousands and hundreds of years).
The RTC_STSbit is set through the RTC interrupt (IRQ8 in PC architecture systems). The OS will insure that
the periodic and update interrupt sources are disabled prior to eeping. This alows the RTC’ s interrupt pin to
serve as the source for the RTC_STS bit generation.

Table 4-8 Alarm Field Decodings within the FACP Table

Field Value Address (Location) in RTC CMOS
RAM (Must be Bank 0)

DAY_ALRM Eight bit value that can represent The DAY_ALRM field in the FACP
0x01-0x31 daysin BCD or 0x01- table will contain a non-zero value that
Ox1F daysin binary. Bits 6 and 7 of represents an offset into the RTC's
thisfield are treated as Ignored by CMOS RAM areathat contains the day
software. The RTC isinitialized such | alarm value. A value of zero in the
that thisfield containsadon’t care DAY _ALRM field indicates that the day
value when the BIOS switches from alarm feature is not supported.

% Note that the G2/S5 “soft off” and the G3 “mechanical off” states are not sleeping states. The OS will disable
the RTC_EN bit prior to entering the G2/S5 or G3 states regardless.

64

Field Value Address (Location) in RTC CMOS
RAM (Must be Bank 0)

legacy to ACPI mode. A don't care
value can be any unused value (not
0x1-0x31 BCD or 0x01-0x1F hex)
that the RTC reverts back to a 24 hour
alarm.

MON_ALRM Eight bit value that can represent 01- | The MON_ALRM field in the FACP
12 monthsin BCD or 0x01-0xC table will contain a non-zero value that
monthsin binary. The RTC is represents an offset into the RTC's
initialized such that thisfield contains | CMOS RAM areathat contains the
adon’t care value when the BIOS month alarm value. A value of zero in the
switches from legacy to ACPl mode. | MON_ALRM field indicates that the
A don’t care value can be any unused | month alarm feature is not supported. If
value (not 1-12 BCD or x01-xC hex) | the month aarm is supported, the day
that the RTC reverts back to a24 hour | alarm function must also be supported.
alarm and/or 31 day alarm).

CENTURY 8-bit BCD or binary value. Thisvalue | The CENTURY field in the FACP table

indicates the thousand year and
hundred year (Centenary) variables
of the datein BCD (19 for this
century, 20 for the next) or binary
(x13 for this century, x14 for the
next).

will contain a non-zero value that
represents an offset into the RTC's
CMOS RAM areathat contains the
Centenary value for the date. A value of
zero in the CENTURY field indicates
that the Centenary value is not supported
by this RTC.

4.7.2.5 Legacy/ACPI Select and the SCI Interrupt

As mentioned previously, power management events are generated to initiate an interrupt or hardware sequence.
ACPI operating systems use the SCI interrupt handler to respond to events, while legacy systems use some type
of transparent interrupt handler to respond to these events (that is, an SMI interrupt handler). ACPI-compatible
hardware can choose to support both legacy and ACPI modes or just an ACPI mode. Legacy hardware is
needed to support these features for non-ACPI compatible OS's. When the ACPI OS loads, it scans the BIOS
tables to determine that the hardware supports ACPI, and then if the it finds the SCI_EN bit reset (indicating
that ACPI is not enabled), issues an ACPI activate command to the SMI handler through the SMI command
port. The BIOS acknowledges the switching to the ACPI model of power management by setting the SCI_EN
bit (this bit can aso be used to switch over the event mechanism as illustrated below):

SCI_EN
PM1x_CNT.0
Power —— » SMILEVNT
Management |—— Dec
Event Logic =% SCIEWNT
Shareable
Interrupt

Figure 4-12 Power Management Events to SMI/SCI Control Logic

The interrupt events (those that generate SMIs in legacy mode and SClsin ACPI mode) are sent through a
decoder controlled by the SCI_EN bit. For legacy mode this bit is reset, which routes the interrupt eventsto the
SMI interrupt logic. For ACPI mode this bit is set, which routes interrupt events to the SCI interrupt logic. This
bit aways return HIGH for ACPI-compatible hardware that does not support alegacy power management mode
(the bit iswired to read as“ 1" and ignore writes).

The SCI interrupt is defined to be a shareable interrupt and is connected to an OS visible interrupt that uses a
shareable protocol. The FACP ACPI table has an entry that indicates what interrupt the SCI interrupt is mapped
to (see section 5.2.5).

65

If the ACPI platform supports both legacy and ACPI modes, it has aregister that generates a hardware event

(for example, SMI for | A-PC processors). The ACPI driver uses this register to request the hardware to switch

in and out of ACPI mode. Within the FACP tables are three values that signify the system 1/O address

(SM1_CMD) of this port and the data value written to enable the ACPI state (ACPI_ENABLE), and to disable

the ACPI state (ACPI_DISABLE).

To transition an ACPI/Legacy platform from the Legacy mode to the ACPI mode the following would occur:

1. ACPI driver checksthat the SCI_EN bit is zero, and that it isin the Legacy mode.

2. The ACPI driver doesan OUT to the SMI_CMD port with the datain the ACPI_ENABLE field of the
FACP table.

3. The ACPI driver pollsthe SCI_EN bit until it is sampled as SET.

To transition an ACPI/Legacy platform from the ACPl mode to the Legacy mode the following would occur:

1. ACPI driver checksthat the SCI_EN bit is one, and that it isin the ACPI mode.

2. The ACPI driver doesan OUT to the SMI_CMD port with the datain the ACPI_DISABLE field of the
FACP table.

3. The ACPI driver pollsthe SCI_EN bit until it is sampled as RESET.

Platforms that only support ACPI always return a 1 for the SCI_EN bit.

4.7.2.6 Processor Power State Control

ACPI supports placing system processors into one of four power states in the GO working state. In the CO state
the designated processor is executing code; in the C1-C3 states it isnot. Whilein the CO state, ACPI allows the
performance of the processor to be altered through a defined “throttling” process (the CO Throttling state in the
diagram below). Throttling hardware lets the processor execute at a designated performance level rlative to its
maximum performance. The hardware to enter throttling is also described in this section.

THT_EN=1
and
DTY=value

Full Speed CO

THT_EN=0

Interrupt or
BM Access

P_LVL2 Interrupt

Interrupt P_LVLS3,
ARB_DIS=1

€10)
Working

Figure 4-13 Processor Power States

66

In aworking system (global GO working state) the OS will dynamically transition idle CPUs into the
appropriate power state. ACPI defineslogic on a per-CPU basis that the OS uses to transition between the
different processor power states. Thislogic isoptional, and is described through the FACP table and processor
objects (contained in the hierarchical name space). The fields and flags within the FACP table describe the
symmetrical features of the hardware, and the processor object contains the location for the particular CPU’s
clock logic (descri bed by the P_BLK register block). The ACPI specification defines four CPU power states for
the GO working state*: C0, C1, C2 and C3.

In the CO power state, the processor executes.

In the C1 power state, the processor isin alow power state where it is able to maintain the context of the

system caches. This state is supported through a native instruction of the processor (HLT for |A-PC

processors), and assumes no hardware support is needed from the chipset.

In the C2 power state, the processor isin alow power state where it is able to maintain the context of

system caches. This state is supported through chipset hardware described in this section. The C2 power

stateis lower power and has a higher exit latency than the C1 power state.

In the C3 power state, the processor isin alow power state where it is not hecessarily able to maintain

coherency of the processor caches with respect to other system activity (for example, snooping is not

enabled at the CPU complex). This state is supported through chipset hardware described in this section.

The C3 power state islower power and has a higher exit latency than the C2 power state.
The P_BLK registers provide optiona support for placing the system processors into the C2 or C3 states. The
P_LVL2 register is used to sequence the selected processor into the C2 state, and the P_L VL3 register is used to
seguence the selected processor into the C3 state. Additional support for the C3 state is provided through the
bus master status and arbiter disable bits (BM_STSinthe PM1 _STSregister and ARB_DISinthe PM2_CNT
register). System software readsthe P_LVL2 or P_L VL3 registers to enter the C2 or C3 power state. Hardware
isrequired to put the processor into the proper clock state precisely on the read operation to the appropriate
P_LVLX register.
Processor power state support is symmetric, al processorsin a system are assumed by system software to
support the same clock states. If processors have non-symmetric power state support, then the BIOS will choose
and use the lowest common power states supported by all the processors in the system through the FACP table.
For example, if the PO processor supports all power states up to and including the C3 state, but the P1 processor
only supports the C1 power state, then the ACPI driver will only place idle processors into the C1 power state
(PO will never be put into the C2 or C3 power states). Note that the C1 power state must be supported; C2 and
C3 are optional. (see the PROC_C1 flag in the FACP table description in section 5.2.5).

4.7.2.6.1 C2 Power State

The C2 state puts the processor into alow power state optimized around multiprocessor (MP) and bus master
systems. The system software will automatically cause an idle processor complex to enter a C2 state if there are
bus masters or MP processors active (which will prevent the OS from placing the processor complex into the C3
state). The processor complex is able to snoop bus master or MP CPU accesses to memory while in the C2 state.
Once the processor complex has been placed into the C2 power state, any interrupt (IRQ or reset) will bring the
processor complex out of the C2 power state.

4.7.2.6.2 C3 Power State
The C3 state puts the designated processor and system into a power state where the processor’s cache context is
maintained, but it is not required to snoop bus master or MP CPU accesses to memory. There are two
mechanisms for supporting the C3 power state:

Having the OS flush and invalidate the caches prior to entering the C3 state.

Providing hardware mechanisms to prevent masters from writing to memory (UP only support).
In the first case the OS will flush the system caches prior to entering the C3 state. As there is normally much
latency associated with flushing processor caches, the ACPI driver islikely to only support thisin MP platforms
for idle processors. Flushing of the cache is through one of the defined ACPI mechanisms (described below,
flushing caches).

* Note that these CPU states map into the GO (working) state. The state of the CPU is undefined in the sleeping
state (G3), the Cx states only apply to the GO state.

67

In UP only platforms that provide the needed hardware functionality (defined in this section), the ACPI driver
will attempt to place the platform into a mode that will prevent system bus masters from writing into memory
while any processor isin the C3 state. Thisisdone by disabling bus masters prior to entering a C3 power state.
Upon a bus master requesting an access, the CPU will awaken from the C3 state and re-enable bus master
8CCesses.

The ACPI driver usesthe BM_STS bit to determine which Cx power state to enter. The BM_STS is an optional
bit that indicates when bus masters are active. The ACPI driver uses this bit to determine the policy between
the C2 and C3 power states: lots of bus master activity demotes the CPU power state to the C2 (or C1if C2is
not supported), no bus master activity promotes the CPU power state to the C3 power state. The ACPI driver
keeps a running history of the BM_STS bit to determine CPU power state policy.

The last hardware feature used in the C3 power stateisthe BM_RLD bit. This bit determinesif the Cx power
state is exited based on bus master requests. If set, then the Cx power state is exited upon arequest from a bus
master; if reset, the power state is not exited upon bus master requests. In the C3 state, bus master requests need
to transition the CPU back to the CO state (as the system is capable of maintaining cache coherency), but such a
transition is not needed for the C2 state. The ACPI driver can optionally set this bit when using a C3 power
state, and clear it when using a C1-C2 power state.

4.7.2.6.2.1 Flushing Caches
To support the C3 power state without using the ARB_DI S feature, the hardware must provide functionality to
flush and invalidate the processors caches (for an IA processor, this would be the WBINVD instruction). To
support the S2 or S3 sleeping states, the hardware must provide functionality to flush the platform caches.
Flushing of caches is supported by one of the following mechanisms:
1. Processor instruction to write-back and invalidate system caches (WBINVD instruction for A processors).
2. Processor instruction to write-back but not invalidate system caches (WBINVD instruction for 1A
processors and some chipsets with partial support, that is, they don't invalidate the caches).
3. Manual flush of caches supported by the ACPI driver.
The ACPI specification expects all platforms to support the local CPU instruction for flushing system caches
(with support in both the CPU and chipset), and provides some limited “best effort” support for systems that
don’t currently meet this capability. The method used by the platform isindicated through the appropriate
FACP fields and flags indicated in this section.
ACPI specifies parametersin the FACP table that describe the system’ s cache capabilities. If the platform
properly supports the processor’ s write back and invalidate instruction (WBINVD for |A processors), then this
support isindicated to the ACPI driver by setting the WBINVD flag in the FACP table.
If the platform supports the write back and invalidate instruction; however, the cache is only flushed but not
invalidated after its execution, then this support isindicated to the ACPI driver by setting the
WBINVD_FLUSH flag in the FACP table (WBINVD flag would be cleared).
If the platform supports neither of the first two flushing options, then the ACPI driver can attempt to manually
flush the cache if it meets the following criteria
A cache-enabled sequential read of contiguous physical memory of not more than 2 Mbytes will flush the
platform caches.
There are two additional FACP fields needed to support manual flushing of the caches:
FLUSH_SIZE, typicaly twice the size of the largest cache in the system.
FLUSH_STRIDE, typically the smallest cache line size in the system.

4.7.2.6.3 Clock Throttling (CO Power State)

While in the CO power state, the ACPI driver can generate a policy to run the processor at less than maximum
performance. The clock throttling hardware provides the driver with the functionality to perform thistask. The
logic alows the driver to program avalue into aregister that represents the % of maximum performance it
desires the processor to execute at. When enabled, the hardware attempts to keep the processor at this minimum
performance level.

68

duty value ><——clock off time——>
clock on time
< duty width >
P_CNT duty value

—duty offset—><——duty width——

Figure 4-14 Throttling Example

The FACP table contains the duty offset and duty width values. The duty offset value determines the offset
within the P_CNT register of the duty value. The duty width value determines the number of bits used by the
duty value (which determines the granularity of the throttling logic). The performance of the processor by the
clock logic can be expressed with the following equation:

dutysetting
2dutywidth

% Performance = *100%

Equation 1 Duty Cycle Equation

Nominal performance is defined as “close as possible, but not below the indicated performance level.” The
ACPI driver will use the duty offset and duty width to determine how to access the duty setting field. The ACPI
driver will then program the duty setting based on the thermal condition and desired power of the processor
object. The ACPI driver calculates the nominal performance of the processor using the equation expressed in
Equation 1. Note that a dutysetting of zero is reserved.

For example, the clock logic could use the stop grant cycle to emulate a divided processor clock frequency on
an |A processor (through the use of the STPCLK# signal). This signal internally stops the processor’s clock
when asserted LOW. To implement logic that provides eight levels of clock control, the STPCLK# pin could be
asserted as follows (to emulate the different frequency settings):

69

< Duty Width (3-bits) >

.0 , 1 , 2 , 3 , 4 , 5
I i i i i i

dutysetting
0 - Reserved Value

CPU Clock Stopped

STPCLK# Signal
w

4 A CPU Clock Running

L
[\—I—I—I—I—I—I

Figure 4-15 Example Control for the STPCLK#

To start the throttling logic the ACPI driver sets the desired duty setting and then set the THT_EN bit HIGH. To
change the duty setting the OS will first reset the THT_EN bit LOW, write another value to the duty setting
field while preserving the other unused fields of this register, and then set the THT_EN bit HIGH again.

The example logic model is shown below:

P_LVL3 P_LVL2 BM_RLD ARB_DIS BM_STS
RT R\efd PM1x_CNT.1 PM2_CNT PM1x STS.4
. System
Clock Logic Arbiter

()g <>Eduly width

THT_EN THTL_DTY
P_CNT.4 P_CNTx

Figure 4-16 ACPI Clock Logic (One per Processor)

An ACPI platformis required to support a single CPU state (besides CO). All of the CPU states occur in the GO
system state; they have no meaning when the system transitions into the deeping state. ACPI defines the
attributes of the different CPU states (defines four of them). It is up to the platform implementation to map an
appropriate low power CPU state to the defined ACPI CPU state.

ACPI clock control is supported through the optional processor register block (P_BLK). ACPI requires that
there be a unique processor register block for each CPU in the system. Additionally, ACPI requires that the
clock logic for MP systems be symmetrical; if the PO processor supports the C1, C2, and C3 states, but P1 only
supports the C1 state, then the ACPI driver will limit all processors to enter the C1 state when idle.

The following sections define the different ACPI CPU states.

4.7.2.6.4 CO Power State

Thisisthe executing state for the CPU, in all other CPU power states the CPU is not executing instructions. The
CPU’s clock isrunning at full frequency or isrunning at a reduced performance (for more information, see
section 4.7.2.6.3).

4.7.2.6.5 C1 Power State
The C1 CPU low power state is supported through the execution of a CPU instruction that placesit into alow
power state (for 1A processors this would be the HLT instruction).

70

4.7.2.6.6 C2 Power State

The C2 power state is an optional ACPI clock state that needs chipset hardware support. This clock logic
consists of aP_LVL2 register that, when read, will cause the processor complex to precisely transition into a C2
power state. In a C2 power state, the processor is assumed capable of keeping its caches coherent, for example,
bus master and MP activity can take place without corrupting cache context. The C2 power state is assumed by
the ACPI driver to have lower power and higher exit latency than the C1 power state.

4.7.2.6.7 C3 Power State

The C3 power state is an optional ACPI feature that needs chipset hardware support. Thislogic consists of a
P_LVL3 register which, when read, will cause the system to precisely transition into a C3 power state. When
the system isin a C3 power state, the system CPU is assumed to be unable to maintain cache coherency; it isthe
responsibility of the OS to place the system into a condition where the caches will not become incoherent with
memory. The ACPI specification provides a standard way for the ACPI driver to disable bus masters that will
guarantee coherency in a uniprocessor (UP) system. In multiprocessor systems, the OS will flush and invalidate
caches prior to entering the C3 state.

4.7.3 Fixed Feature Space Registers

The fixed feature space registers are manipulated directly by the ACPI driver. The following sections describes
fixed features under the programming model. The ACPI driver owns all the fixed resource registers, these
registers are not manipulated by ASL/AML code. Registers are accessed with any width up to its register width
(byte granular).

4.7.3.1 PM1 Event Grouping

The PM1 Event Grouping has a set of bits that can be distributed between two different register blocks. This
allows these registers to be partitioned between two chips, or all placed in a single chip. Although the bits can
be split between the two register blocks (each register blocks has a unique pointer within the FACP table), the
bit positions is maintained. The register block with unimplemented bits (that is, those implemented in the other
register block) always returns zeros, and writes have no side effects.

4.7.3.1.1 Power Management 1 Status Registers
Regi ster Location: <PMla_EVT_BLK/ PMLb_EVT_BLK> System I/ O Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: PML_EVT_LEN 2

The PM1 status registers contains the fixed feature status bits. The bits can be split between two registers:
PM1a STSor PM1b STS. Each register grouping can be at a different 32-bit aligned address and is pointed to
by thePM1a EVT_BLK or PM1b EVT_BLK. The valuesfor these pointers to the register space are found in
the FACP table. Accessesto the PM 1 status registers are done through byte or word accesses.

For ACPI/legacy systems, when transitioning from the legacy to the GO working state this register is cleared by
BIOS prior to setting the SCI_EN bit (and thus passing control to the OS). For ACPI only platforms (where
SCI_EN is aways set), when transitioning from either the mechanical off (G3) or soft-off state to the GO
working state this register is cleared prior to entering the GO working state.

Thisregister contains optional features enabled or disabled within the FACP table. If the FACP table indicates
that the feature is not supported as a fixed feature, then software treats these bits as ignored.

Table 4-9 PM1 Status Registers Fixed Feature Status Bits

Bit Name Description

0 TMR_STS Thisisthe timer carry status bit. This bit gets set anytime the
23'%/31% bit of a 24/32-bit counter changes (whenever the MSB
changes from low to high or high to low. While TMR_EN and
TMR_STSare set, an interrupt event is raised.

1-3 Reserved Reserved.

4 BM_STS Thisisthe bus master status bit. This bit is set any time a system

Bit

Name

Description

bus master requests the system bus, and can only be cleared by
writing a one to this bit position. Note that this bit reflects bus
master activity, not CPU activity (this bit monitors any bus
master that can cause an incoherent cache for a processor in the
C3 state when the bus master performs a memory transaction).

GBL_STS

Thisbit is set when an SCI is generated due to the BIOS wanting
the attention of the SCI handler. BIOS will have a control bit
(somewhere within its address space) that will raise an SCI and
set thisbit. Thisbit is set in response to the BIOS releasing
control of the global lock and having seen the pending bit set.

Reserved

Reserved. These bits always return a value of zero.

PWRBTN_STS

This optional bit is set when the Power Button is pressed. In the
system working state, while PWRBTN_EN and PWRBTN_STS
are both set, an interrupt event israised. In the sleeping or soft-
off states a wakeup event is generated when the power button is
pressed (regardiess of the PWRBTN_EN bit setting). This bit is
only set by hardware and can only be reset by software writing a
one to this bit position.

ACPI defines an optional mechanism for unconditional
transitioning a crashed platform from the GO working state into
the G2 soft-off state called the power button over-ride. If the
Power Button is held active for more than four seconds, this bit
is cleared by hardware and the system transitions into the G2/S5
Soft Off state (unconditionally).

Support for the power button is indicated by either the
PWR_BUTTON flag in the FACP table being reset zero. If the
PWR_BUTTON flag is set HIGH or a power button device
object is present in ACPI name space, than this bit field is treated
asignored by software.

If the power button was the cause of the wakeup (from an S1-$4
state), then this bit is set prior to returning control to the OS.

SLPBTN_STS

This optional bit is set when the sleep button is pressed. In the
system working state, while SLPBTN_EN and SLPBTN_STS
are both set, an interrupt event israised. In the sleeping or soft-
off states a wakeup event is generated when the sleeping button
ispressed and the SLPBTN_EN hit is set. Thisbit is only set by
hardware and can only be reset by software writing a one to this
bit position.

Support for the sleep button is indicated by either the
SLP_BUTTON flag in the FACP table being reset zero. If the
SLP_BUTTON flag is set HIGH or a sleep button device object
ispresent in ACPI name space, than this bit field is treated as
ignored by software.

If the deep button was the cause of the wakeup (from an S1-$4
state), then this bit is set prior to returning control to the OS.

10

RTC_STS

This optional bit is set when the RTC generates an alarm (asserts
the RTC IRQ signal). Additionally, if the RTC_EN hit is set then
the setting of the RTC_STS hit will generate a power
management event (an SCI, SMI, or resume event). Thishit is
only set by hardware and can only be reset by software writing a
one to this bit position.

If the RTC was the cause of the wakeup (from an S1-S3 state),
then this bit is set prior to returning control to the OS. If the
RTC_$4 flag within the FACP table is set, and the RTC was the

71

72

Bit Name Description

cause of the wakeup from the $4 state), then this bit is set prior
to returning control to the OS.

11 Ignore Thisbit field isignored by software.
12-14 | Reserved Reserved. These bits aways return a value of zero.
15 WAK_STS This bit is set when the system isin the sleeping state and an

enabled wakeup event occurs. Upon setting this bit system will
transition to the working state. This bit is set by hardware and
can only be cleared by software writing a one to this bit position.

4.7.3.1.2 Power Management 1 Enable Registers

Regi ster Location: <PMla_EVT_BLK/ PMLb_EVT_BLK>+PML_EVT_LEN 2 System |/ O Space

Def aul t Val ue: 00h

Attribute: Read/ Wite

Si ze: PML_EVT_LEN 2

The PM1 enable registers contains the fixed feature enable bits. The bits can be split between two registers:
PM1a EN or PM1b_EN. Each register grouping can be at a different 32-bit aligned address and is pointed to by
thePMla EVT BLK or PM1b EVT_BLK. The valuesfor these pointersto the register space are found in the
FACP table. Accessesto the PM1 Enable registers are done through byte or word accesses.

For ACPI/legacy systems, when transitioning from the legacy to the GO working state the enables are cleared by
BIOS prior to setting the SCI_EN bit (and thus passing control to the OS). For ACPI only platforms (where
SCI_EN is aways set), when transitioning from either the mechanical off (G3) or soft-off state to the GO
working state this register is cleared prior to entering the GO working state.

Thisregister contains optional features enabled or disabled within the FACP table. If the FACP table indicates
that the feature is not supported as a fixed feature, then software treats the enable bits as write as zero.

Table 4-10 PM1 Enable Registers Fixed Feature Enable Bits

Bit Name Description

0 TMR_EN Thisisthe timer carry interrupt enable bit. When this bit is set
then an SCI event is generated anytime the TMR_STS bit is set.
When this bit is reset then no interrupt is generated when the
TMR_STShit is set.

1-4 Reserved Reserved. These bits always return a value of zero.

5 GBL_EN The glabal enable bit. When both the GBL_EN bit and the
GBL_STShit are set, an SCI is raised.

6-7 Reserved Reserved.

8 PWRBTN_EN This optional bit is used to enable the setting of the

PWRBTN_STS hit to generate a power management event (SCI
or wakeup). The PWRBTN_STS hit is set anytime the power
button is asserted. The enable bit does not have to be set to
enable the setting of the PWRBTN_STS bit by the assertion of
the power button (see description of the power button hardware).
Support for the power button is indicated by either the
PWR_BUTTON flag in the FACP table being reset zero. If the
PWR_BUTTON flag is set HIGH or a power button device
object is present in ACPI name space, than this bit field is treated
asignored by software.

9 SLPBTN_EN This optional bit is used to enable the setting of the
SLPBTN_STS hit to generate a power management event (SCI
or wakeup). The SLPBTN_STS bit is set anytime the sleep
button is asserted. The enable bit does not have to be set to
enable the setting of the SLPBTN_STS hit by the active
assertion of the dleep button (see description of the sleep button

73

Bit Name Description

hardware).

Support for the sleep button is indicated by either the
SLP_BUTTON flag in the FACP table being reset zero. If the
SLP_BUTTON flag is set HIGH or a sleep button device object
ispresent in ACPI name space, than this bit field is treated as
ignored by software.

10 RTC_EN This optional bit is used to enable the setting of the RTC_STS hit
to generate awakeup event. The RTC_STS bit is set anytime the
RTC generates an alarm.

11-15 | Reserved Reserved. These bits aways return a value of zero.

4.7.3.2 PM1 Control Grouping

The PM1 Control Grouping has a set of bits that can be distributed between two different registers. This allows
these registers to be partitioned between two chips, or al placed in asingle chip. Although the bits can be split
between the two register blocks (each register block has a unique pointer within the FACP table), the bit
positions specified here is maintained. The register block with unimplemented bits (that is, those implemented
in the other register block) returns zeros, and writes have no side effects.

4.7.3.2.1 Power Management 1 Control Registers
Regi ster Location: <PMLa_CNT_BLK/ PMLb_CNT_BLK> System |/ O Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: PML_CNT_LEN

The PM1 control registers contains the fixed feature control bits. These bits can be split between two registers:
PM1a CNT or PM1b_CNT. Each register grouping can be at a different 32-bit aligned address and is pointed to
by the PM1a CNT_BLK or PM1b_CNT_BLK. The values for these pointers to the register space are found in
the FACP table. Accessesto PM1 control registers are accessed through byte and word accesses.

Thisregister contains optional features enabled or disabled within the FACP table. If the FACP table indicates
that the feature is not supported as a fixed feature, then software treats these bits as ignored.

Table 4-11 PM1 Control Registers Fixed Feature Control Bits

Bit Name Description

0 SCI_EN Selects the power management event to be either an SCI or SMI
interrupt for the following events. When this bit is set, then
power management events will generate an SCI interrupt. When
this bit is reset power management events will generate an SMI
interrupt. It is the responsibility of the hardware to set or reset
thishbit. The ACPI driver always preserves this bit position.

1 BM_RLD When set, this bit allows the generation of a bus master request
to cause any processor in the C3 state to transition to the CO
state. When this bit is reset, the generation of a bus master
request does not effect any processor in the C3 state.

2 GBL_RLS Thiswrite-only bit is used by the ACPI softwareto raise an
event to the BIOS software, that is, generates an SMI to pass
execution control to the BIOS for |A-PC platforms. BIOS
software has a corresponding enable and status bit to control its
ability to receive ACPI events (for example, BIOS_EN and
BIOS_STS). The GBL_RLS bit is set by the ACPI driver to
indicate arelease of the global lock and the setting of the
pending bit in the FACS memory structure.

3-8 Reserved Reserved. These bits are reserved by the ACPI driver.

74

Bit Name Description
9 Ignore Software ignores this bit field.
10-12 | SLP_TYPXx Defines the type of deeping state the system enters when the

SLP_EN bit is set to one. This 3-bit field defines the type of
hardware sleep state the system enters when the SLP_EN bit is
set. The_Sx object contains 3-hit binary values associated with
the respective sleeping state (as described by the object). The
ACPI driver takes the two values from the\ Sx object and
programs each value into the respective SLP_TY Px field.

13 SLP_EN Thisisawrite-only bit and reads to it always return a zero.
Setting this bit causes the system to sequence into the sleeping
state associated with the SLP_TY Px fields programmed with the
values from the\ Sx object.

14-15 | Reserved Reserved. Thisfield aways returns zero.

4.7.3.3 Power Management Timer (PM_TMR)
Regi ster Location: <PM TMR BLK> System |/ O Space

Def aul t Val ue: 00h
Attribute: Read- Onl y
Si ze: 32-bits

This read-only register returns the current value of the power management timer (PM timer). The FACP table
has aflag called TMR_VAL_EXT that an OEM setsto indicate a 32-bit PM timer or reset to indicate a 24-bit
PM timer. When the last bit of the timer toggles the TMR_STS bit is set. This register is accessed as 32-bits.

Thisregister contains optional features enabled or disabled within the FACP table. If the FACP table indicates
that the feature is not supported as a fixed feature, then software treats these bits as ignored.

Table 4-12 PM Timer Bits

Bit Name Description

0-23 | TMR_VAL This read-only field returns the running count of the power
management timer. This is a 24-bit counter that runs off a
3.579545-MHz clock and counts while in the SO (working)
system state. The starting value of the timer is undefined, thus
allowing the timer to be reset (or not) by any transition to the SO
state from any other state. The timer isreset (to any initial
value), and then continues counting until the system’s 14.31818
MHz clock is stopped upon enter its Sx state. If the clock is
restarted without a reset, then the counter will continue counting
from where it stopped.

24-31 | E TMR_VAL This read-only field returns the upper eight bits of a 32-bit power
management timer. If the hardware supports a 32-bit timer, then
thisfield will return the upper eight bits; if the hardware supports
a 24-hit timer then thisfield returns all zeros.

4.7.3.4 Power Management 2 Control (PM2_CNT)
Regi ster Location: <PM2_BLK> System1/O

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: PM2_CNT_LEN

Thisregister block is naturally aligned and accessed based on its length. For ACPI 1.0 thisregister is byte
aligned and accessed as a byte.

Thisregister contains optional features enabled or disabled within the FACP table. If the FACP table indicates
that the feature is not supported as a fixed feature, then software treats these bits as ignored.

75

Table 4-13 PM2 Control Register Bits

Bit Name Description

0 ARB_DIS This bit is used to enable and disable the system arbiter. When
this bit is LOW the system arbiter is enabled and the arbiter can
grant the bus to other bus masters. When this bit is HIGH the
system arbiter is disabled and the default CPU has ownership of
the system.

The ACPI driver clears this bit when using the CO, C1 and C2
power states.

1-7 Reserved Reserved.

4.7.3.5 Processor Register Block (P_BLK)

This optional register block is used to control each processor in the system. There is one processor register
block per processor in the system. For more information about controlling processors and control methods that
can be used to control processors, see section 8. This register block is DWORD aligned and the context of this
register block is not maintained across S3 or $4 sleeping states, or the S5 soft-off state.

4.7.3.5.1 Processor Control (P_CNT): 32

Regi ster Location: <P_BLK> System |/ O Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: 32-bits

Thisregister is accessed asa DWORD. The CLK_VAL field is where the duty setting of the throttling hardware
is programmed as described by the DUTY_WIDTH and DUTY _OFFSET values in the FACP table. Software
treats all other CLK_V AL bits asignored (those not used by the duty setting value).

Table 4-14 Processor Control Register Bits

Bit Name Description
0-3 CLK_ VAL Possible locations for the clock throttling value.
4 THT_EN This bit enables clock throttling of the clock as set in the

CLK_VAL field. THT_EN bit must be reset LOW when
changing the CLK_VAL field (changing the duty setting).

5-31 CLK_VAL Possible locations for the clock throttling value.

4.7.3.5.2 Processor LVL2 Register (P_LVL2): 8

Regi ster Location: <P_BLK>+4 System |/ O Space

Def aul t Val ue: 00h
Attribute: Read- Onl y
Si ze: 8-bits

Thisregister is accessed as a byte.
Table 4-15 Processor LVL2 Register Bits

Bit Name Description

0-7 P LVL2 Reads to thisregister return all zeros, writes to this register have
no effect. Reads to this register a'so generate a“ enter a C2 power
state” to the clock control logic.

76

4.7.3.5.3 Processor LVL3 Register (P_LVL3): 8
Regi ster Location: <P_BLK>+5h System |/ O Space

Def aul t Val ue: 00h
Attribute: Read- Onl y
Si ze: 8-bits

Thisregister is accessed as a byte.
Table 4-16 Processor LVL3 Register Bits

Bit Name Description

0-7 P LVL3 Reads to thisregister return all zeros, writes to this register have
no effect. Reads to this register aso generate a“ enter a C3 power
state” to the clock control logic.

4.7.4 Generic Address Space

ACPI provides a mechanism that allows a unique piece of “value added” hardware to be described to the ACPI
driver in ACPI name space. There are a number of rules to be followed when designing ACPI-compatible
hardware.

Programming bits can reside in any of the defined generic address spaces (system 1/O, system memory, PCI
configuration, embedded controller, or SMBus), but the top-level event bits are contained in the general-
purpose registers. The general-purpose registers are pointed to by the GP_REG block, and the generic register
space can be any of the defined ACPI address spaces. A device' s generic address space programming model is
described through an associated object in the ACPI hame space, which specifies the bit’ s function, location,
address space, and address location.

The programming model for devices is normally broken into status and control functions. Status bits are used to
generate an event that allows the ACPI driver to call a control method associated with the pending status bit.
The called control method can then control the hardware by manipulating the hardware control bits or by
investigating child status bits and calling their respective control methods. ACPI requires that the top level
“parent” event status and enable bitsreside in either the GPEO_STS or GPE1_STSregisters, and “child” event
status bits can reside in generic address space.

The example below illustrates some of these concepts. The top diagram shows how the logic is partitioned into
two chips: achipset and an embedded controller.

The chipset contains the interrupt logic, performs the power button (which is part of the fixed register
space, and is not discussed here), the lid switch (used in portables to indicate when the clam shell lid is
open or closed), and the RI# function (which can be used to awaken a sleeping system).

The embedded controller chip is used to perform the AC power detect and dock/undock event logic.
Additionally, the embedded controller supports some system management functions using an OS-
transparent interrupt in the embedded controller (represented by the EXTSMI# signal).

77

Momentary 8 | s o
g 7 >
Power % EC_Cs# aci
Button fQ PWRBTN# - Embedded [+——
2 e EXTSMI#
S ¢ Controller
oy g EXTPME#
Compatible | S [« :
.p ° pockz | Docking
Chipset | g Chip
(5]
Momentary Qo
E
]
LID L
Switch (L2 Ris
+—
EXTSMI# SMI only
GPx_REG g\rlvgn(?snl EXTSN"#} } EXTSMI% sources
o AC_STS
Block ac
EC_STS 0< ACH
GP_STS.0 I e
(ExtpvEr} @_ﬂ P0.40.1
mcm S o HX
EC_EN

SCl#
Shareable GP_ENO
Interrupt RI_STS

GP_STS.1
:EM R
RI_EN
GP_EN.1

LID_STS

GP_STS.2
S HCl
ELDEN

< LID_POL
s332
GP_EN.2

Other SCI
sources

Figure 4-17 Example of General-Purpose vs Generic Address Space Events

At the top level, the generic events in the GPEx_STS register are the:

Embedded controller interrupt, which contains two query events: one for AC detection and one for docking
(the docking query event has a child interrupt status bit in the docking chip).

Ring indicate status (used for awakening the system).

Lid status.

The embedded controller event status bit (EC_STYS) is used to indicate that one of two query events are active.

- A query event is generated when the AC# signal is asserted. The embedded controller returns a query value
of 34 (any byte number can be used) upon a query command in response to this event; the ACPI driver will
then schedule for execution the control method associated with query value 34.

Another query event is for the docking chip that generates a docking event. In this case, the embedded
controller will return a query value of 35 upon a query command from system software responding to an
SCI from the embedded controller. The ACPI driver will then schedule the control method associated with
the query value of 35 to be executed, which services the docking event.

For each of the status bitsin the GPEx_STS register, there is a corresponding enable bit in the GPEx_EN

register. Note that the child status bits do not necessarily need enable bits (see the DOCK _STS hit).

Thelid logic contains a control bit to determine if its status bit is set when the LID isopen (LID_POL isHIGH

and LID isHIGH) or closed (LID_POL isLOW and LID isLOW). This control bit residesin generic 1/0O space

(in this case, bit 2 of system 1/0O space 33h) and would be manipulated with a control method associated with

the lid object.

Aswith fixed events, the ACPI driver will clear the status bits in the GPEXx register blocks. However, AML

code clears al sibling status bits in generic space.

Generic features are controlled by OEM supplied control methods, encoded in AML. ACPI provides both an

event and control model for development of these features. The ACPI specification also provides specific

control methods for notifying the OS of certain power management and Plug and Play events. Review section 5

78

to understand the types of hardware functionality that supports the different types of subsystems. The following
isalist of features supported by APCI; however, thelist is not intended to be complete or comprehensive:
- Deviceinsertion/gjection (for example, docking, device bay, A/C adapter)

Batteries®

Platform thermal subsystem

Turning on/off power resources

Mobile lid Interface

Embedded controller

System indicators

OEM -specific wakeup events

Plug and Play configuration

4.7.4.1 General-Purpose Register Blocks

ACPI supports up to two general-purpose register blocks. Each register block contains two registers: an enable
and a status register. Each register block is 32-bit aligned. Each register in the block is accessed asabyte. Itis
up to the specific design to determine if these bits retain their context across deeping or soft-off states. If they
lose their context across a sleeping or soft-off state, then BIOS resets the respective enable bit prior to passing
control to the operating system upon awakening.

4.7.4.1.1 General-Purpose Event 0 Register Block

Thisregister block consists of two registers: The GPEQ_STS and the GPEO_EN registers. Each register’s
length is defined to be half the length of the GPEO register block, and is described in the ACPI FACP table's
GPEO_BLK and GPEO_BLK_LEN operators. The ACPI driver owns the general-purpose event resources and
these bits are only manipulated by the ACPI driver; ASL/AML code can not access the general-purpose event
registers.

It is envisioned that chipsets will contain GPE event registers that provide GPE input pins for various events.
The platform designer would then wire the GPES to the various value added event hardware and the AML/ASL
code would describe to the OS how to utilize these events. As such, there will be the case where a platform has
GPE events that are not wired to anything (they are present in the chip set), but are not utilized by the platform
and have no associated ASL/AML code. In such, cases these event pins are to be tied inactive such that the
corresponding SCI status bit in the GPE register is not set by afloating input pin.

4.7.4.1.1.1 General-Purpose Event 0 Status Register
Regi ster Location: <GPEO_STS> System |/ O Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: GPEO_BLK_LEN 2

The general-purpose event O status register contains the general-purpose event status bits in bank zero of the
genera-purpose registers. Each available status bit in this register corresponds to the bit with the same bit
position in the GPEO_EN register. Each available status bit in thisregister is set when the event is active, and
can only be cleared by software writing a one to its respective bit position. For the general-purpose event
registers, unimplemented bits are ignored by the OS.

Each status bit can optionally wake up the system if asserted when the system isin a sleeping state with its
respective enable bit set. The ACPI driver accesses GPE registers through byte accesses (regardless of their
length).

®> ACPI OS's assume the use of the Duracell/Intel defined standard for batteries, called the “ Smart Battery
Specification” (SBS). ACPI provides a set of control methods for use by OEMs that use a proprietary “control

79

4.7.4.1.1.2 General-Purpose Event 0 Enable Register
Regi ster Location: <GPEO_EN> System |/ O Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: GPEO_BLK_LEN 2

The general-purpose event 0 enable register contains the general -purpose event enable bits. Each available
enable bit in this register corresponds to the bit with the same bit position in the GPEQ_STS register. The
enable bits work similar to how the enable bits in the fixed-event registers are defined: When the enable bit is
set, then a set status bit in the corresponding status bit will generate an SCI bit. The ACPI driver accesses GPE
registers through byte accesses (regardless of their length).

4.7.4.1.2 General-Purpose Event 1 Register Block

Thisregister block consists of two registers: The GPE1_STS and the GPEL_EN registers. Each register’s
length is defined to be half the length of the GPEL1 register block, and is described in the ACPI FACP table's
GPE1 _BLK and GPE1 BLK_LEN operators.

4.7.4.1.2.1 General-Purpose Event 1 Status Register
Regi ster Location: <GPEl_STS> System |/ O Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: GPE1_BLK LEN 2

The general -purpose event 1 status register contains the general-purpose event status bits. Each available status
bit in this register corresponds to the bit with the same bit position in the GPEL1_EN register. Each available
status bit in this register is set when the event is active, and can only be cleared by software writing aoneto its
respective bit position. For the general-purpose event registers, unimplemented bits are ignored by the
operating system.

Each status bit can optionally wakeup the system if asserted when the system isin a deeping state with its
respective enable bit set.

The ACPI driver accesses GPE registers through byte accesses (regardless of their length).

4.7.4.1.2.2 General-Purpose Event 1 Enable Register
Regi ster Location: <GPE1l_EN> System |/ O Space

Def aul t Val ue: 00h
Attribute: Read/ Wite
Si ze: GPE1_BLK LEN 2

The general-purpose event 1 enable register contains the general -purpose event enable. Each available enable
bit in this register corresponds to the bit with the same bit position in the GPE1 _STSregister. The enable bits
work similar to how the enable bits in the fixed-event registers are defined: When the enable bit is set, a set
status bit in the corresponding status bit will generate an SCI bit.

The ACPI driver accesses GPE registers through byte accesses (regardless of their length).

4.7.4.2 Example Generic Devices
This section points out generic devices with specific ACPI driver support.

4.7.4.2.1 Lid Switch

The Lid switch is an optional feature present in most “clam shell” style mobile computers. It can be used by the
operating system as policy input for sleeping the system, or for waking up the system from a sleeping state. If
used, then the OEM needs to define the lid switch as a device with an _HID object value of “_PNPOCOD”,
which identifies this device as the lid switch to the ACPI driver. The Lid device needs to contain a control
method that returnsits status. The Lid event handler AML code re-configures the lid hardware (if it needs to) to
generate an event in the other direction, clear the status, and then notify the OS of the event.

Example hardware and ASL code is shown below for such adesign.

80

N2

8 ms E
O O Debounce
Momentary Normally LID_STS
Open push button

LID_POL

Figure 4-18 Example Generic Address Space Lid Switch Logic

Thislogic will set the Lid status bit when the button is pressed or released (depending on the LID_POL hit).
The ASL code defines the following:
An operational region where the lid polarity resides in address space.
System address space in registers 0x201.
A field operator to allow AML code to access this bit:
Polarity control bit (LID_POL) is called LPOL and is accessed at 0x201.0.

Creates adevice caled “\LID” with the following:
A Plug and Play identifier “PNPOCOD” that associates the ACPI driver with this object.
Defines an object that specifies a changein the lid's status bit can wake the system from the 4
deep state and from all higher deep states (S1, S2, or S3).

Thelid switch event handler that does the following:
Definesthe lid’ s status bit (LID_STS) as a child of the general-purpose event O register bit 1.
Defines the event handler for the lid (only event handler on this status bit) that does the following:

Hlipsthe polarity of the LPOL bit (to cause the event to be generated on the opposite
condition).
Generates a notify to the operating system that does the following:

Passes the \LID object.

Indicates a device specific event (notify value 0x80).

/1 Define a Lid switch
Oper ati onRegi on(\ Pho, System O, 0x201, 0x1)
Fi el d(\ Pho, ByteAcc, NoLock, Preserve) {
LPOL, 1 /1 Lid polarity control bit

}

Devi ce(_SB. LI D){
Name(_HI D, El SAI D(“PNPOCOD"))
Met hod(_LI D) {Ret urn(LPQL) }
Name(_PRW Package(2){
1 /1 bit 1 of GPE to enable Lid wakeup

\ _S4} /1 can wakeup from S4 state
)
}
Scope(\ _GPE) { /1 Root |evel event handlers
Met hod(_LO01){ /'l uses bit 1 of GPO_STS register

Not (LPOL, LPQL) /1l Flipthe lid polarity bit
Notify(LID, 0x80) // Notify OS of event

}
}

At the top level, the generic events in the GPEx_STS register are:
Embedded controller interrupt, which contains two query events: one for AC detection and one for docking
(the docking query event has a child interrupt status bit in the docking chip).
Ring indicate status (used for awakening the system).
Lid status.

The embedded controller event status bit (EC_STYS) is used to indicate that one of two query events are active.

81

A gquery event is generated when the AC# signal is asserted. The embedded controller returns a query value
of 34 (any byte number can be used) upon a query command in response to this event; the ACPI driver will
then schedule for execution the control method associated with query value 34.

Another query event isfor the docking chip which generates a docking event. In this case, the embedded
controller will return a query value of 35 upon a query command from system software responding to an
SCI from the embedded controller. The ACPI driver will then schedule the control method associated with
the query value of 35 to be executed, which services the docking event.

For each of the status bitsin the GPEx_STS register, there is a corresponding enable bit in the GPEx_EN
register. Note that the child status bits do not necessarily need enable bits (see the DOCK _STS hit).

Thelid logic contains a control bit to determine if its status bit is set when the LID is open (LID_POL isHIGH
and LID isHIGH) or closed (LID_POL isLOW and LID isLOW). This control bit resides in generic 1/0O space
(in this case, bit 2 of system 1/0O space 33h) and would be manipulated with a control method associated with
the lid object.

Aswith fixed events, the ACPI driver will clear the status bits in the GPEXx register blocks. However, AML
code isrequired to clear all sibling status bits in generic space.

Generic features are controlled by OEM supplied AML code. ACPI provides both an event and control model
for development of these features. The ACPI specification aso provides specific control methods for notifying
the OS of certain power management and Plug and Play events. Review section 5 to understand what types of
hardware hooks are required to support the different types of subsystems. The following isalist of features
supported by APCI, however thelist is not intended to be complete or comprehensive:

Device msemon/ej ection (e.g. docking, device bay, A/C adapter)

Batteries®

Platform thermal subsystem

Turning on/off power resources

Mobile lid interface

Embedded controller

System indicators

OEM -specific wake-up events

Plug and Play configuration

4.7.4.2.2 Embedded Controller
ACPI provides a standard interface that enables AML code to define and access generic logic in “ embedded
controller space”. This supports current computer models where much of the value added hardware is
contained within the embedded controller while allowing the AML code to access this hardware in an abstracted
fashion.
The embedded controller is defined as a device and must contain a set number of control methods:
_HID with avalue of PNPOAQ9 to associate this device with the ACPI’ s embedded controller’s driver.
_CRS to return the resources being consumed by the embedded controller.
_GPE that returns the general purpose event bit that this embedded controller iswired to.
Additionally the embedded controller can support up to 255 generic events per embedded controller, referred to
as query events. These query event handles are defined within the embedded controller’ s device as control
methods. An example of defining an embedded controller device is shown below:

Devi ce(\ _ECO) {
/!l PnP ID
Nanme(_HI D, ElI SAl D(PNPOC09))
/!l Returns the “Current Resources” of EC
Name(_CRS, Buffer(){ 0x4B, 0x62, 0, 1, 0x4B,
0x66, 0, 1, 0x79, 0 })
/1 Define that the EC SCl is bit 0 of the GP_STS register

® ACPI OS's assume the use of the Duracell/Intel defined standard for batteries, called the “ Smart Battery
Specification” (SBS). ACPI provides a set of control methods for use by OEMs that use a proprietary “control

82

Name(_GPE, 0) /1 enbedded controller is wired to bit 0 of GPE

Oper ati onRegi on(\ ECO, EnbeddedControl, 0, OxFF)
Fi el d(\ ECO, AnyAcc, Lock, Preserve) {
/1 Field definitions

}
Met hod(Q00){. . }
Met hod(QFF) {. . }
}
For more information on the embedded controller see section 13.

4.7.4.2.3 Fan

ACPI has adevice driver to control fans (active cooling devices) in platforms. A fan is defined as a device with
the Plug and Play 1D of “PNPOCOB”. It should then contain alist power resources used to control the FAN.
For more information, see section 10.

5. ACPI Software Programming Model

ACPI defines a hardware register interface that an ACPI-compatible OS uses to control core power
management features of a machine, as described in section 4. ACPI aso provides an abstract interface for
controlling the power management and configuration of an ACPI system. Finally, ACPI defines an interface
between an ACPI-compatible OS and the system BIOS.

To give hardware vendors flexibility in choosing their implementation, ACPI uses tables to describe system
information, features, and methods for controlling those features. These tables list devices on the system board
or devices that cannot be detected or power managed using some other hardware standard, plus their capabilities
as described in section 3. They also list system capabilities such as the sleeping power states supported, a
description of the power planes and clock sources available in the system, batteries, system indicator lights, and
so on. This enables the ACPI driver to control system devices without needing to know how the system controls
are implemented.
Topics covered in this section are:

The ACPI system description table architecture is defined, and the role of OEM-provided definition blocks

in that architectureis discussed.

The concept of ACPI name space is discussed.

5.1 Overview of the System Description Table Architecture

The Root System Description Pointer structure is located in the system’s memory address space and is setup by
the BIOS. This structure contains the address of the Root System Description Table, which references other
Description Tables that provide data to the OS, supplying it with knowledge of the base system’s
implementation and configuration (see Figure 5-1).

In low memory space on

16 byte boundry Located in memory space (0 - 4G)
A A
(1 ()|
Root System Root System
Description Pointe Description Table
RSD PTR
Pointer

Entry

contents contents

Entry

Entry

Figure 5-1 Root System Description Pointer and Table

All description tables start with identical headers. The primary purpose of the description tables is to define for
the OS various industry-standard implementation details. Such definitions enable various portions of these
implementations to be flexible in hardware requirements and design, yet still provide the OS with the
knowledge it needs to control hardware directly.

The Root System Description Table (“RSDT”) points to other tables in memory. Always the first table, it points
to the Fixed ACPI Description table (“FACP’). The data within this table includes various fixed-length entries
that describe the fixed ACPI features of the hardware. The FACP table always refers to the Differentiated
System Description Table (“DSDT”), which contains information and descriptions for various system features.
The relationships between these tables is shown in Figure 5-2.

Intel Microsoft Toshiba

84

Fixed ACPI Differentiated System Firmware ACPI
Description Table Description Table Control Structure
FACS
wake vector
shared lock
Static info :
FIRM Differentiated |
DSDT Definition |
BLKs Block |
I
Software |
Hardware
GPx_BLK
OEM Specific
PM2x_BLK
PM1x_BLK
Located in
port space
L J

Y
Device 10
Device Memory
PCI configuration
Embedded Controller space

Figure 5-2 Description Table Structures

The OS searches the following physical ranges on 16-byte boundaries for a Root System Description Pointer
structure. This structure is located by searching the areas listed below for avalid signature and checksum match:
Thefirst 1K of the Extended BIOS Data Area (EBDA). For EISA or MCA systems, the EBDA can be

found in the two-byte location 40:0Eh on the BIOS data area.
In the BIOS read-only memory space between OEO000h and OFFFFFh.

When the OS locates the structure, it looks at the physical system address for the Root Description Table. The
Root System Description Table starts with the signature ‘RSDT’ and contains one or more physical pointers to
other System Description Tables that provide various information on other standards defined on the current
system. As shown in Figure 5-1, there is always a physical address in the Root System Description Table for the
Fixed ACPI Description table (FACP).

When the OS follows a physical pointer to another table, it examines each table for a known signature. Based
on the signature, the OS can then interpret the implementation-specific data within the description table.

The purpose of the FACP is to define various static system information regarding power management. The
Fixed ACPI Description Table starts with the “FACP” signature. The FACP describes the implementation and
configuration details of the ACPI hardware registers on the platform.

For a specification of the ACPI Hardware Register Blocks (PM1a EVT_BLK, PM1b EVT_BLK,

PMla CNT_BLK, PM1b CNT_BLK, PM2 CNT _BLK,PM_TMR_BLK, GPO BLK, GP1 BLK, and one or
more P_BLKS), see section 4.7. The PM1a EVT_BLK, PM1b_ EVT BLK, PMla CNT_BLK,

PM1b CNT_BLK, PM2 _CNT_BLK, and PM_TMR_BLK blocks are for controlling low-level ACPI system
functions.

The GPO_BLK and GP1_BLK blocks provide the foundation for an interrupt processing model for Control
Methods. The P_BLK blocks are for controlling processor features.

85

Besides ACPI Hardware Register implementation information, the FACP also contains a physical pointer to the
Differentiated System Description Table (*“DSDT”). The DSDT contains a Definition Block named the
Differentiated Definition Block for the DSDT that contains implementation and configuration information the
OS can use to perform power management, thermal management, or Plug and Play functionality that goes
beyond the information described by the ACPI hardware registers.

A Definition Block contains information about hardware implementation detailsin the form of a hierarchical
name space, data, and control methods encoded in AML. The OS “loads’ or “unloads’ an entire definition
block asalogical unit. The Differentiated Definition Block is always loaded by the OS at boot time and cannot
be unloaded.

Definition Blocks can either define new system attributes or, in some cases, build on prior definitions. A
Definition Block can be loaded from system memory address space. One use of a Definition Block isto
describe and distribute platform version changes.

Definition blocks enable wide variations of hardware platform implementations to be described to the ACPI-
compatible OS while confining the variations to reasonable boundaries. Definition blocks enable smple
platform implementations to be expressed by using a few well-defined object names. In theory, it might be
possible to define a PCl configuration space-like access method within a Definition Block, by building it from
1O space, but that is not the goal of the Definition Block specification. Such a space is usually defined asa
“built in” operator.

Some operators perform simple functions and others encompass complex functions. The power of the
Definition Block comes from its ability to allow these operations to be glued together in numerous ways, to
provide functionality to the OS. The operators present are intended to allow many useful hardware designs to be
ACPI-expressed, not to alow all hardware design to be expressed.

5.2 Description Table Specifications
This section specifies the structure of the system description tables:
Root System Description Pointer
System Description Table Header
Root System Description Table
Fixed ACPI Description Table
Firmware ACPI Control Structure
Differentiated System Description Table
Secondary System Description Table
Persistent System Description Table
Multiple APIC Description Table
Smart Battery Table

All numeric values from the above tables, blocks, and structures are always encoded in little endian format.
Signature values are stored as fixed-length strings.

5.2.1 Reserved Bits and Fields

For future expansion, all dataitems marked as reserved in this specification have strict meanings. This section
lists software requirements for reserved fields. Note that the list contains terms such as ACPI tables and AML
code defined later in this section of the specification.

5.2.1.1 Reserved Bits and Software Components
OEM implementations of software and AML code return the bit value of O for all reserved bitsin ACPI
tables or in other software values, such as resource descriptors.
ACPI driver implementations, for all reserved bitsin ACPI tables and in other software values:
Ignore all reserved bits that are read.
Preserve reserved bit values of read/write data items (for example, the driver writes back reserved bit
valuesit reads).
Write zeros to reserved bitsin write-only data items.

86

5.2.1.2 Reserved Values and Software Components
OEM implementations of software and AML code return only defined values and do not return reserved
values.
ACPI driver implementations write only defined values and do not write reserved values.

5.2.1.3 Reserved Hardware Bits and Software Components
Software ignores all reserved bits read from hardware enable or status registers.
Software writes zero to all reserved bits in hardware enable registers.
Software ignores all reserved bits read from hardware control and status registers.
Software preserves the value of all reserved bits in hardware control registers by writing back read values.

5.2.1.4 Ignored Hardware Bits and Software Components
Software handles ignored bitsin ACPI hardware registers the same way it handles reserved bitsin these
same types of registers.

5.2.2 Root System Description Pointer
The OS searches the following physical ranges on 16-byte boundaries for a Root System Description Pointer.
Thistable islocated by searching the areas listed below for avalid Root System Description Pointer structure
signature and checksum match. When the operating system locates the Root System Description Pointer
structure, it looks at the supplied physical system address for the Root System Description Table:
Thefirst 1K of the Extended BIOS Data Area (EBDA). For EISA or MCA systems, the EBDA can be
found in the two-byte location 40:0Eh on the BIOS data area.
In the BIOS read-only memory space between OEO000h and OFFFFFh.

Table 5-1 Root System Description Pointer Structure

Field Byte Byte Description
Length | Offset

Signature 8 0 “RSD PTR” (Note that this signature must contain atrailing
blank character.)

Checksum 1 8 The entire Root System Description Pointer structure, including
the checksum field, must add to zero to be considered valid.

OEMID 6 9 An OEM-supplied string that identifies the OEM.

Reserved 1 15 Must be zero.

RsdtAddress 4 16 Physical address of the Root System Description Table.

5.2.3 System Description Table Header

All description tables begin with the structure shown in Table 5-1. The content of the system description tableis
determined by the Signature field. System Description Table signatures defined by this specification are listed
in Table 5-2.

Table 5-2 DESCRIPTION_HEADER Fields

Field Byte Byte Description
Length | Offset
Signature 4 0 The ASCII string representation of the table identifier. . Note

that if the OS finds asignature in atable that is not listed in
Table 5-3, the OS ignores the entire table (it is not loaded into
ACPI name space); the OS ignores the table even though the
values in the Length and Checksum fields are correct.

87

Field Byte Byte Description
Length | Offset
Length 4 4 The length of the table, in bytes, including the header, starting
from offset 0. Thisfield is used to record the size of the entire
table.
Revision 1 8 The revision of the structure corresponding to the signature field

for thistable. Larger revision numbers are backwards
compatible to lower revision numbers with the same signature.

Checksum 1 9 The entire table, including the checksum field, must add to zero
to be considered valid.

OEMID 6 10 An OEM-supplied string that identifies the OEM.

OEM TableID 8 16 An OEM-supplied string that the OEM uses to identify the

particular datatable. Thisfield is particularly useful when
defining a definition block to distinguish definition block
functions. The OEM assigns each dissimilar table a new OEM

Table ID.

OEM Revision 4 24 An OEM-supplied revision number. Larger numbers are
assumed to be newer revisions.

Creator 1D 4 28 Vendor ID of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, thisisthe ID for the ASL
Compiler.

Creator Revision | 4 32 Revision of utility that created the table. For the DSDT, RSDT,

SSDT, PSDT tables, thisistherevision for the ASL Compiler.

For OEMSs, good design practices will ensure consistency when assigning OEMID and OEM Table ID fieldsin
any table. Theintent of these fieldsisto allow for abinary control system that support services can use.
Because many support functions can be automated, it is useful when atool can programmatically determine
which table release is a compatible and more recent revision of a prior table on the same OEMID and OEM
Table ID.

Table 5-3 contains the Description Table signatures defined by this specification.
Table 5-3 DESCRIPTION_HEADER Signatures

Signature Description

“APIC” Multiple APIC Description Table. See section 5.2.8.
“DSDT” Differentiated System Description Table. See section 5.2.7.1.
"FACP’ Fixed ACPI Description Table. See section 5.2.5.

“FACS’ Firmware ACPI Control Structure. See section 5.2.6.
“PSDT” Persistent System Description Table. See section 5.2.7.3.
“RSDT” Root System Description Table. See section 5.2.4.

“SSDT” Secondary System Description Table. See section 5.2.7.2.
“SBST” Smart Battery Specification Table. See section 5.2.9

5.2.4 Root System Description Table

The OS locates that Root System Description Table by following the pointer in the Root System Description
Pointer structure. The Root System Description Table, shown in Table 5-4, starts with the signature ‘RSDT,’
followed by an array of physical pointers to other System Description Tables that provide various information
on other standards defined on the current system. The OS examines each table for a known signature. Based on
the signature, the OS can then interpret the implementation-specific data within the table.

Table 5-4 Root System Description Table Fields

Field Byte Byte Description
Length | Offset

Header

88

Field Byte Byte Description
Length | Offset

Signature 4 0 ‘RSDT’. Signature for the Root System Description Table.

Length 4 4 Length, in bytes, of the entire Root System Description
Table. The length implies the number of Entry fields at the
end of the table.

Revision 1 8 1

Checksum 1 9 Entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM TableID 8 16 For the Root System Description Table, thetable ID isthe
manufacture model ID.

OEM Revision 4 24 OEM revision of RSDT table for supplied OEM Table ID.

Creator ID 4 28 Vendor ID of utility that created the table. For the DSDT,
RSDT, SSDT, PSDT tables, thisisthe ID for the ASL
Compiler.

Creator Revision 4 32 Revision of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, thisisthe revision for the
ASL Compiler.

Entry 4*n 36 An array of physical addresses that point to other

DESCRIPTION_HEADERSs. The OS assumes t least the
DESCRIPTION_HEADER is addressable, and then can
further address the table based upon its Length field.

5.2.5 Fixed ACPI Description Table

The Fixed ACPI Description Table defines various fixed ACPI information vital to an ACPI-compatible OS,
such as the base address for the following hardware registers blocks: PM1a EVT_BLK, PM1b EVT BLK,
PMla CNT_BLK, PM1b CNT_BLK, PM2_CNT_BLK, PM_TMP_BLK, GPEQO BLK, and GPE1 BLK.

The Fixed ACPI Description Table aso has a pointer to the Differentiated System Description Table that
contains the Differentiated Definition Block, which in turn provides variable information to an ACPI-
compatible OS concerning the base system design.

Table 5-5 Fixed ACPI Description Table Format

Field Byte Byte Description
Length | Offset
Header
Signature 4 0 ‘FACP . Signature for the Fixed ACPI Description Table.
Length 4 4 Length, in bytes, of the entire Fixed ACPI Description
Table.
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID.
OEM TableID 8 16 For the Fixed ACPI Description Table, thetable ID isthe
manufacture model ID.
OEM Revision 4 24 OEM revision of FACP table for supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, thisisthe ID for the ASL
Compiler.
Creator Revision 4 32 Revision of utility that created the table. For the DSDT,
RSDT, SSDT, PSDT tables, thisis the revision for the ASL
Compiler.

Field

Byte
Length

Byte
Offset

Description

FIRMWARE_CTRL

36

Physical memory address (0-4 GB) of the Firmware ACPI
Control Structure, where the OS and Firmware exchange
control information. See section 5.2.6 for a description of
the Firmware ACPI Control Structure.

DSDT

40

Physical memory address (0-4 GB) of the Differentiated
System Description Table.

INT_MODEL

The interrupt mode of the ACPI description. The SCI vector
and Plug and Play interrupt information assume some
interrupt controller implementation model for which the OS
must also provide support. This value represents the
interrupt model being assumed in the ACPI description of
the OS. This value therefore represents the interrupt model.
Thisvalueis not alowed to change for a given machine,
even across reboots.

0 Dual PIC, industry standard PC-AT type
implementation with 0-15 IRQs with EISA edge-
level-control register.

1 Multiple APIC. Local processor APICs with one or
more |O APICs as defined by the Multiple APIC
Description Table.

>1 Reserved.

Reserved

45

SCI_INT

46

Interrupt pin the SCI interrupt iswired to in 8259 mode.
The OSisrequired to treat the ACPI SCI interrupt asa
sharable, level, active low interrupt

SMI_CMD

48

System port address of the SM1 Command Port. During
ACPI OSinitialization, the OS can determine that the ACPI
hardware registers are owned by SMI (by way of the
SCI_EN bit), in which case the ACPI OS issues the
SMI_DISABLE command to the SMI_CMD port. The
SCI_EN bit effectively tracks the ownership of the ACPI
hardware registers. The OS issues commands to the
SMI_CMD port synchronously from the boot processor.

ACPI_ENABLE

52

The value to write to SM1_CMD to disable SMI ownership
of the ACPI hardware registers. The last action SMI doesto
relinquish ownership is to set the SCI_EN hit. The OS
initialization process will synchronously wait for the
ownership transfer to complete, so the ACPI system
releases SMI ownership astimely as possible.

ACPI_DISABLE

53

The value to writeto SMI_CMD to re-enable SMI
ownership of the ACPI hardware registers. This can only be
done when ownership was originally acquired from SMI by
the OS using ACPI_ENABLE. An OS can hand ownership
back to SMI by relinquishing use to the ACPI hardware
registers, masking off all SCI interrupts, clearing the
SCI_EN bit and then writing ACPI_DISABLE to the
SMI_CMD port from the boot processor.

S4BIOS REQ

The value to write to SMI_CMD to enter the S4BIOS state.
The $4BIOS state provides an alternate way to enter the S4
state where the firmware saves and restores the memory
context. A value of zero in 4BIOS F indicates

HABIOS REQ is not supported. (See Table 5-8.)

Reserved

55

89

90

Field

Byte
Length

Byte
Offset

Description

PM1a EVT BLK

56

System port address of the Power Management 1a Event
Register Block. See section 4.7.3.1 for a hardware
description layout of thisregister block. Thisisarequired
field.

PM1b_EVT BLK

60

System port address of the Power Management 1b Event
Register Block. See section 4.7.3.1 for a hardware
description layout of thisregister block. Thisfield is
optional; if thisregister block is not supported, thisfield
contains zero.

PM1a CNT_BLK

System port address of the Power Management 1a Control
Register Block. See section 4.7.3.2 for a hardware
description layout of thisregister block. Thisisarequired
field.

PM1b_CNT_BLK

68

System port address of the Power Management 1b Control
Register Block. See section 4.7.3.2 for a hardware
description layout of thisregister block. Thisfield is
optional; if thisregister block is not supported, thisfield
contains zero.

PM2_CNT_BLK

72

System port address of the Power Management 2 Control
Register Block. See section 4.7.3.4 for a hardware
description layout of thisregister block. Thisfield is
optional; if thisregister block is not supported, thisfield
contains zero.

PM_TMR_BLK

76

System power address of the Power Management Timer
Control Register Block. See section 4.7.3.3 for a hardware
description layout of thisregister block. Thisisarequired
field.

GPEO_BLK

80

System port address of Generic Purpose Event O Register
Block. See section 4.7.4.3 for a hardware description of this
register block. Thisis an optional field; if this register block
is not supported, thisfield contains zero.

GPE1 _BLK

System port address of Generic Purpose Event 1 Register
Block. See section 4.7.4.3 for a hardware description of this
register block. Thisis an optional field; if this register block
is not supported, thisfield contains zero.

PML EVT _LEN

88

Number of bytesin port address space decoded by
PM1la EVT_BLK and, if supported, PM1b_EVT_BLK.
Thisvalueiss 4.

PML CNT_LEN

89

Number of bytesin port address space decoded by
PM1a CNT_BLK and, if supported, PM1b CNT_BLK.
Thisvalueis3 1.

PM2_CNT_LEN

90

Number of bytesin port address space decoded by
PM2_CNT _BLK. Thisvdueis? 1.

PM_TM_LEN

91

Number of bytesin port address space decoded by
PM_TM_BLK. Thisvdueis? 4.

GPEO_BLK_LEN

92

Number of bytesin port address space decoded by
GPEQO BLK. The value is a hon-negative multiple of 2.

GPEL BLK_LEN

93

Number of bytesin port address space decoded by
GPE1 BLK. The valueis a hon-negative multiple of 2.

GPE1_BASE

94

Offset within the ACPI general-purpose event model where
GPEL based events start.

Reserved

95

Field

Byte
Length

Byte
Offset

Description

P LVL2 LAT

96

The worst-case hardware latency, in microseconds, to enter
and exit a C2 state. A value > 100 indicates the system does
not support a C2 state.

P LVL3 LAT

98

The worst-case hardware latency, in microseconds, to enter
and exit a C3 state. A value > 1000 indicates the system
does not support a C3 state.

FLUSH_SIZE

100

If WBINVD=0, the value of thisfield isthe number of
flush strides that need to be read (using cacheable
addresses) to completely flush dirty lines from any
processor’ s memory caches. Note that the valuein
FLUSH_STRIDE istypically the smallest cache line width
on any of the processor’ s caches (for more information, see
the FLUSH_STRIDE field definition). If the system does
not support a method for flushing the processor’ s caches,
then FLUSH_SIZE and WBINVD are set to zero. Note that
this method of flushing the processor caches has
limitations, and WBINVD=1 is the preferred way to flush
the processors caches. In particular, it is known that at least
Intel Pentium Pro Processor, MP C3 support, 3rd level
victim caches require WBINV D=1 support. Thisvalueis
typically at least 2 times the cache size. The maximum
allowed value for FLUSH_SIZE multiplied by
FLUSH_STRIDE is2 MB for atypical maximum
supported cache size of 1 MB. Larger cache sizes are
supported using WBINVD=1.

Thisvalueisignored if WBINVD=1.

FLUSH_STRIDE

102

If WBINVD=0, the value of thisfield is the cache line
width, in bytes, of the processor’s memory caches. This
value istypically the smallest cache line width on any of
the processor’ s caches. For more information, see the
description of the FLUSH_SIZE field.
Thisvalueisignored if WBINVD=1.

DUTY_OFFSET

104

The zero-based index of where the processor’s duty cycle
setting is within the processor’sP_CNT register.

DUTY_WIDTH

105

The bit width of the processor’s duty cycle setting value in
the P_CNT register. Each processor’s duty cycle setting
allows the software to select anominal processor frequency
below its absolute frequency as defined by:

THTL EN=1
BE* DC/ (2DUTY7WIDTH)
where:

BF = Base frequency

DC = Duty cycle setting

When THTL_EN is 0, the processor runs at its absolute BF.
A DUTY_WIDTH vaue of 0 indicates that processor duty
cycleis not supported and the processor continuously runs
at its base frequency.

91

92

Field

Byte
Length

Byte
Offset

Description

DAY_ALRM

106

The RTC CMOS RAM index to the day-of-month alarm
value. If thisfield contains a zero, then the RTC day of the
month alarm feature is not supported. If thisfield has a non-
zero value, then thisfield contains an index into RTC RAM
space that the OS can use to program the day of the month
alarm. See section 4.7.2.4 for a description of how the
hardware works.

MON_ALRM

107

The RTC CMOS RAM index to the month of year alarm
value. If thisfield contains a zero, then the RTC month of
the year alarm feature is not supported. If thisfield has a
non-zero value, then thisfield contains an index into RTC
RAM space that the OS can use to program the month of
the year alarm. If this feature is supported, then the
DAY _ ALRM feature must be supported also.

CENTURY

108

The RTC CMOS RAM index to the century of data value
(hundred and thousand year decimals). If this field contains
azero, then the RTC centenary feature is not supported. If
this field has a non-zero value, then thisfield contains an
index into RTC RAM space that the OS can use to program
the centenary field.

Reserved

109

Flags

112

Fixed feature flags. See Table 5-6 for a description of this
field.

Table 5-6 Fixed ACPI Description Table Fixed Feature Flags

FACP - Flag

Bit
length

Bit
offset

Description

WBINVD

1

0

WBINVD is correctly supported. Signifies that the
WBINVD instruction correctly flushes the processor
caches, maintains memory coherency, and upon completion
of theinstruction, all caches for the current processor
contain no cached data other than what the OS references
and allows to be cached. If thisflag is not set, the ACPI OS
isresponsible for disabling all ACPI features that need this
function.

WBINVD_FLUSH

If set, indicates that the hardware flushes all caches on the
WBINVD instruction and maintains memory coherency,
but does not guarantee the caches are invalidated. This
provides the complete semantics of the WBINVD
instruction, and provides enough to support the system
deeping states. Note that on Intel Pentium Pro Processor
machines, the WBINVD instruction must flush and
invalidate the caches. If neither of the WBINVD flags are
set, the system will require FLUSH_SIZE and
FLUSH_STRIDE to support sleeping states. If the FLUSH
parameters are a so not supported, the machine cannot
support sleeping states S1, S2, or S3.

PROC_C1

A one indicates that the C1 power state is supported on all
processors. A system can support more Cx states, but is
required to at least support the C1 power state.

93

FACP - Flag

Bit
length

Bit
offset

Description

PLVL2 UP

A zero indicates that the C2 power state is configured to
only work on a UP system. A oneindicates that the C2
power state is configured to work on a UP or MP system.

PWR_BUTTON

A zero indicates the power button is handled as a fixed
feature programming model; a one indicates the power
button is handled as a control method device. If the system
does not have a power button, this value would be “1” and
no sleep button device would be present

SLP_BUTTON

A zero indicates the sleep button is handled as afixed
feature programming model; a one indicates the power
button is handled as a control method device.

If the system does not have a leep button, this value would
be 1" and no sleep button device would be present.

FIX_RTC

A zero indicates the RTC wake-up statusis supported in
fixed register space; a one indicates the RTC wake-up
status is not supported in fixed register space.

RTC 4

Indicates whether the RTC alarm function can wake the
system from the $4 state. The RTC must be able to wake
the system from an S1, S2, or S3 deep state. The RTC
alarm can optionally support waking the system from the
A state, asindicated by this value.

TMR_VAL_EXT

A zero indicates TMR_VAL isimplemented as a 24-hit
value. A oneindicates TMR_VAL isimplemented as a 32-
bit value. The TMR_STS hit is set when the most
significant bit of the TMR_VAL toggles.

DCK_CAP

A zero indicates that the system cannot support docking. A
one indicates that the system can support docking. Note that
this flag does not indicate whether or not a docking station
iscurrently present; it only indicates that the system is
capable of docking.

Reserved

22

5.2.6 Firmware ACPI Control Structure

The Firmware ACPI Control Structure (FACS) is a structure in read/write memory that the BIOS has set aside
for ACPI usage. This structure is passed to an ACPI-compatible OS using the Fixed ACPI Description Table.
For more information about the Fixed ACPI Description Table FIRMWARE_CTRL field, see section 5.2.5.
The BIOS aligns the FACS on a 64-byte boundary anywhere within the 0-4G memory address space. The
memory where the FACS structure resides must not be reported as system memory in the system’s memory
map. For example, the E820 memory reporting interface would report the region as AddressRangeReserved.
For more information about the E820 memory reporting interface, see section 14.1.

Table 5-7 Firmware ACPI Control Structure

Field Byte Byte Description
Length | Offset
Signature 4 0 ‘FACS
Length 4 4 Length, in bytes, of the entire Firmware ACPI Control

Structure. Thisvalue is 64 bytes or larger.

94

Field

Byte
Length

Byte
Offset

Description

Hardware Signature

The value of the system’s “hardware signature” at last boot.
Thisvalueis calculated by the BIOS on a best effort basis
to indicate the base hardware configuration of the system
such that different base hardware configurations can have
different hardware signature values. The OS uses this
information in waking from an $4 state, by comparing the
current hardware signature to the signature values saved in
the non-volatile sleep image. If the values are not the same,
the OS assumes that the saved non-volatile image isfrom a
different hardware configuration and can not be restored.

Firmware Waking
Vector

12

L ocation into which the ACPI OS puts its waking vector.
Before transitioning the system into a global sleeping state,
the OSfillsin this vector with the physical memory address
of an OS-specific wake function. During POST, the BIOS
checks thisvalue and if it is non-zero, transfers control to
the specified address.
On PCs, the wake function addressis in memory below
1IMB and the control is transferred while in real mode. The
OS wake function restores the processors context.
For PC-1A platforms, the following example shows the
relationship between the physical address in the Firmware
Waking Vector and the real mode address the BIOS jumps
to. If, for example, the physical address is 0x12345, then
the BIOS must jump to real mode address 0x1234:0x0005.
In general thisrelationship is

Real-mode address =

Physical address>>4 : Physical address & 0x000F
Note that on PC-1A platforms, A20 must be enabled when
the BIOS jumps to the real mode address derived from the
physical address stored in the Firmware Waking V ector.

Global Lock

16

The Global Lock is used to synchronize access to shared
hardware resources between the OS environment and the
SMI environment. Thislock is owned exclusively by either
the OS or the firmware at any one time. When ownership of
the lock is attempted, it might be busy, in which case the
requesting environment exits and waits for the signal that
the lock has been released. For example, the Global Lock
can be used to protect an embedded controller interface
such that only the OS or the firmware will access the
embedded controller interface at any one time. See section
5.2.6.1 for more information on acquiring and releasing the
Global Lock.

Flags

4

20

Firmware control structure flags. See Table 5-8 for a
description of thisfield.

Reserved

40

24

Thisvaueis zero

Table 5-8 Firmware Control Structure Feature Flags

FACS - Flag

Bit
Length

Bit
Offset

Description

S4BIOS F

1

0

Indicates whether the platform supports 4BIOS_REQ. If
SHABIOS_REQ is not supported, the OS must be able to save
and restore the memory state in order to use the 4 state.

95

FACS - Flag Bit Bit Description
Length | Offset
Reserved 31 1 Thevalueis zero.

5.2.6.1 Global Lock

The Global Lock isa DWORD in read/write memory in the Firmware ACPI Control Structure, accessed and
updated by both the operating system environment and SMI environment in a defined manner to provide an
exclusive lock. By convention, thislock is used to ensure that while one environment is accessing some
hardware, the other environment is not. By this convention, when ownership of the lock fails becauseit is
owned by the other environment, the requesting environment sets a“pending” state within the lock, exitsits
attempt to acquire the lock, and waits for the owning environment to signal that the lock has been released
before attempting to acquire the lock again. When releasing the lock, if the pending bit in the lock is set after
thelock isreleased, asignal is sent using an inter-environment interrupt mechanism to the other environment to
inform it that the lock has been released. During interrupt handling for the “lock released” event within the
corresponding environment, if the lock ownership is still desired an attempt to acquire the lock would be made.
If ownership is not acquired, then the environment must again set “pending” and wait for another “lock release’
signal.

Table 5-9 shows the encoding of the Global Lock DWORD in memory:
Table 5-9 Embedded Controller Arbitration Structure

Field Bit Bit Description
Length | Offset
Pending 1 0 Non-zero indicates that a request for ownership of the
Global Lock is pending.
Owned 1 1 Non-zero indicates that the Global Lock is Owned.
Reserved 30 2 Reserved for future use.

The following code sequence is used by both the OS and the firmware to acquire ownership of the Global Lock.
If non-zero is returned by the function, the caller has been granted ownership of the Global Lock and can
proceed. If zero isreturned by the function, the caller has not been granted ownership of the Global Lock, the
“pending” bit has been set, and the caller must wait until it issignaled by an interrupt event that the lock is
available before attempting to acquire access again.

Acqui r ed obal Lock:

nmv ecx, G obal Lock ; ecx = address of d obal Lock
acqlo: nmv eax, [ecx] ; Value to conpare agai nst

nmv edx, eax

and edx, not 1 ; Clear pending bit

bt s edx, 1 ; Check and set owner bit

adc edx, O ; if owned, set pending bit

; Attenpt to set new val ue
l ock cmpxchg dword ptr[ecx], edx

jnz short acql0 ;’ If not set, try again
cnp dl, 3 ; Was it acquired or narked pendi ng?
sbb eax, eax ; acquired = -1, pending = 0

ret

The following code sequence is used by the OS and the firmware to release ownership of the Global Lock. If
non-zero is returned, the caller must rai se the appropriate event to the other environment to signal that the
Globa Lock is now free. Depending on the environment this is done by setting the either the GBL_RLS or
BIOS _RL Swithin their respective hardware register spaces. This signal only occurs when the other
environment attempted to acquire ownership while the lock was owned.

96

Rel eased obal Lock:

nov ecx, G obal Lock ; ecx = address of d obal Lock
rel 10: nmv eax, [ecx] ; Value to conpare agai nst

nov edx, eax

and edx, not 03h ; clear owner and pending field

; Attenpt to set it
l ock cmpxchg dword ptr[ecx], edx
jnz short rel 10 ; If not set, try again

and eax, 1 ; Was pending set?
ret

Although using the Global Lock allows various hardware resources to be shared, it isimportant to note that its
usage when there is ownership contention could entail a significant amount of system overhead as well as waits
of an indeterminate amount of time to acquire ownership of the Global Lock. For this reason, implementations
should try to design the hardware to keep the required usage of the Global Lock to a minimum. The Global
Lock isrequired when alogical register in the hardware is shared. For example, if bit 0 isused by ACPI (the
OS) and bit 1 of the same register is used by SMI, then access to that register needs to be protected under the
global lock, ensuring that the register’ s contents do not change from underneath one environment while the
other is making changesto it. Similarly if the entire register is shared, as the case might be for the embedded
controller interface, access to the register needs to be protected under the global lock.

5.2.7 Definition Blocks

A Definition Block contains information about hardware implementation details in the form of objects that
contain data, AML code, or other objects. The top-level organization of thisinformation after a definition block
isloaded is name-tagged in a hierarchical name space.

The OS“loads’ or “unloads’ an entire definition block as alogical unit. As part of the Fixed ACPI Description
Table, the system provides the operating system with the Differentiated System Description Table that contains
the Differentiated Definition Block to be loaded at operating system initialization time and cannot be unloaded.

It is possible for this Definition Block to load other Definition Blocks, either statically or dynamically, where
they in turn can either define new system attributes or, in some cases, build on prior definitions. Although this
gives the hardware the ability to vary widely in implementation, it also confinesit to reasonable boundaries. In
some cases, the Definition Block format can describe only specific and well understood variances. In other
cases, it permits implementations to be expressible only by means of a specified set of “built in” operators. For
example, the Definition Block has built in operators for 10 space.

In theory, it might be possible to define something like PCI configuration space in a Definition Block by
building it from 10 space, but that is not the goal of the definition block. Such a space is usually defined asa
“built in” operator.

Some operators perform simple functions, and others encompass complex functions. The power of the
Definition block comes from its ability to allow these operations to be glued together in numerous ways, to
provide functionality to the OS.

The operators present are intended to allow many useful hardware designs to be easily expressed, not to alow
all hardware design to be expressed.

5.2.7.1 Differentiated System Description Table

The Differentiated System Description Table is part of the system fixed description in Definition Block format.
This Definition Block is like al other Definition Blocks, with the exception that it cannot be unloaded. See
section 5.2.7 for a description of Definition Blocks.

5.2.7.2 Secondary System Description Table

Secondary System Description Tables are a continuation of the Differentiated System Description Table. There
can be multiple Secondary System Description Tables present. After the Differentiated System Description
Table isloaded, each secondary description table with a uniqgue OEM Table ID is loaded. This allows the OEM

97

to provide the base support in one table and add smaller system options in other tables. For example, the OEM
might put dynamic object definitions into a secondary table such that the firmware can construct the dynamic
information at boot without needing to edit the static Differentiated System Description Table. A Secondary
System Description Table can only rely on the Differentiated System Description Table being loaded prior to
itself.

5.2.7.3 Persistent System Description Table

Persistent System Description Tables are similar to Secondary System Description Tables, except a Persistent
System Description Table can be saved by the OS and automatically loaded at every boot. This can be used in
the case where a Definition Block is loaded dynamically, for example based on the presence of some device,
and the Definition Block has the ahility to be loaded regardless of the presence of its device(s). In this case, by
marking the Definition Block as persistent, the operating system can load the definition prior to the device
appearing thus improving the load and enumeration time for the device when it does finally appear in the
system. In particular, dynamic docking station devices might want to design their Definition Blocks as
persistent.

5.2.8 Multiple APIC Description Table

The ACPI interrupt model describes al interrupts for the entire system in a uniform interrupt model
implementation. Supported interrupt models include the PC-AT compatible dual 8259 interrupt controller and,
for Intel processor-based systems, the Intel APIC interrupt controller. The choice of the interrupt model(s) to
support is up to the platform designer. The interrupt model cannot be dynamically changed by the system
firmware; the OS will choose which model to use and install support for that model at the time of installation. If
a platform supports both models, an OS will install support for one model or the other; it will not mix models.
Multi-boot capability is afeature in many modern OS's. This means that a system may have multiple OS's or
multiple instances of an OS installed at any onetime. Platform designers must allow for this.

This section provides the APIC Description Table information necessary to use an APIC implementation on
ACPI.

ACPI represents al interrupt vectors as “flat” values where each system vector has a different value. Therefore
to support APICs on the ACPI, each used INTI must be mapped to the global system vector value used by
ACPI. See Section 5.2.9 for adescription of Global System Interrupt Vectors.

Additional APIC support is required to handle various multi-processor functions that APIC implementations
might support (specifically, identifying each processor’slocal APIC ID).

Table 5-10 Multiple APIC Description Table Format

Field Byte Byte Description
Length | Offset
Header
Signature 4 0 ‘APIC’. Signature for the Multiple APIC Description Table.
Length 4 4 Length, in bytes, of the entire Multiple APIC Description
Table.
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID.
OEM TableID 8 16 For the Multiple APIC Description Table, thetable ID is
the manufacturer model ID.
OEM Revision 4 24 OEM revision of Multiple APIC Description Table for
supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, thisisthe ID for the ASL
Compiler.

98

Field Byte Byte Description
Length | Offset
Creator Revision 4 32 Revision of utility that created the table. For the DSDT,

RSDT, SSDT, and PSDT tables, thisisthe revision for the
ASL Compiler.

Loca APIC Address | 4 36 The physical address at which each processor can access its
local APIC.

Flags 4 40 Multiple APIC flags. See Table 5-11 for a description of
thisfield.

APIC Structure[n] 44 A list of APIC structures for thisimplementation. Thislist
will contain all of the IO APIC, Local APIC, Interrupt
Source Override and Local NMI Source structures needed
to support this platform. These structures are described in
the following sections.

Table 5-11 Multiple APIC Description Table Flags

Multiple APIC Flags | Bit Bit Description
Length | Offset
PCAT_COMPAT 1 0 A one indicates that the system also has a PC-AT

compatible dual-8259 setup. The 8259 vectors must be
disabled (that is, masked) when enabling the ACPI APIC
operation.

Reserved 31 1 Thisvalueis zero.

Immediately after the Flags value in the Multiple APIC Description Table isalist of APIC structures that
declare the APIC features of the machine. The first byte of each structure declares the type of that structure and
the second byte declares the length of that structure.

Table 5-12 APIC Structure Types

Value Description

0 Processor Local APIC

1 IO APIC

>1 Reserved. The OS sKips structures of the reserved type.

5.2.8.1 Processor Local APIC

When using the APIC interrupt model, each processor in the system is required to have a Processor Local APIC
record and an ACPI Processor object. Processor information cannot change during the life of an operating
system boot. For example, while in the sleeping state, processors are not allowed to be added, removed, nor can
their APIC ID or Flags change. When a processor is not present, the Processor Local APIC information is either
not reported or flagged as disabled.

Table 5-13 Processor Local APIC Structure

Field Byte Byte Description
Length | Offset
Type 1 0 0 - Processor Local APIC structure
Length 1 1 8
ACPI Processor ID 1 2 The Processorld for which this processor islisted in the

ACPI Processor declaration operator. For a definition of the
Processor operator, see section 15.2.3.3.1.15

APICID 1 3 The processor’slocal APIC ID.
Flags 4 4 Local APIC flags. See Table 5-14 for a description of this

field.

99

Table 5-14 Local APIC Flags

Local APIC - Flags | Bit Bit Description
Length | Offset
Enabled 1 0 If zero, this processor is unusable, and the operating system
support will not attempt to use it.
Reserved 31 1 Must be zero.

5.2.8.2 10 APIC

In an APIC implementation, there is one or more IO APICs. Each 10 APIC has a series of interrupt inputs,
called INTIx, where the value of x isfrom O to last INTI line on the specific |O APIC. The 10 APIC structure
declares where in the system vector space the IO APICs INTIs appear. Each |O APIC INTI has an exclusive
system vector mapping. Thereis one IO APIC structure per IO APIC in the system. For more information on
system vectors see Section 5.2.9.

Table 5-15 10 APIC Structure

Field Byte Byte Description
Length | Offset
Type 1 0 1- 10 APIC structure
Length 1 1 12
IOAPICID 1 2 ThelO APIC'sID.
Reserved 1 3 0
IO APIC Address 4 4 The physical address to access this 1O APIC. Each IO APIC

resides at a unique address.

oo

System Vector Base | 4 The system interrupt vector index where this 1O APIC’s
INTI lines start. The number of INTI linesis determined by

the 10 APIC' s Max Redir Entry register.

5.2.8.3 Platforms with APIC and Dual 8259 Support

Systems that support both APIC and dual 8259 interrupt models must map system interrupt vectors 0-15 to
8259 IRQs 0-15, except where Interrupt Source Overrides are provided. Another way of saying the same thing
isto say that 10 APCI INTI’s 0-15 must be mapped to system vectors 0-15 and have identical sources asthe
8259 IRQs 0-15 with the same system INTI number, unless overrides are used. This allows such a platform to
support ACPI OSes that use the APIC model and as well as those ACPI OSes that use the 8259 model (the OS
will only use one mode!; it will not mix models).

When an ACPI OS supports the 8259 model, it will assume that all interrupt descriptors reporting vectors 0-15
correspond to 8259 IRQs. In the 8259 model all vectors greater than 15 areignored. When an ACPI OS loads
APIC support, it will enable the APIC as described by the APIC specification. It will use all reported interrupt
vectors that fall within the limits of the INTIs defined by the IO APIC structures. (For more information on
hardware resource configuration see section 6)

5.2.8.3.1 Interrupt Source Overrides
Interrupt Source Overrides are required to describe variances between the standard dual 8259 interrupt defintion
and the platform’ simplementation.

It is assumed that the |SA interrupt vectors will, for the most part, be identity-mapped into the first ISA 10
APIC sources. Most existing APIC designs, however, will contain at least one exception to this. The following
tableis provided in order to describe these exceptions. It is not necessary to provide an Interrupt Source
Override for every 1SA interrupt. Only those that are not identity-mapped into the APIC interrupt space need be
described. Note: This specification only supports overriding 1SA interrupt sources.

100

For example, if your machine has the ISA Programmable Interrupt Timer (PIT) connected to I1SA 1RQ 0, but

that in APIC mode, it triggers IO APIC source 2, then you would need an Interrupt Source Override where the

source entry is*0’ and the Global System Interrupt Vector is‘2.

Table 5-16 Interrupt Source Override Structure

Field Byte Byte Description
Length | Offset
Type 1 0 2 - Interrupt Source Override
Length 1 1 10
Bus 1 2 0 — Constant, meaning | SA
Source 1 3 Bus-relative interrupt source (IRQ)
Globa System 4 4 The Global System Interrupt Vector that this bus-relative
Interrupt Vector interrupt source will trigger
Flags 2 8 MPS INTI flags. See Table 5-17 for a description of this
field.

The MPSINTI flagslisted in Table 5-17 are identical to the flags used in table 4-10 of the MPS version 1.4
specification. The Polarity flags are the PO bits and the Trigger Mode flags are the EL hits.

Table 5-17 MPS INTI Flags

Local APIC - Flags

Bit
Length

Bit
Offset

Description

Polarity

2

0

Polarity of the APIC I/O input signals:
00 = Conforms to the specifications of the bus
(for example, EISA is active-low for level-
triggered interrupts)
01 = Active high
10 = Reserved
11 = Active low

Trigger Mode

Trigger mode of the APIC /O Input signals
00 = Conforms to specifications of the bus
(for example, 1SA is edge-triggered)
01 = Edge-triggered
10 = Reserved
11 = Level Triggered

Reserved

12

4

Must be zero.

Interrupt Source Overrides are also required when an identity mapped vector has a non standard polarity.

Special Note:Y ou must have an I SA vector override entry for the IRQ mapped to the SCI interrupt if
thisIRQ is not identity mapped. Thisentry will override the valuein SCI_INT in FADT. For
example, if SCI is connected to IRQ 9 in PIC mode and IRQ 9 is connected to INTIN11 in APIC

mode, you should have 9in SCI_INT in the FADT and an I SA vector override entry mapping IRQ 9 to

INTIN1L.

5.2.8.3.2 Non-maskable Interrupt Sources (NMIs)
This structure alows a platform designer to stipulate which 10 APIC sources should be enabled as non-
maskable. Any source that is non-maskable will not be available for use by devices.

Table 5-18 Non-maskable Source Structure

Field Byte Byte Description

Length | Offset
Type 1 0 3 — Non-maskable Interrupt Source
Length 1 1 8

101

Field Byte Byte Description
Length | Offset
Flags 2 2 Same as MPS INTI flags
Globa System 4 4 The Global System Interrupt Vector that this NMI will
Interrupt Vector trigger.

5.2.8.3.3 Local APIC NMI

This structure describes which Local APIC INTI (LINTIN) pinis NMI connected to for each of the processors
in the system where such a connection exists. This information is needed by the OS to enable the appropriate
local APIC entry.

Each NMI LINTIN connection requires a separate Local APIC NMI structure. For example, if the platform has

4 processors with ID 0-3 and NMI is connected LININ1 for processor 3 and 2, two Local APIC NMI entries
would be needed in the MAPIC table.

Table 5-19 Local APIC NMI Structure

Field Byte Byte Description
Length | Offset

Type 1 0 4 —Local APIC NMI Structure

Length 1 1 6

ACPI Processor ID 1 2 Processor 1D corresponding to the ID listed in the ACPI
_ PR abject

Flags 2 3 MPS INTI flags. See Table 5-17 for a description of this
field.

Local APIC INTI# 1 5 Local APIC INTI pin to which NMI is connected

102

Global System Interrupt Vector

Interrupt Input Lines

‘System Vector Base'

(ie ACPI PnPIRQ#) on IOAPIC reported in IOAPIC Struc
24 input 0 [JINTI O 0
IOAPIC

23 [{INTI_23
16 input 24 [|INTI_O 24
IOAPIC

39 |[INTI_15
24 input 40 [|INTI_O 40
IOAPIC -

51 [INTI_11

55 [INTI_23

Figure 5-3 APIC — Global System Vectors

5.2.9 Global System Interrupt Vectors

Globa System Interrupt Vectors can be thought of as ACPI PnP IRQ numbers. They are used to virtualize
Interruptsin tables and in ASL methods which perform resource allocation of Interrupts. Do not confuse
system vectors with ISA IRQs although in the case of the AT style 8259 interrupt model they do correspond one
to one.

There are two interrupt models used in ACPI systems.

Thefirst model isthe APIC model. In APIC mode the interrupt model isflexible. The number of INTIs
supported by each IO APIC can vary. The OS determines the mapping of the Globa System Interrupt Vectors
by determining how many INTIs each 10 APIC supports and determining what the range of system vectorsis
for each IO APIC. Thisisdone by reading the IO APIC Structure to determine the System Vector Base for the
IO APIC. Then using the address from that structure, reading the Max Redirection register from the IO APIC to
determine its number of INTI lines. The system vectors mapped to that IO APIC are the vectors beginning at
the vector base and extending for Max Redirection vectors. This mapping is depicted in Figure 5-3.

Thereis exactly one 10 APIC structure per 10 APIC in the system.

Global System Interrupt Vector 8259 ISA IRQs

(ie ACPI PnP IRQ#) ¢ ¢
0 IRQO
M aster IRQ3
8259
7 IRQ7
IR8
Save _
8259 |RQ11
15 IRQ15

Figure 5-4 System Interrup Vectors

103

The other interrupt model is the standard AT style mentioned above which uses 1SA IRQs attached to a master
dave pair of 8259 PICs. The system vectors correspond to the ISA IRQs. The ISA IRQs and their mappings to
the 8259 pair are part of the AT standard and are well defined. This mapping is depicted in Figure 5-4.

5.2.10 Smart Battery Table
If the platform supports batteries as defined by the Smart Battery Specification 1.0, then a Smart Battery Table
ispresent. Thistable indicates the energy level trip points that the platform requires for placing the system into
the specified sleeping state and the suggested energy levels for warning the user to transition the platform into a
deeping state. The OS uses these tables with the capahilities of the batteries to determine the different trip
points. For more information, see the section 11, which describes the control method battery.

Table 5-20 Smart Battery Description Table Format

Field Byte Byte Description
Length | Offset
Header
Signature 4 0 ‘SBST’. Signature for the Smart Battery Description Table.
Length 4 4 Length, in bytes, of the entire Smart Battery Description
Table.
Revision 1 8 1
Checksum 1 9 Entire table must sum to zero.
OEMID 6 10 OEM ID.
OEM TableID 8 16 For the Smart Battery Description Table, the table ID isthe
manufacturer model 1D.
OEM Revision 4 24 OEM revision of Smart Battery Description Table for
supplied OEM Table ID.
Creator ID 4 28 Vendor ID of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, thisisthe ID for the ASL
Compiler.
Creator Revision 4 32 Revision of utility that created the table. For the DSDT,
RSDT, SSDT, and PSDT tables, thisisthe revision for the
ASL Compiler.

104

Field Byte Byte Description
Length | Offset
Warning Energy 4 36 OEM suggested energy level in milliWatt-hours (mWh) at
Level which the platform warns the user.
Low Energy Level 4 40 OEM suggested platform energy level in mWh at which the
platform is placed in a dleeping state.
Critical Energy Level | 4 44 OEM suggested platform energy level in mWh at which the
platform performs an emergency shutdown.

5.3 ACPI Name Space

For all Definition Blocks, the system maintains a single hierarchical name space that it uses to refer to objects.
All Definition Blocks load into the same name space. Although this allows one Definition Block to reference
objects and data from another (thus enabling interaction), it also means that OEMs must take care to avoid any
naming collisions’. Only an unload operation of a Definition Block can remove names from the name space, so
aname collision in an attempt to load a Definition Block is considered fatal. Contents of the name space only
changes on aload or unload operation.

The name space s hierarchical in nature, with each name allowing a collection of names “below” it. The
following naming conventions apply to all names:
-+ All names are afixed 32 hits.

Thefirst byte of aname areinclusiveof: ‘A’ -*Z',* ', (0x41 - Ox5A, Ox5F).
The remaining three bytes of aname areinclusiveof : ‘A’ -*Z’,'0" -9, ', (0x41 - Ox5A, 0x30 - 0x39,
Ox5F).

By convention, when an ASL compiler pads a name shorter than 4 characters, it is done so with trailing
underscores (‘'). Seethe language definition for AML NameSeg in Chapter 16.
Names beginning with *_" are reserved by this specification. Definition Blocks can only use names
beginning with *_" as defined by this specification.
A name preceded with *\' causes the name to refer to the root of the name space (‘\ is not part of the 32-bit
fixed-length name).
A name preceded with ‘' causes the nameto refer to the parent of the current name space (‘' is not part of
the 32-bit fixed-length name).
Except for names preceded with a‘\’, the current name space determines where in the name space hierarchy a
name being created goes and where a name being referenced is found. A nameislocated by finding the
matching name in the current name space, and then in the parent name space. If the parent name space does not
contain the name, the search continues recursively until either the name is found or the name space does not
have a parent (the root of the name space). Thisindicates that the name is not found®.

An attempt to access names in the parent of the root will result in the name not being found.

There are two types of name space paths: an absolute name space path (that is, one which startswith a'\'
prefix), and a relative name space path—which is relative to the current name space. The name space search
rules discussed above, only apply to single NameSeg paths, which is a relative name space path. For those
relative name paths which contain multiple NameSegs or Parent Prefixes, ", the search rules do not apply. If
the search rules do not apply to arelative name space path, the name space object is looked up relative to the
current name space. For example:

ABCD /[search rules apply
~ABCD /[search rules don't apply

" For the most part, since the name space is hierarchical, typically the bulk of a dynamic definition file will load
into a different part of the hierarchy. In the root of the name space, and certain locations where interaction is
being designed in, will be the areas which extra care must be taken.

8 Unless the operation being performed is explicitly prepared for failure in name resolution, this is considered an
error and results in a system crash.

105

XYZ.ABCD /[search rules don't apply
\XYZ.ABCD /[search rules don't apply

All name references use a 32-hit fixed-length name or use a Name Extension prefix to concatenate multiple 32-
bit fixed-length name components together. Thisis useful for referring to the name of an abject, such asa
control method, that is not in the scope of the current name space.

Figure 5-5 shows a sample of the ACPI name space after a Differentiated Definition Block has been loaded.

£ Root
_PR - Processor Tree
4?@ CPUO - Processor 0 object
—{R] \PIDO - Power resource for IDEQ
1 _STA - Method to return status of power resourse
—1 _ON - Method to turn on power resourse
L™ OFF - Method to turn off power resourse
L[] \ sB - System bus tree
PCIO - PCl bus
_HID - Device ID
_CRS - Current resources (PCI bus number)
IDEO - IDEOQ device Key
_ADR - PCI device #, function # - Package
_PRO - Power resource requirements for DO |‘£| Processor Object
_GPE - General purpose events (GP_STS) E Power Resource Object
_Lo1 - Method to handle level GP_STS.1 |1_| Bus/Device Object
_EO02 - Method to handle edge GP_STS.2 D Data Object
LE _Lo3 - Method to handle level GP_STS.3 = Control Method (AML code)

Figure 5-5 Example ACPI Name Space

5.3.1 Defined Root Names Spaces
The following hame spaces are defined under the name space root.

Table 5-21 Name Spaces Defined Under the Name Space Root

Name Description

\ GPE General events in GPE register block.

\ PR All Processor objects are defined under this name space. For more information about
defining Processor objects, see section 8

\ SB All Device/ Bus Objects are defined under this name space.

\ S System indicator objects are defined under this name space. For more information about
defining system indicators, see section 10.1.

\ Tz All Thermal Zone objects are defined under this name space. For more information about
defining Thermal Zone objects, see section 12.

106

5.3.2 Objects
All objects, except locals, have a global scope. Local data objects have a per-invocation scope and lifetime and
are used to process the current invocation from beginning to end.

The contents of objects varies greatly. Nevertheless, most objects refer to data variables of any supported data
type, a control method, or system software-provided functions.

5.4 Definition Block Encoding

This section specifies the encoding used in a Definition Block to define names (load time only), objects, and
packages. The Definition Block is encoded as a stream from begin to end. The lead byte in the stream comes
from the AML encoding tables shown in section 16 and signifies how to interpret some number of following
bytes, where each following byte can in turn signify how to interpret some number of following bytes. For afull
specification of the AML encodings, see section 16.

Within the stream there are two levels of datum being defined. One is the packaging and object declarations
(load time), and the other is an object reference (package contents/ run time).

All encodings are such that the lead byte of an encoding signifies the type of declaration or reference being
made. The type either has an implicit or explicit length in the stream. All explicit length declarations take the
form shown below, where PkgLength is the length of the inclusive length of the data for the operation.

LeadByte PkglLength data... LeadByte ...

\—b PkgLength —T

Encodings of implicit length objects either have fixed length encodings or allow for nested encodings that, at
some point, either result in an explicit or implicit fixed length.

The PkgLength is encoded as a series of 1 to 4 bytesin the stream with the most significant two bits of byte
zero, indicating how many following bytes are in the PkgLength encoding. The next two bits are only used in
one-byte encodings, which allows for one-byte encodings on a length up to Ox3F. Longer encodings, which do
not use these two bits, have a maximum length of the following: two-byte encodings of OxOFFF, three-byte
encodings of OXOFFFFF, and four-byte length encodings of OXOFFFFFFFFF.

It isfatal for a package length to not fall on alogical boundary. For example, if a package is contained in
another package, then by definition its length must be contained within the outer package, and similarly for a
datum of implicit length.

At some point, the system software decides to “load” a Definition Block. Loading is accomplished when the
system makes a pass over the data and populates the ACPI name space and initializes objects accordingly. The
name space for which population occursis either from the current name space location, as defined by all nested
packages or from the root if the name is preceded with ‘\.

Thefirst object present in a Definition Block must be a named control method. This is the Definition Block’s
initialization control.

Packages are objects that contain an ordered reference to one or more objects. A package can also be considered
avertex of an array, and any object contained within a package can be another package. This permits
multidimensional arrays of fixed or dynamic depths and vertices.

Unnamed objects are used to populate the contents of named objects. Unnamed objects cannot be created in the
“root”. Unnamed objects can be used as arguments in control methods.

5.5 Using the ACPI Control Method Source Language
OEMs and BIOS vendors write definition blocks using the ACPI Control Method Source language (ASL) and
use atranslator to produce the byte stream encoding described in section 5.4. For example, the ASL statements

107

that produce the example byte stream shown in that earlier section are shown in the following ASL example.
For afull specification of the ASL statements, see section 15.

/1 ASL Exanpl e
DefinitionBl ock (

"forbook.am ", /] Qutput Filenanme
" DSDT", /] Signature

0x10, /1 DSDT Revi sion
"CEM', /! OEM D
"forbook", /1 TABLE | D
0x1000 /1 CEM Revi si on

)

{ /1 start of definition block
OperationRegion(\d O Systeml O 0x125, 0x1)
Field(\d O ByteAcc, NoLock, Preserve) {

CT01, 1,
}

Scope(\ _SB) { /] start of scope
Devi ce(PCl 0) { /] start of device

Power Resour ce(FETO, 0, 0) { /] start of pw
Met hod(_ON) {
Store (Ones, CT01) /] assert power
Sl eep (30) /1 wait 30ns

}
Met hod(_OFF) {
Store (Zero, CT01) /] assert reset#

}
Met hod(_STA) {
Return (CTO01)

}
} /1 end of pw
} /1 end of device
} /1 end of scope
} /1 end of definition block

5.5.1 ASL Statements
ASL isprincipally adeclarative language. ASL statements declare objects. Each object has three parts, two of

which can be null:
Obj ect : = Cbject Type Fi xedLi st Vari abl eLi st

FixedList refersto alist of known length that supplies data which all instances of a given ObjectType must
have. Itiswrittenas(a, b, c, ...), where the number of arguments depends on the specific ObjectType, and
some elements can be nested objects, that is(a, b, (g, 1, S, t), d). Arguments to a FixedList can have default
values, in which case they can be skipped. Some ObjectTypes can have anull FixedList.

VariableList refersto alist, NOT of predetermined length, of child objects that help define the parent. It is
written as{ X, Y, z, aa, bb, cc }, where any argument can be a nested object. ObjectType determines what terms
are lega elements of the VariableList. Some ObjectTypes can have anull variable list.

For a detailed specification of the ASL language, see section 15. For a detailed specification of the ACPI
Control Method Machine Language (AML), upon which the output of the ASL trandator is based, see section
16.

5.5.2 ASL Macros
The ASL compiler supports some built in macros to assist in various ASL coding operations. The following
table lists the supported directives and an explanation of their function.

Table 5-22 ASL Built-in Macros

ASL Statement Description

Offset(a) Used in aFieldList parameter to supply the byte offset of the next defined
field within its parent region. This can be used instead of defining the bit
lengths that need to be skipped. All offsets are defined from beginning to

108

ASL Statement Description
end of aregion.
EISAID(1d) Macro that converts the 7-character text argument into its corresponding 4-

byte numeric EISA ID encoding. This can be used when declaring IDs for
devicesthat are EISA IDs.

ResourceTemplate() Macro used to supply Plug and Play resource descriptor information in
human readable form, which is then trand ated into the appropriate binary
Plug and Play resource descriptor encodings. For more information about
resource descriptor encodings, see section 6.4.

5.5.3 Control Method Execution
The operating software will initiate well-defined control methods as necessary to either interrogate or adjust
system-level hardware state. Thisis called an invocation.

A control method can use other internal, or well defined, control methods to accomplish the task at hand, which
can include defined control methods provided by the operating software. Interpretation of a Control Method is
not preemptive, but can block. When a control method does block, the operating software can initiate or
continue the execution of a different control method. A control method can only assume that access to global
objectsis exclusive for any period the control method does not block.

Global objects are those NameSpace objects created at table load time.

5.5.3.1 Control Methods, Objects, and Operation Regions

Control Methods can reference any objects anywhere in the Name Space as well as objects that have shorthand
encodings shown in section 15.1.3.1. Shorthand encodings are provided for common operators. The operators
can access the contents of a object. An object’s contents are either in dynamic storage (RAM) or, in some cases,
in hardware registers. Access to hardware registers from within a control method is eventually accomplished
through an Operation Region. Operation Regions are required to have exclusive access to the hardware
registers’. Control methods do not directly access any other hardware registers, including the ACPI-defined
register blocks. Some of the ACPI registers, in the defined ACPI registers blocks, are maintained on behalf of
control method execution. For example, the GP_BLK is not directly accessed by a control method but is used to
provide an extensible interrupt handling model for control method invocation.

Note: Accessing an OpRegion may block, even if the OpRegion is not protected by a mutex. For example,
because of the dow nature of embedded controller, embedded controller OpRegion field access may block.

5.5.4 Control Method Arguments, Local Variables, and Return Values

Control methods can be passed up to seven arguments. Each argument is an object, and could in turn be a
“package’ style object that refers to other objects. Access to the argument objects have shorthand encodings.
For the definition of the Argx shorthand encoding, see section 15.2.3.3.4.

The number of arguments passed to any control method is fixed and is defined when the control method
package is created. For the definition of the Method operator, see section 15.2.3.4.1.6.

Control methods can access up to eight local data objects. Access to the local data objects have shorthand
encodings. On initia control method execution ,the local data objects are NULL. For the definition of the
Localx shorthand encoding, see section 15.2.3.3.4.2).

Upon control method execution completion, one object can be returned that can be used as the result of the
execution of the method. The “caller” must either use the result or save it to a different object if it wantsto
preserveit. For the definition of the Return operator, see section 15.2.3.5.1.14.

° This means the registers are not used by non-ACPI OS device drivers or SMI handling code.

109

NameSpace objects created within the scope of a method are dynamic. They exist only for the duration of the
method execution. They are created when specified by the code and are destroyed on exit. A method may create
dynamic objects outside of the current scope in the NameSpace using the scope operator or using full path
names. These objects will still be destroyed on method exit. Objects created at |oad time outside of the scope of
the method are static. For example:

Scope(\ XYZ2) {
Name(BAR, 5) /] Creates \ XYZ. BAR
Met hod(FOO, 1) {
St or e(BAR, CREG) /1 same effect as Store(\XYZ BAR, CREG
Name(BAR, 7) /|l Creates \XYZ. FOO. BAR
St or e(BAR, DREG) /1 same effect as Store(\XYZ FOO BAR, DREG
Name(\ XYZ. FOOB, 3) // Creates \XYZ. FOOB
} /1 end nethod
} /1 end scope

The object \XYZ.BAR is a static object created when the table that contains the above ASL isloaded. The
object \XYZ.FOO.BAR is adynamic object that is created when the Nare(BAR, 7) statement in the FOO
method is executed. The object \XY Z.FOOB is a dynamic object created by the \X'Y Z.FOO method when the
Nare(\ XYZ. FOOB, 3) statement is executed. Note that the \XYZ.FOOB object is destroyed after the \XY Z.FOO
method exits.

5.6 ACPI Event Programming Model
The ACPI event programming model is based on the SCI interrupt and general-purpose event (GPE) register.
ACPI provides an extensible method to raise and handle the SCI interrupt, as described in this section.

5.6.1 ACPI Event Programming Model Components
The components of the ACPI event programming model are the following:
- ACPI driver
Fixed ACPI Description Table (FACP)
PM1a STS, PM1b STSand PM1a EN, PM1b_EN fixed register blocks
GPEO_BLK and GPE1 BLK register blocks
SCI interrupt
ACPI AML code general-purpose event model
ACPI device-specific model events
ACPI Embedded Controller event model

Therole of each component in the ACPI event programming model is described in the following table.

Table 5-23 ACPI Event Programming Model Components

Component Description

ACPI driver Receives all SCI interrupts raised (receives all SCI events). Either
handles the event or masks the event off and later invokes an
OEM -provided control method to handle the event. Events
handled directly by the ACPI driver are fixed ACPI events;
interrupts handled by control methods are general -purpose events.

Fixed ACPI Description Table (FACP) Specifies the base address for the following fixed register blocks
on an ACPI-compatible platform: PM1x_STS and PM1x_EN
fixed registers and the GPEx_STS and GPEx_EN fixed registers.

PM1x_STSand PM1x_EN fixed registers | PM1x_STS bitsraise fixed ACPI events. WhileaPM1x_STS bit
is set, if the matching PM1x_EN bit is set, the ACPI SCI event is
raised.

GPEx_STS and GPEx_EN fixed registers GPEXx_STS bits that raise general-purpose events. For every
event bit implemented in GPEx_STS, there must be a comparable
bit in GPEx_EN. Up to 256 GPEx_STS bits and matching
GPEx_EN bits can be implemented. While a GPEx_STShit is

110

Component Description

set, if the matching GPEx_EN bit is set, then the general-purpose
SCI event israised.

SCI interrupt. A level-sensitive, shareable interrupt mapped to a declared
interrupt vector. The SCI interrupt vector can be shared with
other low-priority interrupts that have alow frequency of

occurrence.
ACPI AML code general-purpose event A model that allows OEM AML code to use GPEX_STS events.
model Thisincludes using GPEx_STS events as “wake” sources as well

as other general service events defined by the OEM (“button
pressed,” “thermal event,” “device present/not present changed,”
and so on).

ACPI device-specific model events Devicesin the ACPI name space that have ACPI-specific device
IDs can provide additional event model functionality. In
particular, the ACPl embedded controller device provides a
generic event model.

ACPI Embedded Controller event model A model that allows OEM AML code to use the response from
the Embedded Controller Query command to provide general-
service event defined by the OEM.

5.6.2 Types of ACPI Events

At the direct ACPI hardware level, two types of events can be signaled by an SCI interrupt:
Fixed ACPI events.
General-purpose events.

In turn, the general-purpose events can be used to provide further levels of eventsto the system. And, asin the
case of the embedded controller, awell-defined second-level event dispatching is defined to make a third type
of typical ACPI event. For the flexibility common in today’ s designs, two first-level general-purpose event
block are defined, and the embedded controller construct alows alarge number of embedded controller second-
level event-dispatching tables to be supported. Then if needed, the OEM can also build additional levels of
event dispatching by using AML code on a general-purpose event to sub-dispatch in an OEM defined manner.

5.6.2.1 Fixed ACPI Event Handling
When the ACPI driver receives afixed ACPI event, it directly reads and handles the event registersitself. The
following table lists the fixed ACPI events. For a detailed specification of each event, see section 4.

Table 5-24 Fixed ACPI Events

Event Comment
Power management timer A power management timer is required for ACPI-compatible hardware. For
carry bit set. more information, see the description of the TMR_STS and TMR_EN bits of the

PM1x fixed register block in section 4.7.3.1 aswell asthe TMR_VAL register in
the PM_TMR BLK in section 4.7.3.3.

Power button signal A power button is required for ACPI compatible platforms, but can be supplied
in two ways. One way is to simply use the fixed status bit, and the other uses the
declaration of an ACPI power device and AML code to determine the event. For
more information about the alternate-device based power button, see section
472212.

Note that during the SO state, both the power and sleep buttons merely notify the
OS that they were pressed.

If the system does not have a sleep button, it is recommended that the OS use the
power button to initiate sleep operations as requested by the user.

Sleep button signal A deep button is an optional ACPI event. If supported, it can be supplied in one
of two ways. One way isto simply use the fixed status button. The other way
requires the declaration of an ACPI sleep button device and AML code to
determine the event.

111

Event Comment

RTC aarm ACPI-compatible hardware is required to have an RTC wake alarm function
with aminimum of one-month granularity; however, the ACPI status bit for the
deviceisoptiona. If the ACPI status bit is not present, the RTC status can be
used to determine when an alarm has occurred. For more information, see the
description of the RTC_STS and RTC_EN hits of the PM 1x fixed register block
in section 4.7.3.1.

Wake status At least one system deep state is required for an ACPI-compatible platform. The
wake status bit is used to determine when the sleeping state has been compl eted.
For more information, see the description of the WAK_STS and WAK_EN bits
of the PM 1x fixed register block in section 4.7.3.1.

System bus master request Optional. The bus-master status bit provides feedback from the hardware as to
when a bus master cycle has occurred. Thisis necessary for supporting the
processor C3 power savings state. For more information, see the description of
the BM_STS bit of the PM 1x fixed register block in section 4.7.3.1.

Global release status This statusisraised as aresult of the global lock protocol, and is handled by the
ACPI driver as part of global lock synchronization. For more information, see
the description of the GBL_STS bit of the PM1x fixed register block in section
4.7.3.1. For more information on global lock, see section 5.2.6.1.

5.6.2.2 General-Purpose Event Handling

When the ACPI driver receives a general-purpose event, it either passes control to an ACPl-aware driver, or
uses an OEM-supplied control method to handle the event. An OEM can implement between zero and 255
general-purpose event inputs in hardware, each as either alevel or edge event. An example of a general-purpose
event is specified in section 4, where EC_STS and EC_EN bits are defined to enable the ACPI driver to
communicate with an ACPI-aware embedded controller device driver. The EC_STS bit is set when either an
interface in the embedded controller space has generated an interrupt or the embedded controller interface needs
servicing. Note that if a platform uses an embedded controller in the ACPI environment, then the embedded
controller’s SCI output must be directly and exclusively tied to a single GPE input bit.

Hardware can cascade other general-purpose events from a bit in the GPEx_BLK through status and enable bits
in Operational Regions (1/0 space, memory space, PCI configuration space, or embedded controller space). For
more information, see the specification of the General-Purpose Event Blocks (GPEx_BLK) in section 4.7.4.3.

The ACPI driver manages the bits in the GPEXx blocks directly, although the source to those eventsis not
directly known and is connected into the system by control methods. When the ACPI driver receives a general-
purpose event (the event is from a GPEx_BLK STS hit), the ACPI driver does the following:
1. Disablestheinterrupt source (GPEx_BLK EN hit).
2. If an edge event, clears the status bit.
3. Performs one of the following:

Dispatches to an ACPI-aware device driver.

Queues the matching control method for execution.

Manages awake event using device PWR objects.

4. If alevel event, clears the status bit.
5. Enablestheinterrupt source.

The OEM AML code can perform OEM-specific functions custom to each event the particular platform might
generate by executing a control method that matches the event. For GPE events, the ACPI driver will execute
the control method of the name_GPE._TXX where XX is the hex value format of the event that needs to be
handled and T indicates the event handling type (T must be either ‘E’ for an edge event or ‘L’ for alevel event).
The event values for status bitsin GPEO_BLK start at zero (_T00) and end at the GPEQO BLK_LEN - 1. The
event values for status bitsin GPEL_BLK start at GPE1 BASE and end at GPEL BASE + GPE1 BLK_LEN -
1. GPEO_BLK_LEN, GPE1 BASE, and GPE1_BLK_LEN aredl defined in the Fixed ACPI description table.

For the ACPI driver to manage the bits in the GPEx_BLK blocks directly:

112

Enable bits must be read/write.
Status bits must be latching.
Status bits must be read/clear, and cleared by writing a“1” to the status bit.

5.6.2.2.1 Wake Events
An important use of the general purpose eventsis to implement device wake events. The components of the
ACPI event programming model interact in the following way:

When a device signals its wake signal, the general -purpose status event bit used to track that deviceis set.
While the corresponding general-purpose enable bit is enabled, the SCI interrupt is asserted.

If the system is sleeping, this will cause the hardware, if possible, to transition the system into the SO state.
Once the system is running, ACPI will dispatch the correspond GPE handler.

The handler needs to determine which device object has signaled wake and performs a wake Notify
operation on the corresponding device object(s) that have asserted wake.

6. Inturnthe OSwill notify the OS native driver(s) for each device that will wake its device to service it.

growdhE

It is recommended that events that wake are not intermixed with events that do not wake on the same GPE
input. Also, all wake events not exclusively tied to a GPE input (for example, one input is shared for multiple
wake events) need to have individual enable and status bits in order to properly handle the semantics used by
the system.

5.6.2.2.2 Dispatching to an ACPI-Aware Device Driver

Certain device support, such as an embedded controller, requires a dedicated GPE to service the device. Such
GPEs are dispatched to native OS code to be handled and not to the corresponding GPE-specific control
method.

In the case of the embedded controller, the OS-native, ACPI-aware driver is given the GPE event for its device.
This driver services the embedded controller device and determines when events are reported by the embedded
controller by using the Query command. When an embedded controller event occurs, the ACPI-aware driver
gueues control methods to handle each event. Another way the OEM AML code can perform OEM-specific
functions custom to each event on the particular platform is to queue a control method to handle these events.
For an embedded controller event, the ACPI drive will queue the control method of the name _QXX, where XX
isthe hex format of the query code. Note that each embedded controller device can have query event control
methods.

5.6.2.2.3 Queuing the Matching Control Method for Execution

When a general-purpose event is raised, the ACPI driver uses a naming convention to determine which control
method to queue for execution and how the GPE EIO isto be handled. The GPEx_STS hitsin the GPEx_BLK
are indexed with a number from 0 through FF. The name of the control method to queue for an event raised
from an enable status bit is always of the form_GPE._Txx where xx is the event value and T indicates the event
EIO protocol to use (either edge or level). The event values for status bits in GPEQ_BLK start at zero (_T00),
end at the GPEO_BLK_LEN, and correspond to each status bit index within GPEO_BLK. The event valuesfor
status bitsin GPE1_BLK are offset by GPE_BASE and therefore start at GPE1_BASE and end at GPE1 BASE
+ GPEL BLK_LEN- 1.

For example, suppose an OEM supplies a wake event for a communications port and uses bit 4 of the
GPEQO_STS bitsto raise the wake event status. In an OEM-provided Definition Block, there must be a Method
declaration that uses the name\ _GPE._L 04 or \GPE._E04 to handle the event. An example of a control method
declaration using such a name is the following:

Met hod(\ _GPE. _L04) { /1l GPE 4 |evel wake handl er
Notify (_SB. PCI O COWMD, 2)

The control method performs whatever action is appropriate for the event it handles. For example, if the event
means that a device has appeared in a dot, the control method might acknowledge the event to some other
hardware register and signal a change notify request of the appropriate device object. Or, the cause of the

113

general-purpose event can result from more then one source, in which case the control method for that event
determines the source and takes the appropriate action.

When a general-purpose event is raised from the GPE hit tied to an embedded controller, the embedded
controller driver uses another naming convention defined by ACPI for the embedded controller driver to
determine which control method to queue for execution. The queries that the embedded controller driver
exchanges with the embedded controller are numbered from O through FF, yielding event codes 01 through FF.
(A query response of 0 from the embedded controller is reserved for “no outstanding events.”) The name of the
control method to queue is always of the form _Qxx where xx is the number of the query acknowledged by the
embedded controller. An example declaration for a control method that handles an embedded controller query is
the following:

Met hod(_@B4) { /'l enbedded controller event for thermal
Notify (_TZ THML, 0x80)
}

5.6.2.2.4 Managing a Wake Event Using Device _PRW Obijects

A device's_PRW object provides the zero-based bit index into the general-purpose status register block to
indicate which general -purpose status bit from either GPEOQ_BLK or GPE1 BLK is used as the specific device's
wake mask. Although the hardware must maintain individual device wake enable bits, the system can have
multiple devices using the same general-purpose event bit by using OEM-specific hardware to provide second-
level status and enable bits. In this case, the OEM AML code is responsible for the second-level enable and
status bits.

The OS enables or disables the device wake function by enabling or disabling its corresponding GPE and by
executing its_PSW control method (which is used to take care of the second-level enables). When the GPE is
asserted, the OS still executes the corresponding GPE control method that determines which device wakes are
asserted and notifies the corresponding device objects. The native OS driver isthen notified that its device has
asserted wake, for which the driver powers on its device to service it.

If the system isin a deeping state when the enabled GPE bit is asserted the hardware will transition the system
into the SO state, if possible.

5.6.3 Device Object Notifications

Some objects need to notify the ACPI OS of various object-related events. All such notification are done with
the Notify operator that supplies the ACPI object and a notification value that signifies the type of notification
being performed. Notification values from 0 through Ox7F are common across any device object type.
Notification values of 0x80 and above are device-specific and defined by each such device. For more
information on the Notify operator, see section 15.2.3.5.1.11.

1. 0O- Enumerate this bus

2. 1 - Check device (a specific device has come or gone)

3. 2- Deviceisasserting Wake

4. 3- Request Eject

Table 5-25 Device Object Notification Types

Value | Description

0 Device Check. This natification is performed on a device object to indicate to the OS that it
needs to perform the Plug and Play re-enumeration operation on the device tree starting from
the point where has been notified. The OS will only perform this operation at boot, and when
notified. It is the responsibility of the ACPI AML code to notify the OS at any other times that
this operation is required. The more accurately and closer to the actual device tree change the
notification can be done, the more efficient the operating system’ s response will be; however,
it can aso be an issue when a device change cannot be confirmed. For example, if the
hardware cannot notice a device change for a particular location during a system sleeping
state, it issues a Device Check notification on wake to inform the OS that it needs to check the
configuration for a device change.

114

Value | Description

1 Device Check. Used to notify the OS that the device either appeared or disappeared. If the
device has appeared, the OS will re-enumerate from the parent. If the device has disappeared,
the OS will invalidate the state of the device. The OS may optimize out re-enumeration. If
_DCK is present, then notify(,1) is assumed to indicate an undock request.

2 Device Wake. Used to notify the OS that the device has signaled its wake event, and that the
OS needs to notify the OS native device driver for the device. Thisis only used for devices
that support PRW.

3 Eject Request. Used to notify the OS that the device should be gjected, and that the OS needs
to perform the Plug and Play €jection operation. The OS will run the Ejx method.

4-7F Reserved.

Below are the notification values defined for specific ACPI devices. For more information concerning the
object-specific notification, see the section on the corresponding device/object.

Table 5-26 Control Method Battery Device Notification Values

Hex value | Description

80 Battery Status Changed. Used to notify that the control method battery device status
has changed.

81 Battery Information Changed. Used to notify that the control method battery device
information has changed. This only occurs when a battery is replaced.

>81 Reserved.

Table 5-27 Power Source Object Notification Values

Hex value | Description

80 Power Source Status Changed. Used to notify that the power source status has
changed.
>80 Reserved.

Table 5-28 Thermal Zone Object Notification Values

Hex value | Description

80 Thermal Zone Status Changed. Used to notify that the thermal zone temperature has
changed.

81 Thermal Zone Trip points Changed. Used to notify that the thermal zone trip points
have changed.

>81 Reserved.

Table 5-29 Control Method Power Button Notification Values

Hex value | Description

80 SO Power Button Pressed. Used to notify that the power button has been pressed while
the system isin the SO state. Note that when the button is pressed while the system isin
the S1-$4 state, a Device Wake notification must be issued instead.

>80 Reserved.

Table 5-30 Control Method Sleep Button Notification Values

Hex value | Description

80

SO Sleep Button Pressed. Used to notify that the sleep button has been pressed while
the system isin the SO state. Note that when the button is pressed while the system isin
the S1-$4 state, a Device Wake notification must be issued instead.

>80

Reserved.

115

Table 5-31 Control Method Lid Notification Values

Hex value | Description

80 Lid Status Changed. Used to notify that the control method lid device status has
changed.

>80 Reserved.

5.6.4 Device Class-Specific Objects

Most device abjects are controlled through generic objects and control methods and they have generic device
IDs. These generic objects, control methods, and device IDs are specified in sections 6, 7, 8, 10, 11, and 12.
Section 5.6.5 lists all the generic objects and control methods defined in this specification.

However, certain integrated devices require support for some device-specific ACPI controls. This section lists
these devices, along with the device-specific ACPI controls that can be provided.

Some of these controls are for ACPI-aware devices and as such have Plug and Play IDs that represent these
devices. The following table lists the Plug and Play IDs defined by the ACPI specification.

Table 5-32 ACPI Device IDs

Plug and Play ID | Description

PNPOCO08 ACPI. Not declared in ACPI asadevice. ThisID isused by the operating system
the ACPI driver for the hardware resources consumed by the ACPI fixed register
spaces, and the operation regions used by AML code. It represents the core ACPI
hardware itself.

PNPOAQO5 Generic ACPI Bus. A devicethat isonly abuswhose bus settings are totally
controlled by its ACPI resource information, and otherwise needs no bus-specific
driver support.

PNPOA06 Extended 10 Bus. A specia case of the PNPOAO5 device, where the only
differenceisin the name of the device. Thereis no functiona difference between
thetwo IDs.

PNPOC09 Embedded Controller Device. A host embedded controller controlled through an
ACPI-awaredriver

PNPOCOA Control Method Battery. A devicethat solely implementsthe ACPI control

method battery functions. A device that has some other primary function would use
itsnormal device ID. ThisID is used when the devices primary function is that of

a battery.
PNPOCOB Fan. A devicethat causes cooling when “on” (DO device state).
PNPOCOC Power Button Device. A device controlled through an ACPI-aware driver that

provides power button functionality. This device is only needed if the power button
is not supported using the fixed register space.

PNPOCOD Lid Device. A device controlled through an ACPI-aware driver that provides lid
status functionality. This device is only needed if the lid state is not supported
using the fixed register space.

PNPOCOE Sleep Button Device. A device controlled through an ACPI-aware driver that
provides power button functionality. This device is optional.

PNPOCOF PCI Interrupt Link Device. A device that allocates an interrupt connected to a
PCI interrupt pin. See section 6 for more details.

ACPI0001 SMBus Host Controller. SMBus host controller using the embedded controller
interface (as specified in section 13.9).

ACPI0002 Smart Battery Subsystem. The Smart battery Subsystem specified in section 11.

ACPI0003 AC Device. The AC adapter specified in section 11.

116

5.6.5 Defined Generic Object and Control Methods
The following table lists al the generic object and control methods defined in this specification and gives a
reference to the defining section of the specification.

Table 5-33 Defined Generic Object and Control Methods

Object | Description

_ADR | Deviceidentification object that evaluates to a device' s address on its parent bus. See section
6.1.

_ACx Thermal zone abject that returns Active trip point in Kelvin (to 0.1 degrees) See section 12.2.

_ALx Thermal zone aobject containing list of pointers to active cooling device objects. See section
12.2.

_CID Device identification object that evaluates to a device' s Plug and Play Compatible ID list. See
section 6.1.

_CRS | Device configuration object that specifies a device' s current resource settings, or a control
method that generates such an object. See section 6.2.

_CRT | Thermal zone object that returns critical trip point in Kelvin (to 0.1 degrees). See section 12.2.

_DCL | Thermal zone object that returns list of pointers to Bay device objects within the thermal zone.
See section 12.2.

_DIS Device configuration control method that disables a device. See section 6.2.

_EC Control Method used to define the offset address and Query value of an SMBus host
controller defined within an embedded controller device. See section 13.12.

_EJD Deviceinsertion/removal object that evaluates to the name of a device object upon which a
deviceis dependent. Whenever the named device is g ected, the dependent device must
receive an gjection notification. See section 6.3.

_EX Device insertion/removal control method that gjects a device. See section 6.3.

_HID Device identification object that evaluates to a device's Plug and Play Hardware ID. See
section 6.1.

_IRC Power management object that signifies the device has a significant inrush current draw. See
section 7.3.1.

_LCK Device insertion/removal control method that locks or unlocks a device. See section 6.3.

_MSG | System indicator control that indicates messages are waiting. See section 10.1.

_OFF Power resource object that sets the resource off. See section 7.4.

_ON Power resource object sets the resource on. See section 7.4.

_PCL Power source object that contains alist of pointers to devices powered by a power source. See
section 11.3.2.

_PRS Device configuration object that specifies a device's possible resource settings, or a control
method that generates such an object. See section 6.2.

_PRW | Power management object that evaluates to the device' s power requirements in order to wake
the system from a system sleeping state. See section 7.2.1

_PRO Power management object that evaluates to the device' s power requirements in the DO device
state (device fully on). See section 7.2.2.

_PR1 Power management object that evaluates to the device' s power requirementsin the D1 device
state. Only devices that can achieve the defined D1 device state according to its given device
class would supply thislevel. See section 7.2.3

_PR2 Power management object that evaluates to the device' s power requirements in the D2 device
state. Only devices that can achieve the defined D2 device state according to its given device
class would supply thislevel. See section 7.2.4.

_PSC Power management object that evaluates to the device's current power state. See section
7.3.3.

_PSL Thermal zone abject that returns list of pointers to passive cooling device objects. See section
12.2.

_PSR Power source object that returns present power source device. See section 11.3.1.

_Psv Thermal zone aobject that returns Passive trip point in Kelvin (to 0.1 degrees). See section
12.2.

117

Object | Description

_PSW | Power management control method that enables or disables the device’s WAKE function. See
section 7.2.

PO Power management control method that puts the device in the DO device state. (device fully
on). See section 7.2.

_PS1 Power management control method that puts the device in the D1 device state. See section
7.2.

_Ps2 Power management control method that puts the device in the D2 device state. See section
7.2.

_PS3 Power management control method that puts the device in the D3 device state (device off).
See section 7.2.

RMV | Device insertion/removal object that indicates that the given device is removable. See section

6.3.

_SCP Thermal zone object that sets user cooling policy (Active or Passive). See section 12.2.

_SLN Device identification object that evaluates to the slot number for a slot. See section 6.1.4.

_STA Device insertion/removal control method that returns a device' s status. See section 6.3.

_STA Power resource object that evaluates to the current on or off state of the Power Resource. See
section 7.4.

_SRS Device configuration control method that sets a device' s settings. See section 6.2.

_SST System indicator control method that indicates the system status. See section 10.1.
TC1 Thermal zone object that contains thermal constant for Passive cooling. See section 12.2.
_TC2 Thermal zone object that contains thermal constant for Passive cooling. See section 12.2.
_TMP | Thermal zone object that returns current temperature in Kelvin (to 0.1 degrees). See section
12.2.

TSP Thermal zone object that contains thermal sampling period for Passive cooling. See section

12.2.

_UID Device identification object that specifies a device' s unique persistent ID, or a control method
that generatesit. See section 6.1.

\ PIC Configuration control method used by the OS to notify the BIOS of the interrupt mode that
the system isrunning in. See Section 5.8

\ PTS | Power management control method used to prepare to sleep. See section 7.4.1.

\' SO Power management package that defines system\ SO state mode. See section 7.4.1.

\ S1 Power management package that defines system\ S1 state mode. See section 7.4.1.

\ 2 Power management package that defines system\ S2 state mode. See section 7.4.1.

\ S3 Power management package that defines system \ S3 state mode. See section 7.4.1.

\ A Power management package that defines system \ S4 state mode. See section 7.4.1.

\' S5 Power management package that defines system\ S5 state mode. See section 7.4.1.

\ WA Power management control method run once system is awakened. See section 7.4.1.

K

5.7 OS-Defined Object Names
A list of OS-supplied object names are shown in the following table.

Table 5-34 Predefined Global Events

Name Description

\ GL Global Lock

\ OS Name of the operating system.

\ REV | Revision of the AML interpreter for the specified OS.

118

5.7.1 _GL Global Lock Mutex

This object is a Mutex object that behaves like a Mutex as defined in section 15.2.3.4.1.7 with the added
behavior that acquiring this Mutex aso acquires the shared environment Global Lock defined in section 5.2.6.1.
This allows Control Methods to explicitly synchronize with the Global Lock if necessary.

5.7.2 _OS Name object
This object is contains a string that identifies the operating system. This value does not change with different
revisions of the AML interpreter.

5.7.3 _REV data object
This object is contains the revision of the AML interpreter for the specified _OS as a Dword. Larger values are
newer revisions of the interpreter.

5.8 System Configuration Objects

5.8.1 _PIC Method

The_PIC optional method isto report to the BIOS the current interrupt model. This control method returns
nothing. The argument passed into the method signifies which interrupt model the OS has chosen, PIC mode
or APIC mode. Note that calling this method is optional for the OS. If the method is never called, the BIOS
must assume PIC mode. It isimportant that the BIOS save the value passed in by the OS for later use.

PIC(X):
_PIC(0) =>PICMode

_PIC(1) =>APIC Mode
_PIC(2-n) => Reserved

6. Configuration
This section specifies the objects the OS expects to be used in control methods to configure devices. There
are three types of configuration objects:
Device identification objects associate platform devices with Plug and Play 1Ds
Device configuration objects configure hardware resources for devices enumerated via ACPI.
Deviceinsertion and removal objects provide mechanisms for handling dynamic insertion and removal
of devices.

This section a so defines the ACPI device resource descriptor formats. Device resource descriptors are used
as parameters by some of the device configuration control method objects.

6.1 Device ldentification Objects
Device Identification Objects associate each platform device with a Plug and Play device ID for each
device. All the Device Identification Objects are listed in the following table:

Table 6-1 Device Identification Objects

Object Description

_ADR Object that evaluates to a device's address on its parent bus.

_CID Object that evaluates to a device's Plug and Play Compatible ID list.

_DDN Object that associates alogical software name (for example, COM1) with a device.

_HID Object which evaluates to a device' s Plug and Play Hardware ID.

_SUN Object that evaluates to the ot Ul number for adot.

_UID Object that specifies adevice' s unique persistent 1D, or a control method that generatesit.

For any device that is not on an enumerable type of bus (for example, an ISA bus), the ACPI driver
enumerates the devices' Plug and Play ID(s) and the ACPI BIOS must supply a_HID object (plus an
optional _CID abject) for each device to enable the ACPI driver to do that. For devices on an enumerable
type of bus, such asaPCl bus, the ACPI system needs to identify which device on the enumerable busis
identified by a particular Plug and Play 1D; the ACPI BIOS must supply an _ADR object for each deviceto
enable this.

6.1.1 ADR
Thisobject is used to supply the OS with the address of a device on its parent bus. An _ADR object must
be used to specify the address of any device on abus that has a standard enumeration algorithm.

An_ADR aobject can be used to provide capahilities to the specified address even if a device is not present.
This allows the system to provide capabilities to a ot on the parent bus..

The OS infers the parent bus from the location of the _ADR object’s Device Package in the ACPl name
space. For more information about the positioning of Device Packages in the ACPlI name space, see
“Named Object Creation Encodings.”

_ADR object information must be static, and can be defined for the following bus types listed in the
following table.

Table 6-2 _ADR Object Bus Types

BUS Address encoding
EISA EISA slot number 0- F
Floppy Bus Drive select values used for programming the floppy

controller to access the specified INT13 unit number. The
_ADR Objects should be sorted based on drive select
encoding from 0-3.

IDE Controller O0=Primary Channel, 1=Secondary Channel

IDE Channel O=Master drive, 1=Slave drive

Intel Microsoft Toshiba

120

BUS Address encoding

PCI High word = Device #, Low word = Function #. (e.g., device
3, function 2 is 0x00030002). To refer to all the functions on
adevice #, use afunction number of FFFF).

PCMCIA Socket #; O=First Socket
PC CARD Socket #; O=First Socket
SMB Lowest Slave Address
USB Root HUB Only one child of the host controller. It must have an _ADR
of 0. No other children or valuesof ADR are alowed.
USB Ports Port number
6.1.2 _CID

This optional object is used to supply the OS with adevice' s Plug and Play compatible device ID. Use
_CID objects when a device has no other defined hardware standard method to report its compatible 1Ds.
A _CID object evaluates to a compatible device ID, or a package of compatible device IDs, for the device
in the order of preference. A compatible ID must be either a numeric 32-bit compressed EISA type ID or a
PCI ID. The format of PCI IDsis one of the following:

PCI\CC _ccss

PCI\CC_ccsspp

PCI\VEN_vvvv& DEV_dddd& SUBSY S _ssssssss& REV_rr

PCI\VEN_vvvv&DEV_dddd& SUBSY S _ssssssss

PCI\VEN_vvvw&DEV_dddd&REV _rr

PCI\VEN_vvvv& DEV_dddd

where:
cc = hexadecimal representation of the Class Code byte
ss = hexadecimal representation of the Subclass Code byte
pp = hexadecimal representation of the Programming interface byte
vvvv = hexadecimal representation of the Vendor ID
dddd = hexadecimal representation of the Device ID
ssssssss = hexadecimal representation of the Subsystem ID
rr = hexadecimal representation of the Revision byte

A compatible ID retrieved from a_CID object is only meaningful if it isanon-NULL value.

6.1.3 _DDN
Thisobject is used to associate alogical software name (for example, “COM1”) with afloppy disk drive.
This name can be used by applications to connect to the device

6.1.4 HID

Thisobject is used to supply the OS with the device' s Plug and Play Hardware ID. When describing a
platform, use of any _HID objectsis optional. However, a_HID object must be used to describe any device
that will be enumerated by the ACPI driver. The ACPI driver only enumerates a device when no bus
enumerator can detect the device ID. For example, devices on an I SA bus are enumerated by the ACPI
driver. Use the _ADR object to describe devices enumerated by bus enumerators other than the ACPI
driver.

A _HID object evaluates to either a numeric 32-bit compressed EISA type ID or a string.

6.1.5 _SUN

_SUN isused by the OS user interface to identify dots for the user. For example, this can be used for
battery slots, PCMCIA dlots, or swappable bay dots to inform the user of what devices are in each dot.
_ SUN evaluates to a DWORD which is the number to be used in the user interface. This number must
match any slot number printed on the physical dot.

121

6.1.6 _UID

This object provides the OS with a serial number-style ID of adevice (or battery) which does not change
across reboots. This object is optional, but is required when the device has no other way to report a
persistent unique device ID. When a system has two devices that report the same _HID, each device must
have a_UID object. When reported, the UID only needs to be unique amongst al devices with the same
device ID. The OS typically uses the unique device ID to ensure that the device- specific information, such
as network protocol binding information, is remembered for the device even if its relative location changes.
For most integrated devices, this object contains a unique identifier. For other devices, like a docking
station, this object can be a control method which returns the unique docking station 1D.

A _UID object evaluates to either a numeric value or a string.

6.2 Device Configuration Objects

Device configuration objects are used to configure hardware resources for devices enumerated via ACPI.
Device Configuration objects provide information about current and possible resource requirements, the
relationship between shared resources, and methods for configuring hardware resources. Note: these
objects must only be provided for devices that cannot be configured by any other hardware standard such as
PCl, PCMCIA, etc.

When the ACPI driver enumerates a device, it will call _PRS to determine the resource requirements of the
device. It may also call _CRS to find the current resource settings for the device. Using this information,
the Plug and Play system will determine what resources the device should consume and set those resources
by calling the device's _SRS control method.

In ACPI, devices can consume resources (for example, legacy keyboards), provide resources (for example,
aproprietary PCI bridge), or do both. Unless otherwise specified, resources for a device are assumed to be
taken from the nearest matching resource above the device in the device hierarchy.

Some resources, however, may be shared amongst several devices. To describe this, devices that share a
resource (resource consumers) must use the extended resource descriptors (0x7-0xA) described in section
6.4.3. These descriptors point to a single device object (resource producer) that claims the shared resource
init's_PRS. This allows the OS to clearly understand the resource dependencies in the system and move
all related devices together if it needs to change resources. Further, it allows the OS to only allocate
resources to resource producers when devices that consume that resource appear.

The device configuration objects are listed in the following table.

Table 6-3 Device Configuration Objects

Object Description

_CRS An object that specifies a device' s current resource settings, or a control method that generates
such an object.

_DIS A control method that disables a device.

_PRS An object that specifies a device' s possible resource settings, or a control method that

generates such an object.

PRT An object that specifies the PCI interrupt Routing Table.

_SRS A control method that sets a device's settings.
_FDI An object that returns information regarding a floppy drive.
6.2.1 _CRS

This required object evaluates to a byte stream that describes the system resources currently allocated to a
device. Additionally, a bus device must supply the resources that it decodes and can assign to its children
devices. If adeviceisdisabled, then _CRS returns avalid resource template for the device, but the actual
resource assignments in the return byte stream will be ignored. If the device is disabled when _CRS s
called, it must remain disabled.

The format of the data contained in a_CRS abject follows the formats defined in section 6.4, a compatible
extension of the formats specified in the PNPBIOS Specification. The resource datais provided as a series

122

of data structures, with each of the resource data structures having a unique tag or identifier. The resource
descriptor data structures specify the standard PC system resources, such as memory address ranges, 1/0
ports, interrupts, and DMA channels.

Arguments:
None.

Result Code:
Byte stream.

6.2.2 DIS
This control method disables a device. When the device is disabled, it must not be decoding any hardware
resources. Prior to running this control method, the OS will have already put the device in the D3 state.

When adeviceisdisabled viathe DIS, the STA control method for this device must return with the
Disabled bit set.

Arguments:
None.

Result Code:
None.

6.2.3 _PRT

PCI interrupts are inherently non-heirarchical. PCI interrupt pins are typically wired together to four
interrupt vectors in the interrupt controller. PRT provides a mapping table from PCI interrupt pinsto the
interrupt vectors the pins are connected to. PRT is a package that contains alist of packages, each of which
describes the mapping of an interrupt pin. . Note: The function number in the PRT packages must be
FFFF, that is, any function number. The PRT mapping packages have the following fields:

Table 6-4 Mapping Fields

Field Type Description

Address DWORD | The address of the device (uses the same format as_ ADR)

Pin BYTE The PCI pin number of the device (O=INTA, 1=INTB, 2=INTC, 3=INTD)

Source Name Name of athe device that allocates the interrupt the above pin is connected to. If
thisfield is null, then the interrupt is allocated from the global interrupt vector pool.

Source BYTE An index that indicates which resource descriptor in the resource template of the

Index device pointed to in Source this interrupt is allocated from. If Source isnull, this
field is the interrupt vector number the pin is connected to.

There are two waysthat _PRT can be used. Typically, the vector that a given PCI interrupt ison is

configurable. For example, a given PCI interrupt might be configured for either IRQ 10 or 11 on an 8259
interrupt controller. In this model, each interrupt is represented in the ACPI namespace as a device object.
These objectshave _PRS, _CRS, SRS, and _DIS control methods to allocate the interrupt vectors. Then,
the PCI driver handles the interrupts not as interrupt vectors on the interrupt controller, but as PCI interrupt
pins. Thedriver looks up the device' s pinsin the PRT to determine which device objects allocate the
interrupts. To move the PCI interrupt to different vectors on the interrupt controller, the OS will use _PRS,
_CRS, _SRS, and _DIS control methods for the interrupt’ s device object.

In the second model, the PCI interrupts are hard-wired to specific interrupt vectors on the interrupt
controller and are not configurable. In this case, the Source field in _PRT does point to a device, but is
null, and the Source Index field contains the global interrupt vector that the PCI interrupt is hard wired to.

6.2.3.1 Example: Using PRT to describe PCI IRQ routing
The following example describes two PCI dots and a PCI video chip. Note that the interrupts on the two
PCI slots are wired up differently (barber polled).

123

Scope(_\SB) {
Devi ce(LNKA) {
Name(_HI D, El SAI D(" PNPOCOF")) /1 PCl interrupt |ink
Name(_UI D, 1)
Name(_PRS, ResourceTenpl ate(){
I nt errupt (Resour ceProducer, ..) {10, 11} /1 1RQGs 10,11

})

Met hod(_DI'S) {.}
Met hod(_CRS) {.}
Met hod(_SRS, 1) {.}

}
Devi ce(LNKB) {
Name(_HI D, El SAI D(" PNPOCOF")) /1 PCl interrupt |ink
Name(_UI D, 2)
Name(_PRS, ResourceTenpl ate(){
I nt errupt (Resour ceProducer, ..) {11, 12} /Il 1R 11,12
1)
Met hod(_DI'S) {..}
Met hod(_CRS) {..}
Met hod(_SRS, 1) {.}
}
Devi ce(LNKC) {
Name(_HI D, El SAI D(" PNPOCOF")) /1 PCl interrupt |ink
Name(_UI D, 3)
Name(_PRS, ResourceTenpl ate(){
I nt errupt (Resour ceProducer, ..) {12, 14} /Il 1RQs 12,14
1)
Met hod(_DI'S) {.}
Met hod(_CRS) {..}
Met hod(_SRS, 1) {.}
}
Devi ce(LNKD) {
Name(_HI D, El SAI D(" PNPOCOF")) /1 PCl interrupt |ink
Name(_UI D, 4)
Name(_PRS, ResourceTenpl ate(){
I nt errupt (Resour ceProducer, ..) {10, 15} /1 1RQs 10, 15
})
Met hod(_DI'S) {.}
Met hod(_CRS) {..}
Met hod(_SRS, 1) {.}
}
Devi ce(PCl 0) {
Name(_PRT, Package{
Package{ 0x0004ffff, 0, LNKA, 0}, // Slot 1, INTA
Package{0x0004ffff, 1, LNKB, 0}, // Slot 1, |INTB
Package{ 0x0004ffff, 2, LNKC, 0}, // Slot 1, INTC
Package{ 0x0004ffff, 3, LNKD, 0}, // Slot 1, |INTD
Package{ 0x0005ffff, O, LNKB, 0}, // Slot 2, |INTA
Package{0x0005ffff, 1, LNKC, 0}, // Slot 2, |INTB
Package{ 0x0005ffff, 2, LNKD, 0}, // Slot 2, INTC
Package{ 0x0005ffff, 3, LNKA, 0}, // Slot 2, |INTD
Package{ 0x0006ffff, 0, LNKC, 0} /1 Video, |NTA
}
}
}
6.2.4 PRS

This optional object evaluates to a byte stream that describes the possible resource settings for the device.
When describing a platform, specify a_PRS for all the configurable devices. Static (non-configurable)
devices do not specify a_PRS object. The information in this package is used by the OSto select a
conflict-free resource allocation without user intervention.

The format of the datain a_PRS object follows the same format asthe _CRS object (for more information,
see the _CRS object definition).

If the device is disabled when PRSis called, it must remain disabled.

124

Arguments:
None.

Result Code:
Byte stream.

6.2.5 _SRS

This optional control method takes one byte stream argument that specifies a new resource alocation for a
device. The resource descriptors in the byte stream argument must be specified in the same order as listed
in the _CRS byte stream (for more information, see the _CRS object definition). A _CRS object can be
used as atemplate to ensure that the descriptors are in the correct format.

The settings must take effect before the _SRS control method returns.

If the deviceis disabled, SRS will enable the device at the specified resources. _SRSis not used to disable
adevice; use the DIS control method instead.

Arguments:
Byte stream.

Result Code:
None.
6.2.5 FDI

This object returns information about a floppy disk drive. Thisinformation is the same as that returned by
the INT 13 Function O8H on Intel Architecture PCs.

Resullts code:

Package {
Drive Number /1 BYTE
Devi ce Type /1 BYTE
Maxi mum Cyl i nder Nunber / 1 WORD
Maxi mum Sect or Numrber / 1 WORD
Maxi mum Head Nunber / 1 WORD
di sk_specify_1 /1 BYTE
di sk_specify_2 /1 BYTE
di sk_mot or _wai t /1 BYTE
di sk_sector_siz /1 BYTE
di sk_eot /1 BYTE
di sk_rw_gap /1 BYTE
di sk_dt| /I BYTE
di sk_fornt _gap /1 BYTE
disk_fill /I BYTE
di sk_head_sttl /1 BYTE
di sk_motor_strt /1 BYTE
}

Table 6-4a ACPI Floppy Drive Information

Field Format Definition
Drive Number BYTE Asreported by INT 13 Function 08H
Device Type BYTE Asreported by INT 13 Function 08H
Maximum Cylinder |WORD Asreported by _INT 13 Function 08H
Number
Maximum Sector |WORD Asreported by _INT 13 Function 08H
Number
Maximum Head WORD Asreported by _INT 13 Function 08H
Number
disk_specify 1 BYTE Asreported in ES:D1 from INT 13 Function 08H
disk_specify 2 BYTE Asreported in ES:D1 from INT 13 Function 08H

125

Field Format Definition

disk_motor_wait BYTE Asreported in ES:D1 from INT 13 Function 08H
disk sector siz BYTE Asreported in ES:D1 from INT 13 Function 08H
disk_eot BYTE Asreported in ES:D1 from INT 13 Function 08H
disk rw_gap BYTE Asreported in ES:D1 from INT 13 Function 08H
disk_dtl BYTE Asreported in ES:D1 from INT 13 Function 08H
disk_formt_gap BYTE Asreported in ES:D1 from INT 13 Function 08H
disk fill BYTE Asreported in ES:D1 from INT 13 Function 08H
disk _head sttl BYTE Asreported in ES:D1 from INT 13 Function 08H
disk_motor_strt BYTE Asreported in ES:D1 from INT 13 Function 08H

6.3 Device Insertion and Removal Objects

Deviceinsertion and removal objects provide mechanisms for handling dynamic insertion and removal of
devices. These same mechanisms are used for docking and undocking. These objects give information
about whether or not devices are present, which devices are physically in the same device (independent of
which bus the devices live on), and methods for controlling ection or interlock mechanisms.

The system is more stable when removable devices have a software-controlled, VCR-style gjection
mechanism instead of a " surprise-style”’ gection mechanism. In this system, the gject button for a device
does not immediately remove the device, but smply signals the operating system. The OS then shuts down
the device, closes open files, unloads the driver, and sends a command to the hardware to gect the device.

In ACPI, the sequence of events for dynamically inserting a device follows the process below. Note that

this process supports hot, warm, and cold insertion of devices.

1. If thedeviceis physically inserted while the computer isin the working state (i.e., hot insertion), the
hardware generates an SCI general purpose event.

2. The_ control method for the event uses the Notify(device,0) command to inform the OS of which bus
the new device is on, or the device object for the new device. If the Notify command points to the
device object for the new device, the control method must have changed the device' s status returned by
_STA toindicate that the device is now present. Performance can be optimized by having Notify point
as closely as possible in the hierarchy to where the new device resides. The Notify command can aso
be used from the _WAK control method (for more information about _WAK, see section 7.5.3) to
indicate device changes that may have occurred while the computer was sleeping. For more
information about the Notify command, see section 5.6.3.

3. The OS uses the identification and configuration objects to identify, configure, and load a device driver
for the new device and any devices found below the device in the hierarchy.

4. |If thedevicehasa_LCK control method, the OS may later run this control method to lock the device.

The new device referred to in step 2 need not be a single device, but could be awhole tree of devices. For
example, it could point to the PCI-PCI bridge docking connector. The OS will then load and configure all
devicesin found below that bridge. The control method can aso point to several different devicesin the
hierarchy if the new devices do not all live under the same bus. (i.e. more than one bus goes through the
connector).

For removing devices, ACPI supports both hot removal (system isin the SO state), and warm removal

(systemisin adeep state: S1-4). Thisis done using the _EJx control methods. Devices that can be gected

include an _EJx control method for each dlegping state the device supports (a maximum of 2 _EJx objects

can be listed). For example, hot removal devices would supply an _EJO; warm removal devices would use

one of _EJ1-EJA. These control methods are used to signal the hardware when an gect is to occur.

The sequence of events for dynamically removing a device goes as follows:

1. The gect button is pressed and generates an SCI general purpose event. (If the systemwasin a
dleeping state, it should wake the computer.

2. The control method for the event uses the Notify(device, 1) command to inform the OS which specific
device the user has requested to gect. Notify does not need to be called for every device that may be

126

gjected, but for the top level device. Any child devicesin the hierarchy or any € ection dependent
devices on this device (as described by _EJD, below) will automatically be removed.

3. The operating system will shut down and unload devices that will be removed.

4. If thedevicehasa LCK control method, the OS will run this control method to unlock the device.

5. The operating system looks to see what _EJx control methods are present for the device. If the removal
event will cause the system to switch to battery power (i.e. an undock) and the battery islow, dead, or
not present, the OS will use the lowest supported sleep state EJx listed; otherwise it will use the
highest state EJx. Having made this decision, the OS will run the appropriate _EJx control method to
prepare the hardware for gect.

6. If theremoval will be awarm removal, the OS puts the system in the appropriate Sx state. If the
removal will be a hot removal, the OS skips to step 8, below.

7. When the hardware is put into the sleep state, it can use any motors, etc to gject the device.
Immediately after gection, the hardware will wake the computer to an SO state. If the system was
dleeping when the gect notification came in, the operating system will return the computer to a
dleeping state consistent with the user’ s wakeup settings.

8. TheOSwill call _STA to determine if the gect successfully occurred. (In this case, control methods
do not need to call Notify() to tell the OS of the change in _STA) If there were any mechanical
failures, _STA will return 3: device present and not functioning, and the OS will inform the user of the
problem.

Note: this mechanism is the same for removing a single device as well asfor removing severa devices, as
in an undock.

ACPI does not disallow surprise-style removal of devices; however, this type of removal is not
recommended since system and data integrity cannot be guaranteed when a surprise-style removal occurs.
Because the operating system is not informed, its device drivers cannot save data buffers and it cannot stop
accesses to the device before the device is removed. To handle surprise-style removal a general purpose
event must beraised. Its associated control method must use the Notify command to indicate which bus the
device was removed from.

The Device insertion and removal objects are listed in the following table.

Table 6-5 Device Insertion and Removal Objects

Object Description

_EJD Object that evaluates to the name of a device object upon which a device is dependent.
Whenever the named device is g ected, the dependent device must receive an gjection
notification.

_EX A control method that gjects a device.

_LCK A control method that locks or unlocks a device.

_RMV Object that indicates that the given device is removable.

_STA A control method that returns a device's status

6.3.1 EJD

This object is used to name the device object of another device upon which a device is dependent and is
primarily used to support docking stations. Whenever the named device is gjected, the dependent device
will also receive an gjection notification.

An_EJD object evauates to the name of another device object. This object’ s EJx methods will be used to
gject al the dependent devices. Devicesthat have an _EJD object cannot have any _EJx control methods.

A device s dependents will be gjected when the device itself is gected.

When describing a platform that includes a docking station, usually more than one _EJD object will be
required. For example, if adock attaches both a PCI device and an ACPI-configured device to a portable,
then both the PCI device description package and the ACPI-configured device description package must
include an _EJD aobject that evaluates to the name of the docking station (the name specified in an _ADR or
_HID abject in the docking station’s description package). Thus, when the docking connector submits an

127

gject notify (_EJIN) request, the OS would first attempt to disable and unload the drivers for both the PCI
and ACPI configured devices.

6.3.2 EJx

These control method are optional and are only supplied for a device which supports a software-controlled
V CR-style g ection mechanism. To support warm and hot removal, an _EJx control method is listed for
each dleep state the device supports removal from, where x is the sleeping state supported. For example,
_EJ0 indicates the device supports hot removal; _EJ1-EJ4 indicate the device supports warm removal.

For hot removal, the device must be immediately g ected when the OS calls the _EJO control method. The
_EJ0 control method does not return until gjection is complete. After calling _EJO, the OSwill call _STA to
determine whether or not the gject succeeded.

For warm removal, the EJ1- EJ4 control methods do not cause the device to be immediately € ected.
Instead, they only set proprietary registers to prepare the hardware to gect when the system goes into the
given deep state. The hardware g ects the device only after the OS has put the system into a sleep state by
writing to the SLP_EN register. After the system resumes, the OS will call _STA to determine if the gject
succeeded.

The _EJx control methods take one parameter to indicate whether gject should be enabled or disabled:

1 =Hot gect or enable warm gject.
0 = Disable (cancel) warm gject (EJO will never be called with this value).

A device object may have at most 2 _EJx control methods. Firgt, it lists an EJx control method for the
preferred sleeping state to gject the device. Optionally, the device may list an EJ4 or EJ5 control method to
be used when the system will not have power (e.g. no battery) after the gject. For example, a hot-docking
notebook might list _EJO and _EJ5.

6.3.3 _LCK

This control method is optional and is only required for a device which supports a software-controlled
locking mechanism. When the operating software invokes this control method, the associated device isto
be locked or unlocked based upon the value of the argument that is passed. On alock request, the control
method must not complete until the device is completely locked.

The _LCK control method takes one parameter that indicates whether or not the device should be locked:

1 = Lock the device
0 = Unlock the device

When describing a platform, devices use either a_L CK control method or an _EJx control method for a
device.

6.3.4 RMV

The _RMYV abject indicates to the OS that the device can be removed while the system isin the working
dtate (i.e., any device that only supports surprise-style removal). Any such removable device that does not
have LCK or _EJx control methods must have an _RMV object. This alows the OS to indicate to the user
that the device can be removed and for the OS to provide a way for shutting down this device before
removing it.

6.3.5 _STA
This object returns the status of a device, which can be one of the following: Enabled, Disabled, or
Removed.

Arguments:
None.

Result Code (bitmap):
bit O: Set if the deviceis present
bit 1: Set if the deviceis enabled and decoding its resources

128

bit 2: Set if the device should be shown in the user interface

bit 3: Set if the deviceis functioning properly (cleared if the device failed its diagnostics)
bit 4: Set if the battery is present.

Bits 5-31 Reserved (must be cleared)

If bit O is cleared, then bit 1 must also be cleared (i.e., adevice that is not present cannot be enabled).

A device can only decode its hardware resources if both bits 0 and 1 are set. If the device is not present (bit
0 cleared) or not enabled (bit 1 cleared), then the device must not decode its resources.

If adevice is present in the machine, but should not be displayed in the OS user interface, bit 2 is cleared.
For example, anotebook could have joystick hardware in the notebook (thusit is present and decoding its
resources), but the connector for plugging in the joystick requires a port replicator. If the port replicator is
not plugged in, the joystick should not appear in the Ul, so bit 2 is cleared.

If adevice object does not have an _STA abject, then the OS will assume that al of the above bits are set
(i.e. the device is Present, Enabled, Shown in the Ul, and Functioning).

6.4 Resource Data Types for ACPI
The CRS, _PRS, and _SRS control methods use packages of resource descriptors to describe the resource
requirements of devices.

6.4.1 ASL Macros for Resource Descriptors

ASL includes some macros for creating resource descriptors. The ResourceTemplate macro creates Buffer
for in which resource descriptor macros can be listed. The ResourceTemplate macro automatically
generates an End descriptor and cal cul ates the checksum for the resource template. The format for the
ResourceTemplate macro is as follows:

Resour ceTenpl at e()

/1 List of resource macros

}

The following is an example of how these macros can be used to create a resource template that can be
returned from a_PRS control method:

Resour ceTenpl at e()

{
St art Dependent Fn(1, 1)

| RQ(Level, ActiveLow, Shared){10, 11}

DVA(TypeF, Not BusMaster, Transfer16){4}

| O(Decodel6, 0x1000, 0x2000, 0, 0x100)

| O(Decodel6, 0x5000, 0x6000, O, 0x100, |O1)

}
St art Dependent Fn(1, 1)

| RQ(Level, ActivelLow, Shared){}

DVA(TypeF, Not BusMaster, Transfer16){5}

| O(Decodel6, 0x3000, 0x4000, 0, 0x100)

| O(Decodel6, 0x5000, 0x6000, O, 0x100, |Q2)

}
EndDependent Fn()
}

Occasionaly, it is necessary to change a parameter of a descriptor in an existing resource template. To
facilitate this, the descriptor macros optionally include a name declaration that can be used later to refer to
the descriptor. When aname is declared with a descriptor, the ASL compiler will automatically create field
names under the given name to refer to individual fields in the descriptor.

For example, given the above resource template, the following code changes the minimum and maximum
addresses for the 1O descriptor named 102:

129

St or e(0xA000, | 2. _M N)
St or e(0xB000, | O2. _MAX)

The resource template macros for each of the resource descriptors are listed below, after the table that
defines the resource descriptor. The resource template macros are formally defined in section 15.

The reserved names (such as_MIN and _MAX) for the fields of each resource descriptor are defined in the
appropriate table entry of the table that defines that resource descriptor.

6.4.2 Small Resource Data Type
A small resource data type may be 2 to 8 bytesin size and adheres to the following format:

Table 6-6 Small Resource Data Type Tag Bit Definitions

Offset Field

Byte 0 Tag Bit[7] Tag Bits[6:3] Tag Bits [2:0]
Type=0 Small item name Length = n bytes

Bytes1lton Data bytes

The following small information items are currently defined for Plug and Play devices:

Table 6-7 Small Resource Items

Small Item Name Value
Reserved Ox1
Reserved 0x2
Reserved 0x3
IRQ format 0x4
DMA format 0x5
Start dependent Function 0x6
End dependent Function 0x7
1/O port descriptor 0x8
Fixed location 1/0O port descriptor 0x9
Reserved OxA - OxD
Vendor defined OxE
End tag OxF

6.4.2.1 IRQ Format (Type 0, Small Item Name 0x4, Length=2 or 3)

The IRQ data structure indicates that the device uses an interrupt level and supplies a mask with bits set
indicating the levels implemented in this device. For standard PC-AT implementation there are 15 possible
interrupts so atwo byte field is used. This structure is repeated for each separate interrupt required.

Table 6-8 IRQ Descriptor Definition

Offset Field Name
Byte 0 Vaue = 0010001nB (Type = 0, small item name = 0x4, length = (2 or 3))
Byte 1 IRQ mask bitg[7:0], _INT.
Bit[O] represents IRQO, bit[1] isIRQ1, and so on.
Byte 2 IRQ mask bitg15:8] , _INT.
Bit[O] represents IRQ8, bit[1] isIRQ9, and so on.

130

Offset Field Name

Byte 3 IRQ Information. Each bit, when set, indicates this device is capable of driving a
certain type of interrupt. (Optional--if not included then assume edge sensitive,
high true interrupts)

NOTE: These bits can be used both for reporting and setting IRQ resources.
Bit[7:5] Reserved and must be 0

Bit[4] Interrupt issharable, SHR

Bit[3] Low truelevel sensitive, LL

Bit[2:1] Ignored

Bit[O] High true edge sensitive, HE

NOTE: Low true, level sensitive interrupts may be electrically shared, the process of how this might
work is beyond the scope of this specification.

NOTE: If byte 3 is not included, High true, edge sensitive, non shareable is assumed.

6.4.2.1.1 ASL Macro for IRQ Descriptor
The following macro generates a short IRQ descriptor with optional IRQ Information byte:

I RY
Edge | Level, /1l _LL, _HE
ActiveHi gh | Activelow, /1l _LL, _HE
Shared | Exclusive | Nothing, // _SHR, Nothing defaults to Exclusive
NameString | Nothing /1 A nane to refer back to this resource

{
Byt eConst [, ByteConst ...] /1 List of IRQ nunmbers (valid val ues: 0-15)

The following macro generates a short |RQ descriptor without optional IRQ Information byte:

| RQNoFI ags(
NameString | Nothing /1 A nane to refer back to this resource
)
{
Byt eConst [, ByteConst ...] /1 list of IRQ nunbers (valid val ues: O0-15)

6.4.2.2 DMA Format (Type 0, Small Item Name 0x5, Length=2)

The DMA data structure indicates that the device uses a DMA channel and supplies a mask with bits set
indicating the channels actually implemented in this device. This structure is repeated for each separate
channel required.

Table 6-9 DMA Descriptor Definition

Offset Field Name
Byte 0 Vaue = 00101010B (Type = 0, small item name = Ox5, length = 2)
Byte 1 DMA channel mask bitg[7:0], _DMA

Bit[0Q] is channel 0.

131

Offset Field Name
Byte 2 Bit[7] Reserved and must be 0
Bitg[6:5] DMA channel speed supported, TYP
Status

00 Indicates compatibility mode
01 Indicates Type A DMA as described in the EISA
Specification
10 Indicates Type B DMA
11 Indicates Type F
Bit[4:3] Ignored

Bit[2] Logical device bus master status, BM
Status
0 Logica deviceisnot abus master
1 Logica deviceisabus master
Bitg1:0] DMA transfer type preference, _SIZ
Status
00 8-hit only
01 8- and 16-hit
10 16-bit only
11 Reserved

6.4.2.2.1 ASL Macro for DMA Descriptor
The following macro generates a short DMA descriptor.

DIVA(
Conmpatibility | TypeA | TypeB | TypeF, /1 _TYP, DMA channel speed
BusMast er | Not BusMaster, /1 _BM Nothing defaults to BusMaster
Transfer8 | Transferl16 | Transfer8_16 Il _SlZ, Transfer size
NameString | Nothing /1 A nane to refer back to this resource
Byt eConst [, ByteConst ...] /1 List of channel nunbers

[/ (valid values: 0-17)
}

6.4.2.3 Start Dependent Functions (Type 0, Small ltem Name 0x6, Length=0

orl)

Each logical device requires a set of resources. This set of resources may have interdependencies that need
to be expressed to alow arbitration software to make resource allocation decisions about the logical device.
Dependent functions are used to express these interdependencies. The data structure definitions for
dependent functions are shown here. For a detailed description of the use of dependent functions refer to
the next section.

Table 6-10 Start Dependent Functions

Offset Field Name
Byte 0 Vaue=0 0110 00nB (Type =0, small item name = 0x6, length =(0 or 1))

Start Dependent Function fields may be of length O or 1 bytes. The extra byte is optionally used to denote
the compatibility or performance/robustness priority for the resource group following the Start DF tag. The
compatibility priority isaranking of configurations for compatibility with legacy operating systems. Thisis
the same as the priority used in the PNPBIOS interface. For example, for compatibility reasons, the
preferred configuration for COM 1 is IRQ4, 1/O 3F8-3FF. The performance/robustness performanceis a
ranking of configurations for performance and robustness reasons. For example, a device may have a high-
performance, bus mastering configuration that may not be supported by legacy operating systems. The bus-

132

mastering configuration would have the highest performance/robustness priority whileit’s polled 1/0 mode
might have the highest compatibility priority.

If the Priority byte is not included, this indicates the dependent function priority is ‘acceptable’. This byteis
defined as:

Table 6-11 Start Dependent Function Priority Byte Definition

Bits Definition

1.0 Compatibility priority. Acceptable values are:

0= Good configuration - Highest Priority and preferred configuration

1= Acceptable configuration - Lower Priority but acceptable configuration
2= Sub-optimal configuration - Functional configuration but not optimal
3= Resarved

3:2 Performance/robustness. Acceptable values are:

0= Good configuration - Highest Priority and preferred configuration

1= Acceptable configuration - Lower Priority but acceptable configuration
2= Sub-optimal configuration - Functional configuration but not optimal
3= Resarved

74 Reserved; must be 0

Note that if multiple Dependent Functions have the same priority, they are further prioritized by the order
in which they appear in the resource data structure. The Dependent Function which appears earliest (nearest
the beginning) in the structure has the highest priority, and so on.

6.4.2.3.1 ASL Macro for Start Dependent Function Descriptor
The following macro generates a Start Dependent Function descriptor with the optional priority byte:

St ar t Dependent Fn(
Byt eConst , /1 Conmpatibility priority (valid values: 0-2)
Byt eConst /1 Performance/ Robustness priority (valid values: 0-2)

)

/1 List of descriptors for this dependent function

}
The following macros generates a Start Dependent Function descriptor without the optional priority byte

St art Dependent FnNoPr i (

)
{

Descriptors

}

6.4.2.4 End Dependent Functions (Type 0, Small ltem Name 0x7, Length=0)
Table 6-12 End Dependent Functions

Offset Field Name
Byte 0 Vaue=0 0111 000B (Type =0, small item name = 0x7 length =0)

Note that only one End Dependent Function item is allowed per logical device. This enforces the fact that
Dependent Functions cannot be nested.

6.4.2.4.1 ASL Macro for End Dependent Functions descriptor
The following macro generates an End Dependent Functions descriptor:

133

EndDependent Fn(
)

6.4.2.5 1/0O Port Descriptor (Type 0, Small tem Name 0x8, Length=7)

There are two types of descriptorsfor 1/0 ranges. Thefirst descriptor is afull function descriptor for
programmable devices. The second descriptor isaminimal descriptor for old 1SA cards with fixed 1/0
requirements that use a 10-bit 1SA address decode. The first type descriptor can also be used to describe
fixed 1/0 requirements for 1SA cards that require a 16-bit address decode. Thisis accomplished by setting
the range minimum base address and range maximum base address to the same fixed 1/O value.

Table 6-13 1/0 Port Descriptor Definition

Offset Field Name Definition
Byte 0 1/O port descriptor Vaue = 01000111B (Type = 0, Small item name =
0x8, Length=7)
Byte 1 Information Bitg[7:1] are reserved and must be 0
Bit[0] (_ DEC)
If set, indicates the logical device decodes 16-bit
addresses. If bit[Q] is not set, thisindicates the logical
device only decodes address bitg[9:0].
Byte 2 Range minimum base Address bitg 7:0] of the minimum base 1/0O address
address, _MIN that the card may be configured for.
bitg[7:0]
Byte 3 Range minimum base Address bitg15:8] of the minimum base 1/0 address
address, _MIN that the card may be configured for.
bitg[15:8]
Byte 4 Range maximum base Address bitg 7:0] of the maximum base I/O address
address, MAX that the card may be configured for.
bitg[7:0]
Byte 5 Range maximum base Address bitg15:8] of the maximum base 1/0O address
address, MAX that the card may be configured for.
bitg[15:8]
Byte 6 Base dignment, _ALN Alignment for minimum base address, increment in 1
byte blocks.
Byte 7 Range length, LEN The number of contiguous 1/0 ports requested.

6.4.2.5.1 ASL Macros for 10 Port Descriptor
The following macro generates a short 10 descriptor:

e
Decodel6 | DecodelO, /1 _DEC
Wor dConst , /1 _MN, Address m ninum
Wor dConst , /1 _MAX, Address max
Byt eConst , /1 _ALN, Base alignnent
Byt eConst /1 _LEN, Range length
NameString | Nothing /1 A nane to refer back to this resource

6.4.2.6 Fixed Location I/O Port Descriptor (Type 0, Small Item Name 0x9,
Length=3)
This descriptor is used to describe 10-bit I/O locations.

134

Table 6-14 Fixed-Location 1/O Port Descriptor Definition

Offset Field Name Definition
Byte 0 Fixed Location /O port Vaue = 01001011B (Type = 0, Small item name =
descriptor 0x9, Length = 3)
Byte 1 Range base address, BAS [Address bitg[7:0] of the base I/0 address that the card
bitg7:0] may be configured for. This descriptor assumesa 10
bit ISA address decode.
Byte 2 Range base address, BAS [Address bitg[9:8] of the base I/O address that the card
bitg9:8] may be configured for. This descriptor assumesa 10
bit ISA address decode.
Byte 3 Range length, LEN The number of contiguous 1/0 ports requested.

6.4.2.6.1 ASL Macro for Fixed IO Port Descriptor
The following macro generates a short Fixed 10 descriptor:

Fi xedl (
Wor dConst , /1 _BAS, Address base
Byt eConst /1 _LEN, Range length

NameString | Nothing // A name to refer back to this resource

6.4.2.7 Vendor Defined (Type 0, Small Item Name OxE, Length=1-7)
The vendor defined resource data typeis for vendor use.

Table 6-15 Vendor-Defined Resource Descriptor Definition

Offset Field Name

Byte 0 Vaue = 01110nnnB (Type = 0, small item name = OxE, length = (1-7))

Bytelto7 | Vendor defined

6.4.2.7.1 ASL Macro for Vendor Defined Descriptor
The following macro generates a short vendor specific descriptor:

Vendor Short (
NameString | Nothing /1 A nane to refer back to this resource

)

Byt eConst [, ByteConst ...] /1 List of bytes, up to 7 bytes

6.4.2.8 End Tag (Type 0, Small ltem Name OxF, Length 1)
The End tag identifies an end of resource data. Note: If the checksum field is zero, the resource datais
treated asif the checksum operation succeeded. Configuration proceeds normally.

Table 6-16 End Tag Definition

Offset Field Name

Byte 0 Vaue=01111001B (Type = 0, small item name = OxF, length = 1)

Byte 1 Check sum covering all resource data after the serial identifier. This check sumis
generated such that adding it to the sum of al the data bytes will produce a zero
sum.

6.4.2.8.1 ASL Macro for End Tag
The End Tag is automatically generated by the ASL compiler at the end of the ResourceTemplate
Statement.

135

6.4.3 Large Resource Data Type
To alow for larger amounts of data to be included in the configuration data structure the large format is
shown below. Thisincludes a 16-bit length field allowing up to 64 K of data.

Table 6-17 Large Resource Data Type Tag Bit Definitions

Offset Field Name

Byte 0 Vaue = IxxxxxxxB (Type = 1, Large item name = XXXXXXX)
Byte 1 Length of data items bitg7:0]

Byte 2 Length of data items bitg[15:8]

Bytes3ton | Actua dataitems

There following large information items are currently defined for Plug and Play I SA devices:

Table 6-18 Large Resource Items

Large Item Name Value
24-bit memory range descriptor Ox1
Reserved 0x2
Reserved 0x3
Vendor defined 0x4
32-bit memory range descriptor 0x5
32-hit fixed location memory range descriptor 0x6
DWORD address space descriptor 0x7
WORD address space descriptor 0x8
Extended IRQ descriptor 0x9
QWORD address space descriptor OxA
Reserved OxB - OX7F

6.4.3.1 24-Bit Memory Range Descriptor (Type 1, Large Item Name 0x1)
The 24-bit memory range descriptor describes a device’s memory range resources within a 24-bit address
space.

Table 6-19 Large Memory Range Descriptor Definition

Offset Field Name, ASL Field Name [Definition

Byte 0 Memory range descriptor Vaue = 10000001B (Type =1, Largeitem name =

0x1)

Byte 1 Length, bitg7:0] Value = 00001001B (9)

Byte 2 Length, bitg15:8] Value = 00000000B (0)

Byte 3 Information Thisfield provides extra information about this

memory.
Bit[7:1] Ignored
Bit[O] Write status, RW
Status
1 writeable
0 non-writeable (ROM)

Byte 4 Range minimum base address, |Address bitg[15:8] of the minimum base memory
_MIN address for which the card may be configured.
bitg7:0]

Byte 5 Range minimum base address, |Address bitg[23:16] of the minimum base memory
_MIN address for which the card may be configured
bitg[15:8]

136

Offset Field Name, ASL Field Name [Definition

Byte 6 Range maximum base address, |Address bitg[15:8] of the maximum base memory
_MAX, address for which the card may be configured.
bitg[7:0]

Byte 7 Range maximum base address, | Address bitg[23:16] of the maximum base memory
_MAX, address for which the card may be configured
bitg[15:8]

Thisfield contains the lower eight bits of the base

Byte 8 Base alignment, _ALN, alignment. The base alignment provides the
bitg7:0] increment for the minimum base address. (0x0000 =

64 KByte)
Thisfield contains the upper eight bits of the base

Byte 9 Base alignment, _ALN, alignment. The base alignment provides the
bitg15:8] increment for the minimum base address. (0x0000 =

64 KByte)
Thisfield contains the lower eight bits of the

Byte 10 Range length, _LEN, bitg[7:0] |memory range length. The range length provides the

length of the memory range in 256 byte blocks.
Thisfield contains the upper eight bits of the

Byte 11 Range length, LEN, memory range length. The range length field
bitg15:8] provides the length of the memory range in 256 byte

blocks.

NOTE: Address bits[7:0] of memory base addresses are assumed to be O.

NOTE: A Memory range descriptor can be used to describe a fixed memory address by setting the range
minimum base address and the range maximum base address to the same value.

NOTE: 24-bit Memory Range descriptors are used for legacy devices.

NOTE: Mixing of 24-bit and 32-bit memory descriptors on the same device is hot allowed.

6.4.3.1.1 ASL Macro for 24-bit Memory Descriptor
The following macro generates along 24 bit memory descriptor:

Menor y24(

ReadWite | ReadOnly, /1

Wor dConst ,
Wor dConst ,
Wor dConst ,
Wor dConst

NameString | Nothing

RW

:M N, M ni num base nenory address [23: 8]
/1 _MAX; Maxi num base menory address [23:8]
_ALN, Base alignment

/1 _LEN, Range length

/1 A name to refer back to this resource

6.4.3.2 Vendor Defined (Type 1, Large Item Name 0x4)
The vendor defined resource data type is for vendor use.

Table 6-20 Large Vendor-Defined Resource Descriptor Definition

Offset Field Name Definition

Byte 0 Vendor defined Vaue = 10000100B (Type =1, Largeitem name = 0x4)
Byte 1 Length, bitg7:0] L ower eight bits of vendor defined data length

Byte 2 Length, bitg[15:8] Upper eight bits of vendor defined data length

N * bytes |Vendor Defined Vendor defined data bytes

137

6.4.3.2.1 ASL Macro for Vendor Defined Descriptor
The following macro generates along vendor specific descriptor:

Vendor Long(

NameString | Nothing /1 A nane to refer back to this resource

{
Byt eConst [,
}

Byt eConst ...] /1 List of bytes

6.4.3.3 32-Bit Memory Range Descriptor (Type 1, Large Item Name 0x5)
This memory range descriptor describes a device’s memory resources within a 32-bit address space.

Table 6-21 Large 32-Bit Memory Range Descriptor Definition

Offset Field Name Definition

Byte 0 Memory range descriptor Vaue =10000101B (Type =1, Largeitem name =

0x5)

Byte 1 Length, bitg7:0] Value = 00010001B (17)

Byte 2 Length, bitg15:8] Value = 00000000B (0)

Byte 3 Information Thisfield provides extrainformation about this

memory.
Bit[7:1] Ignored
Bit[0] Write status, RW
Status
1 writeable
0 non-writeable (ROM)

Byte 4 Range minimum base address, |Address bitg[7:0] of the minimum base memory
_MIN address for which the card may be configured.
bitg[7:0]

Byte 5 Range minimum base address, |Address bitg[15:8] of the minimum base memory
_MIN address for which the card may be configured
bitg[15:8]

Byte 6 Range minimum base address, |Address bitg[23:16] of the minimum base memory
_MIN address for which the card may be configured.
bitg[23:16]

Byte 7 Range minimum base address, |Address bitg[31:24] of the minimum base memory
_MIN address for which the card may be configured
bits[31:24]

Byte 8 Range maximum base address, |Address bitg[7:0] of the maximum base memory
_MAX address for which the card may be configured.
bitg7:0]

Byte 9 Range maximum base address, |Address bitg[15:8] of the maximum base memory
_MAX address for which the card may be configured
bitg[15:8]

Byte 10 Range maximum base address, |Address bitg[23:16] of the maximum base memory
_MAX address for which the card may be configured.
bits[23:16]

Byte 11 Range maximum base address, |Address bitg[31:24] of the maximum base memory
_MAX address for which the card may be configured
bits[31:24]

Thisfield contains Bitg 7:0] of the base alignment.

Byte 12 Base dignment, _ALN The base alignment provides the increment for the
bitg7:0] minimum base address.

138

Offset Field Name Definition
Thisfield contains Bitg15:8] of the base
Byte 13 Base dignment, _ALN alignment. The base alignment provides the
bitg15:8] increment for the minimum base address.
Thisfield contains Bitg23:16] of the base
Byte 14 Base dignment, _ALN alignment. The base alignment provides the
bitg23:16] increment for the minimum base address.
Thisfield contains Bitg31:24] of the base
Byte 15 Base dignment, ALN alignment. The base alignment provides the
bitg31:24] increment for the minimum base address.
Thisfield contains Bitg 7:0] of the memory range
Byte 16 Range length, LEN length. The range length provides the length of the
bitg7:0] memory range in 1 byte blocks.
Thisfield contains Bitg[15:8] of the memory range
Byte 17 Range length, LEN length. The range length provides the length of the
bitg15:8] memory range in 1 byte blocks.
Thisfield contains Bitg[23:16] of the memory
Byte 18 Range length, LEN range length. The range length provides the length
bitg23:16] of the memory range in 1 byte blocks.
Thisfield contains Bitg[31:24] of the memory
Byte 19 Range length, LEN range length. The range length provides the length
bitg31:24] of the memory range in 1 byte blocks.

NOTE: Mixing of 24-bit and 32-bit memory descriptors on the same device is hot allowed.

6.4.3.3.1 ASL Macro for 32-Bit Memory Descriptor
The following macro generates along 32-bit memory descriptor:

Menor y32(
ReadWite | ReadOnly, Il _RW
DWor dConst , Il _MN,
DWor dConst , Il _NMAX
DWor dConst , /1 _ALN,
DWor dConst /'l _LEN,

NameString | Nothing

)

6.4.3.4 32-Bit Fixed Location Memory Range Descriptor (Type 1, Large Iltem

Name 0x6)

M ni mum base nenory address
Maxi mum base nenory address
Base al i gnment

Range | ength

/1 A name to refer back to this resource

This memory range descriptor describes a device’s memory resources within a 32-bit address space.

Table 6-22 Large Fixed-Location Memory Range Descriptor Definition

Offset Field Name Definition
Byte 0 Memory range descriptor |Vaue = 10000110B (Type = 1, Large item nhame = 6)
Byte 1 Length, bitg7:0] Value = 00001001B (9)
Byte 2 Length, bitg15:8] Value = 00000000B (0)
Byte 3 Information Thisfield provides extra information about this memory.
Bit[7:1] Ignored
Bit[O] Write status, RW
Status
1 writeable
0 non-writeable (ROM)
Byte 4 Range base address, BAS|Address bitg7:0] of the base memory address for which
bitg7:0] the card may be configured.

Offset Field Name Definition
Byte 5 Range base address, BAS|Address bitg15:8] of the base memory address for which
bitg15:8] the card may be configured
Byte 6 Range base address, BAS|Address bitg[23:16] of the base memory address for
bitg23:16] which the card may be configured.
Byte 7 Range base address, BAS|Address bitg[31:24] of the base memory address for
bitg31:24] which the card may be configured
Thisfield contains Bitg 7:0] of the memory range length.
Byte 8 Range length, LEN The range length provides the length of the memory
bitg7:0] range in 1 byte blocks.
Thisfield contains Bitg[15:8] of the memory range
Byte 9 Range length, LEN length. The range length provides the length of the
bitg15:8] memory range in 1 byte blocks.
Thisfield contains Bitg[23:16] of the memory range
Byte 10 Range length, LEN length. The range length provides the length of the
bitg23:16] memory range in 1 byte blocks.
Thisfield contains Bitg31:24] of the memory range
Byte 11 Range length, LEN length. The range length provides the length of the
bitg31:24] memory range in 1 byte blocks.

NOTE: Mixing of 24-bit and 32-bit memory descriptors on the same deviceis not allowed.

6.4.3.4.1 ASL Macros for 32-bit Fixed Memory Descriptor
The following macro generates along 32 bit fixed memory descriptor:

Menor y32Fi xed(
ReadWite |
DwWér dConst ,
DWér dConst

NameString | Nothing

ReadOnl vy, /1

RW

/1 _BAS, Range base
/1 _LEN, Range length

/1 A name to refer back to this resource

6.4.3.5 Address Space Descriptors

The QWORD, DWORD, and WORD Address Space Descriptors are genera purpose structures for
describing a variety of types of resources. These resources also include support for advanced server
architectures (such as multiple root busses), and resource types found on some RISC processors.

6.4.3.5.1 QWORD Address Space Descriptor (Type 1, Large Item Name

OxA)

The QWORD address space descriptor is used to report resource usage in a 64-bit address space (like

memory and 1/0).

Table 6-22a QWORD Address Space Descriptor Definition

Offset Field Name Definition

Byte 0 QWORD Address Space | Value=10001010B (Type =1, Large item name = OxA)
Descriptor

Byte 1 Length, bitg7:0] Variable: Value = 43 (minimum)

Byte 2 Length, bitg[15:8] Variable: Value = 0 (minimum)

Byte 3 Resource Type Indicates which type of resource this descriptor

describes. Defined values are:
0 Memory range

1 I/Orange

2 Busnumber range

3-255 Reserved

139

140

Offset Field Name Definition

Byte 4 General Flags Flags that are common to al resource types:
Bitg7:4] Reserved, must be 0
Bit[3] _MAF:

1: The specified max addressis fixed.
0: The specified max addressis not fixed and
can be changed.
Bit[2] _MIF:
1: The specified min address is fixed.
0: The specified min address is not fixed and
can be changed.
Bit[1] _DEC:
1: This bridge subtractively decodes this
address (top level bridges only)
0: This bridge positively decodes this address.
Bit[0]
1: This device consumes this resource.
0: This device produces and consumes this
resource.

Byte 5 Type Specific Flags Flags that are specific to each resource type. The
meaning of the flagsin this field depends on the value
of the Resource Type field (see above)

Byte 6 Address space A set bit in this mask means that this bit is decoded.
granularity, GRA All bitsless significant than the most significant set bit
bitg7:0] must al be set. That is, the value of the full Address

Space Granularity field (all 32 bits) must be a number
(2™-1)

Byte 7 Address space
granularity, GRA
bitg[15:8]

Byte 8 Address space
granularity, GRA
bits[23:16]

Byte 9 Address space
granularity, GRA
bits[31:24]

Byte 10 Address space
granularity, GRA
bits[39:32]

Byte 11 Address space
granularity, GRA
bits[47:40]

Byte 12 Address space
granularity, GRA
bits[55:48]

Byte 13 Address space
granularity, GRA
bits[63:56]

Byte 14 Address range minimum, | For bridges that translate addresses, this is the address
_MIN space on the primary side of the bridge.
bitg[7:0]

Byte 15 Address range minimum,

_MIN
bits[15:8]

Offset

Field Name

Definition

Byte 16

Address range minimum,

_MIN
bits[23:16]

Byte 17

Address range minimum,

_MIN
bits[31:24]

Byte 18

Address range minimum,

_MIN
bits[39:32]

Byte 19

Address range minimum,

_MIN
bits[47:40]

Byte 20

Address range minimum,

_MIN
bits[55:48]

Byte 21

Address range minimum,

_MIN
bits[63:56]

Byte 22

Address range
maximum, _MAX
bitg[7:0]

For bridges that trandlate addresses, thisis the address
space on the primary side of the bridge.

Byte 23

Address range
maximum, _MAX
bitg[15:8]

Byte 24

Address range
maximum, _MAX
bits[23:16]

Byte 25

Address range
maximum, _MAX
bits[31:24]

Byte 26

Address range
maximum, _MAX
bits[39:32]

For bridges that trandlate addresses, thisis the address
space on the primary side of the bridge.

Byte 27

Address range
maximum, _MAX
bits[47:40]

Byte 28

Address range
maximum, _MAX
bits[55:48]

Byte 29

Address range
maximum, _MAX
bits[63:56]

Byte 30

Address Trandlation
offset, TRA
bitg[7:0]

For bridges that trandate addresses across the bridge,
thisis the offset that must be added to the address on
the primary side to obtain the address on the secondary
side. Non-bridge devices must list O for all Address
Trandation offset bits.

Byte 31

Address Trandlation
offset, TRA
bitg[15:8]

Byte 32

Address Trandlation
offset, TRA
bitg[23:16]

141

142

Offset Field Name Definition

Byte 33 Address Trandlation
offset, TRA
bits[31:24]

Byte 34 Address Trandlation
offset, TRA
bits[39:32]

Byte 35 Address Trandlation
offset, TRA
bits[47:40]

Byte 36 Address Trandlation
offset, TRA
bits[55:48]

Byte 37 Address Trandlation
offset, TRA
bits[63:56]

Byte 38 Address length, LEN
bitg[7:0]

Byte 39 Address length, LEN,
bitg[15:8]

Byte 40 Address length, LEN
bits[23:16]

Byte 41 Address length, LEN
bits[31:24]

Byte 42 Address length, LEN
bits[39:32]

Byte 43 Address length, LEN
bits[47:40]

Byte 44 Address length, LEN
bits[55:48]

Byte 45 Address length, LEN
bits[63:56]

Byte 46 Resource Source Index (Optional) Only present if Resource Source (below) is
present. Thisfield gives an index to the specific
resource descriptor that this device consumes fromin
the current resource template for the device object
pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this
descriptor consumes its resources from the resources
produced by the named device object. If not present,
the device consumes its resources out of a global pool.
If not present, the device consumes this resource from
its hierarchical parent.

6.4.3.5.2 ASL Macros for QWORD Address Space Descriptor
The following macro generates a QWORD Address descriptor with ResourceType = Memory:

143

Qnor dMenor y (
Resour ceConsuner | ResourceProducer | Not hing, /1 Not hi ng=>Resour ceConsuner
SubDecode | PosDecode | Not hing, /1 _DEC, Not hi ng=>PosDecode
M nFi xed | M nNot Fi xed | Not hi ng, /1 _MF, Nothing=>M nNot Fi xed
MaxFi xed | MaxNot Fi xed | Not hi ng, /1 _NMAF, Not hi ng=>MaxNot Fi xed

Cacheable | WiteConmbining | Prefetchable | NonCacheabl e | Not hing,
/1 _MEM Not hi ng=>NonCacheabl e

ReadWite | ReadOnly, /1 _RW Nothing == ReadWite
Qnor dConst , /1 _GRA, Address granularity
Qnor dConst , /1 _MN, Address range m ninum
Qnor dConst , /1 _MAX, Address range max
Qnor dConst , /1 _TRA, Translation
Byt eConst | Not hi ng, /! Resource Source |ndex;

/1 if Nothing, not generated
NameString | Nothing /'l Resource Source;

/1 if Nothing, not generated
NameString | Nothing /1 A nane to refer back

/1l to this resource

)
The following generates a QWORD Address descriptor with ResourceType = 10:

QWORDI (
Resour ceConsuner | ResourceProducer | Nothing, /1 Not hi ng == Resour ceConsuner
M nFi xed | M nNot Fi xed | Not hi ng, /1 _MF, Nothing => M nNot Fi xed
MaxFi xed | MaxNot Fi xed | Not hi ng, /1 _NMAF, Not hing => MaxNot Fi xed
SubDecode | PosDecode | Not hing, /1 _DEC, Nothing => PosDecode

| SAOnl yRanges | Nonl SAOnl yRanges | EntireRange | Not hing,
/1 _RNG Not hing => EntireRange

Qnor dConst , /1 _GRA: Address granularity
Qnor dConst , /1 _M N Address range m ninum
Qnor dConst , /1 _MAX: Address range max
Qnor dConst , /1 _TRA: Translation
Byt eConst | Not hi ng, /! Resource Source |ndex;

/1 if Nothing, not generated
NameString | Nothing /'l Resource Source;

/1 if Nothing, not generated
NameString | Nothing /1 A nane to refer back to this

resource

)

6.4.3.5.3 DWORD Address Space Descriptor (Type 1, Large Item Name 0x7)
The DWORD address space descriptor is used to report resource usage in a 32-bit address space (like
memory and 1/0).

Table 6-23 DWORD Address Space Descriptor Definition

Offset Field Name Definition

Byte 0 DWORD Address Space | Vaue=10000111B (Type = 1, Large item name = 0x7)
Descriptor

Byte 1 Length, bitg7:0] Variable: Value = 23 (minimum)

Byte 2 Length, bitg[15:8] Variable: Value = 0 (minimum)

Byte 3 Resource Type Indicates which type of resource this descriptor

describes. Defined values are:
0 Memory range

1 I/Orange

2 Busnumber range

3-255 Reserved

144

Offset Field Name Definition

Byte 4 General Flags Flags that are common to al resource types:
Bitg7:4] Reserved, must be 0
Bit[3] _MAF:

1: The specified max addressis fixed.
0: The specified max addressis not fixed and
can be changed.
Bit[2] _MIF:
1: The specified min address is fixed.
0: The specified min address is not fixed and
can be changed.
Bit[1] _DEC:
1: This bridge subtractively decodes this
address (top level bridges only)
0: This bridge positively decodes this address.
Bit[0]
1: This device consumes this resource.
0: This device produces and consumes this
resource.

Byte 5 Type Specific Flags Flags that are specific to each resource type. The
meaning of the flagsin this field depends on the value
of the Resource Type field (see above)

Byte 6 Address space A set bit in this mask means that this bit is decoded.
granularity, _GRA All bits less significant than the most significant set bit
bitg[7:0] must all be set. (i.e. The value of the full Address

Space Granularity field (all 32 bits) must be a number
(2™-1)

Byte 7 Address space
granularity, GRA
bitg[15:8]

Byte 8 Address space
granularity, GRA
bits [23:16]

Byte 9 Address space
granularity, GRA
bits [31:24]

Byte 10 Address range minimum, | For bridges that translate addresses, this is the address
_MIN space on the primary side of the bridge.
bits[7:0]

Byte 11 Address range minimum,

_MIN
bits[15:8]

Byte 12 Address range minimum,
_MIN
bits [23:16]

Byte 13 Address range minimum,
_MIN
bits [31:24]

Byte 14 Address range For bridges that trandlate addresses, thisis the address
maximum, _MAX space on the primary side of the bridge.
bits[7:0]

Byte 15 Address range

maximum, MAX
bits [15:8]

Offset Field Name Definition

Byte 16 Address range
maximum, _MAX
bits [23:16]

Byte 17 Address range
maximum, _MAX
bits [31:24]

Byte 18 Address Trandlation For bridges that trand ate addresses across the bridge,
offset, TRA thisisthe offset that must be added to the address on
bits [7:0] the primary side to obtain the address on the secondary

side. Non-bridge devices must list O for all Address
Trandation offset bits.

Byte 19 Address Trandlation
offset, TRA
bits[15:8]

Byte 20 Address Trandlation
offset, TRA
bits[23:16]

Byte 21 Address Trandlation
offset, TRA
bits [31:24]

Byte 22 Address Length, LEN,
bits[7:0]

Byte 23 Address Length, LEN,
bits[15:8]

Byte 24 Address Length, LEN,
bits [23:16]

Byte 25 Address Length, LEN,
bits [31:24]

Byte 26 Resource Source Index (Optional) Only present if Resource Source (below) is
present. Thisfield gives an index to the specific
resource descriptor that this device consumes fromin
the current resource template for the device object
pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this
descriptor consumes its resources from the resources
produced by the named device object. If not present,
the device consumes its resources out of a global pool.
If not present, the device consumes this resource from
its hierarchical parent.

6.4.3.5.4 ASL Macros for DWORD Address Space Descriptor
The following macro generates a DWORD Address descriptor with ResourceType = Memory:

145

146

DWORDMenDT y (
Resour ceConsuner | ResourceProducer | Not hing, /1 Not hi ng=>Resour ceConsuner
SubDecode | PosDecode | Not hing, /1 _DEC, Not hi ng=>PosDecode
M nFi xed | M nNot Fi xed | Not hi ng, /1 _MF, Nothing=>M nNot Fi xed
MaxFi xed | MaxNot Fi xed | Not hi ng, /1 _NMAF, Not hi ng=>MaxNot Fi xed

Cacheable | WiteConmbining | Prefetchable | NonCacheabl e | Not hing,
/1 _MEM Not hi ng=>NonCacheabl e

ReadWite | ReadOnly, /1 _RW Nothing == ReadWite
DWor dConst , /1 _GRA, Address granularity
DWor dConst , /1 _MN, Address range m ninum
DWor dConst , /1 _MAX, Address range max
DWor dConst , /1 _TRA, Translation
Byt eConst | Not hi ng, /1 Resource Source |ndex;

/1 if Nothing, not generated
NameString | Nothing /'l Resource Source;

/1 if Nothing, not generated
NameString | Nothing /1 A nane to refer back

/1l to this resource

)
The following generates a DWORD Address descriptor with ResourceType = 10:

DWORDI O(
Resour ceConsuner | ResourceProducer | Nothing, /1 Not hi ng == Resour ceConsuner
M nFi xed | M nNot Fi xed | Not hi ng, /1 _MF, Nothing => M nNot Fi xed
MaxFi xed | MaxNot Fi xed | Not hi ng, /1 _NMAF, Not hing => MaxNot Fi xed
SubDecode | PosDecode | Not hing, /1 _DEC, Nothing => PosDecode

| SAOnl yRanges | Nonl SAOnl yRanges | EntireRange | Not hing,
/1 _RNG Not hing => EntireRange

DWor dConst , /1 _GRA: Address granularity
DWor dConst , /1 _M N Address range m ninum
DWor dConst , /1 _MAX: Address range max
DWor dConst , /1 _TRA: Translation
Byt eConst | Not hi ng, /! Resource Source |ndex;

/1 if Nothing, not generated
NameString | Nothing /'l Resource Source;

/1 if Nothing, not generated
NameString | Nothing /1 A nane to refer back to this

resource

)

6.4.3.5.5 WORD Address Space Descriptor (Type 1, Large Item Name 0x8)
The WORD address space descriptor is used to report resource usage in a 16-bit address space (like
memory and 1/0). NOTE: This descriptor is exactly the same as the DWORD descriptor specified in Table
7-19; the only difference is that the address fields are 16 bits wide rather than 32.

Table 6-24 WORD Address Space Descriptor Definition

Offset Field Name Definition

Byte 0 WORD Address Space Vaue=10001000B (Type = 1, Large item name = 0x8)
Descriptor

Byte 1 Length, bitg7:0] Variable: Value = 13 (minimum)

Byte 2 Length, bitg[15:8] Variable: Value = 0 (minimum)

Byte 3 Resource Type Indicates which type of resource this descriptor

describes. Defined values are:
0 Memory range

1 I/Orange

2 Busnumber range

3-255 Reserved

Offset Field Name Definition

Byte 4 General Flags Flags that are common to al resource types:
Bitg7:4] Reserved, must be 0
Bit[3] _MAF:

1: The specified max addressis fixed.
0: The specified max addressis not fixed and
can be changed.
Bit[2] _MIF:
1: The specified min address is fixed.
0: The specified min address is not fixed and
can be changed.
Bit[1] _DEC:
1: This bridge subtractively decodes this
address (top level bridges only)
0: This bridge positively decodes this address.
Bit[O] 1: Thisdevice consumes thisresource.
0: This device produces and consumes this
resource.

Byte 5 Type Specific Flags Flags that are specific to each resource type. The
meaning of the flagsin thisfield depends on the value
of the Resource Type field (see above)

Byte 6 Address space A set bit in this mask means that this bit is decoded.
granularity, _GRA All bits less significant than the most significant set bit
bitg[7:0] must all be set. (i.e. The value of the full Address

Space Granularity field (all 16 bits) must be a number
(2™-1)

Byte 7 Address space
granularity, GRA
bitg[15:8]

Byte 8 Address range minimum, | For bridges that translate addresses, this is the address
_MIN space on the primary side of the bridge.
bits[7:0]

Byte 9 Address range minimum,

_MIN
bits[15:8]

Byte 10 Address range For bridges that trandlate addresses, thisis the address
maximum, _MAX space on the primary side of the bridge.
bits[7:0]

Byte 11 Address range
maximum, _MAX
bits[15:8]

Byte 12 Address Trandlation For bridges that trandate addresses across the bridge,
offset, TRA thisisthe offset that must be added to the address on
bits [7:0] the primary side to obtain the address on the secondary

side. Non-bridge devices must list O for all Address
Trandation offset bits.

Byte 13 Address Trandlation
offset, TRA
bits[15:8]

Byte 14 Address Length, LEN,
bits[7:0]

Byte 15 Address Length, LEN,

bits [15:8]

147

148

Offset Field Name Definition

Byte 16 Resource Source Index (Optional) Only present if Resource Source (below) is
present. Thisfield gives an index to the specific
resource descriptor that this device consumes fromin
the current resource template for the device object
pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this
descriptor consumes its resources from the resources
produced by the named device object. If not present,
the device consumes its resources out of a global pool.
If not present, the device consumes this resource from
its hierarchical parent.

6.4.3.5.6 ASL Macros for WORD Address Descriptor
The following macro generates a WORD Address descriptor with ResourceType =10

WORDI O(

Resour ceConsuner | ResourceProducer | Not hing, /1 Not hi ng=>Resour ceConsuner
M nFi xed | M nNot Fi xed | Not hi ng, /1 _MF, Nothing=>M nNot Fi xed
MaxFi xed | MaxNot Fi xed | Not hi ng, /1 _NMAF, Not hi ng=>MaxNot Fi xed
SubDecode | PosDecode | Not hing, /1 _DEC, Not hi ng=>PosDecode
| SAOnl yRanges | Nonl SAOnl yRanges | EntireRange, Il _RNG
Wor dConst , /1 _GRA: Address granularity
Wor dConst , /1 _M N Address range m ni num
Wor dConst , /1 _MAX: Address range max
Wor dConst , /1 _TRA: Translation
Byt eConst | Not hi ng, /! Resource Source |ndex;

/1 if Nothing, not generated
NameString | Nothing /'l Resource Source;

/1 if Nothing, not generated
NameString | Nothing /1 A nane to refer back

/!l to this resource

)

The following macros generates a WORD Address descriptor with ResourceType = BusNumber:

WORDBus Nunber (

Resour ceConsuner | ResourceProducer | Not hing, /1 Not hi ng=>Resour ceConsuner
M nFi xed | M nNot Fi xed | Not hi ng, /1 _MF, Nothing=>M nNot Fi xed
MaxFi xed | MaxNot Fi xed | Not hi ng, /1 _NMAF, Not hi ng=>MaxNot Fi xed
SubDecode | PosDecode | Not hing, /1 _DEC, Not hi ng=>PosDecode
Wor dConst , /1 _GRA, Address granularity
Wor dConst , /1 _MN, Address range m ninum
Wor dConst , /1 _MAX, Address range max
Wor dConst , /1 _TRA: Translation
Byt eConst | Not hi ng, /! Resource Source |ndex;

/1 if Nothing, not generated
NameString | Nothing /'l Resource Source;

/1 if Nothing, not generated
NameString | Nothing /1 A nane to refer back

/1l to this resource

)

6.4.3.5.7 Resource Type Specific Flags

The meaning of the flags in the Type Specific Flags field of the Address Space Descriptors depends on the
value of the Resource Type field in the descriptor. The flags for each resource type are defined in the
following tables:

Table 6-25 Memory Resource Flag (Resource Type = 0) Definitions

Bits Meaning
Bitg[7:5] Reserved; must be 0

149

Bits

Meaning

Bitg4:1]

Memory attributes, MEM
Vaue Meaning
0 The memory is noncacheable
1 Thememory is cacheable
2 The memory is cacheable and supports write combining
3 The memory is cacheable and prefetchable
>3 Reserved

Bit[0]

Write status, RW
1: This memory range is read-write
0: This memory range is read-only

Table 6-26 1/0 Resource Flag (Resource Type = 1) Definitions

Bits

Meaning

Bit[7:2]

Reserved; must be O

Bit[1]

RNG
Thisflag is for bridges on systems with multiple bridges. Setting this bit means
the memory window specified in this descriptor is limited to the ISA /O
addresses that fall within the specified window. The ISA 1/0 ranges are: n000-
nOFF, n400-n4FF, n800-n8FF, nCO0-nCFF. This bit can only be set for bridges
entirely configured through ACPI hame space.

Bit[0]

RNG
Thisflag is for bridges on systems with multiple bridges. Setting this bit means
the memory window specified in this descriptor is limited to the non ISA 1/0
addresses that fall within the specified window. The non-ISA 1/O ranges are:
n100-n3FF, n500-n7FF, n900-nBFF, nDOO-nFFF. This bit can only be set for
bridges entirely configured through ACPI names pace.

Table 6-27 Bus Number Range Resource Flag (Resource Type = 2) Definitions

Bits

Meaning

Bit[7:0]

Reserved; must be O

6.4.3.6 Extended Interrupt Descriptor (Type 1, Large Item Name 0x9)
The Extended Interrupt Descriptor is hecessary to describe interrupt settings and possibilities for systems
that support interrupts above 15.

To specify multiple interrupt numbers, this descriptor allows vendorsto list an array of possible interrupt
numbers, any one of which can be used.

Table 6-28 Extended Interrupt Descriptor Definition

Offset Field Name Definition

Byte 0 Extended Interrupt Vaue=10001001B (Type = 1, Large item name =
Descriptor 0x9)

Byte 1 Length, bitg7:0] Variable: Value = 6 (minimum)

Byte 2 Length, bitg[15:8] Variable: Value = 0 (minimum)

Byte 3 Interrupt Vector Flags Interrupt Vector Information.

Bit[7:4] Reserved, must be O.
Bit[3] Interrupt is shareable, SHR
Bit[2] Low true level sensitive, LL

Bit[1] High true level sensitive, HE
Bit[O] 1: This device consumes this resource
0: This device produces and consumes
this resource

150

Offset Field Name Definition

Byte 4 Interrupt table length Indicates the number of interrupt numbers that follow.
When this descriptor is returned from _CRS, or when
the OS passes this descriptor to _SRS, this field must

besetto 1.
Byte4n+5 | Interrupt Number, INT Interrupt number.
bits[7:0]
Byte4n+6 | Interrupt Number, INT
bits[15:8]
Byte4n+7 | Interrupt Number, INT
bits [23:16]
Byte4n+8 | Interrupt Number, INT
bits [31:24]

.. .. Additional interrupt numbers

Byte x Resource Source Index (Optional) Only present if Resource Source (below) is

present. Thisfield gives an index to the specific

resource descriptor that this device consumes fromin

the current resource template for the device object

pointed to in Resource Source.

String Resource Source (Optional) If present, the device that uses this

descriptor consumes its resources from the resources

produces by the named device object. If not present,

the device consumes its resources out of a global pool.

If not present, the device consumes this resource from

its hierarchical parent.

NOTE: Low true, level sensitive interrupts may be electrically shared, the process of how this might work
is beyond the scope of this specification.

If the operating system is running using the 8259 interrupt model, only interrupt number values of 0-15 will

be used, and interrupt numbers greater than 15 will be ignored.

6.4.3.6.1 ASL Macro for Extended Interrupt Descriptor
The following macro generates an extended interrupt descriptor:

I nterrupt (
Resour ceConsuner | ResourceProducer | Not hing, /1 Not hi ng=>Resour ceConsuner
Edge | Level, /1l _LL, _HE
ActiveHi gh | ActivelLow , /1l __LL, _HE
Shared | Exclusive | Nothing, /1 _SHR: Not hi ng=>Excl usi ve
Byt eConst | Not hi ng, /! Resource Source |ndex;
/1 if Nothing, not generated
NameString | Nothing /'l Resource Source;
/1 if Nothing, not generated
NameString | Nothing /1 A nane to refer back
/1 to this resource
)
{
DWor dConst [, DwWordConst ...] /1 _INT, list of interrupt nunbers

}

6.5 Other Control Methods

6.5.1 _INI

_INI'isadeviceinitialization object that performs device specific initialization. This control method,
located under a device object, is run shortly after ACPI has been enabled, and is run exactly once. There are
restrictions related to when this method is called and governing writing code for this method. The _INI can
only access system 10, system Memory, and the PCl ConfigSpace. It cannot access the embedded
controller, or the SMBus. This control method isrun before_ ADR, CID, HID, SUN, and _UID arerun.

151

The _INI control method is generally used to switch devices out of alegacy operating mode. For example,
Bl1OSes often configure CardBus controllers in alegacy mode to support legacy operating systems. Before
enumerating the device with an ACPI operating system, the CardBus controllers must be initialized to
CardBus mode. For such systems, the vendor can include an _INI control method under the CardBus
controller to switch the device into CardBus mode.

6.5.2 _DCK

This control method islocated in the device object that represents the docking station (that is, the device
object with all the EJx control methods for the docking station). The presence of _DCK indicates to the
operating system that the device is really a docking station.

_DCK also controls the isolation logic on the docking connector. This allows an operating system to
prepare for docking before the bus is activated and devices appear on the bus.
Arguments:
Arg0
1= Dock (that is, remove isolation from connector)
0 = Undock (isolate from connector)
Return codes:
1if successful, O if failed.

Note: When _DCK iscalled with O, the OS will ignore the return value. The _STA object that follows the
_EJXx control method will notify whether or not the portable has been g ected.

6.5.3 _BDN
_BDN isused to correlate a docking station reported via ACPI and the same docking station reported via
legacy interfaces. It is primarily used for upgrading over non-ACPI environments.

_BDN must appear device object that represents the dock, that is, the device object with _Ejx methods.
This object must return a DWORD that is the EI SA-packed DocklID returned by the Plug and Play BIOS
Function 5 (Get Docking Station Identifier) for a dock.

Note: If the machine does not support PNPBIOS, this object is not required.

6.5.4 REG

The operating system runs _REG controls methods to inform AML code when the device driver that
controls an operation region is ready¥s or no longer ready¥s for access. Before an operation region device
driver isready, AML cannot access registersin that operation region. (Operation region writes will be
ignored and reads will return indeterminate data.) Once the OS has run the _REG for a particular operation
region and indicated that the handler is ready, the AML can access the operation region.

For example, until the Embedded Controller driver isready, the AML cannot access the Embedded
Controller. Once the OS has run _REG for the Embedded Controller NameSpace with Arg 1 set to 1, the
AML can then access operation regions in Embedded Controller space.

Place REG in the same scope as operation region declarations. The operating system will run the_REG in
a given scope when the operation regions declared in that scope are available for use.

For example:

Scope(_SB. PCI 0) {
Oper ati onRegi on(OPR1, PCl Config, ...)
Met hod(_REG, 2) {...}
Devi ce(1 SAO) {
Met hod(_REG, 2) {...}
OperationRegion(OPR2, 1O, ...)
Devi ce(EC) {

152

Name(_HI D, Ei sal D(" PNPOC09"))
Met hod(_REG, 2) {...}
Oper ati onRegi on(OPR3, EC, ...)
}
}
}

When the PCI driver loads, the OS will run _REG in PCIO to indicate that PCl Config spaceis available.
When ISAQ is configured, the OS will run _REG in that scope to indicate that the 10 used by OPR2 is
available. Finally, when the Embedded Controller is started, REG in the EC scope will be run to indicate
OPR3 can be used.

Note: The operating system only runs _REG methods that appear in the same scope as operation region
declarations that use the operation region type that has just been made available. For example, REG in the
EC device would not be run when the PCI bus driver isloaded since the operation regions declared under
EC do not use any of the operation region types made available by the PCI driver (namely config space, 10,
and memory).

Arguments:

Arg0: Integer: Operation region space:
0 = Memory
1=10
2 =PCl_Config
3 = Embedded Controller
4 = SMBus
Argl: Integer: 1 for connecting the handler, O for disconnecting the handler

6.5.5 BBN

For multi-root PCI machines, BBN isthe PCI bus number that the BIOS sets up. If you need to get to a
PCI operation region in order to run the _CRS control method, the system must have a means of the PCI
bus number in order for the OS to generate the correct PCI configuration cycles.

6.5.6 _GLK

This optional named object islocated in a device object. This object returns a value that indicates to the OS
whether the global lock must be acquired when accessing the device. OS-based device accesses must be
performed while in acquisition of the global lock when potentially contentious accesses to device resources
are performed by non-OS code, such as System Management Mode (SMM)-based code in Intel
architecture-based systems.

An example of this device resource contention is a device driver for an SMBus-based device contending
with SMM-based code for access to the Embedded Controller, SMBus Host Controller, and SMBus target
device. Inthis case, the device driver must acquire and release the global lock when accessing the device
to avoid resource contention with SMM-based code that accesses any of the listed resources.

Return codes:
1 global lock required, O global lock not required

7. Power Management

This section specifies the device power management objects and system power management objects the OS
can use to perform power management on a platform. The system state indicator objects are also specified
in this section.

7.1 Declaring a PowerResource Object
An ASL PowerResource statement is used to declare a PowerResource object. A Power Resource object
refers to a software-controllable power plane, clock plane, or other resource upon which an integrated
ACPI power-managed device might rely. Power resource objects can appear wherever is convenient in
name space.
The syntax of a PowerResource statement is:

PowerResource(resourcename, systemlevel, resourceorder) {NamedL.ist}

where the systemlevel parameter is a number and the resourceorder parameter is a numeric constant (a
Word). For aformal definition of the PowerResource statement syntax, see section 14.

Systemlevel isthe lowest power system sleep level the OS must maintain to keep this power resource on (0
equates to SO, 1 equatesto S1, and so on) .

Each power-managed ACPI device lists the resources it requires for its supported power levels. The OS
multiplexes this information from all devices and then enables and disables the required Power Resources
accordingly. The resourceorderl field in the Power Resource object is a unique value per Power Resource,
and it provides the system with the order in which Power Resources must be enabled or disabled. Power
Resources are enabled from low values to high values and are disabled from high values to low values. The
operating software enables or disables all affected Power Resourcesin any one resourceorder level a a
time before moving on to the next ordered level. Putting Power Resources in different order levels provides
power sequencing and serialization where required.

A Power Resource can have named objects under its Name Space location. For a description of the ACPI-
defined named objects for a Power Resource, see section 7.2.

The following block of ASL sample code shows a use of PowerResource.

Power Resour ce(PI DE, 0, 0) {
Met hod(_STA) {
Return (Xor (J O IDElI, One, Zero)) /1 inverse of isolation

}
Met hod(_ON) {
Store (One, G O | DEP) /] assert power
Sl eep (10) /1 wait 10ns
Store (One, G O | DER) /] de-assert reset#
Stall (10) /1 wait 10us
Store (Zero, G O |IDEl) /] de-assert isolation

}

Met hod(_OFF) {
Store (One, | DEl') /] assert isolation
Store (Zero, GO DER /] assert reset#
Store (Zero, G O | DE de-assert power

vv
-~
-~

P

}

7.2 Device Power Management Objects
For adevice that is power-managed using ACPI, a Definition Block contains one or more of the objects
found in the table below. Power management of a device is done using two different paradigms:

Power Resource control.

Device-specific control.

Power Resources are resources that could be shared amongst multiple devices. The operating software will
automatically handle control of these devices by determining which particular Power Resources need to be
in the ON state at any given time. This determination is made by considering the state of all devices
connected to a Power Resource.

Intel Microsoft Toshiba

154

For many devices the Power Resource control isal that is required; however, device objects may include
their own device-specific control method.

These two types of power management controls (through Power Resources and through specific devices)
can be applied in combination or individually as required.

For systems that do not control device power states through power plane management, but whose devices
support multiple D-states, more information is required by the operating system to determine the S-state to
D-State mapping for the device. The ACPI Bios can give this information to the OS by way of the _SxD
methods. These methodstell the OS for S-State “x”, the highest D-State supported by the deviceis“y”. The
OSisallowed to pick alower D-state for a given S-state, but the OS is not allowed to exceed the given D-
state.

Further rules that apply to device power management objects are:
1. For agiven S-State, a device cannot be in a higher D-State than its parent device.
2. Each _PRx object must have a corresponding _PSx object and vice-versa. The only exception isthe
_PRW object which does not need a corresponding _PSW object.

Table 7-1 Device Power Management Child Objects

Object Description

_IRC Object that signifies the device has a significant inrush current draw.

_PRW Object that evaluates to the device' s power requirements in order to wake the system from a
system sleeping state.

_PRO Object that evaluates to the device' s power requirements in the DO device state (device fully
on).

_PR1 Object that evaluates to the device's power requirements in the D1 device state. The only

devices that supply this level are those which can achieve the defined D1 device state
according to the related device class.

_PR2 Object that evaluates to the device's power requirements in the D2 device state. The only
devices that supply this level are those which can achieve the defined D2 device state
according to the related device class.

_PSC Object that evaluates to the device' s current power state.

_PSW Control method that enables or disables the device’ s WAKE function.
PO Control method that puts the device in the DO device state (device fully on).
_PS1 Control method that puts the device in the D1 device state.

_PS2 Control method that puts the device in the D2 device state.

_PS3 Control method that puts the device in the D3 device state (device off).
_S0D Highest D-State supported by the device in the SO state

_S1D Highest D-State supported by the device in the S1 state

_S2D Highest D-State supported by the device in the S2 state

_S3D Highest D-State supported by the device in the S3 state

4D Highest D-State supported by the device in the $4 state

_S5D Highest D-State supported by the device in the S5 state

7.2.1 PRW

Thisobject is only required for devices that have the ability to “wake” the system from a system sleeping
state. This object evaluates to a package of the following definition:

Table 7-2 Wake Power Requirements Package

Object Description
0 | numeric The bit index in GPEX_EN of the enable bit that is enabled for
the wake event.
1 | numeric The lowest power system sleeping state that can be entered
while still providing wake functionality.
2 | object reference Reference to required Power Resource #0.

155

| N | object reference | Reference to required Power Resource #N. |

For the OS to have the defined wake capability properly enabled for the device, the following must occur:

1. All Power Resources referenced by elements 2 through N are put into the ON state.

2. If present, the _PSW control method is executed to set the device-specific registers to enable the wake
functionality of the device.

Then, if the system wants to enter a sleeping state:

1. Interrupts are disabled.

2. The deeping state being entered must be greater or equal to the power state declared in element 1 of
the PRW object.

3. The proper general-purpose register bits are enabled.

7.2.2 _PRO
This object evaluates to a package of the following definition:

Table 7-3 Power Resource Requirements Package

Object Description

1 | object reference Reference to required Power Resource #0.

| N | object reference | Reference to required Power Resource #N. |

For the OS to put the device in the DO device state, the following must occur:

1. All Power Resources referenced by elements 1 through N must be in the ON state.

2. All Power Resources no longer referenced by any device in the system must be in the OFF state.
3. If present, the _PS0 control method is executed to set the device into the DO device state.

7.2.3 PR1

This object evaluates to a package as defined in Table 7-3. For the OS to put the device in the D1 device
state, the following must occur:

1. All Power Resources referenced by elements 1 through N must be in the ON state.

2. All Power Resources no longer referenced by any device in the system must be in the OFF state.

3. If present, the _PS1 control method is executed to set the device into the D1 device state.

7.2.4 PR2

This object evaluates to a package as defined in Table 7-3. For the OS to put the devicein the D2 device
state, the following must occur:

1. All Power Resources referenced by elements 1 through N must be in the ON state.

2. All Power Resources no longer referenced by any device in the system must be in the OFF state.

3. If present, the _PS2 control method is executed to set the device into the D2 device state.

7.25 SOD
This object evaluates to an integer, which corresponds to the highest D-state supported in S-state 0. See
Table 7-4 for the result code. This particular method is redundant since the device must support DO whilein
the SO state. It isincluded for consistency purposes.

7.2.6 _S1D
This object evaluates to an integer, which corresponds to the highest D-state supported in S-state 1. See
Table 7-4 for the result code.

156

7.2.7 _S2D

This object evaluates to an integer, which corresponds to the highest D-state supported in S-state 2. See
Table 7-4 for the result code.

7.2.8 _S3D

This object evaluates to an integer, which corresponds to the highest D-state supported in S-state 3. See
Table 7-4 for the result code.

7.2.9 S4D

This object evaluates to an integer, which corresponds to the highest D-state supported in S-state 4. See
Table 7-4 for the result code.

7.2.10 _S5D

This object evaluates to an integer, which corresponds to the highest D-state supported in S-state 5. See
Table 7-4 for the result code.

7.3 Power Resources for OFF
By definition, a device that is OFF does not have any power resource or system power state requirements.
Therefore, device objects do not list power resources for the OFF power state.

For the OS to put the device in the D3 state, the following must occur:
1. All Power Resources no longer referenced by any device in the system must be in the OFF state.
2. If present, the _PS3 control method is executed to set the device into the D3 device state.

The only transition allowed from the D3 device state is to the DO device state.

7.3.1 IRC

The presence of this object signifies that transitioning the device to its DO state causes a system-significant
in-rush current load. In general, such operations need to be serialized such that multiple operations are not
attempted concurrently. Within ACPI, this type of serialization can be accomplished with the
resourceorder parameter of the device' s Power Resources; however, this does not serialize ACPI-
controlled devices with non-ACPI controlled devices. IRC is used to signify this fact outside of the ACPI
driver to the OS such that the OS can seriaize all devices in the system that have in-rush current
serialization requirements. The OS can only transition one device flagged with _IRC to the DO state at a
time.

7.3.2 _PSW

In addition to _PSR, this control method can be used to enable or disable the device' s ability to wake a
deeping system. This control method can only access Operation Regions that are either always available
while in a system working state or that are available when the Power Resources references by the PRW
object are all ON. For example, do not put a power plane control for a bus controller within configuration
space located behind the bus.

Arguments:
0: Enable/ Disable. 0 to disable the device' s wake capahilities.
1 to enable the device' s wake capabilities.
Result code:
None
7.3.3 PSC

This control method evaluates to the current device state. This control method is not required if the device
state can be inferred by the Power Resource settings. This would be the case when the device does not
requirea_PSO, PS1, PS2, or _PS3 control method.

Arguments:
None

157

Result code:
The result codes are shown in Table 7-4.

Table 7-4 _PSC Control Method Result Codes

Result Device State
0 DO
1 D1
2 D2
3 D3

7.3.4 PSO
This Control Method is used to put the specific device into its DO state. This Control Method can only
access Operation Regionsthat are either aways available while in a system working state or that are
available when the Power Resources references by the PRO object are al ON.

Arguments:
None

Result code:
None

7.35 PS1

This control method is used to put the specific device into its D1 state. This control method can only access
Operation Regions that are either always available while in a system working state or that are available
when the Power Resources references by the PR1 object are all ON.

Arguments:
None

Result code:
None

7.3.6 _PS2

This control method is used to put the specific device into its D2 state. This control method can only access
Operation Regions that are either always available while in a system working state or that are available
when the Power Resources references by the PR2 object are all ON.

Arguments:
None

Result code:
None

7.3.7 PS3
This control method is used to put the specific device into its D3 state. This control method can only access
Operation Regions that are always available while in a system working state.

A devicein the D3 state must no longer be using its resources (for example, its memory space and 1O ports
are available to other devices).

Arguments:
None

Result code:
None

7.4 Defined Child Objects for a Power Resource
Each power resource object is required to have the following control methods to allow basic control of each
power resource. Asthe OS changes the state of device objects in the system, the power resources which

158

are needed will change which will cause the ACPI driver to turn power resources on and off. To determine
theinitial power resource settings the _STA method can be used.

Table 7-5 Power Resource Child Objects

Object Description

_STA Object that evaluates to the current on or off state of the Power Resource.
0=0OFF, 1=0N
_ON Set the resource on.

_OFF Set the resource off.

7.4.1 STA

Returns the current ON or OFF status for the power resource.

Arguments:
None

Result code:
0 indicates the power resource is currently off
1 indicates the power resource is currently on

7.42 ON

This power resource control method puts the power resource into the ON state. The control method does
not complete until the power resourceison. The ACPI driver only turns on or off one resource at atime,
so the AML code can abtain the proper timing sequencing by using Stall or Sleep within the ON (or OFF)
method to cause the proper sequencing delays between operations on power resources.

Arguments:
None

Result code:
None

7.4.3 OFF

This power resource control method puts the power resource into the OFF state. The control method does
not complete until the power resource is off. The ACPI driver only turns on or off one resource at atime,
so the AML code can aobtain the proper timing sequencing by using Stall or Sleep within the ON (or off)
method to cause the proper sequencing delays between operations on power resources.

Arguments:
None

Result code:
None

7.5 OEM-Supplied System Level Control Methods

An OEM-supplied Definition Block provides some number of controls appropriate for system level
management. These are used by the OS to integrate to the OEM-provided features. The following table lists
the defined OEM system controls that can be provided.

Table 7-6 BIOS-Supplied Control Methods for System Level Functions

Object Description

\ PTS Control method used to prepare to sleep

\ Package that defines system \ SO state mode.

\ Package that defines system\ S1 state mode.

\ Package that defines system \ S2 state mode.

IE{\;IK;I('QI8

\ Package that defines system \ S3 state mode.

159

Object Description

\ A Package that defines system \ $4 state mode.

\' S5 Package that defines system \ S5 state mode.

\:WAK Control method run once awakened.

7.5.1 \ PTS Prepare To Sleep

The _PTS control method is executed by the operating system at the beginning of the sleep process for S1,
S2, S3, H4, and for orderly S5 shutdown. The sleeping state value (1, 2, 3, 4, or 5) is passed to the _PTS
control method. Before the OS notifies native device drivers and prepares the system software for a system
deeping state, it executes this ACPI control method. Thus, this control method can be executed arelatively
long time before actually entering the desired deeping state. In addition, the OS can abort the sleeping
operation without notification to the ACPI driver, in which case another _PTS would occur some time
before the next attempt by the OS to enter a leeping state.

The _PTS control method cannot modify the current configuration or power state of any device in the
system. For example, _PTS would simply store the sleep type in the embedded controller in sequencing the
system into a sleep state when the SLP_EN bit is set.

Arguments:
0: The value of the deeping state (1 for S1, 2 for S2, and so on).

7.5.2 System _Sx states

All system states supported by the system must provide a package containing the Dword value of the
following format in the static Definition Block. The system states, known as SO - S5, are referenced in the
name space as\ SO -_S5 and for clarity the short Sx names are used unless specifically referring to the
named _Sx object. For each Sx state, there is a defined system behavior.

Table 7-7 System State Package

Byte Byte Description

Length Offset

1 0 Vauefor PM1a CNT.SLP TYPregister to enter this system state.

1 1 Vauefor PM1b_CNT.SLP_TYP register to enter this system state. To enter any

given state, the OS must write the PM1a CNT.SLP_TY P register before the
PM1b CNT.SLP TYPregister.

2 2 Reserved

States S1-34 represent some system sleeping state. The SO state is the system working state. Transition into
the SO state from some other system state (such as sleeping) is automatic, and, by virtue that instructions
are being executed, the OS assumes the system to be in the SO state. Transition into any system sleeping
state is only accomplished by the operating software directing the hardware to enter the appropriate state,
and the operating software can only do this within the requirements defined in the Power Resource and Bus
/ Device Package objects.

All runtime system state transitions (for example, to and from the SO state), except S4 and S5, are done
similarly such that the code sequence to do this is the following:

160

/*
Intel Architecture SetSl eepingState exanple
*/

ULONG

Set Syst enSl| eepi ng (
IN ULONG NewState
)

{
PROCESSOR_CONTEXT Cont ext ;

ULONG Power Segeunce,

BOOLEAN Fl ushCaches;

USHORT Sl pTyp;
/'l Required environment: Executing on the system boot
/1 processor. Al other processors stopped. Interrupts
/1 disabled. Al Power Resources (and devices) are in

/] corresponding device state to support NewState.

/1l Get h/w attributes for this systemstate
Fl ushCaches = Sl eepType[NewSt at e] . Fl ushCache;

Sl pTyp = Sl eepType[NewSt ate] . SI pTyp & SLP_TYP_MASK;
_asm {
| ea eax, OsResuneCont ext
push eax ; Build real nopde handl er the resune
push of fset sp50 ; context, with eip = sp50
cal | SaveProcessor St at e
nmv eax, ResuneVector ; set firmware’s resune vector
nmv [eax], offset OsReal ModeResuneCode
nmv edx, PMla_STS ; Make sure wake status is clear
nmv ax, WAK_STS ; (cleared by asserting the bit
out dx, ax ; in the status register)
nmov edx, PMLb_STS ;
out dx, ax ;
and eax, not SLP_TYP_MASK
or eax, SlpTyp ; set SLP_TYP
or ax, SLP_EN ; set SLP_EN
cnp Fl ushCaches, 0
jz short spl0 ; If needed, ensure no dirty data in
cal | Fl ushProcessor Caches ; the caches while sl eeping
spl0: nmv edx, PMla_SLP_TYP ; get address for PMla_SLP_TYP
out dx, ax ; start h/w sequencing
nmov edx, PMLb_SLP_TYP ; get address for PMLb_SLP_TYP
out dx, ax ; start h/w sequencing
nmv edx, PMla_STS ; get address for PMLx_STS
nmv ecx, PMLb_STS
sp20: in ax, dx ; wait for WAK status

xchg edx, ecx
test ax, WAK_STS

jz short sp20
sp50:
}
/1 Done..
*ResumeVect or = NULL;
return O;
}

7.5.2.1 System_ SO State (Working)

161

While the system isin the SO state, it isin the system working state. The behavior of this state is defined as:
The processors arein the CO, C1, C2, or C3 states. The processor complex context is maintained and
instructions are executed as defined by any of these processor states.

Dynamic RAM context is maintained and is read/write by the processors.

Devices states are individually managed by the operating software and can be in any device state (DO,
D1, D2, or D3).

Power Resources are in a state compatible with the current device states.

Transition into the SO state from some system sleeping state is automatic, and by virtue that instructions are
being executed the OS assumes the system to be in the SO state.

7.5.2.2 System _S1 State (Sleeping with Processor Context Maintained)
While the system isin the S1 sleeping state, its behavior is the following:
The processors are not executing instructions. The processor complex context is maintained.
Dynamic RAM context is maintained.
Power Resources are in a state compatible with the system S1 state. All Power Resources that supply a
System Level reference of S0 are in the OFF state.
Devices states are compatible with the current Power Resource states. only devices which solely
reference Power Resources which are in the ON state for a given device state can be in that device
state. In all other cases, the device isin the D3 (off) state™
Devicesthat are enabled to wake the system and that can do so from their current device state can
initiate a hardware event which transitions the system state to SO. This transition causes the processor
to continue execution where it | eft off.

To transition into the S1 state, the operating software does not have to flush the processor’ s cache.

7.5.2.3 System_S2 State

The S2 dleeping state islogically lower then the S1 state and is assumed to conserve more power. The

behavior of this state is defined as:
The processors are not executing instructions. The processor complex context is not maintained.
Dynamic RAM context is maintained.
Power Resources are in a state compatible with the system S2 state. All Power Resources that supply a
System Level reference of SO or S1 are in the OFF state.
Devices states are compatible with the current Power Resource states. only devices which solely
reference Power Resources which are in the ON state for a given device state can be in that device
state. In al other cases, the deviceisin the D3 (off) state.
Devicesthat are enabled to wake the system and that can do so from their current device state can
initiate a hardware event which transitions the system state to SO. This transition causes the processor
to begin execution at its boot location. The BIOS performs initialization of core functions as needed to
exit an S2 state and passes control to the firmware resume vector. See section 9.3.2 for more details on
BIOS initialization.

Because the processor context can be lost while in the S2 state, the transition to the S2 state requires that
the operating software flush all dirty cache to DRAM.

7.5.2.4 System\ S3 State
The S3 state islogically lower then the S2 state and is assumed to conserve more power. The behavior of
this state is defined as follows:
The processors are not executing instructions. The processor complex context is not maintained.
Dynamic RAM context is maintained.

19 Or is at least assumed to be in the D3 state by its device driver. For example, if the device doesn’t
explicitly describe how it can stay in some state non-off state while the system isin a sleeping state, the
operating software must assume that the device can lose its power and state.

162

Power Resources are in a state compatible with the system S3 state. All Power Resources that supply a
System Level reference of SO, S1, or S2 are in the OFF state.

Devices states are compatible with the current Power Resource states. only devices which solely
reference Power Resources which are in the ON state for a given device state can be in that device
state. In all other cases, the device isin the D3 (off) state.

Devicesthat are enabled to wake the system and that can do so from their current device state can
initiate a hardware event which transitions the system state to SO. This transition causes the processor
to begin execution at its boot location. The BIOS performs initialization of core functions as required
to exit an S3 state and passes control to the firmware resume vector. See section 9.3.2 for more details
on BIOS initialization.

From the software view point, this state is functionally the same as the S2 state. The operational difference
can be that some Power Resources that could be left ON to be in the S2 state might not be available to the
S3 state. As such, additional devices can be required to bein logicaly lower DO, D1, D2, or D3 state for S3
than S2. Similarly, some device wake events can function in S2 but not S3.

Because the processor context can be lost while in the S3 state, the transition to the S3 state requires that
the operating software flush all dirty cache to DRAM.

7.5.2.5 System_S4 State
While the system isin this state, it isin the system $4 sleeping state. The state islogically lower then the
S3 state and is assumed to conserved more power. The behavior of this state is defined as follows:
- The processors are not executing instructions. The processor complex context ishot maintained.
Dynamic RAM context is not maintained.
Power Resources are in a state compatible with the system $4 state. All Power Resources that supply a
System Level reference of S0, S1, S2, or S3 are in the OFF state.
Devices states are compatible with the current Power Resource states. In other words, all devicesarein
the D3 state when the system state is $4.
Devices that are enabled to wake the system and that can do so from their D4 device state can initiate a
hardware event which transitions the system state to SO. This transition causes the processor to begin
execution at its boot |ocation.
After the OS has executed the _PTS control method and put the entire system state into main memory,
there are two ways which the OS may handle the next phase of the $4 state for saving and restoring main
memory. The first way is where the operating system uses its drivers to access the disks and file system
structures to save a copy of memory to disk, and then initiates the hardware S4 sequence by setting the
SLP_EN register bit. When the system wakes, the firmware performs a normal boot process and loads the
OSes loader. The loader then restores the systems memory and wakes the OS.
The alternate method for entering the $4 state is to utilize the BIOS via the S4BIOS transition. The BIOS
uses firmware to save a copy of memory to disk and then initiates the hardware $S4 sequence. When the
system wakes, the firmware restores memory from disk and wakes the OS by transferring control to the
FACS waking vector.
The $4BIOS transition is optional, but any system which supports this mechanism is required to support
entering the 4 state via the direct OS mechanism. Thus the preferred mechanism for S4 support isthe
direct OS mechanism asit provides broader platform support. The alternate S4BIOS transition provides a
way to achieve $4 support on OSes which do not have support for the direct method.

7.5.2.6 System \ S5 State (Soft Off)

The S5 state is similar to the $4 state except that the OS has not saved any context nor set any devicesto
wake the system. The system isin the “soft” off state and requires a complete boot when awakened (BIOS
and OS). Software uses a different state value to distinguish between this state and the $4 state to allow for
initial boot operations within the BIOS to distinguish whether or not the boot is going to wake from a saved
memory image. The OS must have all wake events disabled before initiating SLP_EN for the S5 state.

163

7.5.3 _WAK (System Wake)

After the system has awakened from a sleeping state, it will invoke the\ WAK method and pass the
deeping state value that has ended. This operation occurs asynchronously with other driver notificationsin
the system and is not the first action to be taken when the system wakes up. The AML code for this control
method issues device, thermal, and other notifications to ensure that the OS checks the state of devices,
thermal zones, and so on that could not be maintained during the system sleeping state. For example, if the
system cannot determine whether a device was inserted or removed from a bus while in the S2 state, the
_WAK method would issue a devicecheck type of notification for that bus when issued with the sleeping
state value of 2 (for more information about types of notifications, see section 5.6.3). Note that a device
check notification from the_SB node will cause the OS to re-enumerate the entire tree™.

Hardware is not obligated to track the state needed to supply the resulting status; however, this method can
return status concerning the last sleep operation initiated by the OS. The result codes can be used to provide
additional information to the OS or user.

Arguments:
0 The value of the deeping state (1 for S1, 2 for S2, and so on).

Result code (2 Dword package):

Status Bit field of defined conditions that occurred during sleep.

0x00000001 Wake was signaled but failed due to lack of power.

0x00000002 Wake was signaled but failed due to thermal condition.

Other Reserved.
PSS If non-zero, the effective S-state the power supply really entered.
Thisvalueis used to detect when the targeted S-state was not entered because of too much current
being drawn from the power supply. For example, this might occur when some active device's current
consumption pushes the system’ s power reguirements over the low power supply mark, thus
preventing the lower power mode to be entered as desired.

1 Only buses that support hardware-defined enumeration methods are done automatically at run time. This
would include ACPI enumerated devices.

8. Processor Control
This section describes the OS runtime aspects of managing the processor’ s power consumption and other
controls while the system isin the working state™?. The major controls over the processors are:

Processor power states: CO, C1, C2, C3

Processor clock throttling

Cooling control

These controls are used in combination by the operating software to achieve the desired balance of the
following, sometimes paradoxical, goals:

Performance

Power consumption and battery life

Thermal requirements

Noise level requirements

Because the goal s interact with each other, the operating software needs to implement a policy as to when and
where tradeoffs between the goals are to be made™®. For example, the operating software would determine when
the audible noise of the fan is undesirable and would trade off that requirement for lower thermal requirements,
which can lead to lower processing performance. Each processor control is discussed in the following sections
along with how the control interacts with the various goals.

8.1 Declaring a Processor Object

A processor object is declared for each processor in the system using an ASL Processor statement. A processor
object provides processor configuration information and pointsto the P_BLK. For more information, see
section 14.

8.2 Processor Power States

By putting a processor into a power state (C1, C2, or C3), the processor consumes less power and dissipates less
heat than leaving the processor in the CO state. While in a leeping state, the processor does not execute any
instructions. Each sleeping state has a latency associated with entering and exiting that corresponds to the power
savings. To conserve power, the operating software puts the processor into one of its supported sleeping states
whenidle.

8.2.1 Processor Power State CO
While the processor isin this state, it executes instructions. No specific power or thermal savings are realized.

8.2.2 Processor Power State C1

All processors must support this power state. This processor power state has the lowest latency, and on IA-PC
processors is entered by the “STI-HLT” instruction sequence™. The hardware latency on this state is required
to be low enough that the operating software does not consider the latency aspect of the state when deciding
whether to use it . Aside from putting the processor in a power state, this state has no other software-visible
effects.

The hardware can exit this state for any reason, but must always exit this state whenever an interrupt is to be
presented to the processor.

8.2.3 Processor Power State C2
This processor power state is optionally supported by the system. If present, the state offers improved power
savings of the C1 state and is entered by using the P_L VL2 command register for the local processor. The

12 1n any system sleeping state, the processors are not executing instructions (that is, not “runtime”), and the
power consumption is fixed as a property of that system state.

3 A thermal warning leaves room for operating system tradeoffs to occur (to start the fan or to reduce
performance), but a critical thermal alert does not occur.

14 The C1 sleeping state specifically defines interrupts to be enabled while halted.

Intel Microsoft Toshiba

166

worst-case hardware latency for this state is declared in the FACP Table and the operating software can use this
information to determine when the C1 state should be used instead of the C2 state. Aside from putting the
processor in a power state, this state has no other software-visible effects.

The hardware can exit this state for any reason, but must always exit this state whenever an interrupt is to be
presented to the processor.

8.2.4 Processor Power State C3

This processor power state is optionally supported by the system. If present, the state offers improved power
savings of the C1 and C2 state and is entered by using the P_L VL3 command register for the local processor.
The worst-case hardware latency for this state is declared in the FACP Table, and the operating software can
use this information to determine when the C2 state should be used instead of the C3 state. While in the C3
state, the processor’ s caches maintain state but ignore any snoops. The operating software is responsible for
ensuring that the caches maintain coherency. In a uniprocessor environment, this can be done by using the
PM2_CNT.ARB_DIS bus master arbitration disable register to ensure bus master cycles do not occur whilein
the C3 state. In amultiprocessor environment, the processors caches can be flushed and invalidated such that
no dynamic information remains in the caches before entering the C3 state.

The hardware can exit this state for any reason, but must always exit this state whenever an interrupt is to be
presented to the processor or when BM_RLD is set and a bus master is attempting to gain access to memory.

8.3 Processor State Policy
The operating software can implement control policies based on what is best suited for it. Below is an example
policy for |A-PC processors.

Processorldl eHandl ers is initialized at systeminitialization tine.
It contains the handler to use for each of the C1, C2, C3 processor

states. |If the given processor state is not supported, the next
; best handler is installed.
Processor| dl eHander s dd 4 dup (?)

Processorldl e:
System deternines that processor is idle, and has interrupts
di sabl ed as that idleness can only be maintained until the next
interrupt

cal | [1dl eHandl er] ; Invoke currently selected idle handler

I dl eHandl er enabl ed interrupts
jmp TopOr | dl eCode ; Go check to see if we are still idle

Example idle handers are shown below. The strategy shown is for each idle handler to quickly determine that
theinstalled IdleHandler should be demoted to the next lower level. Not shown is an operating environment-
specific task of very low priority that waits for the processor’s “idleness’ to get sufficiently high for along
amount of time, at which point it promotes the IdleHandler to its next higher level.

I dl eCl
st
hl t
ret

I dl eC2

nmov eax, Lastldl eStart]

sub eax, [Last | dl eEnd]

and eax, Of fffffh

cnp eax, RequiredC2l dl eTi e
jc short |dl eC2Short

mov edx, PM TMR
in eax, dx
nmov [LastldleStart], eax

mov edx, P_LVL2
in al, dx

mov edx, PM TMR

in eax, dx

in eax, dx

nmov [Last|dl eEnd], eax

st
ret

167

(eax) = last idle start tinme
(eax) = length of last idle
mask off sign

was | ast idle | ong enough?
no, go check for denotion

Get current tine
This is new LastldleStart

Enter C2

Ensure C2 entered
Get current tine
This is new Lastldl eEnd

A demotion policy from C2 could be to demote to C1 after two short C2 idlesin arow.

168

| dl eC3Uni processor:
mov edx, PMla_STS

in al, dx
mov edx, PMLb_STS
nmov ah, a
in al, dx
or ah, a

test ah, BM STS
jnz short Setldl eHandl er C2

nmov eax, [LastldleStart]
sub eax, [Lastldl eEnd]

and eax, Offffffh

cnp eax, RequiredC3ldleTine
Jc short |dl eC3Short

mov edx, PM TMR
in eax, dx
nmov [LastldleStart], eax

mov edx, PM2_CNT

in al, dx
nmov ah, a
or al, ARB DS
out dx, a

mov edx, P_LVL3
in al, dx

Mov edx, PM TMR

in eax, dx

in eax, dx

nmov [Last|dl eEnd], eax

mov edx, PM2_CNT

nmov al, ah
out dx, a
st
ret

Any bus master activity?
Yes, switch to C2 idle

(eax) = last idle start tinme
(eax) = length of last idle
mask off sign

was | ast idle |ong enough?
no, go check for denotion

Get current tine
This is new LastldleStart

di sabl e bus master arbitration

Enter C3.

Ensure C3 entered
Get current tine
This is new Lastldl eEnd

enabl e bus naster arbitration

A demotion policy from the C3 handler could be to demote to C2 after two short C2 idlesin arow or on one
short C3idletimeif the RequiredC3ldleTime and last execution time (difference from current time to

LastldieEnd time) are sufficiently high.

169

The IdleC3Multiprocessor handler can be used only on systems that identify themselves as having working
WBINDYV instructions. The handler can take along time to enter the C3 state, so both the promotion and
demotion from this handler would likely be conservative.

I dl eC3Mul ti processor
nmov eax, [LastldleStart]
sub eax, [Lastldl eEnd]
and eax, Offffffh
cnp eax, RequiredMPC3Idl eTi ne
Jc short 1dl eC3Short

wbi nvd

mov edx, PM TMR
in eax, dx
nov esi, eax

mov edx, P_LVL3
in al, dx

mov edx, PM TMR

in eax, dx

in eax, dx

nmov [LastldleStart], esi
nmov [Last|dl eEnd], eax

st
ret

(eax) = last idle start tinme
(eax) = length of last idle
mask off sign

was | ast idle |ong enough?
no, go check for denotion

requires whinvd support

Get current tine
Remenber it

Enter C3.

Ensure C3 entered
Get current tine
New Last |l dl eStart
New Last | dl eEnd

171

9. Waking and Sleeping

ACPI defines a mechanism to transition the system between the working state (G0) and a sleeping state (G1) or
the soft-off (G2) state. During transitions between the working and sleeping state, the context of the user’s
operating environment is maintained. ACPI defines the quality of the G1 sleeping state by defining the system
attributes of four types of ACPI deeping states (S1, S2, S3, and $4). Each sleeping state is defined to allow
implementations that can trade-off cost, power, and wake-up latencies. Additionally, ACPI defines the sleeping
states such that an ACPI platform can support multiple sleeping states, allowing the platform to transition into a
particular sleeping state for a predefined period of time and then transition to alower power/higher wake-up
latency sleeping state (transitioning through the GO state) .

ACPI defines a programming model that provides a mechanism for the ACPI driver to initiate the entry into a
sleeping or soft-off state (S1-S5); this consists of a 3-hit field SLP_TY Px*® that indicates the type of Sleep state
to enter, and a single control bit SLP_EN to start the sleeping process. The hardware implements different low-
power sleeping states and then associ ates these states with the defined ACPI sleeping states (through the
SLP_TYPx fields). The ACPI hardware creates a slegping object associated with each supported sleeping state
(unsupported sleeping states are identified by the lack of the sleeping object). Each sleeping object contains two
constant 3-bit values that the ACPI driver will program into the SLP_TYPaand SLP_TY Pb fields (in fixed
register space).

ACPI aso defines an alternate mechanism for entering and exiting the $4 state that passes control to the BIOS
to save and restore platform context. Context ownership is similar in definition to the S3 state, but hardware
saves and restores the context of memory to non-volatile storage (such as adisk drive), and the OS treats this as
an $4 state with implied latency and power constraints. This aternate mechanism of entering the $4 state is
referred to as the S4BIOS transition.

Prior to entering a leeping state (S1-4), the ACPI driver will execute OEM-specific AML/ASL code
contained in the Prepare To Sleep, _PTS, control method. One use of the _PTS control method indicates to the
embedded controller what sleeping state the system will enter when the SLP_EN bit is set. The embedded
controller can then respond by executing the proper power-plane sequencing upon this bit being set.

Upon waking up, the OS will execute the Wake (_ WAK) control method. This control method again contains
OEM-specific AML/ASL code. One use of the_WAK control method requests the OS to check the platform for
any devices that might have been added or removed from the system while the system was asleep. For example,
a PC Card controller might have had a PC Card added or removed, and because the power to this device was off
in the sleeping state, the status change event was not generated.

This section discusses the initialization sequence required by an ACPI platform. This includes the boot
sequence, different wake-up scenarios, and an example to illustrate how to sue the new E820 calls.

9.1 Sleeping States
Theillustration below shows the transitions between the working state, the sleeping states, and the Soft Off
state.

'3 The OS uses the RTC wakeup feature to program in the time transition delay. Prior to sleeping, the OS will
program the RTC alarm to the closest (in time) wakeup event: either atransition to alower power sleeping
state, or a calendar event (to run some application).

16 Note that there can be two fixed PM1x_CNT registers, each pointing to a different system 1/0 space region.
Normally aregister grouping only alows a bit or bit field to reside in a single register group instance (a or b);
however, each platform can have two instances of the SLP_TY P (one for each grouping register: aand b). The
_Sx control method gives a package with two values: thefirst isthe SLP_TY Pavalue and the second is the
SLP TYPbvalue.

172

S1

Sleeping

Wake SLP_TYPx=S1
Event and
SLP_EN

S2

SLP_TYPx=S2 Sleeping

and
SLP_EN

GO (S0) - SLP_TYPx=S3 sS3
) d
Working SL&IT_EN Sleeping

SLP_TYPx=S5

and /

SLP_EN
or SLP_TYPx=S4
PWRBTN_OR S4BIOS_REQ and
o SLP_EN
SMI_CMD S4
¢ ‘ Sleeping
SLP_TYPx=S4
OEM S4 BIOS | and
Handler SLP_EN

Figure 9-1 Example Sleeping States
ACPI defines distinct differences between the GO and G1 system states.
In the GO state, work is being performed by the OS and hardware. The CPU or any particular hardware
device could bein any one of the defined power states (CO-C3 or DO-D3); however, some work will be
taking place in the system.
In the G1 state, the system is assumed to be doing no work. Prior to entering the G1 state, the OS will place
devicesin the D3 state; if adevice is enabled to “wake up the system,” then the OS will place these devices
into the lowest Dx state for which the device still supports wakeup. Thisis defined in the power resource
description of that object; for information, see section 0. This definition of the G1 state implies:
The CPU executes no OS code while in the G1 state.
To the OS, hardware devices are not operating (except possibly to generate a wakeup event).
ACPI registers are affected as follows:
Wakeup event bits are enabled in the corresponding fixed or general-purpose registers
according to enabled wakeup options.
PM1 control register is programmed for the desired sleeping state.
WAK_STSis set by hardware in the sleeping state.
All deeping states have these specifications. ACPI defines additional attributes that allow an ACPI platform to
have up to four different sleeping states, each of which have different attributes. The attributes were chosen to
allow differentiation of sleeping states that vary in power, wakeup latency, and implementation cost tradeoffs.
Running the processor at a divided clock rate is not an ACPI degping state (G1); thisis aworking (GO) state.
The CPU cannot be executing any instructions when in the sleeping state; the ACPI driver relies on thisfact. A
platform designer might be tempted to support a sleeping system by reducing the clock frequency of the system,
which alows the platform to maintain alow power state while at the same time maintaining communication
sessions that require constant interaction (as with some network environments). Thisis definitely a GO activity
where an OS policy decision has been made to turn off the user interface (screen) and run the processor in a
reduced performance mode. This type of reduced performance state as a sleeping state is not defined by the
ACPI specification; ACPI assumes no code execution during sleeping states.

173

ACPI defines attributes for four sleeping states: S1, S2, S3 and S4. (Note that S4 and S5 are very similar from a
hardware standpoint.) At least one sleeping state must be implemented by ACPI-compatible hardware. Many
platforms will support multiple sleeping states. ACPI specifies that a 3-bit binary number be associated with the
dleeping state (these numbers are given objects within ACPI’ s root name space: _SO,_S1,_S2,\ S3,\ $4 and
_S5). The ACPI driver will do the following:

1. Pick the closest deeping state supported by the platform and enabled waking devices.

2. Execute the Prepare To Sleep (_PTS) control method (which passes the type of intended deep state to
OEM AML codg) if it isan S1-$4 deeping state.

3. If OS policy decidesto enter the $S4 state and chooses to use the S4B1OS mechanism and S4BIOS is
supported by the platform, the ACPI driver will pass control to the BIOS software by writing the
SHABIOS_REQ value to the SMI_CMD port.

4. If not using the $4BIOS mechanism, the ACPI driver getsthe SLP_TY Px value from the associated
deeping object (_S1,\ S2,\ S3,\ S or\ S5).

5. Program the SLP_TY Px fields with the values contained in the selected sleeping object.

6. Setthe SLP_EN bit to start the sleeping sequence. (This actually occurs on the same write operation that
programsthe SLP_TYPx field inthe PM1_CNT register.)

The Prepare To Sleep (_PTS) control method provides the BIOS a mechanism for performing some

housekeeping, such as writing the sleep type value to the embedded controller, before entering the system

dleeping state. Control method execution occurs “just prior” to entering the sleeping state and is not an event
synchronized with the writeto the PM1_CNT register. Execution can take place several seconds prior to the
system actually entering the sleeping state, so no hardware power-plane sequencing takes place by execution of
the PTS control method.

When the ACPI driver gets control again (after waking up) it will call the wakeup control method (. WAK).

This control method executes OEM-specific ASL/AML code to have the OS search for any devices that might

have been added or removed during the sleeping state.

The following sections describe the sleeping state attributes.

9.1.1 S1 Sleeping State

The S1 state is defined as alow wakeup latency sleeping state. In this state no system context islost (CPU or
chip set), and the hardware is responsible for maintaining all system context, which includes the context of the
CPU, caches, memory, and al chipset 1/0. Examples of S1 sleeping state implementation alternatives follow.

9.1.1.1 S1 Sleeping State Implementation (Example 1)

This example references an | A processor that supports the stop grant state through the assertion of the
STPCLK# signal. When SLP_TYPx is programmed to the S1 value (the OEM chooses a value, which is then
placed in the_S1 object) and the SLP_ENX bit is subsequently set, the hardware can implement an S1 state by
asserting the STPCLK# signal to the processor, causing it to enter the stop grant state.

In this case, the system clocks (PCl and CPU) are still running. Any enabled wakeup event should cause the
hardware to de-assert the STPCLK# signal to the processor.

9.1.1.2 S1 Sleeping State Implementation (Example 2)

When SLP_TYPx is programmed to the S1 value and the SLP_ENX bit is subsequently set, the hardware will

implement an S1 state by doing the following:

1. Placethe processor into the stop grant state.

2. Stop the processor’ s input clock, placing the processor into the stop clock state.

3. Places system memory into a self-refresh or suspend-refresh state. Refresh is maintained by the memory
itself or through some other reference clock that is not stopped during the sleeping state.

4. Stop al system clocks (asserts the standby signal to the system PLL chip). Normally the RTC will
continue running.

Inthis case, al clocksin the system have been stopped (except for the RTC' s clock). Hardware must reverse the

process (restarting system clocks) upon any enabled wakeup event.

9.1.2 S2 Sleeping State
The S2 state is defined as alow wakeup latency seep state. This state is similar to the S1 deeping state, except
that the CPU and system cache context islost (the OSis responsible for maintaining the caches and CPU

174

context). Additionally, control starts from the processor’s reset vector after the wakeup event. Before setting the
SLP_EN bit, the ACPI driver will flush the system caches. If the platform supports the WBINVD instruction (as
indicated by the WBINVD and WBINVD_FLUSH flagsin the FACP table), the OS will execute the WBINVD
instruction. If the platform does not support the WBINV D instruction to flush the caches, then the ACPI driver
will attempt to manually flush the caches using the FLUSH_SIZE and FLUSH_STRIDE fields in the FACP
table. The hardware is responsible for maintaining chipset and memory context. An example of a S2 sleeping
state implementation follows.

9.1.2.1 S2 Sleeping State Implementation Example
When SLP_TYPx is programmed to the S2 value (found in the_S2 object) and then the SLP_EN hit is set, the
hardware will implement an S2 state by doing the following:
Stop system clocks (the only running clock is the RTC).
Place system memory into a self or suspend refresh state.
Power off the CPU and cache subsystem.
In this case, the CPU is reset upon detection of the wakeup event; however, core logic and memory maintain
their context. Execution control starts from the CPU’ s boot vector. The BIOS is required to:
Program the initial boot configuration of the CPU (such asthe CPU’'s MSR and MTRR registers).
Initialize the cache controller to itsinitial boot size and configuration.
Enable the memory controller to accept memory accesses.
Call the waking vector.

9.1.3 S3 Sleeping State

The S3 state is defined as alow wakeup latency sleep state, where all system context is lost except for system
memory. CPU, cache, and device context are lost in this state; the OS and drivers must restore all device
context. Hardware must maintain memory context and restore some CPU and L2 configuration context. Control
starts from the processor’ s reset vector after the wakeup event. Prior to setting the SLP_EN bit, the ACPI driver
will flush the system caches. If the platform supports the WBINVD instruction (as indicated by the WBINVD
and WBINVD_FLUSH flagsin the FACP table), the OS will execute the WBINVD instruction. If the platform
does not support the WBINV D instruction then the ACPI driver will attempt to manually flush the cache using
the FLUSH_SIZE and FLUSH_STRIDE fields within the FACP table. The hardware is responsible for
maintaining chip set and memory context. Examples of an S3 dleegping state implementation follows.

9.1.3.1 S3 Sleeping State Implementation Example
When SLP_TYPx is programmed to the S3 value (found in the_S3 object) and then the SLP_EN hit is set, the
hardware will implement an S3 state by doing the following:

Memory is placed into alow power auto or self refresh state.

Devicesthat are maintaining memory isolate themselves from other devices in the system.

Power is removed from the system. At this point, only devices supporting memory are powered (possibly

partially powered). The only clock running in the system isthe RTC clock
In this case, the wakeup event re-powers the system and resets most devices (depending on the implementation).
Execution control starts from the CPU’ s boot vector. The BIOS is required to:

Program the initial boot configuration of the CPU (such asthe MSR and MTRR registers).

Initialize the cache controller to itsinitial boot size and configuration.

Enable the memory controller to accept memory accesses.

Jump to the waking vector.
Note that the BIOS is required to reconfigure the L2 and memory controller to their pre-sleeping states. The
BIOS can store the values of the L2 controller into the reserved memory space, where it can then retrieve the
values after waking up. The OS will call the Prepare To Sleep method (_PTS) once a session (prior to sleeping).
The BIOS is also responsible for restoring the memory controller’s configuration. If this configuration datais
destroyed during the S3 sleeping state, then the BIOS needs to store thisin a non-volatile memory area (as with
RTC CMOS RAM) to enable it to restore the values during the waking process.
When the OS re-enumerates buses coming out of the S3 dleeping state, it will discover any devices that have
come and gone, and configure devices as they are turned on.

175

9.1.4 S4 Sleeping State

The $4 deeping state is the lowest power, longest wakeup latency sleeping state supported by ACPI. In order
to reduce power to aminimum, its assumed that the hardware platform has powered off all devices. Because
thisis a leeping state, the platform context is maintained. Depending on how the transition into the S4 sleeping
state occurs, the responsibility for maintaining system context changes. S4 supports two entry mechanisms: OS
initiated and BIOS initiated. The OS-initiated mechanism is similar to the entry into the S1-S3 sleeping states;
the OS driver writesthe SLP_TYPx fields and setsthe SLP_EN hit. The BIOS-initiated mechanism occurs by
the OS transferring control to the BIOS by writing the S4BIOS_REQ value to the SMI_CMD port.

In the OS-initiated S4 deeping state, the OS is responsible for saving all system context. Before entering the S4
state, the OS will save context of all memory. Upon awakening, the OS will then restore the system context.
When the OS re-enumerates buses coming out of the $4 deeping state, it will discover any devices that have
come and gone, and configure devices as they are turned on.

In the BIOS-initiated $4 sleeping state, the OS is responsible for the same system context as described in the S3
deeping state (BIOS restores the memory and some chip set context). The S4BIOS transition transfers control
to the BIOS, alowing it to save context to non-volatile memory (such as a disk partition).

9.1.4.1 OS Initiated S4 Transition

If the OS supports the OS-initiated S4 transition, it will not generate a BIOS-initiated $4 transition. Platforms
that support the BIOS-initiated S4 transition a so support the OS-initiated $4 transition.

The OS-initiated $4 transition isinitiated by the OS driver by saving system context, writing the SLP_TY Px
fields, and setting the SLP_EN hit. Upon exiting the $4 sleeping state, the BIOS restores the chipset to its POST
condition, updates the hardware signature (described later in this section), and passes control to the OS through
anormal boot process.

When the BIOS builds the ACPI tables, it generates a hardware signature for the system. If the hardware
configuration has changed during an OS-initiated $4 transition, the BIOS should update the hardware signature
in the FACStable. A change in hardware configuration is defined to be any change in the platform hardware
that would cause the platform to fail when trying to restore the S4 context; this hardware is normally limited to
boot devices. For example, changing the graphics adapter or hard disk controller while in the $4 state should
cause the hardware signature to change. On the other hand, removing or adding a PC Card device from aPC
Card dot should not cause the hardware signature to change.

9.1.4.2 The S4BIOS Transition

For the BIOS-initiated $4 transition, entry into the $4 state occurs by the ACPI driver passing control to BIOS
to software. Transfer of control occurs by the OS driver writing the SABIOS_REQ value into the SMI_CMD
port (these values are specified in the FACP table). After BIOS has control, it then saves the appropriate
memory and chip set context, and then places the platform into the $4 state (power off to all devices).

In the FACS memory table, there is the SABIOS _F bit that indicates hardware support for the BIOS-initiated $4
trangition. If the hardware platform supports the S4BIOS state, it sets the SABIOS_F flag within the FACS
memory structure prior to the OS issuing the ACPI_ENABLE command. If the SABIOS F flag in the FACS
tableis set, thisindicates that the ACPI driver can request the BIOS to transition the platform into the S4BIOS
deeping state by writing the SABIOS _REQ value (found in the FACP table) to the SMI_CMD port (identified
by the SMI_CMD value in the FACP table).

Upon waking up the BIOS, software restores memory context and calls the waking vector (similar to wakeup
from an S3 state). Coming out of the SABIOS state, the BIOS must only configure boot devices (so it can read
the disk partition where it saved system context). When the OS re-enumerates buses coming out of the S4BIOS
dtate, it will discover any devices that have come and gone, and configure devices as they are turned on.

9.1.5 S5 Soft Off State

The S5 soft off state is used by the OS to turn the machine off. Note that the S5 state is not a sleeping state (it is
a G2 state) and no context is saved by the OS or hardware. Also note that from a hardware perspective, the S4
and S5 states are identical. When initiated, the hardware will sequence the system to a state similar to the off
state. The hardware has no responsibility for maintaining any system context (memory or 1/0O); however, it does
allow the wakeup due to a power button press. Upon waking up, the BIOS does a normal power-on reset,
loading the boot sector, and executing (not the waking vector, as it does not exist yet).

176

9.1.6 Transitioning from the Working to the Sleeping State

On atransition of the system from the working to the sleeping state, the following occurs:

1. The OS decides (through a policy scheme) to place the system into the sleeping state.

2. The OS examines all devices who are enabled to wake up the system and determines the deepest possible
dleeping state the system can enter to support the enabled wakeup functions. The _PRW named object
under each device is examined, as well as the power resource object it points to.

3. The OS executes the Prepare To Sleep (_PTS) control method, passing an argument that indicates the
desired dleeping state (1, 2, 3, or 4 representing S1, S2, S3, and $4).

4. The OS places al device drivers into their respective Dx state. If the deviceis enabled for wakeup, it enters

the Dx state associated with the wakeup capability. If the device is not enabled to wakeup the system, it

enters the D3 state.

OS saves any other processor’ s context (other than the local processor) to memory

OS saves the local processor’s context to memory

OS writes the waking vector into the FACS table in memory.

OS clearsthe WAK_STSinthe PM1a STSand PM1b_STSregisters.

OS flushes caches (only if entering S2 or S3).

0. If entering an $4 state using the S4BIOS mechanism, the OS writes the S4BIOS_REQ value (from the
FACP table) to the SMI_CMD port. This passes control to the BIOS, which then transitions the platform
into the S4BIOS state.

11. If not entering an S4BIOS state, then the OS writes SLP_TY Pa (from the associated sleeping object) with

the SLP_ENahit set to the PM1a CNT register.

12. The OSwrites SLP_TY Pb with the SLP_EN bit set to the PM1b_CNT register.

13. The OS loops on the WAK_STS hit (in both the PM1a_ CNT and PM1b_CNT registers).

14. The system enters the specified sleeping state.

HoOoo~NoO

9.1.7 Transitioning from the Working to the Soft Off State

On atransition of the system from the working to the soft off state, the following occurs:

1. The OS prepares its components to shut down (flushing disk caches).

2. TheOSwrites SLP_TYPa (from the\ S5 object) with the SLP_ENa bit set to the PM1a CNT register.
3. TheOSwrites SLP_TYPb (from the_S5 object) with the SLP_ENDb bit set to the PM1b_CNT register.
4. The system enters the Soft Off state.

9.2 Flushing Caches
Before entering the S2 or S3 sleeping states, the OS is responsible for flushing the system caches. ACPI
provides a number of mechanisms to flush system caches:

1 Use the IA instruction WBINVD to flush and invalidate platform caches.
WBINVD_FLUSH flag set HIGH in the FACP table indicates this support.

2. Use lA instruction WBINVD to flush but NOT invalidate the platform caches.
WBINVD flag set HIGH in the FACP table indicates this support.

3. Use FLUSH_SIZE and FLUSH_STRIDE to manually flush system caches.

Both the WBINVD and WBINVD_FLUSH flags both reset LOW indicate this support.

The manual flush mechanism has a number of cavests:
1. Largest cacheis1 MB insize (FLUSH_SIZE isamaximum value of 2 MB).
2. No victim caches (for which the manual flush algorithm is unreliable).
Processors with built-in victim caches will not support the manual flush mechanism and are therefore required
to support the WBINV D mechanism to use the S2 or S3 state.
The manual cache flushing mechanism relies on the two FACP fields:

FLUSH_SIZE: Indicates twice the size of the largest cache in bytes

FLUSH_STRIDE: Indicates the smallest line size of the cachesin bytes.
The cache flush size value is typically twice the size of the largest cache size, and the cache flush stride value is
typically the size of the smallest cache line size in the platform. The OS will flush the system caches by reading
a contiguous block of memory indicated by the cache flush size.

177

9.3 Initialization

This section covers the initialization sequences for an ACPI platform. After areset or wakeup from an S2, S3,
or $4 seeping state (as defined by the ACPI slegping state definitions), the CPU will start execution from its
boot vector. At this point, the initialization software has many options, depending on what the hardware
platform supports. This section describes at a high level what should be done for these different options. Figure
9-2 illustrates the flow of the boot-up software.

178

C Boot Vector)

SLP_TYP=S2

?

No

h 4

Initialize CPU

Init Memory Controller
Enable Memory
Configure Caches
Enable Caches
Initialize Chipset

SLP_TYP=S3

Yes

Initialize CPU
Enable Memory
Configure Caches

Yes

?

No

LP_TYP=
S4BIOS
?

Restore memory
Image

No

POST

A

Initialize Memory
Image

* System

* Reserved

* ACPI NVS

* ACPI Reclaim
* ACPI Tables
*
*

MPS Tables

A
C Boot OS Loader >

A
(Call Waking Vector)

Figure 9-2 BIOS Initialization
The processor will start executing at its power-on reset vector when waking from an S2, S3, or $4 sleeping state
during a power-on sequence or during a hard or soft reset. The sleeping attributes are such that the power-on
sequence (and hard and soft reset) is similar to waking up from an $4 state, the system is configured to a boot
configuration, and then the OS loader is called. Waking up in the S2, S3, or $4 states only requires a partial
configuration by the hardware, followed by calling the waking vector (found in the FACP table).

179

First, the BIOS determines whether thisis an S2 wakeup by examining the SLP_TY P register value, which
should be preserved between sleeping sessions. If thisis an S2 wakeup, then the BIOS handler should enable
the memory controller to accept memory accesses (Some programming might be required to exit the memory
controller from the auto refresh state). At this point, the BIOS reconfigures the caches (cache configuration data
having been saved in the ACPI NVS RAM area prior to sleeping), and then calls the waking vector (thus
passing control on to the OS).

If this was not awakeup from an S2 deeping state (an S3, $4, or boot), then the BIOS initializes the memory
controller, configures the caches, and enables access to memory and caches. For the S3 state, there are two
classes of hardware: those that |ose the configuration of the memory controller when maintaining memory
context, and those that don’t. If the memory controller’s configuration is lost while in the S3 state, then this
configuration information should be stored in BIOS non-volatile memory (like RTC CMOS memory) before
suspending. Other information such as the cache controller’ s configuration and processor configuration can be
stored in ACPI NVS RAM area, which is available after the memory controller has been enabled and read/write
access is enabled. After thisis done, the BIOS can call the waking vector.

As mentioned previoudly, waking up from an $4 state is treated the same as a cold boot: the BIOS runs POST
and then initializes memory to contain the required system tables. After it has finished this, it can call the OS
loader, and control is passed to the OS.

To wake from S4 using the S4BIOS mechanism, the BIOS runs POST, restores memory context, and calls the
waking vector.

9.3.1 Turning On ACPI

When a platform initializes from a cold boot (mechanical off or from an $4 state), the hardware platform is
assumed to be configured in alegacy configuration. From these states, the BIOS software initializes the
computer asit would for alegacy operating system. When control is passed to the operating system, the OS will
then enable the ACPI mode by first scanning memory for the ACPI tables, and then generates awrite of the
ACPI_ENABLE value to the SMI_CMD port (as described in the FACP table). The hardware platform will set
the SCI_EN bit to indicate to the OS that the hardware platform is now configured for ACPI. Note: Before SCI
is enabled, no SCI interrupt can occur. Nor can any SCI interrupt occur immediately after ACPI ison. The SCI
interrupt can only fire once the OS has enabled one of the GPE/PM 1 enable bits.

When the platform is awakening from an S1, S2 or S3 state, the OS assumes the hardware is aready in the
ACPI mode and will not issue an ACPI_ENABLE command to the SMI_CMD port.

9.3.2 BIOS Initialization of Memory
During a power-on reset, an exit from an $4 sleeping state, or an exit from an S5 soft-off state, the BIOS needs
to initialize memory. This section explains how the BIOS should configure memory for use by a number of
features:
ACPI tables.
BIOS memory that wants to be saved across $4 deeping sessions and should be cached.
BIOS memory that does not require saving and should be cached.
For example, the configuration of the platform’s cache controller requires an area of memory to store the
configuration data. During the wakeup sequence, the BIOS will re-enable the memory controller and can then
use its configuration data to reconfigure the cache controllers. To support these three items, the IA-PC INT15
E820 specification has been updated with two new memory range types:
ACPI Reclaim Memory. Memory identified by the BIOS that contains the ACPI tables. This memory can
be any place above 1 MB and contains the ACPI tables. When the OS is finished using the ACPI tables, it
isfreeto reclaim this memory for system software use (application space).
ACPI Non-Volatile-Sleeping Memory (NVS). Memory identified by the BIOS as being reserved by the
BIOSfor itsuse. The OS is required to tag this memory as cacheable, and to save and restore itsimage
before entering an $4 state. Except as directed by control methods, the OS is not alowed to use this
physical memory. The ACPI driver will call the Prepare To Sleep (_PTS) control method some time before
entering a sleeping state, to alow the platform’s AML code to update this memory image before entering
the dleeping state. After the system awakes from an $4 state, the OS will restore this memory area and call
the wakeup control method (_ WAK) to enable the BIOS to reclaim its memory image.
Note: The memory information returned from INT15 E820 should be the same before and after an S4 sleep.
These new memory range types are in addition to the previous E820 memory types of system and reserved.

180

When the OS isfirst booting, it will make E820 callsto obtain a system memory map. As an example, the
following memory map represents atypical |A-PC platform physical memory map.
For more information about the INT15H, E820H definition, see section 14.1.

4 Ghyte
Boot ROM

Boot Base

No Memory

Top of Memory1
Above 8 Mbyte
RAM

8 MBytes
Contiguous
RAM
1 MByte
Compatibility
Holes
640 KByte
Compatibility
Memory

0

Figure 9-3 Example Physical Memory Map

The names and attributes of the different memory regions are listed below:
- 0-640K: Compatibility Memory. Application executable memory for an 8086 system.
640K - 1MB: Compatibility Holes. Holes within memory space that allow accesses to be directed to the
PC-compatible frame buffer (A0O000h-BFFFFh), to adapter ROM space (CO000h-DFFFFh), and to system
BIOS space (EO000h-FFFFFh).
1MB - 8MB: Contiguous RAM. An area of contiguous physical memory addresses. The OS requires this
memory to be contiguous in order for its loader to load the OS properly on boot up. (No memory-mapped
1/O devices should be mapped into this area.)
8MB - Top of Memoryl: This area contains memory to the “top of memory1” boundary. In this area,
memory-mapped 1/0 blocks are possible.
Top of Memoryl- Boot Base: This area contains the bootstrap ROM.
The platform should decide where the different memory structures belong, and then configure the E820 handler
to return the appropriate values.
For this example, the BIOS will report the system memory map by E820 as shown in Figure 9-4. Note that the
memory range from 1 MB to top of memory is marked as system memory, and then asmall range is
additionally marked as ACPI reclaim memory. A legacy OS that does not support the E820 extensions will
ignore the extended memory range calls and correctly mark that memory as system memory.

181

Reserved Boot ROM
Memory

No M
0 Memory - System Memory (E820)

Available - Reserved Memory (E820)

Address space)
. - ACPI Reclaim Memory (E820)

Reserved - ACPI NVS Memory (E820)
Memory ‘ ‘

ACPI NVS

Memory Top of Memory1
Above 8 Mbyte
RAM

ACPI Reclaim
Memory ACPI Tables

8 MBytes
Contiguous
System Memory RAM
Reserved — 1 MByte
Memory Compatibility
Holes
Available
Address space
640 KByte
Compatibility
System Memory Memory
0

Figure 9-4 Memory as Configured after Boot
Also, from the Top of Memory1 to the Top of Memory?2, the BIOS has set aside some memory for its own use
and has marked as reserved both ACPI NVS Memory and Reserved Memory. A legacy OS will throw out the
ACPI NVS Memory and correctly mark this as reserved memory (thus preventing this memory range from
being allocated to any add-in device).
The OS will call the PTS control method prior to initiating a sleep (by programming the sleep type, followed
by setting the SLP_EN bit). During a catastrophic failure (where the integrity of the AML code interpreter or
driver structure is questionable), if the OS decides to shut the system off, it will not issuea_PTS, but will
immediately issuea SLP_TY P of “soft off” and then set the SLP_EN bit. Hence, the hardware should not rely
solely onthe PTS control method to sequence the system to the “soft off” state. After waking up from an $4
state, the OS will restore the ACPI NV'S memory image and then issue the _WAK control method that informs
BIOS that its memory image is back.

9.3.3 OS Loading

At this point the BIOS has passed control to the OS, either by using the OS boot loader (a result of awakening
from an S4/S5 or boot condition) or the OS waking vector (aresult of awakening from an S2 or S3 state). For
the Boot OS Loader path, the OS will get the system memory map through an INT15H E820h call. If the OSis
booting from an $4 state, it will then check the NV S image fil€' s hardware signature with the hardware
signature within the FACS table (built by BIOS) to determine whether it has changed since entering the
deeping state (indicating that the platforms fundamental hardware configuration has changed during the current
deeping state). If the signature has changed, the OS will not restore the system context and can boot from
scratch (from the $4 state). Next, for an S4 wakeup, the OS will check the NV Sfile to see whether it isvalid. If
valid, then the OS will load the NV S image into system memory. Next, the OS will ask BIOS to switch into
ACPI mode and will reload the memory image from the NV Sfile.

182

Boot OS Loader os
Waking Vector

Get Memory Map
(E820)

* ACPI NVS

* ACPI Reclaim
* Reserved

* System

* Reserved

Sanity Check
Compare memory afit-
volume SS

Load OS Images

v

Turn on ACPI
Memory Copy

L\

Execute _WAK

Continue

Figure 9-5 OS Initialization
If an NVSimage file did not exist, then the OS loader will load the OS from scratch. At this point, the OS will
generatea_WAK call that indicates to the BIOS that its ACPl NV'S memory image has been successfully and
completely updated.

9.3.4 Turning Off ACPI

ACPI provides a mechanism that enables the operating system to disable ACPI. The following occurs:

1. TheOSunloads all ACPI drivers (including the APIC driver).

2. TheOSdisablesall ACPI events.

3. TheOSfinishesusing all ACPI registers.

4. The OSissues an I/O access to the port at the address contained in the SMI_CMD field (in the FACP table)
with the value contained in the ACPI_DISABLE field (in the FACP table).

5. BIOS then remaps al SCI eventsto legacy events and resets the SCI_EN bit.

6. Upon seeing the SCI_EN bit cleared, the ACPI operating system passes control to the legacy mode.

When and if the legacy operating system returns control to the ACPI OS, if the legacy OS has wiped out the

ACPI tables (in reserved memory and ACPI NV S memory), then the ACPI OS will reboot the system to allow

the BIOS to re-initialize the tables.

10. ACPI-Specific Device Objects
This section specifies the ACPI device-specific objects. The system status indicator objects, which go in the
_SI region of the Name Space, are also specified in this section.
The device-specific objects specified in this section are abjects for the following types of devices:
Control method battery devices (for more information about control method battery devices, see section
11.2).
Control method lid devices (for more information about control method lid devices, see section 10.3.)
Control method power and sleep button devices (for more information about control method power and
sleep button devices, see section 4.7.2.2.)
Embedded controller devices (for more information about embedded controller devices, see section 13).
System Management Bus (SMBus) host controller (for more information, see section 13.9.)
Fan devices (for more information about fan devices, see section 12).
Generic bus bridge devices.
- |IDE control methods.
For alist of the ACPI Plug and Play ID valuesfor al these devices, see section 5.6.4.

10.1 _SI System Indicators

ACPI provides an interface for a variety of smple and icon-style indicators on a system. All indicator controls
areinthe_SI portion of the name space. The following table lists all defined system indicators. (Note that
there are also per-device indicators specified for battery devices).

Table 10-1 System Indicator Control Methods

Object Description

SST System status indicator

:M SG M essages waiting indicator

10.1.1 _SST
Operating software invokes this control method to set the system status indicator as desired.
Arguments:
0 0 - No system state indication. Indicator off.
1 - Working.
2 - Waking.

3 - Sleeping. Used to indicate system state S1, S2 or S3.
4 - Sleeping with context saved to non volatile storage.

10.1.2 MSG
This control method sets the systems message waiting status indicator.

Arguments:
0 Number of messages waiting.

10.2 Control Method Battery Device

A battery deviceis required to either have a ACPl Smart Battery Table or a Control Method Battery (CM Batt)
interface. In the case of an ACPl Smart Battery Table, the Definition Block needs to include a Bus/ Device
Package for the SMBus host controller. Thiswill install an OS specific driver for the SMB bus, which in turn
will locate the battery selector, and charger SMB devices.

The Control Method Battery interface is defined in section 11.2.

10.3 Control Method Lid Device
For systemswith alid, thelid status can either be implemented using the fixed register space as defined in
section 4, or implemented in AML code as a control method lid device.

Intel Microsoft Toshiba

184

To implement a control method lid device, implement AML code that issues notifications for the device
whenever the lid status has changed. The _LID control method for the lid device must be implemented to report
the current state of the lid as either opened or closed.

Thelid device can support PRW and _PSW methods to select the wake functions for the lid when the lid
transitions from closed to opened.

The Plug and Play ID of an ACPI control method lid device is PNPOCOD.
Table 10-2 Control Method Lid Device

Object Description
_LID Returns the current status of the lid

10.3.1 _LID
Evaluates to the current status of the lid.
Result code:
Zexo: Thelid is closed.
Non-zero: Thelidis open.

10.4 Control Method Power and Sleep Button Devices

The system’s power or sleep button can either be implemented using the fixed register space as defined in
section 4.7.2.2, or implemented in AML code as a control method power button device. In either casg, the
power button override function or similar unconditional system power or reset functionality is still implemented
in external hardware.

To implement a control method power or sleep button device, implement AML code that delivers two types of
notifications concerning the device. The first is Notify(Object, 0x80) to signal that the button was pressed while
the system was in the SO state to indicate that the user wants the machine to transition from SO to some sleeping
state. The other notification is Notify(Object, 0x2) to signal that the button was pressed while the system was in
an Sl to $4 state and to cause the system to wake. When the button is used to wake the system, the wake
notification (Notify(Object, 0x2)) must occur after the OS has actually awakened, and a button pressed
notification (Notify(Object, 0x80)) must not occur.

The Wake Natification indicates that the system has awakened because the user pressed the button and therefore
a complete system resume should occur (for example, turn on the display immediately, and so on).

10.5 Embedded Controller Device

Operation of the embedded controller host controller register interface requires that the embedded controller
driver has ACPI-specific knowledge. Specifically, the driver needs to provide an “operational region” of its
embedded controller address space, and needs to use a genera -purpose event (GPE) to service the host
controller interface. For more information about an ACPI-compatible embedded controller device, see section
13.

The embedded controller device object providesthe HID (Hardware I1D) of an ACPI integrated embedded
controller device of PNPOCO9 and the host controller register locations using the device standard methods. In
addition, the embedded controller must be declared as a named device object that includes a set of control
methods. For more information, see section 13.11).

10.6 Fan Device

A fan deviceis assumed to be in operation when it is in the DO state. Thermal zones reference fan device(s) as
being responsible for primarily cooling within that zone. Note that multiple fan devices can be present for any
one thermal zone. They might be actual different fans, or they might be used to implement one fan of multiple
speeds (for example, by turning both “fans’ on the one fan will run full speed).

The Plug and Play ID of afan device is PNPOCOB. For more information about fan devices, see section 12.

185

10.7 Generic Bus Bridge Device

A generic bus bridge device is a bridge that does not require a special OS driver because the bridge does not
provide/require any features not described within the standard ACPI device functions. The resources the bridge
supports are supported through the standard ACPI resource handling. All device enumeration for child devices
is supported through standard ACPI device enumeration (for example, name space), and no other features of the
bus are needed by OS drivers. Such a bridge device isidentified with the Plug and Play 1D of PNPOAQS or
PNPOA06.

A generic bus bridge device is typically used for integrated bridges that have no other means of controlling
them and that have a set of well-known devices behind them. For example, a portable computer can have a
“generic bus bridge” known as an EIO bus that bridges to some number of Super-10 devices. The bridged
resources are likely to be positively decoded as either a function of the bridge or the integrated devices. In either
case, for this example, a generic bus bridge device would be used to declare the bridge, then further devices
would be declared below the bridge for the integrated Super-10 devices.

10.8 IDE Controller Device

Most device drivers can save and restore the registers of their device. For IDE controllers and drives, thisis not
true because there are several drive settings for which ATA does not provide mechanisms to read. Further, there
isno industry standard for setting timing information for IDE controllers. Because of this, ACPI mechanisms
are required to provide the operating system information about the current settings for the drive and channel,
and for setting the timing for the channel.

The operating system and IDE driver will follow these steps when powering off the IDE subsystem:

1. ThelDE driver will call the _GTM control method to get the current transfer timing settings for the IDE
channel. Thisincludes information about DMA and PIO modes.

2. TheIDE driver will call the standard OS services to power down the drives and channel.

3. Asaresult, the ACPI driver will execute the appropriate _PS3 methods and turn off unneeded power
resources.

To power on the IDE subsystem, the operating system and IDE driver will follow these steps:

1. ThelDE driver will call the standard OS services to turn on the drives and channel.

2. Asaresult, the ACPI driver will execute the appropriate _PS0 methods and turn on required power
resources.

3. ThelIDE driver will call the STM control method passing in transfer timing settings for the channel, as
well asthe ATA drive ID block for each drive on the channel. The _STM control method will configure
the IDE channel based on this information.

4. For each drive on the IDE channel, the IDE driver will run the GTF to determine the ATA commands
required to reinitialize each drive to bootup defaults.

5. TheIDE driver will finish initializing the drives by sending these ATA commands to the drives, possibly
modifying or adding commands to suit the features supported by the operating system.

The following shows the namespace for these objects:

_SB - System bus
PCI 0 - PCl bus
| DE1 - | DE channel
_ADR - Indicates address of the channel on the PCl bus
_GIM - Control nethod to get current |DE channel settings
_ST™M - Control nethod to set current |DE channel settings
_PRO - Power resources needed for DO power state

DRV1I - Drive O
_GIF - Control nmethod to get task file
DRV2 - Drive 1
_GIF - Control nmethod to get task file
| DE2 - Second | DE channel
_ADR - Indicates address of the channel on the PCl bus
_GIM - Control nethod to get current |DE channel settings

186

_ST™M - Control nethod to set current |DE channel settings
_PRO - Power resources needed for DO power state
DRV1I - Drive O
_GIF - Control nmethod to get task file
DRV2 - Drive 1
_GIF - Control nmethod to get task file

The sequential order of operationsis as follows:
Powering down:
Cdl _GT™M
Power down drive (calls_PS3 method and turns off power planes)
Powering up:
Power up drive (calls_PS0 method if present and turns on power planes)
Call _STM passing info from _GTM (possibly modified), with ID data from each drive
Initalizes the channel.
May modify the resultsof _GTF
For each drive:
Cdl _GTF
Execute task file (possibly modified)

Table 10-3 IDE Specific Controls

Object Description
_GTF Optional control method to get the ATA task file needed to re-initialize the drive to bootup

defaults.
_GTM Optional control method to get the IDE controller timing information.
_STM Optional control method to use to set the IDE controller transfer timings.

10.8.1 _GTF (Get Task File)

This Control Method returns a buffer containing the ATA commands to execute in order to restore the drive to
bootup defaults (that is, the state of the drive after POST). The returned buffer isalist consisting of seven,
eight bit register values (56 bits) corresponding to ATA task registers 1F1 thru 1F7. Each entry in the array
defines a command to the drive. Normally seven or eight commands are necessary. In addition, the array has a
header byte (1-based), with the number of commands in the array. The first byte in each element is register 1F0.

ATA task file array definition:

Seven register values for command 1,
Reg values: (1F1, 1F2, 1F3, 1F4, 1F5, 1F6, 1F7)
Seven register values for command 2
Seven register values for command 3
Seven register values for command 4
Seven register values for command 5
Seven register values for command 6
Seven register values for command 7

After powering up the drive, the operating system will send these commands to the drive, in the order specified.
The IDE driver may modify some of the feature commands or append its own to better tune the drive for the OS
features before sending the commands to the drive.

This Control Method is listed under each drive device object. _GTF must be called after calling _STM.

Arguments:
None

Result code:
A Buffer that is a byte stream of ATA commands to send to the drive.

10.8.2 _GTM (Get Timing Mode)
This Control Method returns the current settings for the IDE channel.

This control method is listed under each channel device object.

Arguments:
None

Result code:

A buffer with the current settings for the IDE channel:

Buffer (){
Pl O Speed 0
DVA Speed 0
Pl O Speed 1
DVA Speed 1
Fl ags

/ | DWORD
/ | DWORD
/ | DWORD
/ | DWORD
/ | DWORD

Table 10-4 _GTM Method Result Codes

Field

Format

Description

PIO Speed 0

DWORD

The PIO bus-cycle timing for drive 0 in nanoseconds.
OxFFFFFFFF indicates that this mode is not supported by the
channel. If the chipset cannot set timing parameters
independently for each drive, thisfield represents the timing
for both drives.

DMA Speed 0

DWORD

The DMA bus-cycle for drive 0 timing in nanoseconds. If Bit
0 of the Flags register is set, this DMA timing is for
UltraDMA mode, otherwise the timing is for multi-word
DMA mode. OxFFFFFFFF indicates that this mode is not
supported by the channel. If the chipset cannot set timing
parameters independently for each drive, this field represents
the timing for both drives.

PIO Speed 1

DWORD

The PIO bus-cycle timing for drive 1 in nanoseconds.
OxFFFFFFFF indicates that this mode is not supported by the
channel. If the chipset cannot set timing parameters
independently for each drive, thisfield must be Oxffffffff.

DMA Speed 1

DWORD

The DMA bus-cycle timing for drive 1 in nanoseconds. If Bit
0 of the Flags register is set, this DMA timing is for
UltraDMA mode, otherwise the timing is for multi-word
DMA mode. OxFFFFFFFF indicates that this mode is not
supported by the channel. If the chipset cannot set timing
parameters independently for each drive, thisfield must be
OXxFFFFFFFF.

Flags

DWORD

Mode flags

Bit[O]: 1 indicates using UltraDMA on drive O

Bit[1]: 1 indicates IOChannelReady is used on drive O
Bit[2]: 1 indicates using UltraDMA on drive 1

Bit[3]: 1 indicates IOChannelReady is used on drive 1
Bit[4]: 1 indicates chipset can set timing independently for
each drive

Bitg[5-31]: reserved (must be 0)

10.8.3 _STM (Set Timing Mode)

This Control Method sets the IDE channel’ s transfer timings to the setting requested. The AML codeis
required to convert and set the nanoseconds timing to the appropriate transfer mode settings for the IDE
controller. _STM may also make adjustments so that _GTF control methods return the correct commands for

the current channel settings.

187

188

This control method takes three arguments: Channel timing information (as described in Table 10-4), and the
ATA drive D block for each drive on the channel. The channel timing information is not guaranteed to be the
same values as returned by _GTM; the operating system may tune these values as needed.

The ATA drive ID block isthe raw data returned by the Identify Drive, ATA command, which has the
command code “Ech”. The _STM control method is responsible for correcting for drives that misreport their
timing information.

Arguments:
Arg0 Buffer Channel timing information (formatted as described in table 10-4)

Argl Buffer ~ ATA drive IDE block for drive 0
Arg2 Buffer ~ ATA drive IDE block for drive 1
Result code:
None

10.9 Floppy Controller Device

The floppy disk controller enumeration is atime consuming function. In order to speed up the process of floppy
enumeration, ACPI supports an enumeration control method. The FDE method is optional an isonly used for
device enumeration.

10.9.1 _FDE - Floppy Disk Enumerate

This method appears directly under the device object for the floppy disk controller. It returns a buffer of five 32
bit values. Thefirst four values are boolean values indicating the presence or absence of the four floppy drives
which are potentially attached to the controller. A non zero value indicates that the floppy deviceis present.
The fifth value returned is used to indicate the presence or absence of atape controller. Defintions of the tape
presence value can be found in Table 10-5.

Arguments:
None

Result code:
A buffer containing values that indicate the presence or absence of floppy devices.

Buffer (){

Fl oppy O /1 Bool ean DWORD
Fl oppy 1 /1 Bool ean DWORD
Fl oppy 2 /1 Bool ean DWORD
Fl oppy 3 /1 Bool ean DWORD
Tape /'l See table bel ow

Table 10-5 Tape Presence

Value Description
0 Unknown if device is present
1 Deviceis present
2 Deviceis never present
>2 Reserved

189

11. Power Source Devices

This section specifies the battery and AC adapter device objects the OS uses to manage power resources.

A battery deviceis required to either have a Smart Battery subsystem or a Control Method Battery (CMBatt)
interface as described in this section. The OSis required to be able to connect and manage a battery on either of
these interfaces. This section describes these interfaces.

In the case of a compatible ACPI Smart Battery Table, the Definition Block needsto include a Bus/ Device
package for the SMB host controller. Thiswill install an OS-specific driver for the SMBus, which in turn will
locate the battery and battery selector SMB devices.

11.1 Smart Battery Subsystems
Smart Batteries are defined as using the smart battery subsystem as defined by the:

System Management Bus Specification (SMBYS),

Smart Battery Data Specification (SBDS),

Smart Battery Selector Specification (SBSS), and the

Smart Battery Charger Specification (SBCS)
An ACPI compatible smart battery subsystem consists of:

An SMBus host controller (CPU to SMB host controller) interface

At least one smart battery

A smart battery charger

A smart battery selector if more than one smart battery is supported
In such a subsystem, a standard way of communicating with a smart battery (SBDS) and smart charger (SBCS)
is through the SMBus (SMBS) physical protocols. The smart battery selector provides event notification
(battery insertion/removal, ...) and charger SMBus routing capability for any smart battery subsystem. A
typical smart battery subsystem isillustrated below:

SMBuU SBS
—P BatteryO
0xB
SMBuU SBS
Batteryl
SMB 0xB
Int«Hel(‘)f;tce HOSl:S SMBU SBS
<4+—> <4—» Seclector
Controller XA R SBS
MBu
(0x8) > Battery?2
I 0xB
SMBus
SBS MBS SBS
Charger Battery3
0x9 0xB

Figure 11-1 Typical Smart Battery Subsystem

SMBus defines afixed 7-bit dave address per device. This meansthat all batteries in the system have the same
address (defined to be OxB). The slave addresses associated with smart battery subsystem components are
shown in the following table.

Table 11-1 Example SMBus Device Slave Addresses

SMBus Device Description SMBus Slave Address (A0-A6)
SMBus Host Slave Interface 0x8
SBS Charger/Charger Selector 0x9
SBS Selector OxA

190

SMBus Device Description SMBus Slave Address (A0-A6)
SBS Battery 0xB
Each SMBus device has up to 256 registers that are addressed through the SMBus protocol’ s Command value.
SMBus devices are addressed by providing the slave address with the desired register’s Command value. Each
SMBus register can have non-linear registers, that is command register 1 can have a 32 byte string, while
command register 1 can have a byte, and command register 2 can have aword.
The SMBus host slave interface provides a standard mechanism for the host CPU to generate SMBus protocol
commands which are required to communicate with SMBus devices (i.e., the smart battery components). ACPI
defines such an SMBus host controller that resides in embedded controller address space, however an OS can
support any SMBus host controller which has a native SMBus host controller device driver.
The SBS selector provides a standard programming model to control multiple smart batteries in a smart battery
subsystem A smart battery selector provides the following types of battery management functions:

Event notification for battery insertion/removal

Event notification for AC power connected or disconnected

Status/Control of which battery is communicating with the SMBus host controller

Status/Control of which battery is powering the system

Status/Control of which battery is connected to the charger

Status of which batteries are present in the system

Event notification when the selector switches from one power source to another

Hardware switching to a secondary battery upon the primary battery running low

Hardware switching to AC
A smart battery selector function can reside in a standalone SMBus slave device (SBS Selector which responds
to the OxA dlave address), or may be present within a smart charger device (SBS Charger which responds to the
0x9 dave address). If both smart charger and stand alone selectors are present in the same smart battery
subsystem, then the driver assumes that the stand alone selector iswired to the batteries.
The SBS charger is an SMBus device that provides a standard programming model to control the charging of
smart batteries present in a smart battery subsystem. For single battery systems the smart charger is also
responsible for notifying the system of the battery and AC status.
The smart battery provides intelligent chemistry-independent power to the system. The battery is capable of
informing the smart charger its charging requirements (which provides chemistry independence), and providing
battery status and alarm features needed for platform battery management.

11.1.1 ACPI Smart Battery Charger Requirements

The smart battery charger specification 1.0 defines an optional mechanism for notifying the system that the
battery or AC status has changed. ACPI requires that this interrupt mechanism be through the SMBus Alarm
Notify mechanism.

For a charger only device this requires the smart charger, upon a battery or AC status change, to generate an
SMBus Alarm Notify. This generates an event from the SMBus host controller after the contents of the
ChargerStatus() command register (0x13) are placed in the SMBus host dave data port and the slave address of
the messaging device (in this case, the charger ") is placed in the SMBus host slave command port (at Slave
address 0x8).

If asmart battery charger contains the optional selector function (as indicated by ChargerSpecinfo() command
register, Ox11, bit 4), this requires the smart charger, upon a battery or AC status change, to generate an SMBus
Alarm Notify. This generates an event from the SMBus host controller after the contents of the Selector State()
command register (0x21) are placed in the SMBus host slave data port and the slave address of the messaging
device (in this case, the charger'’) is placed in the SMBus host slave command port (at slave address 0x8).
When the selector function is present in the smart charger, Battery and AC status changes should be reported
through the SelectorState() notify and not the ChargerStatus() notify.

7 Note that the 1.0 SMBus protocol specification is ambiguous about the definition of the “slave address’
written into the command field of the host controller. In this case, the Slave addressis actually the combination
of the 7-bit dave address and the Write protocol bit. Therefore, bit O of the initiating device' s lave address is
aligned to bit 1 of the host controller’s slave command register, bit 1 of the slave address is aligned to bit 2 of
the controller’ s lave command register, and so on.

191

11.1.2 ACPI Smart Battery Selector Requirements

The smart battery selector specification 1.0 defines an optional mechanism for notifying the system that the
battery or AC status has changed. ACPI requires that this interrupt mechanism be through the SMBus Alarm
Notify mechanism.

For a smart battery selector device this requires the smart battery selector, upon a battery or AC status change,
to generate an SMBus Alarm Notify. This generates an event from the SMBus host controller after the contents
of the SelectorState() command register (0x1) are placed in the SMBus host slave data port and the dave
address of the messaging device (in this case, the selector’) is placed in the SMBus host slave command port
(at save address 0x8).

11.1.3 Smart Battery Objects
The smart battery subsystems requires a number of objects to define its interface. These are summarized below:

Table 11-2 Smart Battery Objects

Object Description
_HID Thisisthe hardware ID named object which contains a string. For smart battery subsystems
this object returns the value of “ACPI0002". This identifies the smart battery subsystem to the
smart battery driver.
_SBS Thisisthe smart battery named object which contains a Dword. This named object returns the
configuration of the smart battery subsystem and is encoded as follows:

0: Maximum of one smart battery and no selector.

1: Maximum of one smart battery and a selector.

2: Maximum of two smart batteries and a selector.

3: Maximum of three smart batteries and a selector.

4: Maximum of four smart batteries and a selector.
The maximum number of batteriesis for the system. Therefore, if the platform is capable of
supporting four batteries, but only two are normally present in the system, then thisfield
should return 4. Note that a value of 0 indicates a maximum support of one battery and thereis
no selector present in the system.

11.1.4 Smart Battery Subsystem Control Methods

Asthe SMBusis not an enumerable bus, all devices on the bus must be declared in the ACPI name space. As
the smart battery driver understands the SBS battery, charger, and selector; only a single device needs to be
declared per smart battery subsystem. The driver gets information about the subsystem through the hardware
ID (which defines a smart battery subsystem) and the number of batteries supported on this subsystem (_SBS
named object). The ACPI smart battery table indicates the energy levels of the platform at which the system
should warn the user and then enter asleeping state. The smart battery driver then reflects these as threshold
alarms for the smart batteries.

The _SBS control method returns the configuration of the smart battery subsystem. This named object returns a
Dword value with a number from 0 to 4. If the number of batteries is greater than 0O, then the smart battery
driver assumes that an SBS selector is present. If O, then the smart battery driver assumes a single smart battery
and no SBS selector.

A Smart Battery device declaration in the ACPI name space requiresthe _GLK object if potentialy contentious
accesses to device resources are performed by non-OS code. See Chapter 6 (6.5.6) for details about the _ GLK
object.

11.1.4.1 Single Smart Battery Subsystem: Example
This section illustrates how to define a smart battery subsystem containing a single smart battery and charger.
The platform implementation isillustrated below:

192

Embedded
Controller
Ports: 0x62, 0x66 SBS
Offset: 0x80
Query: 0x30 i Batte ry
0xB
Host
Interface - SMBUS P ‘SMBus
Host il b
Controller
(0x8) SBS
p»| Charger
0x9

Figure 11-2 Single Smart Battery Subsystem

In this exampl e the platform is using an SMBus host controller that resides within the embedded controller and
meets the ACPI standard for an embedded controller interface and SMBus host controller interface. The
embedded controller interface sits at system 1/O port addresses 0x62 and 0x66. The SMBus host controller is at
base address 0x80 within embedded controller address space (as defined by the ACPI embedded controller
specification) and responds to events on query value 0x30.

In this example the smart battery subsystem only supports a single battery. The ASL code for describing this
interface is shown below:

Devi ce(ECO) {
Name(_HI D, El SAI D(" PNPOC09"))
Name(_CRS,
Resour ceTenpl at e() { /1 port 0x62 and 0x66
| O(Decodel6, 0x62, 0x62, 0, 1),
| O(Decodel6, 0x66, 0x66, 0, 1)

}

)
Name(_GPE, 0)
Devi ce (SMBO) ({

Name(_HI D, "ACPI 0001") /1 Smart Battery Host Controller
Name(_EC, 0x8030) /1 EC of fset (0x80), Query (0x30)
Devi ce(SBSO0) { /1 Smart Battery Subsystem
Name(_HI D, "ACPI 0002") // Smart Battery Subsystem |D
Name(_SBS, 0x1) /'l 1ndicates support for one battery
} /1 end of SBSO
} /1 end of SMBO
} /1 end of EC

11.1.4.2 Multiple Smart Battery Subsystem: Example
This section illustrates how to define a smart battery subsystem that contains three smart batteries, a SBS
selector and acharger. The platform implementation isillustrated below:

Embedded
Controller SMBuU SBS
Ports: 0x100, 0x101 BatteryO
Offset:
Qu:fs: gigg OXB
Host
Interface SMBU SBS
<4+—» #+—»| Sselector
SMBus N < SBS
MBu
Host > Batteryl
Controller MBS 0xB
(0x8)
SBS — SBS
Charger Battery?2
0x9 0xB

193

Figure 11-3 Smart Battery Subsystem

In this example, the platform is using an SMBus host controller that resides within the embedded controller and
meets the ACPI standard for an embedded controller interface and SMBus host controller interface. The
embedded controller interface sits at system 1/O port addresses 0x100 and 0x101. The SMBus host controller
resides at base address 0x90 within embedded controller address space (as defined by the ACPI embedded
controller specification) and responds to events on query value 0x31.

In this example the smart battery subsystem supports three smart batteries, an SBS charger and an SBS selector.
The ASL code for describing this interface is shown below:

Devi ce(ECLl) {
Name(_HI D, El SAI D(" PNPOC09"))
Name(_CRS,
Resour ceTenpl at e() { /1 port 0x100 and 0x101
| O(Decodel6, 0x100, 0x100, 0, 2)

}

)
Name(_GPE, 1)
Devi ce (SMB1) ({

Name(_HI D, "ACPI 0001") /1 Smart Battery Host Controller

Name(_EC, 0x9031) /1 EC of fset (0x90), Query (0x31)

Devi ce(SBS1) { /1 Smart Battery Subsystem
Name(_HI D, "ACPI 0002") // Smart Battery Subsystem |D
Name(_SBS, 0x3) /1 1ndicates support for three batteries
} /1 end of SBS1

} /1 end of SMBl

} /1 end of EC

11.2 Control Method Batteries
The following section illustrates the operation and definition of the control method battery.

11.2.1 Battery Events

The AML code handling an SCI for a battery event notifies the system which battery’ s the status may have
changed. The OS usesthe BST control method to determine the current status of the batteries and what action,
if any, should be taken (for more information about the _BST control method, see section 11.2.2). The typical
action is to notify applications monitoring the battery status to provide the user with an up-to-date display of the
system battery state. But in some cases the action may involve generating an alert or even forcing a system into
adeeping state. In any case, any changes in battery status should generate an SCI in atimely manner to keep
the system power state Ul consistent with the actual state of the system battery (or batteries).

As with other devices, when a battery device isinserted to the system or removed from the system, the
hardware asserts a GP event. The AML code handler for this event will issue a Notify(battery_device, 0x00) or
Notify(battery_device, 0x01) on the battery device to initiate the standard device Plug and Play actions.

When the present state of the battery has changed or when the trip point set by the _BTP control method is
crossed, the hardware will assert a GP event. The AML code handler for this event issues a
Notify(battery_device, 0x80) on the battery device.

In the unlikely case that the battery becomes critical, AML code interface can issue Notify(battery _device,
0x80) and reports the battery critical flag in the _BST object. The OS performs critical shutdown.

11.2.2 Battery Control Methods

The Control Method Battery (CMBatt) is a battery with an AML code interface between the battery and the host
PC. The battery interface is completely accessed by AML code control methods, allowing the OEM to use any
type of battery and any kind of communication interface supported by ACPI.

A Control Method Battery is described as a device object. Each device object supporting the CMBatt interface
contains the following additional control methods. When there are two or more batteries in the system, each
battery will have an independent device object in the name space.

194

Table 11-3 Battery Control Methods

Object Description

_BIF Returns static information about a battery (i.e., model number, serial number, design voltage,
etc.)

_BST Returns the current battery status (i.e., dynamic information about the battery such as whether
the battery is currently charging or discharging, an estimate of the remaining battery capacity,
etc.).

_BTP Sets the Battery Trip point which generates an SCI when the battery(s) capacity reaches the
specified point.

_PCL List of pointers to the device objects representing devices powered by the battery.

_STA Returns general status of the battery (for a description of the _STA control method, see section
6.3.5.

A control method battery device declaration in the ACPI name space requiresthe _GLK object if potentialy
contentious accesses to device resources are performed by non-OS code. See Chapter 6 (6.5.6) for details about
the GLK object.

11.2.2.1 BIF
This object returns the static portion of the Control Method Battery information. This information remains
constant until the battery is changed.

Arguments:
None

Results code:

Package {

/1l ASCI1Z is ASCI| character string termnated with

/1 a 0x00.
Power Uni t / | DWORD
Desi gn Capacity / | DWORD
Last Full Charge Capacity / | DWORD
Battery Technol ogy / | DWORD
Desi gn Vol t age / | DWORD
Desi gn Capacity of Warning / | DWORD
Desi gn Capacity of Low / | DWORD

Battery Capacity Granularity 1 / | DWORD
Battery Capacity Granularity 2 / | DWORD

Mbdel Nunber /1 ASCl | Z
Serial Nunber /1ASCl | Z
Battery Type /1ASCl | Z
CEM | nformati on /1ASCl | Z

Table 11-4 BIF Method Result Codes

Field Format Description

Power Unit DWORD Indicates the units used by the battery to report its capacity
and charge/discharge rate information to the OS.

0x00000000 = Capacity information is reported in [mWh] and
charge/discharge rate information in [mW].

0x00000001 = Capacity information is reported in [mAh] and
charge/discharge rate information in [mA].

Design Capacity DWORD Battery’s design capacity. Design Capacity is the nominal
capacity of anew battery. The Design Capacity valueis
expressed as power [mWh] or current [mAh] depending on
the Power Unit value.

0x000000000 - OX7FFFFFFF (in [mWh] or [mAh])
OxFFFFFFFF = Unknown design capacity

195

Field Format Description
Last Full Charge | DWORD Predicted battery capacity when fully charged. The Last Full
Capacity Charge Capacity valueis expressed as power (mWh) or

current (mAh) depending on the Power Unit value:
(0x000000000h - OX7FFFFFFF (in [mWh] or [mAh])
OxFFFFFFFF = Unknown last full charge capacity
Battery DWORD 0x00000000 = Primary (ex., non-rechargeable)
Technology 0x00000001 = Secondary (ex., rechargeable)

Design Voltage DWORD Nominal voltage of a new battery.

0x000000000 - OX7FFFFFFF in [mV]

OxFFFFFFFF = Unknown design voltage

Design capacity DWORD OEM-designed battery warning capacity.

of Warning 0x000000000 - Ox7FFFFFFF in [mWh] or [mAh]
Design capacity DWORD OEM-designed low battery capacity.

of Low 0x000000000 - OX7FFFFFFF in [mWh] or [mAh]
Battery capacity DWORD Battery capacity granularity between low and warning in
granularity 1 [mAh] or [mWh]

Battery capacity DWORD Battery capacity granularity between warning and Full in
granularity 2 [mAh] or [mWh]

Model Number ASClIZ OEM -specific Control Method Battery model number

Serial Number ASClIZ OEM -specific Control Method Battery serial number
Battery Type ASClIZ The OEM-specific Control Method Battery type.

OEM Information | ASCIIZ OEM -specific information for the battery that the

Ul usesit to display the OEM information about the Battery.
If the OEM does not support this information, this should be
reserved as 0x00.

Note: A secondary-type battery should report the corresponding capacity (except for Unknown).

Note: On a multiple battery system, all batteries in the system should return the same granularity.

Note: OSes prefer these control methods to report data in terms of power (watts).

11.2.2.2 _BST
This object that returns the present battery status. Whenever the Battery State value changes, the system will
generate an SCI to notify the OS.

Arguments:
None
Results code:
Package{
Battery State / | DWORD
Battery Present Rate / | DWORD
Battery Remmi ning Capacity / | DWORD
Battery Present Voltage / | DWORD
}
Table 11-5 BST Method Result Codes
Field Format Description
Battery State DWORD Bit values. Note: The Charging bit and the Discharging bit
are mutually exclusive and must not both be set at the same
time.

Bit0 = 1 indicates the battery is discharging

Bitl = 1l indicates the battery is charging

Bit2 = 1 indicates the battery isin the critical energy state
Evenin critical state, hardware should report the
corresponding charging/discharging state. When the battery
reports critical energy state and also reports the battery is
discharging (bits 0 and 2 are both set) the OS will perform a
critical system shutdown.

196

Field Format Description
Battery Present DWORD Returns the power or current being supplied or accepted
Rate through the battery's terminals (direction depends on the

Battery State value). The Battery Present Rate valueis
expressed as power [mWh] or current [mAh] depending on
the Power Unit value.

Batteries that are rechargeable and are in the discharging state
arerequired to return avalid Battery Present Rate value.
0x00000000 - OX7FFFFFFF in [mW] or [mA]

OxFFFFFFFF = Unknown rate

Battery DWORD Returns the estimated remaining battery capacity. The Battery
Remaining Remaining Capacity valueis expressed as power [mWh] or
Capacity current [mAh] depending on the Power Unit value.

Batteries that are rechargeable are required to return avalid
Battery Remaining Capacity value.

0x00000000 - OX7FFFFFFF in [mWh] or [mAh]
OxFFFFFFFF = Unknown capacity

Battery Present DWORD Battery Present Voltage returns the voltage across the
Voltage battery’ s terminals.

Batteries that are rechargeable must report Battery Present
Voltage.

0x000000000 - OX7FFFFFFF in [mV]

OxFFFFFFFF = Unknown voltage (Note: Only is a Primary
battery can report Unknown voltage).

11.2.2.3 BTP
Thisobject is used to set atrip-point to generate an SCI when the Battery Remaining Capacity reaches the value
specified in the _BTP object. Thisinformation will be kept by the system.
If the battery does not support this function, the _BTP control method is not located in the name space. In this
case, the OS must poll the Battery Remaining Capacity value.
Arguments:
Level a which to set the trip point:
0x00000001 - Ox7FFFFFFF (in units of mWh or mAh, depending on the Power Units value)
0x00000000 = Clear the trip point
Results code:
None.

11.3 AC Adapters and Power Source Objects
The Power Source objects describe the power source used to run the system.

Table 11-6 Power Source Control Methods

Object Description

PSR Returns present power source device

_PCL List of pointers to powered devices.
11.3.1 PSR

Returns the current power source devices. Used for the AC adapter and is located under the AC adapter object
in name space. Used to determine if system is running off the AC adapter.
Arguments:
None
Results code:

0x00000000 = Off-line
0x00000001 = On-line

11.3.2 _PCL

This object evaluates to alist of pointers, each pointing to a device or a bus powered by the power source
device. Pointing to a busindicates that al devices under the bus are powered by the power source device.

11.4 Power Source Name Space Example
The ACPI name space for a computer with an AC adapter and two batteries associated with a docking station
that has an AC adapter and a battery is shown in theillustration (Figure 11.4) below.

Root

System Bus
AC Adapterl

Power Source type
Power Class List

Battery 1

PnP ID for the BAT1
Staus of the BAT1 Object
Batteryl Information
Batteryl Satus

Batteryl Trip Point
Power Class List

Battery 2
PnP ID for the BAT2
Status of the BAT2 object

Battery2 Information

Battery2 Status
Battery2 Trip Point

Power Class List

AC Adapter 2

Power Source type
Power class list

Figure 11-4 Power Source Name Space Example that Includes a Docking Station

197

199

12. Thermal Management
This section specifies the objects the OS uses for thermal management of a platform.

12.1 Thermal Control

ACPI alowsthe OS to be proactive in its system cooling policies. With the OSin control of the operating
environment, cooling decisions can be made based on application load on the CPU and the thermal
heuristics of the system. Graceful shutdown of the OS at critical heat levels becomes possible as well. The
following sections describe the thermal objects available to the OS to control platform temperature. ACPI
expects al temperatures to be given in tenths of Kelvin.

The ACPI thermal design is based around regions called thermal zones. Generally, the entire PC is one
large thermal zone, but an OEM can partition the system into several thermal zonesif necessary.

12.1.1 Active, Passive, and Critical Policies
There are three primary cooling policies that the OS uses to control the thermal state of the hardware. The
p0I|C|es are Active, Passive and Critical:
Passive cooling: The OS reduces the power consumption of the system to reduce the thermal output of
the machine by slowing the processor clock. The PSV control method is used to declare the
temperature to start passive cooling.
Active cooling: The OS takes a direct action such as turning on afan. The _ACx control methods
declare the temperaturesto start different active cooling levels.
Critical trip point: Thisisthe threshold temperature at which the OS performs an orderly, but critical,
shut down of the system. The CRT object declares the critical temperature at which the OS must
perform a critical shutdown.

When athermal zone appears, the OS runs control methods to retrieve the three temperature points at
which it executes the cooling policy. When the OS receives athermal SCI it will run the _TMP control
method, which returns the current temperature of the thermal zone. The OS checks the current temperature
against the thermal event temperatures. If _TMP is greater than or equal to _ACx then the OS will turn on
the associated active cooling device(s). If _TMP is greater than or equal to _PSV then the OS will perform
CPU throttling. Finally if _TMP is greater than or equal to _CRT then the OS will shutdown the system.

An optimally designed system that uses several SCI events can notify the OS of thermal increase or
decrease by raising an interrupt every several degrees. This enablesthe OSto anticipate ACx, _PSV, or
_CRT events and incorporate heuristics to better manage the systems temperature.

The operating system can request that the hardware change the priority of active cooling vs passive cooling.

12.1.2 Dynamically Changing Cooling Temperatures
An OEM canreset _ACx and _PSV and notify the OS to reevaluate the control methods to retrieve the new
temperature settings. The following three causes are the primary uses for this thermal notification:
When a user changes from one cooling mode to the other.
When a swappable bay device isinserted or removed. A swappable bay is a dot that can accommodate
several different devices that have identical form factors, such asa CD-ROM drive, disk drive, and so
on. Many mobile PCs have this concept already in place.
When the temperature reaches an _ACx or the _PSV policy settings
In each situation, the OEM-provided AML code must execute a Notify(thermal_zone, 0x81) statement to
request the OS to re-evaluate each policy temperature by running the _PSV and _ACx control methods.

12.1.2.1 Resetting Cooling Temperatures from the User Interface

When the user employs the Ul to change from one cooling mode to the other, the following occurs:

1. The OS natifies the hardware of the new cooling mode by running the Set Cooling Policy (_SCP)
control method.

2. When the hardware receives the notification, it can set a new temperature for both cooling policies and
notify the OS that the thermal zone policy temperatures have changed.

3. TheOSre-evauates PSV and ACx.

200

12.1.2.2 Resetting Cooling Temperatures to Adjust to Bay Device Insertion

or Removal

The hardware can adjust the thermal zone temperature to accommodate the maximum operating

temperature of abay device as necessary. For example,

1. Hardware detects that a device was inserted into or removed from the bay and resets the PSV and/or
_ACx and then notifies the OS of the thermal and device insertion events.

2. The OS reenumerates the devices and reevaluates PSV and _ACX.

12.1.2.3 Resetting Cooling Temperatures to Implement Hysteresis

An OEM can build hysteresisinto platform thermal design by dynamically resetting cooling temperatures.

For example,

1. When the heat increases to the temperature designated by _ ACx, the OS will turn on the associated
active cooling device and the hardware will reset the _ACx value to alower temperature.

2. The hardware will then run the Notify command and the OS will reevaluate the new temperatures.
Because of the lower _ACx value now, the fan will be turned off at alower temperature than when
turned on.

3. When the temperature hits the lower _ACx value, the OS will turn off the fan and reevaluate the
control methods when notified.

12.1.3 Hardware Thermal Events
An ACPI-compatible OS expects the hardware to generate a thermal event notification through the use of
the SCI. When the OS receives the SCI event, it will runthe _TMP control method to evaluate the current
temperature. Then the OS will compare the value to the cooling policy temperatures. If the temperature has
crossed over one of the three policy thresholds, then the OS will actively or passively cool (or stop cooling)
the system, or shutdown the system entirely.
N 7
This is an SCI and you

nany a6 necessary 0 < R
—> 85
—> 80
—> 75 <4— ACO
— 60 <— ACl
—> 55
— 50
—» 45 < pSV
— 40
— 35
— 30
— 25
— 20
— 15
— 10

— > 5

-4— Method

U SCI Even

Figure 12-1 SCI Events
Both the number of SCI eventsto be implemented and the granularity of the temperature separation
between each SCI event is OEM-specific. However, it isimportant to note that since the OS can use
heuristic knowledge to help cool the system, the more events the OS receives the better understanding it
will have of the system’s thermal characteristic.

12.1.4 Active Cooling Strength

The Active cooling methods (_ACx) in conjunction with active cooling lists (_ALX), allows an OEM to use
adevice that offers varying degrees of cooling capability or multiple cooling devices. The _ACx method
designates the temperature at which the Active cooling is enabled or disabled (depending upon the direction

201

in which the temperature is changing). The _ALXx object evaluates to alist of devices that actively cool the

zone. For example:

- If astandard single-speed fan is the Active cooling device, then the policy is represented by the
temperature to which _ACO evaluates, and thefanislisted in _ALO.
If the zone uses two independently-controlled single-speed fans to regul ate the temperature, then _ACO
will evaluate to the maximum cooling temperature using two fans, and _AC1 will evaluate to the
standard cooling temperature using one fan.
If azone has asingle fan with alow speed and a high speed, the _ACO will evaluate to the temperature
associated with running the fan at high-speed, and _AC1 will evaluate to the temperature associated
with running the fan at low speed. _ALO and _AL21 will both point to different device objects
associated with the same physical fan, but control the fan at different speeds.

For ASL coding examples that illustrate these points, see sections 12.4 and 12.5..

12.1.5 Passive Cooling Equation

Unlike the case for _ACx, during passive cooling the OS takes the initiative to actively monitor the
temperature in order to cool the platform. On an ACPI-compatible platform that properly implements CPU
throttling, the temperature transitions will be similar to the following figure.

o A A
% 100%
g
£ 0
o) U
[(@
U
Q
T, §:
3
Q
=]
o
(0]
_TSP (Sampling period)
50%
>

Time
Figure 12-2 Temperature and CPU Performance Versus Time

For the OS to assess the optimum CPU performance change required to bring the temperature down, the
following equation must be incorporated into the OS.

Equation #1: DP[%] = _TC1* (Tn - Tn-1)+_TC2* (Tn-Tt)
where

Tn = current temperature

Tt = target temperature (_PSV)
The two coefficients_TC1 and _TC2 and the sampling period _TSP are hardware-dependent constants the
OEM must supply to the OS (for more information, see section 12.3). The object _ TSP contains atime
interval that the OS uses to poll the hardware to sample the temperature. Whenever _TSP time has elapsed,
the OS will run _TMP to sample the current temperature (shown as Tn in the above equation). Then the OS
will use the sampled temperature and _PSV (which is the target temperature Tt) to evaluate the equation for
DP. The granularity of DP is determined by the CPU duty width of the system.

Note: Equation #1 has an implied formula:

Equation #2: Pn = Pn-1 + HW[- DP] where 0% <= Pn <= 100%

202

For this Equation #2, whenever Pn-1 + DP lies outside the range 0-100%, then Pn will be truncated to O-
100%. For hardware that cannot assume all possible values of Pn between 0 and 100%, a hardware-specific
mapping function HW is used.

In addition, the hardware mapping function in Equation #2 should be interpreted as follows:

(a) If the right hand side of Equation #1 is negative, HW[DP] is rounded to the next available higher setting
of frequency;

(b) If the right hand side of Equation #1 is positive, HW[DP] is rounded to the next available lower setting
of frequency.

The calculated Pn becomes Pn-1 during the next sampling period.

(For more information about CPU throttling, see section 4.7.2.6). A detailed explanation of this thermal
feedback equation is beyond the scope of this specification.

12.1.6 Critical Shutdown
When the heat reaches the temperature indicated by _CRT, the OS must immediately shutdown the system.
The system must disable the power either after the temperature reaches some hardware-determined level
above CRT or after a predetermined time has passed. Before disabling power, platform designers should
incorporate some time that allows the OS to run its critical shutdown operation. Thereis no requirement for
aminimum shutdown operation window that commences immediately after the temperature reaches _CRT.
Thisis because

Heat might rise rapidly in some systems and slower on others, depending on casing design and

environmental factors.

Shutdown can take several minutes on a server and only afew short seconds on a hand-held device.

Because of thisindistinct discrepancy and the fact that a critical heat situation is aremarkably rare
occurrence, ACPI does not specify atarget window for a safe shutdown. It is entirely up to the OEM to
build in a safe buffer that it seesfit for the target platform.

12.2 Other Implementation Of Thermal Controllable Devices

The ACPI thermal event moddl is flexible enough to accommodate control of almost any system device
capable of controlling heat. For example, if amaobile PC requires the battery charger to reduce the charging
rate in order to reduce hest it can be seamlessly implemented as an ACPI cooling device. Thisis done by
associating the charger as an Active cooling device and reporting to the OS target temperatures that will
enable or disable the power resource to the device. Figure 12-3 illustrates the implementation. Because the
example does not create noise, thiswill be an implementation of silence mode.

203

)

<—— CRT

«—— _ACO Fan on/off

«—— _PSV Throttle CPU

«—— _AC1 Reduce charge
rate

D W Wb OO DN D PO

U O 01O U1l O U O Ul o g o g o

ol

iy

[EN
[es]

(&3]

C

Figure 12-3 Other Thermal Control

12.3 Thermal Control Methods
Control methods and objects related to thermal management are listed in Table 12-1.

Table 12-1 Thermal Control Methods

Object Description

_ACx Returns Active trip point in tenths Kelvin

_ALx List of pointers to active cooling device objects
_CRT Returns critical trip point in tenths Kelvin
_PSL List of pointers to passive cooling device objects

PSV Returns Passive trip point in tenths Kelvin

SCP Sets user cooling policy (Active or Passive)

_TC1 Thermal constant for Passive cooling

TC2 Thermal constant for Passive cooling

:TM P Returns current temperature in tenths Kelvin

_TSP Thermal sampling period for Passive cooling in tenths of seconds

12.3.1 _ACx

This control method returns the temperature at which the OS must start or stop Active cooling, wherex isa
value between 0 and 9 that designates multiple active cooling levels of the thermal zone. If the Active
cooling device has one cooling level (that is, “on”) then that cooling level isnamed _ACO. If the cooling
device has two levels of capahility, such as a high fan speed and alow fan speed, then they are named
_ACOand _AC1 respectively. The smaller the value of x, the greater the cooling strength _ ACx represents.
In the above example, _ACO represents the greater level of cooling (the faster fan speed) and _AC1
represents the lesser level of cooling (the slower fan speed). For every ACx method, there must be a
matching ALXx object.

Arguments:
None.

Result Code:
Temperature in tenths Kelvin.

204

Theresult codeis an integer value which describes up to 0.1 precision in Kelvin. For example, 300.0K is
represented by the integer 3000.

12.3.2 _ALx
This object evaluatesto alist of Active cooling devices to be turned on when the associated _ACx trip point
isexceeded. For example, these devices could be fans.

12.3.3 _CRT
This control method returns the critical temperature at which the OS must shutdown the system.

Arguments:
None.

Result Code:
Temperature in tenths Kelvin.

Theresult is an integer value that describes up to 0.1 precision in Kelvin. For example, 300.0K is
represented by the integer 3000.

12.3.4 PSL
This object evaluatesto alist of processor objects to be used for Passive cooling.

12.3.5 PSV
This control method returns the temperature at which the OS must activate CPU throttling.

Arguments:
None.

Result Code:
Temperature in tenths Kelvin.

Theresult codeis an integer value that describes up to 0.1 precision in Kelvin. For example, 300.0 Kelvin
is represented by 3000.

12.3.6 _SCP

This control method notifies the hardware of the current user cooling mode setting. The hardware can use
thisasatrigger to reassign _ACx and _PSV temperatures. The operating system will automatically
evaluate ACx and _PSV objects after executing _SCP.

Arguments:
0 - Active
1 - Passive
Result Code:
None.

12.3.7 _TC1
Thisisathermal object that evaluatesto the constant _TC1 for use in the Passive cooling formula:
DPerformance [%]=_TC1* (Tn -Tn-1)+ _TC2* (Tn. - Tt)

12.3.8 _TC2
Thisisathermal object that evaluatesto the constant _TC2 for use in the Passive cooling formula:
DPerformance [%]=_TC1* (Tn -Tn-1)+ _TC2*(Tn- Tt)

12.3.9 TMP
This control method returns the thermal zone's current operating temperature in Kelvin.

Argument:
None.

205

Result Code:
Temperature in tenths Kelvin.

Theresult is an integer value that describes up to 0.1 precision in Kelvin. For example, 300.0K is
represented by the integer 3000.

12.3.10 TSP
Thisis an object that evaluates to athermal sampling period used by the OS to implement the Passive
cooling equation. Thisvalue, along with_TC1 and _TC2, will enable the OS to provide the proper
hysteresis required by the system to accomplish an effective passive cooling policy. The granularity of the
sampling period is 0.1 seconds. For example, if the sampling period is 30.0 seconds, then _TSP needsto
report 300; if the sampling period is 0.5 seconds, then it will report 5. The OS can normalize the sampling
over alonger period if necessary.

206

12.4 Thermal Block and Name Space Example for One Thermal Zone
Following is an example ASL encoding of athermal zone. Thisis an example only.

Scope(_PR) {
Processor (
CPUO,
1, /1 uni que nurmber for this processor
0x110, //System 1O address of Pblk Registers
0x06 /11ength in bytes of PBIk

) {}
} //end of _PR scope

Scope(_SB) {
Devi ce(ECO) {
Name(_HI D, El SAI D(" PNPOC09")) /1 1D for this EC
/1 current resource description for this EC
Name(_CRS, Buffer (){ Ox4B, 0x62, 0x00, 0x01, O0x4B,
0x66, 0x00, 0x01, 0x79, 0x00})
Name(_GPE, 0) // GPE index for this EC

/] create EC s region and field for thermal support
Oper at i onRegi on(ECO, EnbeddedControl, 0, OxFF)
Fi el d(ECO, AnyAcc, Lock, Preserve) {

MODE, 1, /1 thermal policy (quiet/perform
FAN, 1, /1 fan power (on/off)
) 5,
ACO, 8, /1 active cooling tenp (fan high)
PSV, 8, /'l passive cooling tenp
CRT, 8, /] critical tenp
}
/1 following is a method that the CS will schedule after

/Il it receives an SCl and queries the EC to receive value 7
Met hod(_Q07) {
Notify (_TZ. THRM 0x80)
} /1 end of Notify method
/1 end of ECO device
} /1 end of scope

Scope(_TZ) {
Power Resour ce(PFAN, 0, 0) {
Met hod(_STA) { Return (ECO. FAN) } /'l check power state
Met hod(_ON) { Store (One, ECO.FAN) } /1 turn on fan
Met hod(_OFF) { Store (Zero, ECO.FAN) } // turn off fan

}
/] Create FAN device object
Devi ce (FAN) {
/Il Device ID for the FAN
Name(_HI D, El SAI D(" PNPOCOB"))
/1 list power resource for the fan
Name(_PRO, Package(){PFAN})

}

/!l create a thermal zone
Ther mal Zone (THRM {

Met hod(_TMP) { Return (ECO.TMP)} /1 get current tenp

Met hod(_ACO0) { Return (ECO.ACO) } /1 fan high tenp
Name(_ALO, Package(){FAN}) /1 fan is act cool dev
Met hod(_PSV) { Return (ECO.PSV) } /'l passive cooling tenp
Name(_PSL, Package (){_PR CPU0}) /1 cpu is pass cool dev
Met hod(_CRT) { Return (ECO.CRT) } /1 get critical tenp

Met hod(_SCP, 1) { Store (Argl, ECO.MODE) } /1 set cooling node
Name(_TCl, 4) // bogus exanpl e constant

Name(_TC2, 3) // bogus exanpl e constant

Name(_TSP, 600) /] sanple every 60 sec

207

12.5 Controlling Multiple Fans in a Thermal Zone
The following is an example encoding of athermal block with athermal zone and a single fan that has two

cooling speeds. Thisis an example only.

Scope(\ _PR) {
Processor (

CPUO,

1, /1 uni que nunmber for this processor
0x110, /1 System | O address of Pblk Registers
0x06 /11ength in bytes of PBIk

) {}
} //end of _PR scope

Scope(_SB) {
Devi ce(ECO) {
Name(_HI D, El SAI D(" PNPOC09")) /1 1D for this EC
/1 current resource description for this EC
Name(_CRS, Buffer (){ O0x4B, 0x62, 0x00, 0x01, O0x4B,
0x66, 0x00, 0x01, 0x79, 0x00})
Name(_GPE, 0) /1 GPE index for this EC

/] create EC s region and field for thermal support
Oper at i onRegi on(ECO, EnbeddedControl, 0, OxFF)

/1 following is a method that the S will schedule after it
/1 receives an SCI and queries the EC to receive value 7

Met hod(_Q07) {
Notify (_TZ THML, 0x80)
}

}

Scope(_T2) {
/1 fan cooling nmode high/off - engaged at ACO tenp
Power Resour ce(FN10, 0, 0)
Met hod(_STA) { Return (THML. FANO) } /'l check power state
Met hod(_ON) { Store (One, THML. FANO) } /1 turn on fan at high
Met hod(_OFF) { Store (Zero, THML.FANO) } // turn off fan

}

/1 fan cooling nmode | ow of f - engaged at ACl tenp

Power Resour ce(FN11, 0, 0)
Met hod(_STA) { Return (THML. FAN1) } /'l check power state
Met hod(_ON) { Store (One, THML. FAN1) } /1 turn on fan at |ow
Met hod(_OFF) { Store (Zero, THML.FAN1) } // turn off fan

}

/!l Following is a single fan with two speeds. This is represented
/1 by creating two |ogical fan devices. Wen FN2 is turned on then
/1 the fan is at a | ow speed. Wen FN1 and FN2 are both on then

/1 the fan is on high.

/] Create FAN device object FN1

Devi ce (FN1) {
/1 Device ID for the FAN
Name(_HI D, El SAI D(" PNPOCOB"))
Name(_PRO, Package(){FN10, FN11})

}

/] Create FAN device object FN2
Devi ce (FN2) {
/1 Device ID for the FAN
Name(_HI D, El SAI D(" PNPOCOB"))
Name(_PRO, Package(){FN10})

}

/] create a thermal zone
Ther mal Zone (THML) {
/1 field used by this thernal zone

208

policy (quiet/perform

Fi el d(\ ECO, AnyAcc, Lock, Preserve) {
MODE, 1, /'l thernal
FANO, 1, /1 fan strength high/off
FAN1, 1, /1 fan strength | ow off
, 5, /'l reserved
TMP, 8, /] current tenp
ACO, 8, /] active cooling tenp (high)
ACL, 8, /] active cooling tenp (low)
PSV, 8, /'l passive cooling tenp
CRT, 8, /1 critical tenp

}

Met hod(_TMP) { Return (TMP)}

Met hod(_ACO) { Return (ACO) }
Met hod(_ACl1) { Return (ACl) }

Name(_ALO, Package() {FN1, FN23})

Name(_AL1l, Package() {FN2})
Met hod(_PSV) { Return (PSV) }
Name(_PSL,

Met hod(_CRT) {
Met hod(_SCP, 1)
Name(_TC1, 1)
Name(_TC2, 2)
Name(_TSP, 150)
/1 END: decl are obj

}
} /1 end of TZ

Package() {_PR CPU0})
}

Return (CRT)

{ Store (Argl, MODE) }
/1 bogus exanpl e const ant
/1 bogus exanpl e const ant

ects for thermal zone

get current tenp

fan high tenmp

fan low tenp

active cooling (high)
active cooling (low)
passive cooling tenp
cpu i s pass cool dev
get crit. tenp

set cooling node

sanpl e every 15 seconds

209

13. ACPI Embedded Controller Interface Specification

ACPI defines a standard hardware and software communications interface between an OS driver and an
embedded controller. This allows any OS to provide a standard driver that can directly communicate with
an embedded controller in the system, thus allowing other drivers within the system to communicate with
and use the resources of system embedded controllers. Thisin turn enables the OEM to provide platform
features that the OS and applications can take advantage of .

ACPI dso defines a standard hardware and software communications interface between an OS driver and
an SMBus Host Controller viaan Embedded Controller.

The ACPI standard supports multiple embedded controllersin a system, each with its own resources. Each
embedded controller has a flat byte-addressable 1/O space, currently defined as 256 bytes. Features
implemented in the embedded controller have an event “query” mechanism that allows feature hardware
implemented by the embedded controller to gain the attention of an OS driver or ASL/AML-code handler.
The interface has been specified to work on the most popular embedded controllers on the market today,
only requiring changes in the way the embedded controller is “wired” to the host interface.

Two interfaces are specified:
A private interface, exclusively owned by the embedded controller driver.
A shared interface, used by the embedded controller driver and some other driver.

The specification supports optional extensions to the interface that allow the driver to communicate to an
SMBus controller within the embedded controller (actua or emulated). Thiswill allow standard driversto
be created for SMBus devices that appear on the SMBus whether they are actual or emulated.

Thisinterface is separate from the traditional PC keyboard controller. Some OEMs might choose to
implement the ACPI Embedded Controller Interface (ECI) within the same embedded controller as the
keyboard controller function, but the ECI requires its own unique host resources (interrupt event and access
registers).

This interface does support sharing the ECI with an inter-environment interface (such as SM1) and relies on
the ACPI defined “global lock” protocol. For information about the global lock interface, see section
5.2.6.1 of the ACPI specification. Both the shared and private EC interfaces are described in the following
sections.

The ECI has been designed such that a platform can use it in either the legacy or ACPI modes with minimal
changes between the two operating environments. This isto encourage standardization for this interface to
enable faster development of platforms as well as opening up features within these controllers to higher
levels of software.

13.1 Embedded Controller Interface Description

Embedded controllers are the general class of microcontrollers used to support OEM-specific
implementations. The ACPI specification supports embedded controllersin any platform design, aslong as
the microcontroller conforms to one of the models described in this section. The embedded controller isa
unique feature in that it can perform complex low-level functions through a simple interface to the host

Mi Croprocessor(s).

Although there is alarge variety of microcontrollers in the market today, the most commonly used
embedded controllers include a host interface that connects the embedded controller to the host data bus,
allowing bi-directional communications. A bi-directional interrupt scheme reduces the host processor
latency in communicating with the embedded controller.

Currently, the most common host interface architecture incorporated into microcontrollersis modeled after
the standard 1A-PC architecture keyboard controller. This keyboard controller is accessed at 0x60 and 0x64
in system 1/0O space. Port 0x60 is termed the data register, and allows bi-directional data transfers to and
from the host and embedded controller. Port 0x64 is termed the command/status register; it returns port
status information upon aread, and generates a command sequence to the embedded controller upon a
write. This same class of controllers also includes a second decode range that shares the same properties as

210

the keyboard interface by having a command/status register and a data register. The following diagram
graphically depicts thisinterface.
VAN

COMMAND WRITE (sw/smL
‘ EC INPUT smI < >
BUFFER [
DATA WRITE (SMI/SCI) K= INTCI:EIOQE,;\CE K=
INTERFACE
DATA READ (SMIISCI) EC OUTPUT AT
BUFFER ¥ | ARBS;?DAE'ON FIRMWARE [~ /O
SCI
STATUS READ (SMI/SCI) EC STATUS K> INTERFACE () ‘
REGISTER [~ CODE <« 5

EC_SMI_STS

EC_SMI
~
EC_SMI_EN

EC_SCI_STS

4®[_>g!:>—> EC_SCI
EC_SCI_EN

Figure 13-1 Shared Interface
The diagram above depicts the general register model supported by the ACPI Embedded Controller
Interface.

The first method uses an embedded controller interface shared between the OS and the system management
code, which requires the global lock semaphore overhead to arbitrate ownership. The second method isa
dedicated embedded controller decode range for sole use by the OS driver. The following diagram
illustrates the embedded controller architecture that includes a dedicated ACPI interface.

211

EC_SMI_STS
EC_SMI
EC_SMI_EN
AN
COMMAND WRITE (SMI) < .
DATA WRITE (SMI) A "
< DATA READ (SMI)
< STATUS READ (SMI)
MAIN N o
N—1
COMMAND WRITE (SCI) [| e
| | SCIINPUT |
N BUFFER 4
DATA WRITE (SCI) i
DATA READ (SCI) SCI OUTPUT SCl
(—1 INTERFACE K=
< BUFFER N CODE
< STATUS READ (SCI) SCI STATUS |, < >
REGISTER [V ¥ < >
N
EC_SCI_STS
EC_SCI
EC_SCI_EN

Figure 13-2 Private Interface

The private interface allows the OS to communicate with the embedded controller without the additional
software overhead associated with using the global lock. Several common system configurations can
prowde the additional embedded controller interfaces:
Non-shared embedded controller - Thiswill be the most common case where there is no need for the
system management handler to communicate with the embedded controller when the system transitions
to ACPI mode. The OS processes al normal types of system management events, and the system
management handler does not need to take any actions.
Integrated keyboard controller and embedded controller - This provides three host interfaces as
described earlier by including the standard keyboard controller in an existing component (chip set, 1/0
controller) and adding a discrete, standard embedded controller with two interfaces for system
management activities.
Standard keyboard controller and embedded controller - This provides three host interfaces by
providing a keyboard controller as a distinct component, and two host interfaces are provided in the
embedded controller for system management activities.
Two embedded controllers - This provides up to four host interfaces by using two embedded
controllers; one controller for system management activities providing up to two host interfaces, and
one controller for keyboard controller functions providing up to two host interfaces.

212

Embedded controller and no keyboard controller - Future platforms might provide keyboard
functionality through an entirely different mechanism, which would alow for two host interfacesin an
embedded controller for system management activities.

To handle the general embedded controller interface (as opposed to a dedicated interface) model, a method
is available to make the embedded controller a shareabl e resource between multiple tasks running under the
operating system’ s control and the system management interrupt handler. This method, as described in this
section, requires several changes:

Additional external hardware

Embedded controller firmware changes

System management interrupt handler firmware changes

Operating software changes

Access to the shared embedded controller interface requires additional software to arbitrate between the
operating system’ s use of the interface and the system management handler’ s use of the interface. Thisis
done using the Global Lock as described in section 5.2.6.1.

This interface sharing protocol aso requires embedded controller firmware changes, in order to ensure that
collisions do not occur at the interface. A collision could occur if abyteis placed in the system output
buffer and an interrupt is then generated. There is a small window of time when the data could be received
by the incorrect recipient. This problem is resolved by ensuring that the firmware in the embedded
controller does not place any data in the output buffer until it is requested by the OS or the system
management handler.

More detailed algorithms and descriptions are provided in the following sections.

13.2 Embedded Controller Register Descriptions

The embedded controller contains three registers at two address locations: EC_SC and EC_DATA. The
EC_SC, or Embedded Controller Status’Command register, acts as two registers. a status register for reads
to this port and a command register for writes to this port. The EC_DATA (Embedded Controller Data
register) acts as a port for transferring data between the host CPU and the embedded controller.

13.2.1 Embedded Controller Status, EC_SC (R)
Thisisaread-only register that indicates the current status of the embedded controller interface.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0
IGN SMI EVT | SCI EVT | BURST | CMD IGN IBF OBF
Where:
IGN: Ignored
SMI_EVT: 1=Indicates SMI event is pending (requesting SMI query).

0=No SMI events are pending.

SCI_EVT: 1=Indicates SCI event is pending (requesting SCI query).
0=No SCI events are pending.

BURST: 1=Controller isin burst mode for polled command processing.

0=Controller isin normal mode for interrupt-driven command processing.

CMD: 1=Byte in data register is a command byte (only used by controller).
0=Byte in data register is a data byte (only used by controller).

IBF: 1=Input buffer is full (dataready for embedded controller).
O=Input buffer is empty.

OBF: 1=Cutput buffer isfull (data ready for host).

213

0=Output buffer is empty.

The Output Buffer Full (OBF) flag is set when the embedded controller has written a byte of datainto the
command or data port but the host has not yet read it. After the host reads the status byte and sees the OBF
flag set, the host reads the data port to get the byte of data that the embedded controller has written. After
the host reads the data byte, the OBF flag is cleared automatically by hardware. This signals the embedded
controller that the data has been read by the host and the embedded controller is free to write more datato
the host.

The Input Buffer Full (IBF) flag is set when the host has written a byte of data to the command or data port,
but the embedded controller has not yet read it. After the embedded controller reads the status byte and sees
the IBF flag set, the embedded controller reads the data port to get the byte of data that the host has written.
After the embedded controller reads the data byte, the IBF flag is automatically cleared by hardware. This
isthe signal to the host that the data has been read by the embedded controller and that the host is free to
write more data to the embedded controller.

The SCI event (SCI_EVT) flag is set when the embedded controller has detected an internal event that
requires the operating system’ s attention. The embedded controller sets this bit in the status register, and
generates an SCI to the OS. The OS needs this bit to differentiate command-complete SCIs from
notification SCIs. The OS uses the query command to request the cause of the SCI_EVT and take action.
For more information, see section 13.3)

The SMI event (SMI_EVT) flag is set when the embedded controller has detected an internal event that
requires the system management interrupt handler’ s attention. The embedded controller sets this bit in the
status register before generating an SMI.

The Burst (BURST) flag indicates that the embedded controller has received the burst enable command
from the host, has halted normal processing, and is waiting for a series of commands to be sent from the
host. This allows the OS or system management handler to quickly read and write several bytes of data at a
time without the overhead of SCIs between the commands.

13.2.2 Embedded Controller Command, EC_SC (W)

Thisisawrite-only register that allows commands to be issued to the embedded controller. Writesto this
port are latched in the input data register and the input buffer full flag is set in the status register. Writesto
this location also cause the command bit to be set in the status register. This allows the embedded controller
to differentiate the start of a command sequence from a data byte write operation.

13.2.3 Embedded Controller Data, EC_DATA (R/W)

Thisis aread/write register that allows additional command bytes to be issued to the embedded controller,
and allows the OS to read data returned by the embedded controller. Writesto this port by the host are
latched in the input data register, and the input buffer full flag is set in the status register. Reads from this
register return data from the output data register and clear the output buffer full flag in the status register.

13.3 Embedded Controller Command Set

The embedded controller command set allows the OS to communicate with the embedded controllers.
ACPI defines the commands and their byte encodings for use with the embedded controller that are shown
in the following table.

Table 13-1 Embedded Controller Commands

Embedded Controller Command Command Byte Encoding
Read Embedded Controller (RD_EC) 0x80
Write Embedded Controller (WR_EC) 0x81

Burst Enable Embedded Controller (BE_EC) 0x82
Burst Disable Embedded Controller (BD_EC) 0x83
Query Embedded Controller (QR_EC) 0x84

214

13.3.1 Read Embedded Controller, RD_EC (0x80)

This command byte allows the OS to read a byte in the address space of the embedded controller. This
command byte is reserved for exclusive use by the OS, and it indicates to the embedded controller to
generate SCls in response to related transactions (that is, IBF=0 or OBF=1 in the EC Status Register),
rather than SMIs. This command consists of acommand byte written to the Embedded Controller
Command register (EC_SC), followed by an address byte written to the Embedded Controller Data register
(EC_DATA). The embedded controller then returns the byte at the addressed location. The dataisread at
the data port after the OBF flag is set.

13.3.2 Write Embedded Controller, WR_EC (0x81)

This command byte allows the OS to write a byte in the address space of the embedded controller. This
command byte is reserved for exclusive use by the OS, and it indicates to the embedded controller to
generate SCls in response to related transactions (that is, IBF=0 or OBF=1 in the EC Status Register),
rather than SMIs. This command allows the OS to write a byte in the address space of the embedded
controller. It consists of a command byte written to the Embedded Controller Command register (EC_SC),
followed by an address byte written to the Embedded Controller Data register (EC_DATA), followed by a
data byte written to the Embedded Controller Data Register (EC_DATA); thisis the data byte written at the
addressed location.

13.3.3 Burst Enable Embedded Controller, BE_EC (0x82)
This command byte allows the OS to request dedicated attention from the embedded controller and (except
for critical events) prevents the embedded controller from doing tasks other than receiving command and
data from the host processor (either the system management interrupt handler or the OS). This command is
an optimization that allows the host processor to issue several commands back to back, in order to reduce
latency at the embedded controller interface. When the controller isin the burst mode, it should transition
to the burst disable state if the host does not issue a command within the following guidelines:

First Access - 400 microseconds

Subsequent Accesses - 50 microseconds each

Total Burst Time - 1 millisecond

In addition, the embedded controller can disengage the burst mode at any time to process a critical event. If
the embedded controller disables burst mode for any reason other than the burst disable command, it should
generate an SCI to the OS to indicate the change.

While in burst mode, the embedded controller follows these guidelines for the OS driver:
SCls are generated as normal, including IBF=0 and OBF=1.
Accesses should be responded to within 50 microseconds.

Burst mode is entered in the following manner:

1. The OS driver writes the Burst Enable Embedded Controller, BE_EC (0x82) command byte and then
the Embedded Controller will prepare to enter the Burst mode. This includes processing any routine
activities such that it should be able to remain dedicated to the OS interface for ~ 1 ms.

2. The Embedded Controller sets the Burst bit of the Embedded Controller Status Register, puts the Burst
Acknowledge byte (0x90) into the SCI output buffer, sets the OBF bit, and generates an SCI to signal
the OSthat it isin Burst mode.

Burst mode is exited the following manner:

1. The OS driver writes the Burst Disable Embedded Controller, BD_EC (0x83) command byte and then
the Embedded Controller will exit Burst mode by clearing the Burst bit in the Embedded Controller
Status register and generating an SCI signal (due to IBF=0).

2. The Embedded Controller clears the Burst bit of the Embedded Controller Status Register.

13.3.4 Burst Disable Embedded Controller, BD_EC (0x83)

This command byte releases the embedded controller from a previous burst enable command and allows it
to resume normal processing. This command is sent by the OS or system management interrupt handler
after it has completed its entire queued command segquence to the embedded controller.

215

13.3.5 Query Embedded Controller, QR_EC (0x84)

The OS driver sends this command when the SCI_EVT flag in the EC_SC register is set. When the
embedded controller has detected a system event that must be communicated to the OS,; it first sets the
SCI_EVT flag in the EC_SC register, generates an SCI, and then waits for the OS to send the query
(QR_EC) command. The OS detects the embedded controller SCI, seesthe SCI_EVT flag set, and sends
the query command to the embedded controller. Upon receipt of the QR_EC command byte, the embedded
controller places a notification byte with a value between 0-255, indicating the cause of the notification.
The notification byte indicates which interrupt handler operation should be executed by the OS to process
the embedded controller SCI. The query value of zero is reserved for a spurious query result and indicates
“no outstanding event.”

13.4 SMBus Host Controller Notification Header (Optional), OS_SMB_EVT

This query command notification header is the specia return code that indicates events with an SMBus
controller implemented within an embedded controller. These events include:

Command completion

Command error

Alarm reception

The actual notification value is declared in the SMBus host controller device object in the ACPI name
space.

13.5 Embedded Controller Firmware

The embedded controller firmware must obey the following rules in order to be ACPI-compatible:

1. SMI Processing: Although it is not explicitly stated in the command specification section, a shared
embedded controller interface has a separate command set for communicating with each environment
it plans to support. In other words, the embedded controller knows which environment is generating
the command request, as well as which environment is to be notified upon an event detection, and can
then generate the correct interrupts and notification values. Thisimplies that a system management
handler uses commands that parallel the functionality of all the commands for ACPI including query,
read, write, and any other implemented specific commands.

2. SCI/SMI Task Queuing: If the system design is sharing the interface between both a system
management interrupt handler and the OS, the embedded controller should always be prepared to
gueue a notification if it receives a command. The embedded controller only sets the appropriate event
flag in the status (EC_SC) register if the controller has detected an event that should be communicated
to the operating system or system management handler. The embedded controller must be able to field
commands from either environment without loss of the notification event. At some later time, the
operating system or system management handler issues a query command to the embedded controller
to request the cause of the notification event.

3. Notification Management: The use of the embedded controller means using the query (QR_EC)
command to notify the OS of system events requiring action. If the embedded controller is shared with
the operating system, the SMI handler uses the SMI_EVT flag and an SMI query command (not
defined in this document) to receive the event notifications. The embedded controller doesn't place
event notifications into the output buffer of a shared interface unless it receives a query command from
the OS or the system management interrupt handler.

13.6 Interrupt Model

The EC Interrupt Model uses pulsed interrupts to speed the clearing process. The Interrupt is firmware
generated using an EC general-purpose output and has the waveform shown in Figure 13-3. The embedded
controller SCI is always wired directly to a GPE input, and the OS driver treats this as an edge event (the
EC SCI GPE cannot be shared).

216

13.

Interrupt detected

HOLD

Interrupt serviced
\\ and cleared

A\

Figure 13-3 EC Interrupt Waveform

6.1 Event Interrupt Model

The embedded controller must generate SCIs for the events listed in the following table.
Table 13-2 Events for which Embedded Controller Must Generate SCls

Event Description

IBF=0 Signals that the embedded controller has read the last command or data from the
input buffer and the host is free to send more data.

OBF=1 Signals that the embedded controller has written a byte of data into the output
buffer and the host is free to read the returned data.

SClI_EVT=1 Signals that the embedded controller has detected an event that requires OS
attention. The OS should issue a query (QR_EC) command to find the cause of
the event.

13.

6.2 Command Interrupt Model

The embedded controller must generate SCIs for commands as follows:

READ COMMAND (Three Bytes)

Byte#1 (Command byte Header)
Byte#2 (Address byte to read)
Byte#3 (Dataread to host)
WRITE COMMAND (Three Bytes)
Byte#1 (Command byte Header)
Byte#2 (Address byte to write)
Byte#3 (Datatoread)
QUERY COMMAND (Two Bytes)
Byte#1 (Command byte Header)
Byte#2 (Query value to host)
BURST ENABLE COMMAND (Two Bytes)
Byte#1 (Command byte Header)
Byte#2 (Burst acknowledge byte)

BURST DISABLE COMMAND (One Byte)
Byte#1 (Command byte Header)

Interrupt on IBF=0
No Interrupt
Interrupt on OBF=1

Interrupt on IBF=0
Interrupt on IBF=0
Interrupt on IBF=0

No Interrupt
Interrupt on OBF=1

No Interrupt
Interrupt on OBF=1

Interrupt on IBF=0

217

13.7 Embedded Controller Interfacing Algorithms

To initiate communications with the embedded controller, the OS or system management handler acquires
ownership of the interface. This ownership is acquired through the use of the Global Lock (described in
section 5.2.6.1), or is owned by default by the OS as a non-shared resource (and the Global Lock is not
required for accessibility).

After ownership is acquired, the protocol always consists of the passing of a command byte. The command
byte will indicate the type of action to be taken. Following the command byte, zero or more data bytes can
be exchanged in either direction. The data bytes are defined according to the command byte that is
transferred.

The embedded controller also has two status bits that indicate whether the registers have been read. Thisis
used to ensure that the host or embedded controller has received data from the embedded controller or host.
When the host writes data to the command or data register of the embedded controller, the input buffer flag
(IBF) in the status register is set within 1 microsecond. When the embedded controller reads this data from
the input buffer, the input buffer flag is reset. When the embedded controller writes data into the output
buffer, the output buffer flag (OBF) in the status register is set. When the host processor reads this data
from the output buffer, the output buffer flag is reset.

13.8 Embedded Controller Description Information
Certain aspects of the embedded controller’ s operation have OEM-definable val ues associated with them.
Thefollowingisalist of values that are defined in the software layers of the ACPI specification:

Status flag indicating whether the interface requires the use of the global lock.

Bit position of embedded controller interrupt in general-purpose status register.

Decode address for command/status register.

Decode address for data register.

Base address and query value of any SMBus controller.

For implementation details of the above listed information, see sections 13.11 and 13.12.

An embedded controller will require the inclusion of the _GLK object in its ACPI namespace if potentially
contentious accesses to device resources are performed by non-OS code. See Chapter 6 (6.5.6) for details
about the _GLK object.

13.9 SMBus Host Controller Interface via Embedded Controller

This section describes the System Management Bus (referred to as SMBus) Host Interface, which isa
mechanism to allow the OS to address components on the SMBus. SMBus address space is one of the
generic address spaces defined in the ACPI specification, and this section specifies how to implement a
host controller interface in order to have the OS communicate directly with SMBus devices.

SMBusis atwo-wire interface based upon the 12C protocol. The SMBus is alow-speed bus that provides
positive addressing for devices, as well as bus arbitration. For more information, refer to the complete set
of SMBus Specifications published by Intel Corporation.

The SMBus host interface provides a method of communicating on the SMBus through a block of registers
that reside in embedded controller space. Some SMBus host controller interfaces have specia requirements
that certain SMBus commands are filtered by the host controller. For example, to prevent an errant
application or virus from potentially damaging the battery subsystem. Thisis most easily accomplished by
providing the host interface controller through an embedded controller, because the embedded controller
can eadly filter out the potentially problematic commands.

The SMBus host controller interface allows the host processor (under control of the OS) to manage devices
on the SMBus. Among typical devices that reside on the SMBus are smart batteries, smart chargers,
contrast/backlight control, and temperature sensors.

A SMBusinterface will require the inclusion of the _GLK object in its ACPI namespace if potentialy
contentious accesses to device resources are performed by non-OS code. See Chapter 6 (6.5.6) for details
about the _GLK object.

218

This section specifies a standard set of registers an ACPI-compatible OS can use to communicate with
SMBus devices. Any SMBus host interface that does not comply with this standard can be communicated
with using control methods (as described in section 5).

13.9.1 Register Description
The SMBus host interface is aflat array of registers that are arranged sequentially in address space.

13.9.1.1 Status Register, SMB_STS

Thisregister indicates general status on the SMBus. Thisincludes SMBus host controller command
completion status, alarm received status, and error detection status (the error codes are defined later in this
section). Thisregister is cleared to zeroes (except for the ALRM bit) whenever a new command is issued
using awrite to the protocol (SMB_PRTCL) register. This register is aways written with the error code
before clearing the protocol register. The SMBus host controller query event (that is, an SMBus host
controller interrupt) is raised after the clearing of the protocol register.

NOTE: The OS driver must ensure the ALRM hit is cleared after it has been serviced by writing ‘00" to the
SMB_STSregister.

Bit7 Bit6 Bit5 Bit4 |[Bit3 |Bit2 | Bitl | Bit0
DONE ALRM | RES STATUS
Where:
DONE: Indicates the last command has completed and no error.
ALRM: Indicates an SMBus alarm message has been received.
RES: Reserved.
STATUS: Indicates SMBus communication status for one of the reasons listed in
the following table.
Table 13-3 SMBus Status Codes
Status Name Description
Code
00h SMBus OK Indicates the transaction has been successfully completed.
07h SMBus Unknown Failure Indicates failure because of an unknown SMBus error.
10h SMBus Device Address Not Indicates the transaction failed because the dave device
Acknowledged address was not acknowledged.
11h SMBus Device Error Indicates the transaction failed because the dave device
Detected signaled an error condition.
12h SMBus Device Command Indicates the transaction failed because the SMBus host does
Access Denied not allow the specific command for the device being
addressed. For example, the SMBus host might not allow a
caller to adjust the Smart Battery Charger's output.
13h SMBus Unknown Error Indicates the transaction failed because the SMBus host
encountered an unknown error.
17h SMBus Device Access Indicates the transaction failed because the SMBus host does
Denied not allow access to the device addressed. For example, the
SMBus host might not allow a caller to directly
communicate with an SMBus device that controls the
system's power planes.
18h SMBus Timeout Indicates the transaction failed because the SMBus host
detected a timeout on the bus.

219

Status Name Description

Code

19h SMBus Host Unsupported Indicates the transaction failed because the SMBus host does
Protocol not support the requested protocol.

1Ah SMBus Busy Indicates that the transaction failed because the SMBus host

reports that the SMBus is presently busy with some other
transaction. For example, the Smart Battery might be
sending charging information to the Smart Battery Charger.

All other error codes are reserved

13.9.1.2 Protocol Register, SMB_PRTCL

Thisregister determines the type of SMBus transaction generated on the SMBus. In addition to indicating
the protocol type to the SMBus host controller, awrite to this register initiates the transaction on the
SMBus.

Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | Bit0
PROTOCOL
Where:
PROTOCOL: 0x00=Controller Not In Use
Ox01=Reserved

0x02=Write Quick Command
0x03=Read Quick Command
0x04=Send Byte
0x05=Receive Byte
0x06=Write Byte
0x07=Read Byte
0x08=Write Word
0x09=Read Word
OxOA=Write Block
0xOB=Read Block
0xO0C=Process Call

When the OS initiates a new command such as write to the SMB_PRTCL register, the SMBus Controller
first updates the SMB_STS register and then clearsthe SMB_PRTCL register. After the SMB_PRTCL
register is cleared, the host controller query valueis raised.

13.9.1.3 Address Register, SMB_ADDR
Thisregister contains the 7-bit address to be generated on the SMBus. Thisis the first byte to be sent on the
SMBusfor al of the different protocols.

Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl Bit0
ADDRESS (A6:A0) RES

Where:
RES: Reserved.

220

ADDRESS: 7-bit SMBus address. This addressis not zero aligned (i.e. it isonly a 7-bit address
(A6:A0) that is aligned from bit 1-7).

13.9.1.4 Command Register, SMB_CMD

Thisregister contains the command byte that will be sent to the target device on the SMBus and is used for
the following protocols: send byte, write byte, write word, read byte, read word, process call, block read
and block write. It is not used for the quick commands or the receive byte protocol, and as such, itsvalueis
a“don’t care” for those commands.

Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | Bit0
COMMAND

Where:

COMMAND: Command byte to be sent to SMBus device.

13.9.1.5 Data Register Array, SMB_DATA[i], i=0-31

This bank of registers contains the remaining bytes to be sent or received in any of the different protocols
that can be run on the SMBus. The SMB_DATA][i] registers are defined on a per-protocol basis and, as
such, provide efficient use of register space.

Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | Bit0
DATA

Where:
DATA: One byte of datato be sent or received (depending upon protocol).

13.9.1.6 Block Count Register, SMB_BCNT

This bank of registers contains the remaining bytes to be sent or received in any of the different protocols
that can be run on the SMBus. The SMB_DATA][i] registers are defined on a per-protocol basis and, as
such, provide efficient use of register space.

Bit7 | Bit6 | Bit5 Bit4 | Bit3 | Bit2 | Bitl | Bit0
RES BCNT

Where:

RES: Reserved

BCNT: Block Count for Block Read and Block Write Protocols

13.9.1.7 Alarm Address Register, SMB_ALRM_ADDR

Thisregister contains the address of an alarm message received by the host controller, at dave address 0x8,
from the SMBus master that initiated the alarm. The address indicates the slave address of the device on the
SMBus that initiated the alarm message. The status of the alarm message is contained in the
SMB_ALRM_DATAX registers. Once an alarm message has been received, the SMBus host controller will
not receive additional alarm messages until the ALRM status bit is cleared.

Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl Bit0
ADDRESS (A6:A0) RES

Where:
RES: Reserved

221

ADDRESS: Slave address (A6:A0) of the SMBus device that initiated the SMBus alarm message.

13.9.1.8 Alarm Data Registers, SMB_ALRM_DATA[0], SMB_ALRM_DATA[1]
These registers contain the two data bytes of an alarm message received by the host controller, at dave
address 0x8, from the SMBus master that initiated the alarm. These data bytes indicate the specific reason
for the alarm message, such that the OS can take immediate corrective actions. Once an alarm message has
been received, the SMBus host controller will not receive additional alarm messages until the ALRM status
bit is cleared.

Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl | Bit0
DATA (D7:D0)

Where:

DATA: Data byte received in alarm message.

The alarm address and alarm data registers are not read by the OS driver until the alarm status bit is set.
The OS driver then reads the three bytes, and clears the alarm status bit to indicate that the alarm registers
are now available for the next event.

13.9.2 Protocol Description

This section describes how to initiate the different protocols on the SMBus through the interface described
in the section 13.9.1. The registers should all be written with the appropriate values before writing the
protocol value that starts the SMBus transaction. All transactions can be completed in one pass.

13.9.2.1 Write Quick

Data Sent:
SMB_ADDR: Address of SMBus device.
SMB_PRTCL: Write Ox02 to initiate quick write protocol.

Data Returned:
SMB_STS: Status code for transaction.
SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.2 Read Quick

Data Sent:
SMB_ADDR: Address of SMBus device.
SMB_PRTCL: Write 0x03 to initiate quick read protocol.

Data Returned:
SMB_STS: Status code for transaction.
SMB_PRTCL: 0x00 to indicate command completion.

13.9.2.3 Send Byte

Data Sent:

SMB_ADDR: Address of SMBus device.

SMB_CMD: Command byte to be sent.
SMB_PRTCL: Write 0x04 to initiate send byte protocol.

Data Returned:

222

SMB_STS:
SMB_PRTCL:

Status code for transaction.

0x00 to indicate command completion.

13.9.2.4 Receive Byte

Data Sent:
SMB_ADDR:
SMB_PRTCL.:

Data Returned:
SMB_DATAIO]:
SMB_STS:
SMB_PRTCL:

Address of SMBus device.
Write Ox05 to initiate receive byte protocol.

Data byte received.
Status code for transaction.

0x00 to indicate command completion.

13.9.2.5 Write Byte

Data Sent:
SMB_ADDR;
SMB_CMD:
SMB_DATAIO]:
SMB_PRTCL:
Data Returned:

SMB_STS:
SMB_PRTCL:

Address of SMBus device.

Command byte to be sent.

Data byte to be sent.

Write Ox06 to initiate write byte protocol.

Status code for transaction.

0x00 to indicate command completion.

13.9.2.6 Read Byte

Data Sent:
SMB_ADDR;
SMB_CMD:
SMB_PRTCL:

Data Returned:
SMB_DATAIO]:
SMB_STS:
SMB_PRTCL:

Address of SMBus device.
Command byte to be sent.
Write 0x07 to initiate read byte protocol.

Data byte received.
Status code for transaction.

0x00 to indicate command completion.

13.9.2.7 Write Word

Data Sent:
SMB_ADDR;
SMB_CMD:
SMB_DATAIO]:
SMB_DATA[1]:
SMB_PRTCL:

Address of SMBus device.
Command byte to be sent.
Low data byte to be sent.
High data byte to be sent.

Write Ox08 to initiate write word protocol.

Data Returned:
SMB_STS:
SMB_PRTCL.:

Status code for transaction.

0x00 to indicate command completion.

13.9.2.8 Read Word

Data Sent:
SMB_ADDR;
SMB_CMD:
SMB_PRTCL:

Data Returned:
SMB_DATA[O]:
SMB_DATA[1]:
SMB_STS:
SMB_PRTCL:

Address of SMBus device.

Command byte to be sent.

Write Ox09 to initiate read word protocol.

Low data byte received.
High data byte received.
Status code for transaction.

0x00 to indicate command completion.

13.9.2.9 Write Block

Data Sent:
SMB_ADDR;
SMB_CMD:
SMB_DATA[0-31]:
SMB_BCNT:
SMB_PRTCL:

Data Returned:
SMB_PRTCL.:
SMB_STS:

Address of SMBus device.
Command byte to be sent.
Data bytesto write (1-32).

Number of data bytes (1-32) to be sent.
Write OXOA to initiate write block protocol.

0x00 to indicate command completion.

Status code for transaction.

13.9.2.10 Read Block

Data Sent:
SMB_ADDR;
SMB_CMD:
SMB_PRTCL:

Data Returned:
SMB_BCNT:
SMB_DATA[0:3]:
SMB_STS:
SMB_PRTCL:

Address of SMBus device.

Command byte to be sent.

Write OxOB to initiate read block protocol.

Number of data bytes (1-32) received.
Data bytes received (1-32).
Status code for transaction.

0x00 to indicate command completion.

13.9.2.11 Process Call

Data Sent:

223

224

SMB_ADDR:
SMB_CMD:
SMB_DATA[O]:
SMB_DATA[1]:
SMB_PRTCL:

Data Returned:
SMB_DATAIO]:
SMB_DATA[1]:
SMB_STS:
SMB_PRTCL:

Address of SMBus device.

Command byte to be sent.
Low data byte to be sent.
High data byte to be sent.

Write OxOC to initiate process call protocol.

Low data byte received.
High data byte received.

Status code for transaction.

0x00 to indicate command completion.

13.9.3 SMBus Register Set

The register set for the SMBus host controller has the following format. All registers are eight bit.

Table 13-4 SMB EC Interface

LOCATION | REGISTER NAME DESCRIPTION
BASE+0 SMB_PRTCL Protocol register.
BASE+1 SMB_STS Status register.

BASE+2 SMB_ADDR Address register.
BASE+3 SMB_CMD Command register.
BASE+4 SMB_DATAJ[OQ] Data register zero.
BASE+5 SMB_DATA[1] Data register one.
BASE+6 SMB_DATA[2] Data register two.
BASE+7 SMB_DATA[3] Data register three.
BASE+8 SMB_DATA[4] Dataregister four.
BASE+9 SMB_DATA[5] Data register five.
BASE+10 SMB_DATA[6] Data register six.
BASE+11 SMB_DATA[7] Data register seven.
BASE+12 SMB_DATA[S8] Data register eight.
BASE+13 SMB_DATA[9] Data register nine.
BASE+14 SMB_DATAJ[10] Data register ten.
BASE+15 SMB_DATA[11] Data register eleven.
BASE+16 SMB_DATA[12] Data register twelve.
BASE+17 SMB_DATA[13] Data register thirteen.
BASE+18 SMB_DATA[14] Data register fourteen.
BASE+19 SMB_DATA[15] Data register fifteen.
BASE+20 SMB_DATA[16] Data register sixteen.
BASE+21 SMB_DATA[17] Data register seventeen.
BASE+22 SMB_DATA[18] Data register eighteen.
BASE+23 SMB_DATA[19] Data register nineteen.
BASE+24 SMB_DATA[20] Data register twenty.
BASE+25 SMB_DATA[21] Data register twenty-one.
BASE+26 SMB_DATA[22] Data register twenty-two.
BASE+27 SMB_DATA[23] Data register twenty-three.
BASE+28 SMB_DATA[24] Data register twenty-four.
BASE+29 SMB_DATA[25] Data register twenty-five.
BASE+30 SMB_DATA[26] Data register twenty-six.
BASE+31 SMB_DATA[27] Data register twenty-seven.

225

LOCATION | REGISTER NAME DESCRIPTION
BASE+32 SMB_DATA[28] Data register twenty-eight.
BASE+33 SMB_DATA[29] Data register twenty-nine.
BASE+34 SMB_DATAJ30] Data register thirty.
BASE+35 SMB_DATA[3]] Data register thirty-one.
BASE+36 SMB_BCNT Block Count Register
BASE+37 SMB_ALRM_ADDR Alarm address.

BASE+38 SMB_ALRM_DATA[OQ] Alarm dataregister zero.
BASE+39 SMB_ALRM_DATA[1] Alarm data register one.

13.10 SMBus Devices

The embedded controller interface provides the system with a standard method to access devices on the
SMBus. It does not define the data and/or access protocol(s) used by any particular SMBus device. Further,
the embedded controller can (and probably will) serve as a gatekeeper to prevent accidental or malicious
access to devices on the SMBus.

SMBus devices are defined by their address and a specification that describes the data and the protocol
used to accessthat data. For example, the Smart Battery System devices are defined by a series of
specifications including:

Smart Battery Data specification

Smart Battery Charger specification

Smart Battery Selector specification

The embedded controller can also be used to emulate (in part or totally) any SMBus device.

13.10.1 SMBus Device Access Restrictions

In some cases, the embedded controller interface will not allow access to a particular SMBus device. Some
SMBus devices can and do communicate directly between themselves. Unexpected accesses can interfere
with their normal operation and cause unpredictable results.

13.10.2 SMBus Device Command Access Restriction

There are cases where part of an SMBus device's commands are public while others are private.
Extraneous attempts to access these commands might cause interference with the SMBus device's normal
operation.

The Smart Battery and the Smart Battery Charger are a good example of devices that should not have their
entire command set exposed. The Smart Battery commands the Smart Battery Charger to supply a specific
charging voltage and charging current. Attempts by the anyone to ater these values can cause damage to
the battery or the maobile system. To protect the system’ s integrity, the embedded controller interface can
restrict access to these commands by returning one of the following error codes: Device Command Access
Denied (0x12) or Device Access Denied (0x17).

13.11 Defining an Embedded Controller Device in ACPI Name Space
An embedded controller device is created using the named device object. The embedded controller’s device
object requires the following elements:

Table 13-5 Embedded Controller Device Object Control Methods

Object Description

_CRS Named object that returns the Embedded Controller’ s current resource settings. Embedded
Controller’s are considered static resources, hence only return their defined resources. The
embedded controller resides only in system I/O or memory space. The first address region
returned is the data port, and the second address region returned is the status'command port for
the embedded controller. _CRS s astandard device configuration control method defined in
section 6.2.1.

226

Object Description

_HID Named object that provides the Embedded Controller’s Plug and Play identifier. Thisvaueis
be set to PNPOAQ9. _HID is a standard device configuration control method defined in section
6.1.3.

_GPE Named object that returns what SCI interrupt within the GPx_STS register (bit assignment).
This control method is specific to the embedded controller.

13.11.1 Example EC Definition ASL Code
Example ASL code that defines an embedded controller device is shown below:

Devi ce(ECO) {
/!l PnP ID
Nanme(_HI D, EI SAI D(“PNP0OC09"))
/1 Returns the “Current Resources” of EC
Nanme(_CRS,
Resour ceTenpl at e() { /1 port 0x62 and 0x66
| O(Decodel6, 0x62, 0x62, 0, 1),
| O(Decodel6, 0x66, 0x66, 0, 1)

}

)
/1 Define that the EC SCl is bit 0 of the GP_STS register
Name(_GPE, 0)

Oper at i onRegi on(ECOR, EnbeddedControl, 0, OxFF)
Fi el d(ECOR, ByteAcc, Lock, Preserve) {
/1 Field definitions go here

}
}

13.12 Defining an EC SMBus Host Controller in ACPlI Name Space
An embedded controller device is created using the named device object. The embedded controller’ s device
object requires the following elements:

Table 13-6 EC SMBus Host Controller Device Objects

Object Description

_HID Named object that provides the Embedded Controller’s Plug and Play identifier. Thisvaueis
be set to ACPI0001. _HID is astandard device configuration control method defined in section
6.1.

_EC Named object that evaluates to a WORD that defines the SMBus attributes needed by the

SMBusdriver. _EC isthe Embedded Controller Offset Query Control Method. The most
significant byte is the address offset in embedded controller space of the SMBus controller; the
least significant byte is the query value for all SMBus events.

13.12.1 Example EC SMBus Host Controller ASL-Code
Example ASL-code that defines an SMBus Host Controller from within an embedded controller deviceis
shown below:

Devi ce(ECO) {
Name(_HI D, El SAI D(" PNPOC09"))
Name(_CRS,
Resour ceTenpl at e() {

/1 port 0x62 and 0x66

| O(Decodel6, 0x62, 0x62, 0, 1), [/ Status port
| O(Decodel6, 0x66, 0x66, 0, 1) /1 command port

}

)
Nanme(_GPE, 0)

Devi ce (SMB1) ({
Name (_HI D, "ACPI0001")
Name(_EC, 0x8030)

/1 EC offset, Query

Oper ati onRegi on(PHOL, SMBus, 0x51, O0x1)

Devi ce(DEVA) {
Name(_ADR, 0x51)

Fi el d(PHOL, ByteAcc, NoLock, Preserve) {

TSTO,
TST1,
NULL,
TST7,

ROoRE

}
} /'l end of DEVA
} /1 end of SMB1

Devi ce (SMB2) ({
Name (_HI D, "ACPI0001")
Name(_EC, 0x9031)

Oper at i onRegi on(PHOL,
Oper at i onRegi on(PHOZ,

Devi ce(DEVB) {
Name(_ADR, 0x62)

/1 EC offset, Query
SMBus, 0x62, 0x1)
SMBus, 0x50, 0x2)

Fi el d(PHOL, SMBQui ckAcc, NoLock, Preserve) {

TSTC,
}
Devi ce(EPRM {
Name(_ADR, 0x50)

8
/1 end of DEVB

Fi el d(PH®2, AnyAcc, NoLock, Preserve){

FLD1,
FLD2,
FLD3,
FLD4,
FLD5,

}
} /1 end of EPRM
} /1 end of SMB2
} /1 end of EC

256,
8,
16,
8,
224

227

229

14. Query System Address Map

This section explains the special INT 15 call that Intel and Microsoft developed for use in 1A-PC based
systems. The call supplies the operating system with a clean memory map indicating address ranges that are
reserved and ranges that are available in the motherboard.

14.1 INT 15H, E820H - Query System Address Map
This call can be used in real mode only.

This call returns amemory map of all the installed RAM, and of physical memory ranges reserved by the
BIOS. The address map is returned by making successive calls to this API, each returning one run of
physical addressinformation. Each run has atype that dictates how this run of physical addressrangeisto
be treated by the operating system.

If the information returned from E820 in some way differs from INT-15 88 or INT-15 E801, the
information returned from E820 supersedes the information returned from INT-15 88 or INT-15 E801.
This replacement allows the BIOS to return any information that it requires from INT-15 88 or INT-15
E801 for compatibility reasons. For compatibility reasons, if E820 returns any AddressRangeACPI or
AddressRangeNV S memory ranges below 16Mb, the INT-15 88 and INT-15 E801 functions must return
the top of memory below the AddressRangeACPl and AddressRangeNV S memory ranges.

Table 14-1 Input

EAX Function Code | E820h

EBX Continuation Contains the continuation value to get the next run of physical memory.
Thisisthe value returned by a previous call to thisroutine. If thisisthe first
call, EBX must contain zero.

ES:DI | Buffer Pointer Pointer to an Address Range Descriptor structure that the BIOSfillsin.

ECX Buffer Size The length in bytes of the structure passed to the BIOS. The BIOSfillsin
the number of bytes of the structure indicated in the ECX register,
maximum, or whatever amount of the structure the BIOS implements. The
minimum size that must be supported by both the BIOS and the caller is 20
bytes. Future implementations might extend this structure.

EDX Signature 'SMAP Used by the BIOS to verify the caller is requesting the system map
information to be returned in ES:DI.

Table 14-2 Output

CF Carry Flag Non-Carry - Indicates No Error

EAX Signature 'SMAP - Signature to verify correct BIOS revision.

ES:DI | Buffer Pointer Returned Address Range Descriptor pointer. Same value as on input.

ECX Buffer Size Number of bytes returned by the BIOS in the address range descriptor. The
minimum size structure returned by the BIOS is 20 bytes.

EBX Continuation Contains the continuation value to get the next address descriptor. The

actual significance of the continuation value is up to the discretion of the
BIOS. The caller must pass the continuation value unchanged asinput to
the next iteration of the E820 call in order to get the next Address Range
Descriptor. A return value of zero means that thisis the last descriptor.
NOTE: the BIOS can dsoindicate that the last descriptor has already been
returned during previous iterations by returning a carry. The caller will
ignore any other information returned by the BIOS when the carry flag is
Set.

Table 14-3 Address Range Descriptor Structure

Offset in Bytes Name Description

0 BaseAddrLow Low 32 Bits of Base Address

4 BaseAddrHigh High 32 Bits of Base Address

230

8 L engthL ow Low 32 Bits of Length in Bytes
12 LengthHigh High 32 Bits of Length in Bytes
16 Type Address type of thisrange

The BaseAddrLow and BaseAddrHigh together are the 64-bit base address of thisrange. The base address
isthe physical address of the start of the range being specified.

The LengthLow and LengthHigh together are the 64-bit length of thisrange. The length isthe physical
contiguous length in bytes of arange being specified.

The Type field describes the usage of the described address range as defined in the following table.

Table 14-4 Address Ranges in the Type Field

Value | Mnemonic Description

1 AddressRangeMemory Thisrun is available RAM usable by the operating system.

2 AddressRangeReserved Thisrun of addressesisin use or reserved by the system and must
not be used by the operating system.

3 AddressRangeACPI ACPI Reclaim Memory. Thisrunis available RAM usable by the
operating system after it reads the ACPI tables.

4 AddressRangeNVS ACPI NVS Memory. Thisrun of addressesisin use or reserve by

the system and must not be used by the operating system. This
range is required to be saved and restored across an NV S sleep.

Other | Undefined Undefined - Reserved for future use. Any range of this type must
be treated by the OS asiif the type returned was
AddressRangeReserved.

The BIOS can use the AddressRangeReserved address range type to block out various addresses as not
suitable for use by a programmable device. Some of the reasons a BIOS would do this are:
- The address range contains system ROM.
The address range contains RAM in use by the ROM.
The address range is in use by a memory-mapped system device.
The address range is, for whatever reason, unsuitable for a standard device to use as a device memory
space.

14.2 Assumptions and Limitations
The BIOS returns address ranges describing base board memory and 1SA or PCI memory that is
contiguous with that base board memory.
The BIOS does not return arange description for the memory mapping of PCI devices, ISA Option
ROMs, and ISA Plug and Play cards because the operating system has mechanisms available to detect
them.
The BIOS returns chip set-defined address holes that are not being used by devices as reserved.
Address ranges defined for base board memory-mapped 1/0 devices, such as APICs, are returned as
reserved.
All occurrences of the system BIOS are mapped as reserved, including the areas below 1 MB, at 16
MB (if present), and at end of the 4-GB address space.
Standard PC address ranges are not reported. Example video memory at AO000 to BFFFF physical are
not described by this function. The range from E0000 to EFFFF is specific to the base board and is
reported as it applies to that base board.
All of lower memory is reported as normal memory. The operating system must handle standard RAM
locations that are reserved for specific uses, such asthe interrupt vector table (0:0) and the BIOS data
area (40:0).

14.3 Example Address Map
This sample address map (for an Intel processor-based system) describes a machine which has 128 MB of
RAM, 640K of base memory and 127 MB of extended memory. The base memory has 639K available for

231

the user and 1K for an extended BIOS data area. A 4-MB Linear Frame Buffer (LFB) is based at 12 MB.
The memory hole created by the chip set isfrom 8 MB to 16 MB. Memory-mapped APIC devicesarein
the system. The 1/O Unit is at FECO0000 and the Loca Unit is a FEE00000. The system BIOS is

remapped to 1 GB-64K.

The 639K endpoint of the first memory range is also the base memory size reported in the BIOS data
segment at 40:13. The following table shows the memory map of atypical system.

Table 14-5 Sample Memory Map

Base (Hex) | Length | Type Description

0000 0000 | 639K AddressRangeMemory | Available Base memory - typicaly the same value
asisreturned using the INT 12 function.

0009 FCO0 | 1K AddressRangeReserved | Memory reserved for use by the BIOS(s). This
areatypically includes the Extended BIOS data
area.

000F 0000 | 64K AddressRangeReserved | System BIOS

00100000 | 7MB AddressRangeMemory Extended memory, which is not limited to the
64-MB address range.

0080 0000 | 4MB AddressRangeReserved | Chip set memory hole required to support the
LFB mapping at 12 MB.

0100 0000 120MB | AddressRangeMemory Base board RAM relocated above a chip set
memory hole.

FECO0000 | 4K AddressRangeReserved | 1/0 APIC memory mapped 1/0 at FEC00000.

FEEO 0000 | 4K AddressRangeReserved | Local APIC memory mapped 1/0 at FEEOOO0O.

FFFF 0000 | 64K AddressRangeReserved | Remapped System BIOS at end of address space.

14.4 Sample Operating System Usage

The following code segment illustrates the algorithm to be used when calling the Query System Address
Map function. It is an implementation example and uses non-standard mechanisms.

232

E820Pr esent = FALSE;

Reg. ebx = 0;

do {
Reg. eax = O0xE820;
Reg. es = SEGMVENT (&Descriptor);
Reg.di = OFFSET (&Descriptor);
Reg. ecx = sizeof (Descriptor);
Reg. edx = ' SMAP' ;

_int(15, regs);

if ((Regs.eflags & EFLAG CARRY) || Regs.eax !="'SMAP') {
br eak;

}

if (Regs.ecx < 20 || Reg.ecx > sizeof (Descriptor)) {

/1 bug in bios - all returned descriptors nmust be
/1 at least 20 bytes long, and cannot be larger then
/1 the input buffer.

br eak;

}
E820Pr esent = TRUE;

Add address range Descri ptor. BaseAddress through
Descri pt or. BaseAddress + Descriptor. Length
as type Descriptor. Type

} while (Regs.ebx != 0);

if (!E820Present) ({

call INT-15 88 and/or INT-15 E801 to obtain old style
menory information

233

15. ACPI Source Language (ASL) Reference

This section formally defines the ACPI Control Method Source Language (ASL). ASL is a source language
for writing ACPI control methods. OEMs and BIOS developers write control methodsin ASL and then use a
trandator tool (compiler) to generate ACPI Machine Language (AML) versions of the control methods. For a
formal definition of AML, see the ACPI Control Method Machine Language (AML) Specification, section
16.

AML and ASL are different languages though they are closely related.

Every ACPI-compatible OSes must support AML. A given user can define some arbitrary source language
(to replace ASL) and write atool to trandateit to AML.

An OEM or BIOS vendor needs to write ASL and be able to single step AML for debugging. (Debuggers
and similar tools are expected to be AML level tools, not source level tools) An ASL tranglator implementer
must understand how to read ASL and generate AML. An AML interpreter author must understand how to
execute AML.

This section has two parts:
The ASL grammar, which isthe formal ASL specification and also serves as a quick reference.
A full ASL reference, which repeats the ASL term syntax and adds information about the semantics of
the language.

15.1 ASL Language Grammar
The purpose of this section is to state unambiguously the grammar rules used by the syntax checker of an
ASL compiler.

ASL statements declare objects. Each object has three parts, two of which can be null.
Obj ect : = CbjectType FixedList VariablelList

FixedList refersto alist, of known length, that supplies data that all instances of a given ObjectType must
have. A fixed listiswrittenas(a, b, c, ...) where the number of arguments depends on the specific
ObjectType, and some elements can be nested objects, that is (a, b, (q, r, s, t), d). Arguments to a FixedL st
can have default values, in which case they can be skipped. Thus, (a,,c) will cause the default value for the
second argument to be used. Some ObjectTypes can have anull FixedList, which is simply omitted.
Trailing arguments of some object types can be left out of afixed list, in which case the default value is used.

VariableList refersto alist, not of predetermined length, of child objects that help define the parent. Itis
written as{ x, y, z, aa, bb, cc } where any argument can be a nested object. ObjectType determines what
terms are legal el ements of the VariableList. Some ObjectTypes may have anull variable list, which is
simply omitted.

Other rules for writing ASL statements are the following:
- Multiple blanks are the same asone. Blank, (,), ‘,” and newline are all token separators.
/I marks the beginning of a comment, which continues from the // to the end of the line.
/* marks the beginning of a comment, which continues from the /* to the next */.
*“” surround an ASCII string.
Numeric constants can be written in two ways: ordinary decimal, or hexadecimal, using the notation
Oxdd

nothing indicates an empty item. For example { nothing } isequivalent to {}

234

15.1.1 ASL Grammar Notation
The notation used to expressthe ASL grammar is specified in the following table.

Table 15-1 ASL Grammar Notation

Notation Convention

Description

Example

Term:=Term Term ...

The term to the left of := can be
expanded into the sequence of terms
on the right.

aterm := bterm cterm means that
aterm can be expanded into the two-
term sequence of bterm followed by
cterm.

Angle brackets (< >)

Used to group items.

<ab> | <c d> means either
aborcd.

Bar symbol (|)

Separates aternatives.

aterm := bterm | <cterm dterm>
means the following constructs are
possible:

bterm

cterm dterm
aterm := <bterm | cterm> dterm
means the following constructs are
possible:

bterm dterm

cterm dterm

Term Term Term

Terms separated from each other by
spaces form an ordered list.

N/A.

Word in bold. Denotes the name of aterm in the In the following ASL term
ASL grammar, representing any definition:
instance of such aterm. ThermalZone (ZoneName)

{ NamedObjectList}
theitem in bold is the name of the
term.

Word initalics Names of arguments to objects that In the following ASL term

are replaced for a given instance.

definition:

ThermalZone (ZoneName)
{NamedObjectL st}

theitalicized item is an argument.

Theitem that is not bolded or

italicized is defined elsewhere in the

ASL grammar.

Single quotes (*)

Indicate constant characters.

IA1

Oxdd

Refers to a byte value expressed as 2
hexadecimal digits.

0x21 means a value of hexadecimal
21, or decima 37. Note that avalue
expressed in hexadecimal must start
with aleading zero (0).

Dash character (-)

Indicates arange.

1-9 means asingle digit in the range
1to9inclusive.

15.1.2 ASL Names
LeadNaneChar

NameChar

Root Char
NanmeSeg

NameStri ng
Prefi xPat h
NanmePat h
NamePat hTai |

235

‘AT ‘B 'C | D] B R G R e |
| KL M N 0 P QRS
TP Y W X Ytz]

‘o | ‘1| 2| 3| 4 ' e | T 8 | Y
| LeadNameChar

v

<LeadNanmeChar NameChar NaneChar NaneChar> |
<LeadNanmeChar NameChar NaneChar> |
<LeadNanmeChar NameChar> |

<LeadNaneChar >

<Root Char NanePat h> | <PrefixPath NanePat h>
Nothing | <*~' PrefixPath>

Not hi ng | <NaneSeg NanePat hTail >

Nothing | <.’ NameSeg NanePat hTail >

15.1.3 ASL Language and Terms

ASLCode

DefinitionBl ockTerm

TermLi st
Term

Compi l erDirective
Obj ect Li st
bj ect

Dat a(bj ect

Literal Data
Comput at i onal Dat a
Dat aMacr os

NamedObj ect

NameSpaceModi f i er
User Term
ArgLi st

ArgLi st Tai |
Ter mAr g

DefinitionBl ockTerm

DefinitionBlock(
AMLFileName, /1String
TableSignature, /1String
ComplianceRevision, /] Byt eConst
OEMID, /1String
TablelD, /1String
OEMRevision /| DWr dConst

) {TernList}

Not hi ng | <Term TerniLi st >
Obj ect | TypelOpcode | Type2QOpcode

I ncl udeTerm | External Term

Not hi ng | <Cbj ect ObjectlList>
ConpilerDirective | NamedObj ect | NaneSpaceMdifier |
User Term

Buf ferTerm | PackageTerm | Literal Data | DataMacros
Integer | String | ConstTerm

Integer | String | BufferTerm

El SAl DTerm | ResourceTenpl at eTerm

BankFi el dTerm | CreateBitFiel dTerm| CreateByteFieldTerm |
Creat eDWor dFi el dTerm | CreateFi el dTerm |

Creat eWor dFi el dTerm | DeviceTerm | EventTerm | FieldTerm
| I'ndexFieldTerm| MethodTerm | MitexTerm | OpRegi onTerm
| Power ResTerm | ProcessorTerm | Thermal ZoneTerm

AliasTerm | NaneTerm | ScopeTerm

NameStri ng([/ NameSt ri ng=>Met hodTer m
ArgLi st
) => Dat a(bj ect
Not hing | <TermArg ArgListTail >
Nothing | <, TermArg ArgListTail >
Type2QOpcode | DataObhject | UserTerm | ArgTerm | Local Term

236

TypelQOpcode := BreakTerm | BreakPointTerm | Fatal Term | |fEl seTerm|
LoadTerm | NoOpTerm | NotifyTerm | Rel easeTerm |
Reset Term | ReturnTerm| Signal Term| SleepTerm |
Stall Term | Unl oadTerm | Wil eTerm
/1 A TypelOpCode term can only be used standing al one on
a
/1 line of ASL code; because these types of terns do not
/1 return a value so they cannot be used as a termin an
/] expression.

Type2Qpcode ;= AcquireTerm | AddTerm | AndTerm | Concat Term |
CondRef O Term | DecTerm | DerefOf Term | DivideTerm |
Fi ndSet LeftBit Term | FindSetRi ghtBitTerm | FronBCDTerm |
IncTerm| IndexTerm| LAndTerm | LEqual Term |
LG eaterTerm | LG eaterEqual Term| LLessTerm |
LLessEqual Term | LNot Term | LNot Equal Term | LOrTerm |
Mat chTerm | MultiplyTerm | NAndTerm | NO Term | NotTerm |
Obj ect TypeTerm | OrTerm| RefOfTerm | ShiftLeftTerm |
ShiftRight Term| SizeOTerm| StoreTerm| SubtractTerm |
ToBCDTerm | WaitTerm | XorTerm
/1 A Type2Qpcode termreturns a value that can be used in
/1 an expression.

I ncl udeTerm ;= Include(
IncFilePathName /1String
)
Ext er nal Term ;= External (
ObjName, // NanmeStri ng
ObjType /1 Nothing | ObjectTypeKeyword
BankFi el dTerm ;= BankField(
RegionName, /] NameStri ng
BankName, // NameStri ng
BankValue, /| Ter mAr g=>DWor dConst
AccessType, /| AccessTypeKeywor d
LockRule, /| LockRul eKeywor d
UpdateRule / | Updat eRul eKeywor d

) {FieldunitList}

Nothing | <FieldUnit FieldUnitListTail>
Nothing | <,’ FieldUnit FieldUnitListTail>

Fi el dUni t Li st
Fi el dUni t Li st Tai |

Fi el dUni t = FieldUnitEntry | OfsetTerm| AccessAsTerm
Fiel dUnitEntry = <Nothing | NameSeg> ‘,’ |nteger
O fset Term = Offset(
ByteOffset /11 nteger
)
AccessAsTerm : = AccessAs(
AccessType, /] AccessTypeKeywor d
AccessAttribute /1 Not hing | ByteConst
)
CreateBitFiel dTerm ;= CreateBitField(
SourceBuffer, /| Ter mMAr g=>Buf f er Term
BitlIndex, /| Ter mMAr g=>I nt eger
BitFieldName // NameStri ng

Cr eat eByt eFi el dTerm

Cr eat eDWor dFi el dTerm

Creat eFi el dTerm

Creat eWor dFi el dTerm

Devi ceTerm

Event Ter m

Fi el dTerm

I ndexFi el dTer m

Met hodTer m

Mut exTer m

CreateByteField(
SourceBuffer,
Bytelndex,
ByteFieldName

)

CreateDWordField(
SourceBuffer,
Bytelndex,
DWordFieldName

)

CreateField(
SourceBuffer,
Bitlndex,
NumBits,
FieldName

)

CreateWordField(
SourceBuffer,
Bytelndex,
WordFieldName

)

Device(
DeviceName
) {ObjectList}

Event(
EventName
)

Field(
RegionName,
AccessType,
LockRule,
UpdateRule

) {FieldUnitList}

IndexField(
IndexName,
DataName,
AccessType,
LockRule,
UpdateRule

) {FieldUnitList}

Method(
MethodName,
NumArgs,
SerializeRule

) {TernList}
Mutex(

MutexName,
SyncLevel

/| Ter mAr g=>Buf f er Term
/| Ter mMAr g=>I nt eger
/] NameStri ng

/| Ter mAr g=>Buf f er Term
/| Ter mMAr g=>I nt eger
/] NameStri ng

/| Ter mAr g=>Buf f er Term
/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger

/] NameStri ng

/| Ter mAr g=>Buf f er Term
/| Ter mMAr g=>I nt eger
/] NameStri ng

/] NameStri ng

/] NameStri ng

// NameStri ng

/| AccessTypeKeywor d
/| LockRul eKeywor d

/ | Updat eRul eKeywor d

/1 NameStri ng

/1 NameStri ng

/| AccessTypeKeywor d
/| LockRul eKeywor d
/| Updat eRul eKeywor d

/1 NameStri ng

/1 Not hing | ByteConst
/1 Not hi ng

/1 SerializeRul eKeyword

// NameStri ng
/1 Byt eConst

237

238

OpRegi onTerm

Power ResTer m

Processor Term

Ther mal ZoneTerm

AliasTerm

NaneTer m

ScopeTerm

Br eakTer m
Br eakPoi nt Term

Fat al Term

| fEl seTerm

I fTerm

El seTerm

LoadTerm

OperationRegion(
RegionName,
RegionSpace,
Offset,
Length

)

PowerResource(
ResourceName,
SystemLevel,
ResourceOrder

) {ObjectList}

Processor(
ProcessorName,
ProcessorlD,
PBlockAddress,
PblockLength

) {ObjectList}

ThermalZone(
ThermalZoneName
) {ObjectList}

Alias(

SourceObject,
AliasObject
)
Name (
ObjectName,
Object
)
Scope(
Location

) {ObjectList}
Break

BreakPoint

Fatal (
Type,
Code,
Arg

)

| fTerm El seTerm

1f(
Predicate
) {TernList}

Not hi ng | <Else {Ternli st }>

Load(
Object,
DDBHandle

// NameStri ng

/ | Regi onSpaceKeywor d
/| Ter mAr g=>DWor dConst
/| Ter mAr g=>DWor dConst

/] NameStri ng
/1 Byt eConst
[/ \Wor dConst

// NameStri ng
/1 Byt eConst
/ | DWr dConst
/1 Byt eConst

// NameStri ng

/] NameStri ng
// NanmeStri ng

/] NameStri ng
/| Dat aObj ect

// NameStri ng

/] Byt eConst
/ | DWr dConst
/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger

/] NameStri ng
/'] Super Nane

NoOpTerm

Noti fyTerm

Rel easeTerm

Reset Term

Ret urnTer m

Si gnal Term

Sl eepTerm

Stall Term

Unl oadTerm

Wi | eTerm

AcquireTerm

AddTer m

AndTer m

Concat Term

Noop

Notify(
Object,
NotificationVvValue
)

Release(
SyncObject

Reset(
SyncObject

Return(
Arg
)

Signal(
SyncObject

Sleep(
MilliSecs
)

Stall(
MicroSecs
)

Unload(
DDBHandle
)

While(
Predicate
) {TernList}

Acquire(
SyncObject,
TimeoutValue

) => Bool ean

Add(
Addend1,
Addend2,
Result

) => Integer

And(
Sourcel,
Source2,
Result

) => Integer

Concatenate(
Sourcel,
Source2,
Result

) => Conput ati onal Dat a

/] Super Nane
/| Ter mMAr g=>Byt eConst

/] Super Nane

/] Super Nane

/| Ter mAr g=>Dat aObj ect

/] Super Nane

/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger

/'] Super Nane

/| Ter mMAr g=>I nt eger

/] Super Nane
/1 Wor dConst
/1 Ones means tinmed-out

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/1 Not hing | SuperNane

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/1 Not hing | SuperNane

/| Ter mMAr g=>Conput at i onal Dat a
/| Ter mMAr g=>Conput at i onal Dat a
/1 Not hing | SuperNane

239

240

CondRef OFf Term

CondRefOf(

Source, /] Super Nane
Destination /] Super Nane
) => Bool ean
DecTerm Decrement(
Addend /] Super Nane
) => Integer
Der ef Of Term DerefOf(
Source /| Ter mMAr g=>Cbj ect Ref er ence

/] Obj ect Ref erence i s an object
// produced by ternms such as
/11 ndex, RefOf or CondRef Of .

Di vi deTer m

Fi ndSet LeftBit Term

Fi ndSet Ri ght Bi t Term

Fr omBCDTer m

I ncTerm

I ndexTer m

LAndTer m

LEqual Term

) => bj ect Ref erence

Divide(
Dividend,
Divisor,
Remainder,
Result

) => Integer

FindSetLeftBit(
Source,
Result

) => Integer

FindSetRightBit(
Source,
Result

) => Integer

FromBCD(
BCDValue,
Result

) => Integer

Increment(
Addend

) => Integer

Index(
Source,
Index,
Destination

) => bj ect Ref erence

LAnd(
Sourcel,
Source2

) => Bool ean

LEqual (
Sourcel,
Source?2

) => Bool ean

/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger

/1 Not hing | SuperNane
/1 Not hing | SuperNane
//returns Result

/| Ter mMAr g=>I nt eger

/1 Not hing | SuperNane

/| Ter mMAr g=>I nt eger
/1 Not hing | SuperNane

/| Ter mMAr g=>I nt eger
/1 Not hing | SuperNane

/'] Super Nane

/] Ter mAr g=>

/] <Buf fer Term | PackageTer nm>

/| Ter mMAr g=>I nt eger
/1 Not hing | SuperNane

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger

LG eat er Term

LG eat er Equal Term

LLessTer m

LLessEqual Ter m

LNot Ter m

LNot Equal Ter m

LOr Term

Mat chTer m

Mul tiplyTerm

NAndTer m

NOr Term

LGreater(
Sourcel,
Source2

) => Bool ean

LGreaterEqual (
Sourcel,
Source2

) => Bool ean

LLess(
Sourcel,
Source2

) => Bool ean

LLessEqual (
Sourcel,
Source2

) => Bool ean

LNot(
Source,
) => Bool ean

LNotEqual (
Sourcel,
Source2

) => Bool ean

LOr(
Sourcel,
Source2

) => Bool ean

Match(
SearchPackage,
Op1,
MatchObjectl,
Op2,
MatchObject2,
Startlindex

) => Ones | Integer

Multiply(
Multiplicand,
Multiplier,
Result

) => Integer

NAnd (
Sourcel,
Source2
Result

) => Integer

NOr (
Sourcel,
Source?2
Result

) => Integer

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger

/| Ter Mr g=>Package
/| Mat chOpKeywor d
/| Ter mMAr g=>I nt eger
/| Mat chOpKeywor d
/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/1 Nothing | SuperNane

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/1 Not hing | SuperNane

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/1 Not hing | SuperNane

241

242

Not Ter m

Obj ect TypeTer m

O Term

Ref OF Ter m

ShiftLeft Term

Shi ft Ri ght Term

Si zeOf Term

StoreTerm

Subt ract Term

ToBCDTer m

Wai t Term

XOr Term

Not(
Source,
Result
) => Integer

ObjectType(
Object
) => Integer

or(
Sourcel,
Source2
Result
) => Integer

RefOF(
Object

) => bj ect Ref erence

ShiftLeft(
Source,
ShiftCount
Result

) => Integer

ShiftRight(
Source,
ShiftCount
Result

) => Integer

SizeOf(
DataObject
) => Integer

Store(
Source,
Destination
) => Dat a(bj ect

Subtract(
Addendl,
Addend2,
Result

) => Integer

ToBCD(
Value,
Result

) => Integer

Wait(
SyncObject,
TimeoutValue

) => Bool ean

XOr(
Sourcel,
Source2
Result

) => Integer

/| Ter mMAr g=>I nt eger
/1 Not hing | SuperNane

/] Super Nane

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/1 Not hing | SuperNane

/] Super Nane

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/1 Not hing | SuperNane

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/1 Not hing | SuperNane

/| Super Name=>Dat aCbj ect

/| Ter mAr g=>Dat aObj ect
/'] Super Nane

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/1 Not hing | SuperNane

/| Ter mMAr g=>I nt eger
/1 Not hing | SuperNane

/'] Super Nane
/| Ter mMAr g=>I nt eger

/| Ter mMAr g=>I nt eger
/| Ter mMAr g=>I nt eger
/1 Not hing | SuperNane

Obj ect TypeKeywor d

AcessTypeKeywor d

LockRul eKeywor d
Updat eRul eKeywor d

Regi onSpaceKeywor d
User Def Regi onSpace
Seri al i zeRul eKeyword
Mat chOpKeywor d

DMATy peKeywor d
BusMast er Keywor d
Xf er TypeKeywor d

Resour ceTypeKeywor d
M nKeywor d
MaxKeywor d
DecodeKeywor d
RangeTypeKeywor d
Menily peKeywor d
ReadW it eKeyword

I nt errupt TypeKeywor d
I nterruptLeve

Shar eTypeKeywor d

| ODecodeKeywor d

Super Nane
ArgTerm
Local Term

DebugTer m

I nt eger
Byt eConst
Wor dConst
DWér dConst
String
Asci i Char Li st
Asci i Char
Nul | Char
Const Term
Bool ean
True

Fal se

Buf f er Term

Byt eLi st
Byt eLi st Tai

243

UnknownObj | IntObj | StrObj | BuffObj | PkgObj |
FieldUnitObj | DeviceObj | EventObj | MethodObj |
MutexObj | OpRegionObj | PowerResObj | ThermalZoneObj |
BuffFieldObj | DDBHandleObj

AnyAcc | ByteAcc | WordAcc | DWordAcc | BlockAcc
SMBSendRecvAcc | SMBQuickAcc

Lock | NoLock

Preserve | WriteAsOnes | WriteAsZeros

User Def Regi onSpace | SystemlO | SystemMemory | PCI_Config
| EmbeddedControl | SMBus
0x80- OxFf

Serialized | NotSerialized
MTR | MEQ | MLE | MLT | MGE | MGT

Compatibility | TypeA | TypeB | TypeF
BusMaster | NotBusMaster
Transfer8 | Transferl6 | Transfer8_16

ResourceConsumer | ResourceProducer

MinFixed | MinNotFixed

MaxFixed | MaxNotFixed

SubDecode | PosDecode

ISAOnlyRanges | NonlSAOnlyRanges | EntireRange
Cacheable | WriteCombining | Prefetchable | NonCacheable
ReadWrite | ReadOnly

Edge | Level

ActiveHigh | ActivelLow

Shared | Exclusive

Decodel6 | DecodelO

NameString | ArgTerm | Local Term | DebugTerm | |ndexTerm
Arg0 | Argl | Arg2 | Arg3 | Arg4 | Arg5 | Argé6

LocalO | Locall | Local2 | Local3 | Local4 | Local5 |
Local6 | Local7

Debug

Byt eConst | WordConst | DwordConst
0x00- Oxf f

0x0000- Oxffff

0x00000000- Oxffffffff

*? AsciiCharlist '

Not hi ng | <Ascii Char Ascii CharlList>
0x01- 0x7f

0x00

Zero | One | Ones | Revision

True | Fal se

Ones

Zero

Buffer(
BuffSize /1 Not hi ng
/| Ter mMAr g=>I nt eger

) {String | ByteList}

Not hi ng | <ByteConst ByteListTail>
Nothing | <',’ ByteConst BytelistTail>

244

DWér dLi st
DWor dLi st Tai |

PackageTerm

PackagelLi st
PackagelLi st Tai |
PackageEl ement

El SAl DTer m

Resour ceTenpl at eTer m

Resour ceMacr oLi st
Resour ceMacroTerm

DVATer m

DWor dl OTer m

Not hi ng | <DwWordConst DWordLi st Tail >
Nothing | <',’ DWrdConst DWordLi st Tail >

Package(
NumElements /1 Not hing |
/1 Byt eConst

) {PackagelLi st}

Not hi ng | <PackageEl enent PackagelLi st Tail >
Not hing | <',’ PackageEl enent Packageli st Tail >
Dat aCbj ect | NanmeString

EISAID(
EISAIDString /1String
) => DWordConst

ResourceTemplate() {ResourceMacrolist} => BufferTerm

Not hi ng | <Resour ceMacroTer m Resour ceMacroLi st >

DVATerm | DwWordl OTerm | DwordMenoryTerm |

EndDependent FnTerm | Fi xedl OTerm | InterruptTerm| |COTerm
| 1 RQNoFl agsTerm | | RQTerm | Menory24Term |

Menory32Fi xedTerm | Menory32Term | QAordl OTerm |
QnAordMenoryTerm | St art Dependent FnTer m |

St art Dependent FnNoPri Term | Vendor LongTerm |

Vendor Short Term | WordBusNunber Term | Wordl OTerm

DMA(
DMAType, /| DMATypeKeyword (_TYP)
BusMaster, /I BusMast er Keyword (_BM
XferType, /] Xf er TypeKeyword (_SI Z)
ResourceTag /I Nothing | NaneString
) {BytelList} //List of channels (0-17)
DWORD10(
ResourceType, /1 Not hi ng (Resour ceConsurer) |
/| Resour ceTypeKeywor d
MinType, /1 Not hi ng (M nNot Fi xed) |
/1M nKeyword (_MF)
MaxType, /1 Not hi ng (MaxNot Fi xed) |
/| MaxKeywor d (_MAF)
Decode, /1 Not hi ng (PosDecode) |
/| DecodeKeywor d (_DEC)
RangeType, /1 Not hing (EntireRange) |

/1 RangeTypeKeyword (_RNG
AddressCGranularity, /| DWor dConst (_GRA)

MinAddress, /1 DWordConst (_M N)
MaxAddress, /| DWor dConst (_MAX)
Translation, /| DWor dConst (_TRA)
AddresslLen, /| DWor dConst (_LEN)
ResSourcelndex, /1 Not hing | ByteConst
ResSource, /I Nothing | String

ResourceTag

/I Nothing | NaneString

245

DWor dMenoryTer m : = DWORDMemory (
ResourceType, /1 Not hi ng (Resour ceConsurer) |
/| Resour ceTypeKeywor d
Decode, /1 Not hi ng (PosDecode)
/ | DecodeKeywor d (_DEC)
MinType, /1 Not hi ng (M nNot Fi xed)
/1M nKeyword (_MF)
MaxType, /1 Not hi ng (MaxNot Fi xed)
/| MaxKeywor d (_MAF)
MemType, /1 Not hi ng (NonCacheabl e)
/| MenTypeKeyword (_MEM
ReadWriteType, /] ReadW it eKeyword (_RW
AddressCGranularity, /| DWor dConst (_GRA)
MinAddress, /1 DWordConst (_MN)
MaxAddress, /| DWor dConst (_MAX)
Translation, /| DWor dConst (_TRA)
AddresslLen, /1 DWor dConst (_LEN)
ResSourcelndex, /1 Not hing | ByteConst
ResSource, /I Nothing | String
ResourceTag /I Nothing | NaneString
)
EndDependent FnTer m : = EndDependentFn()
Fi xedl OTer m ;= Fixedl0(
AddressBase, / /' Wor dConst (_BAS)
RangelLen, /I Byt eConst (_LEN)
ResourceTag /I Nothing | NaneString
)
Interrupt Term = Interrupt(
ResourceType, /1 Not hi ng (Resour ceConsurer) |
/| Resour ceTypeKeywor d
InterruptType, /11 nterrupt TypeKeyword
/1 (_LL, _HE)
InterruptLevel, /11 nterruptLevel Keyword
/1 (_LL, _HE)
ShareType, /1 Not hi ng (Excl usive)
/| Shar eTypeKeyword (_SHR)
ResSourcelndex, /1 Not hing | ByteConst
ResSource, /I Nothing | String
ResourceTag /I Nothing | NaneString
) {DWordLi st} /11ist of interrupts (_INT)
| OTer m = 10(
10Decode, /11 ODecodeKeywor d (_DEC)
MinAddress, [/ WordConst (_MN)
MaxAddress, [/ Wor dConst (_MAX)
Alignment, /1 Byt eConst (_ALN)
RangelLen, /1 Byt eConst (_LEN)
ResourceTag /I Nothing | NaneString
)
| RQNoFI agsTer m = IRQNoFlags(
ResourceTag /I Nothing | NaneString

) {BytelList} //1ist of interrupts (0-15)

246

| RQTer m := IRQ(
InterruptType, /11 nterrupt TypeKeyword
/1 (_LL, _HE)
InterruptLevel, /11 nterruptLevel Keyword
/1 (_LL, _HE)
ShareType, /1 Not hi ng (Excl usive)
/| Shar eTypeKeyword (_SHR)
ResourceTag /I Nothing | NaneString
) {BytelList} //1ist of interrupts (0-15)
Menory24Ter m ;= Memory24(
ReadWriteType, /] ReadW it eKeyword (_RW
MinAddress[23:8], [/ WordConst (_MN)
MaxAddress[23:8], [/ Wor dConst (_MAX)
Alignment, [/ Wor dConst (_ALN)
RangelLen, [/ Wor dConst (_LEN)
ResourceTag /I Nothing | NaneString
)
Menor y32Fi xedTer m ;= Memory32Fixed(
ReadWriteType, /] ReadW it eKeyword (_RW
AddressBase, /| DWor dConst (_BAS)
RangelLen, /| DWor dConst (_LEN)
ResourceTag /I Nothing | NaneString
)
Menory32Ter m = Memory32(
ReadWriteType, /] ReadW it eKeyword (_RW
MinAddress, /| DWordConst (_M N)
MaxAddress, /| DWor dConst (_MAX)
Alignment, /| DWor dConst (_ALN)
RangelLen, /| DWor dConst (_LEN)
ResourceTag /1 Nothing | NaneString
D)
Qn\or dl OTer m = QWORDIO(
ResourceType, /1 Not hi ng (Resour ceConsurer) |
/| Resour ceTypeKeywor d
MinType, /1 Not hi ng (M nNot Fi xed) |
/1M nKeyword (_MF)
MaxType, /1 Not hi ng (MaxNot Fi xed) |
/| MaxKeywor d (_MAF)
Decode, /1 Not hi ng (PosDecode) |
/| DecodeKeywor d (_DEC)
RangeType, /1 Not hing (EntireRange) |

/I RangeTypeKeyword (_RNG
AddressCGranularity, /1 Q\or dConst (_GRA)

MinAddress, /1 Q\ordConst (_M N)
MaxAddress, /1 Q\or dConst (_MAX)
Translation, /1 Q\ordConst (_TRA)
AddresslLen, /1 Q\ordConst (_LEN)
ResSourcelndex, /1 Not hing | ByteConst
ResSource, /I Nothing | String
ResourceTag /1 Nothing | NaneString

247

Qn\or dMenoryTer m : = QWORDMemory(
ResourceType, /1 Not hi ng (Resour ceConsurer) |
/ | Resour ceTypeKeywor d
Decode, /1 Not hi ng (PosDecode) |
/| DecodeKeywor d (_DEC)
MinType, /1 Not hi ng (M nNot Fi xed) |
/1M nKeyword (_MF)
MaxType, /1 Not hi ng (MaxNot Fi xed) |
/| MaxKeywor d (_MAF)
MemType, /1 Not hi ng (NonCacheabl e) |
/| MenTypeKeyword (_MEM
ReadWriteType, /] ReadW it eKeyword (_RW
AddressCGranularity, /1 Q\or dConst (_GRA)
MinAddress, /1 Q\ordConst (_M N)
MaxAddress, /1 Q\or dConst (_MAX)
Translation, /1 Q\or dConst (_TRA)
AddresslLen, /1 Q\or dConst (_LEN)
ResSourcelndex, /1 Not hing | ByteConst
ResSource, /I Nothing | String
ResourceTag /I Nothing | NaneString
)
St art Dependent FnTer m : = StartDependentFn(
CompatPriority, /] Byt eConst (0-2)
PerfRobustPriority /] Byt eConst (0-2)
) {ResourceMacrolLi st}
St art Dependent FnNoPri Ter m : =StartDependentFnNoPri() {ResourceMacrolLi st}
Vendor LongTer m : = VendorLong(
ResourceTag /1 Nothing | NaneString
) {BytelList}
Vendor Short Term = VendorShort(
ResourceTag /I Nothing | NaneString
) {BytelList} /lup to 7 bytes
Wor dBusNunber Ter m = WordBusNumber (
ResourceType, /1 Not hi ng (Resour ceConsurer) |
/| Resour ceTypeKeywor d
MinType, /1 Not hi ng (M nNot Fi xed) |
/1M nKeyword (_MF)
MaxType, /1 Not hi ng (MaxNot Fi xed) |
/| MaxKeywor d (_MAF)
Decode, /1 Not hi ng (PosDecode) |
/| DecodeKeywor d (_DEC)
AddressCGranularity, [/ Wor dConst (_GRA)
MinAddress, [/ WordConst (_M N)
MaxAddress, [/ Wor dConst (_MAX)
Translation, [/ Wor dConst (_TRA)
AddresslLen, [/ Wor dConst (_LEN)
ResSourcelndex, /1 Not hing | ByteConst
ResSource, /I Nothing | String
ResourceTag /I Nothing | NaneString

248

Wor dl OTer m ;= Wordl0(
ResourceType, /1 Not hi ng (Resour ceConsurer) |
/ | Resour ceTypeKeywor d
MinType, /1 Not hi ng (M nNot Fi xed) |
/1M nKeyword (_MF)
MaxType, /1 Not hi ng (MaxNot Fi xed) |
/| MaxKeywor d (_MAF)
Decode, /1 Not hi ng (PosDecode) |
/| DecodeKeywor d (_DEC)
RangeType, /1 Not hing (EntireRange) |

/I RangeTypeKeyword (_RNG
AddressCGranularity, /1 Wor dConst _GRA)

MinAddress, [/ WordConst (_MN)
MaxAddress, [/ Wor dConst (_MAX)
Translation, [/ Wor dConst (_TRA)
AddresslLen, [/ Wor dConst (_LEN)
ResSourcelndex, /1 Not hing | ByteConst
ResSource, /I Nothing | String
ResourceTag /I Nothing | NaneString

15.2 Full ASL Reference
This reference section is for developers who are writing ASL code while devel oping definition blocks for
platforms.

15.2.1 ASL Names
This section describes how to encode object names using ASL.
The following table lists the characters legal in any position in an ASL object name.

Table 15-2 Control Method Named Object Reference Encodings

Value Description
41-5A, 5F Lead character of name (‘A’ -'Z2’," LeadNameChar
30-39, 41-5A, 5F Non-lead (trailing) character of name NameChar

(lA7 - lZ1’ ‘_,’ 10_ 91)

The following table lists the name modifiers.

Table 15-3 Definition Block Name Modifier Encodings

Description NamePrefix := | Followed by ...
5C Name space root (‘\') RootPrefix Name
5E Parent name space (‘") ParentPrefix Name
2E Name extender: 1 DualNamePrefix Name Name
2F Name extender: N MultiNamePrefix count Name™™™

15.2.2 ASL Data Types

The contents of an object, or the data it references, may be abstract entities (for example, “Device Object”)
or can be one of three computational data types. The computational data type can be used as argumentsto
many of the ASL Operator terms.

249

Table 15-4 Data Types

Data Type Description

Integer 32-hit little endian unsigned value.

Buffer Arbitrary fixed length array of bytes.

String ASCIIZ string 1 to 200 characters in length (including NullChar).

15.2.3 ASL Terms
This section describes al the ASL terms and provides sample ASL code that uses the terms.

The ASL terms are grouped into the following categories:
- Déefinition block term

Compiler directive terms

Object terms

Opcode terms

User terms

Data objects

Miscellaneous abjects

15.2.3.1 Definition Block Term

DefinitionBl ockTerm ;= DefinitionBlock(
AMLFileName, /1String
TableSignature, /1String
ComplianceRevision, /] Byt eConst
OEMID, /1String
TablelD, /1String
OEMRevision / | DWr dConst
) {TernList}

The DefinitionBlock term specifies the unit of data and/or AML code that the OS will load as part of the
Differentiated Definition Block or as part of an additional Definition Block. This unit of data and/or AML
code describes either the base system or some large extension (such as a docking station). The entire
DefinitionBlock will be loaded and compiled by the OS as a single unit, and can be unloaded by the OS as a
single unit.

15.2.3.2 Compiler Directive Terms
The compiler directives are:

Include term

External term

15.2.3.2.1 Include — Include Another ASL File

I ncl udeTerm ;= Include(
IncFilePathName /1String
)

IncFilePathname is the full OS file system path to another file that contains ASL terms to be included in the
current file of ASL terms.

250

15.2.3.2.2 External — Declare External Objects

Ext er nal Term ;= External (
ObjName, /] NameStri ng
ObjType /1 Nothing | ObjectTypeKeyword

The External compiler directiveisto let the assembler know that the object is declared external to thistable
so that the assembler will not complain about the undeclared object. During compiling, the assembler will
create the external object at the specified place in the name space (if afull path of the object is specified), or
the object will be created at the current scope of the External term. ObjType isoptional. If not specified,
"UnknownObj" typeis assumed.

15.2.3.3 Object Terms
Object terms includes: Named Object terms and Name Space Modifiers.

15.2.3.3.1 Named Object Terms
The ASL termsthat can be used to create named objects in a definition block are listed in the following table.

Table 15-5 Named Object Terms

ASL Statement Description

BankField Declares fields in a banked configuration object.
CreateBitField Declare ahit field object of a buffer object.
CreateByteField Declare abyte field object of a buffer object.
CreateDWordField Declare adword field object of a buffer object.
CreateField Declare afield object of any bit length of a buffer object.
CreateWordField Declare adword field object of a buffer object.
Device Declares a bus/device object.

Event Declares an event synchronization object.

Field Declares fields of an operation region object.
IndexField Declares fields in an index/data configuration object.
Method Declares a control method.

Mutex Declares a mutex synchronization object.
OperationRegion Declares an operational region.

PowerResource Declares a power resource object.

Processor Declares a processor package.

ThermalZone Declares a thermal zone package.

15.2.3.3.1.1 BankField - Declare Bank/Data Field

BankFi el dTerm ;= BankField(
RegionName, /] NameStri ng
BankName, /] NameStri ng
BankValue, /| Ter mAr g=>DWor dConst
AccessType, /| AccessTypeKeywor d
LockRule, /| LockRul eKeywor d
UpdateRule /| Updat eRul eKeywor d

) {FieldunitList}
This statement creates data field objects. The contents of the created objects are obtained by areferenceto a
bank selection register.

251

This encoding is used to define named data field objects whose data values are fields within alarger object
selected by a bank selected register. Accessing the contents of a banked field data object will occur
automatically through the proper bank setting, with synchronization occurring on the operation region that
contains the BankName data variable, and on the global lock if specified by the LockRule.

The AccessType, LockRule, UpdateRule, and FieldUnitList are the same format as the Field operator.

Thefollowing isablock of ASL sample code using BankField:
Creates a4-bit bank select register in system 1/0 space.
Creates overlapping fields in the same system 1/0O space which are selected via the bank register.

/1 define 256-byte operational region in System O space
/1 and nane it A Q0
OperationRegion (A 00, System O 0x125, 0x100)

Il create sone field in GO including a 4 bit bank sel ect register
Field (A 00, ByteAcc, NoLock, Preserve) {

GLB1, 1,

Ga.B2, 1,

Ofset(1), /1 move to offset for byte 1

BNK1, 4

}

/] Create FETO & FET1 in bank 0 at byte offset 0x30
BankField (G O, BNK1, 0, ByteAcc, NoLock, Preserve) {
O fset (0x30),
FETO, 1,
FET1, 1
}

/] Create BLVL & BAC in bank 1 at the sane offset
BankField (GO0, BNK1, 1, ByteAcc, NoLock, Preserve) {
O fset (0x30),
BLVL, 7,
BAC, 1
}

15.2.3.3.1.2 CreateBitField

CreateBitFiel dTerm ;= CreateBitField(
SourceBuffer, /| Ter mAr g=>Buf f er Term
BitlIndex, /| Ter mMAr g=>I nt eger
BitFieldName /] NameStri ng

)
SourceBuffer is evaluated as a buffer. Bitindex isevaluated as an integer. A new buffer field object
BitFieldName is created for the bit of SourceBuffer at the bit index of Bitindex. The bit-defined field within
SourceBuffer must exist.

15.2.3.3.1.3 CreateByteField

Creat eByt eFi el dTerm : = CreateByteField(
SourceBuffer, /| Ter mAr g=>Buf f er Term
Bytelndex, /| Ter mMAr g=>I nt eger
ByteFieldName /] NameStri ng

SourceBuffer is evaluated as a buffer. Bytelndex is evaluated as an integer. A new buffer field object
ByteFieldName is created for the byte of SourceBuffer at the byte index of Bytelndex. The byte-defined field
within SourceBuffer must exist.

252

15.2.3.3.1.4 CreateDWordField

Cr eat eDWor dFi el dTerm ;= CreateDWordField(
SourceBuffer, /| Ter mAr g=>Buf f er Term
Bytelndex, /| Ter mMAr g=>I nt eger
DWordFieldName /] NameStri ng

SourceBuffer is evaluated as a buffer. Bytelndex is evaluated as an integer. A new buffer field object
DWordFieldName is created for the DWord of SourceBuffer at the byte index of Bytelndex. The DWord-
defined field within SourceBuffer must exist.

15.2.3.3.1.5 CreateField - Field

Creat eFi el dTerm ;= CreateField(
SourceBuffer, /| Ter mAr g=>Buf f er Term
BitlIndex, /| Ter mMAr g=>I nt eger
NumBits, /| Ter mMAr g=>I nt eger
FieldName /] NameStri ng
)

SourceBuffer is evaluated as a buffer. Bitindex and NumBits are evaluated as integers. A new buffer field
object FieldName is created for the bits of SourceBuffer at Bitindex for NumBits. The entire bit range of the
defined field within SourceBuffer must exist.

15.2.3.3.1.6 CreateWordField

Cr eat eWor dFi el dTerm ;= CreateWordField(
SourceBuffer, /| Ter mMAr g=>Buf f er Term
Bytelndex, /| Ter mMAr g=>I nt eger
WordFieldName /] NameStri ng

SourceBuffer is evaluated as a buffer. Bytelndex is evaluated as an integer. A new bufferfield object
WordFieldName is created for the word of SourceBuffer at the word index of Bytelndex. The word-defined
field within SourceBuffer must exist.

15.2.3.3.1.7 Device - Declare Bus/Device Package
Devi ceTerm : = Device(
DeviceName // NameStri ng
) {ObjectList}
Cresates a Device abject, which represents either a bus or a device or any other such entity of use. Device
opens a hame scope.

A Bus/Device Package is one of the basic ways the Differentiated Definition Block describes the hardware
devicesin the system to the operating software. Each Bus/Device Package is defined somewherein the
hierarchical hame space corresponding to that device' s location in the system. Within the name space of the
device are other names that provide information and control of the device, along with any sub-devices that in
turn describe sub-devices, and so on.

For any device, the BIOS provides only information that is added to the device in a non-hardware standard
manner. This type of “value added” function is expressible in the ACPI Definition Block such that operating
software can use the function.

The BIOS supplies Device Objects only for devices that are obtaining some system-added function outside
the device’' s normal capabilities and for any Device Object required to fill in the tree for such a device. For
example, if the system includes a PCl device (integrated or otherwise) with no additional functions such as
power management, the BIOS would not report such a device; however, if the system included an integrated

253

ISA device below the integrated PCI device (device is an ISA bridge), then the system would include a
Device Package for the ISA device with the minimum feature being added being the ISA device's D and
configuration information and the parent PCI device, becauseit is required to get the |SA Device Package
placement in the Name Space correct.

The following block of ASL sample code shows a nested use of Device objects to describe an IDE controller
connected to the root PCI bus.

Devi ce (1DEO) ({ /1 primary controller
Name(_ADR, 0) /1 put PCl Address (device/function) here

/1 define region for |DE npode register
Operati onRegi on (PCIC, PCl_Config, 0x50, 0x10)
Field (PCI C, AnyAcc, NoLock, Preserve) {

}

Devi ce(PRIM { /1 Primary adapter
Name(_ADR, 0) //Primary adapter = 0
Devi ce(MSTR) { /1 master channel

Name(_ADR, 0)
Name(_PRO, Package(){0, PIDE})
Met hod (_STM 2) {

}
}

Devi ce(SLAV) {
Name(_ADR, 1)
Name(_PRO, Package(){0, PIDE})
Met hod (_STM 2) {

}

}

15.2.3.3.1.8 Event - Declare Event Synchronization Object
Event Term ;= Event(
EventName [/ NameStri ng
)

Creates an event synchronization object named EventName.

For more information about the uses of an event synchronization object, see the ASL definitions for the
Wait, Signal, and Reset function operators.

15.2.3.3.1.9 Field - Declare Field Objects

Fi el dTerm := Field(
RegionName, [/ NameStri ng
AccessType, /| AccessTypeKeywor d
LockRule, /| LockRul eKeywor d
UpdateRule /| Updat eRul eKeywor d

) {FieldunitList}

Declares a series of named data objects whose data values are fields within alarger object. The fields are
parts of the object named by RegionName, but their names appear in the same scope as the Field term.

254

For example, the field operator allows alarger operation region that represents a hardware register to be
broken down into individual bit fields that can then be accessed by the bit field names. Extracting and
combining the component field from its parent is done automatically when the field is accessed.

Accessing the contents of a field data object provides access to the corresponding field within the parent
object. If the parent object supports Mutex synchronization, accesses to modify the component data objects
will acquire and release ownership of the parent object around the modification.

All accesses within the parent object are performed naturally aligned. If desired, AccessType can be used to
force minimum access width. Note that the parent object must be able to accommodate the AccessType
width. For example, an access type of WordAcc cannot read the last byte of an odd-length operation region.
Not all access types are meaningful for every type of operationa region.

The following table relates region types declared with an OperationRegion term to the different access
types supported for each region.

Table 15-6 OperationRegion Region Types and Access Types

Region Types Access Type Description

SystemMemory ByteAcc

SystemlO WordAcc

PCI_Config DWordAcc
AnyAcc Read/Write Byte, Word, DWord access

EmbeddedControl | ByteAcc

SMBus ByteAcc Read/Write SMBus byte protocol
WordAcc Read/Write SMBus word protocol
BlockAcc Read/Write SMBus block protocol
AnyAcc Read/Write linear SMBus byte, word, block

protocol

SMBSendRecvAcc Send/Receive SMBus protocol
SMBQuickAcc QuickRead/QuickWrite SMBus protocol

If LockRule is set to Lock, accesses to modify the component data objects will acquire and release the global
lock. If both types of locking occur, the global lock is acquired after the parent object Mutex.

UpdateRule is used to specify how the unmodified bits of afield are treated. For example, if afield definesa
component data object of 4 bitsin the middle of aWordAcc region, when those 4 bits are modified the
UpdateRule specifies how the other 12 bits are treated.

The named data objects are provided in FieldList as a series of names and bit widths. Bits assigned no name
(or NULL) are skipped. The ASL compiler supports an Offset(ByteOffset) macro within a FieldList to skip
to the bit position of the supplied byte offset.

For support of non-linear address devices, such as SMBus devices, a protocol is required to be associated
with each command value. The ASL compiler supports the AccessAs(AccessType, AccessAttribute) macro
within a FieldList. The AccessAttribute portion of the macro is interpreted differently depending on the
address space. For SystemMemory, SystemlO, PCI_Config or EmbeddedControl space the
AccessAttribute is reserved. For SMBus devices the AccessAttribute indicates the command value of the
SMBus device to use for the field being defined. The AccessAttribute allows a specific protocol to be
associated with the fields following the macro and can contain any of the Access Type listed in the table.

255

15.2.3.3.1.9.1 SMBus Slave Address

SMBus device Addressing supports both alinear and non-linear addressing mechanism. This section
clarifieshow ACPI treats these types of devices and how they should be defined and accessed. SMBus
devices are defined to have afixed 7-bit slave address. This can beillustrated by the smart battery
subsystem devices:

Table 15-7 Examples of SMBus Devices and Slave Addresses

SMBus Device Description Slave Address (A0-A6)
SMBus Host Slave Interface 0x8
SBS Charger 0x9
SBS Selector OxA
SBS Battery 0xB

The SMBus driver expects a 7-bit dave address for the device to be passed toit. The 1.0 System
Management Bus specification defines the address protocols (how data is passed on the wiggling pins) as:
7 6 543 210

T T T T T &

Slave Address (A6-A0) /
I I Y

Figure 15-1 SMBus Slave Address Protocol

Thisindicates that bit O of the protocol represents whether this accessis aread or write cycle, and the next
six bits represent the slave address. Note that the driver expects a zero-based address, not a one-based
address. For example, the SBS battery has a dave address of 0xB, or 0001011b (bits 0, 1 and 4 being set).
Thisvalueis represented by 0x16 for writes or 0x17 for reads to the smart battery in the SMBus protocol
format. The protocol format of the slave address and the actual slave address should not be confused as the
SMBus driver expects the actual slave address, not the protocol format with the read/write value; the driver
will shift the slave address left by 1 bit and mask in the read/write protocol.

15.2.3.3.1.9.2 SMBus Addressing

Associated with each SMBus device is an 8-bit command register that represents an additional address space
within the device, allowing up to 256 registers within an SMBus device. For some devices thisistreated asa
linear address space; for other devices such as the Smart Battery, thisis treated as a non-linear address space.
The SMBus driver differentiates these types of devices so that it can understand how to use the different
SMBus protocols on the device.

A linear address device treats the command and slave address fields as a byte-linear 15-bit address space
where the addressis formed as follows:

1413121110 9 8 7 6 5 43 21 O

[T T T T 1 T T 1T T T 1
Slave Address Command Address
I T N O I T N O O

256

Figure 15-2 SMBus Linear Address Decode

For example an SMBus memory device that consumes slave address 0x40 would be accessing a linear
address range of 0x4000-0x40FF (256 bytes of address space). A byte access to 0x4000 (slave 0x40,
command 0) would access byte location 0x4000 (slave 0x40, command 0), and a word access to 0x4000
(dlave 0x40, command 0) would access byte | ocations 0x4000-0x4001 (slave 0x40, commands 0-1). For a
device that behavesin this manner, ASL should indicate an AnyAcc in the field operator defining the SMBus
device. Thisindicatesto the SMBus driver that it can use the read/write block, read/write word, or
read/write byte protocols to access this device.

A non-linear address device (such as the smart battery) defines each command value within the device to be
apotentially different size. The ACPI driver treats such a device differently from alinear address device by
only accessing command values with the specified protocol only. For example the smart battery device has a
slave address of OxB and a definition for the first two command values as follows:

Table 15-8 Example Command Codes from the Smart Battery

Command Address Data Type Protocol to Access
0x0 Manufacture Access Word Read/Write
Ox1 Remaining Capacity Alam | Word Read/Write
0x2 Remaining Time Alarm Word Read/Write
0x20 Manufacture Name Block Read/Write
0x21 Device Name Block Read/Write

The Smart Battery uses anon-linear programming model. Each command register can be a different size and
has a specific SMBus protocol associated with it. For example command register 0x0 contains aword of data
(which in alinear device would take up two command registers 0 and 1) that represents the “Manufacture
Access’ and command register Ox1 contains the next word of data (which in alinear device would take up
two command registers 0 and 1) that represents the “Remaining Capacity.” In alinear address model these
registers would overlap; however, thisis legitimate SMBus device definition. As afurther example
command register 0x20 can represent up to 32 bytes of data (block read/write) and command register 0x21
also represents up to 32 bytes of data.

15.2.3.3.1.9.3 SMBus Protocols
This section describes the different SMBus protocols and how the SMBus driver treats them. It also gives
examples of how to define and then access such devicesin ASL.

15.2.3.3.1.9.3.1 Quick Protocol (QuickAcc)

The SMBus Quick protocol does not transfer any data. This protocol is used to control simple devices and
consists of the slave address with the R/W bit set high or low. Therefore, two types of Quick commands can
be generated: QuickRead with the R/W protocol bit reset LOW or QuickWrite with the R/W protocol bit set
HIGH. A device defined to use the quick protocol has no command registers, and consumes the entire 7-bit
slave address.

To define a quick device an operation region is generated using the SMBus addresstype. Next afield is
generated in the operation region using the “ QuickAcc” accesstype. To generate a QuickWrite protocol to
thisdevice, ASL would generate awriteto thisfield. To generate a QuickRead protocol to this device, ASL
would generate aread to thisfield. Note that even though the ASL read the field and a QuickRead protocol

257

was sent to the device, the device does not return any data and the numeric result returned by the SMB driver
to the ASL will be 0. For example,

Devi ce(\ _SB. EQ0) {
Name(_HI D, El SAI D(" PNPOC09"))
Name(_CRS,
Resour ceTenpl at e() { /1 port 0x62 and 0x66
| O(Decodel6, 0x62, 0x62, 0, 1),
| O(Decodel6, 0x66, 0x66, 0, 1)

}

)
Name(_GPE, Zero) //ECis wired to bit 0 of GPE
Devi ce (SMB1) ({
Name(_ADR, "ACPI 0001")
Name(_EC, 0x8030) /1 EC of fset (0x80), Query (0x30)
Oper ati onRegi on(PHOL, SMBus, 0x61, 0x1)
Devi ce(DEVA) {

Name(_ADR, 0x61) /1 Slave Address 0x61
Fi el d(PHOL, Qui ckAcc, NoLock, Preserve) {
QCKA, 1
}
} /1 end of DEVA
} /1 end of SMBl
} /1 end of ECO

This example creates a quick SMBus device residing at dave address 0x61 called “QCKA”. Examples of
generating the Quick0 and Quickl commands from ASL isillustrated below:

Met hod(Test) {
Store(1l, QCKA) /'l Generates a Qui ckRead conmand to slave address 0x61
St or e(QCKA, Local 0) /'l Generates a QuickWite command to sl ave address 0x61

}

15.2.3.3.1.9.3.2 Send/Receive Command Protocol (SMBSendRecVvAcc)

The SMBus Send/Receive protocol transfers a byte of data between the selected SMBus slave address and
the ASL code performing aread/write to the field. The SMBus protocol for send-command is defined that
the byte being written is presented in the “command” field, while the data returned from a read-command is
defined to be the byte in the data field. The SMBus driver will read and write the datato a
SMBSendRecvAcc field accordingly.

To define a send/receive command to a device an operation region is generated using the SMBus address
type. Next afield is generated in the operation region using the “SMBSendRecvAcc” accesstype. To
generate a send byte protocol to this device, ASL would generate awrite to thisfield. To generate areceive
byte protocol to this device, ASL would generate aread to thisfield. For example,

258

Devi ce(\ _SB. EC0) {
Name(_HI D, El SAI D(" PNPOC09"))
Name(_CRS,
Resour ceTenpl at e() { /1 port 0x62 and 0x66
| O(Decodel6, 0x62, 0x62, 0, 1),
| O(Decodel6, 0x66, 0x66, 0, 1)
}

)
Name(_GPE, Zero) //ECis wired to bit 0 of GPE
Devi ce (SMB1) ({
Name(_ADR, "ACPI 0001")
Name(_EC, 0x8030) /1 EC of fset (0x80), Query (0x30)
Oper ati onRegi on(PHOL, SMBus, 0x62, 0x1)
Devi ce(DEVB) {
Name(_ADR, 0x62) /1 Slave Address 0x62
Fi el d(PHOL, SMBSendRecvAcc, NoLock, Preserve) ({
TSTA, 1,
TSTB, 1,
TSTC, 5

} /1 end of DEVB
} /1 end of SMBl
} /1 end of ECO

This example creates a send/receive byte SMBus device residing at slave address 0x62. There are three
fields that reference this single byte called “TSTA”, “TSTB” and “TSTC”. Examples of generating the
send/receive byte protocols from ASL are illustrated bel ow:

Met hod(Test) {

Store(1l, TSTA) /'l Sets TSTA, preserved TSTB and TSTC, sendbyte
Store(0, TSTB) /1l Clears TSTB, preserved TSTA and TSTC, sendbyte
St ore(0x7, TSTC) /1 Sets TSTC to 0111b, preserved TSTA and TSTB, sendbyte

St ore(TSTA, Local 0) /] returns 1, receive byte
St ore(TSTB, Local 0) /1 returns 0, receive byte
St ore(TSTC, Local 0) /] returns 7, receive byte

}
Read/Write Byte Protocol (ByteAcc)
The SMBus Read/Write Byte protocol transfers a byte of data between the selected SMBus slave address and
command value. The command address is defined through the use of the AccessAs(AccessType,
AccessAttribute) macro. In this case the AccessAtrribute represents the byte aligned command value, and
AccessType would be set to ByteAcc.

To define a ByteAcc device an operation region is generated using the SMBus addresstype. Next afield is
generated in the operation region using the “ByteAcc” accesstype. Inthefield list an AccessAs(ByteAcc,
command_value) macro is used to define what command address is associated with this field. The absence of
the macro assume a starting command value of 0. The SMBus driver assumes that after the
AccessAs(ByteAcc, command_value) macro is declared, the next 8-bits represent this command register. If a
field is defined that crosses over this 8-bit boundary, then the SMBus driver assumes thisfield residesin
multiple byte-wide command registers with a command address value of command_value+1 (for each new
register) using the ByteAcc protocol.

To generate a write byte protocol to this device, ASL would generate awriteto thisfield. To generate a
read byte protocol to this device, ASL would generate aread to thisfield. For example,

259

Devi ce(\ _SB. EC0) {
Name(_HI D, El SAI D(" PNPOC09"))
Name(_CRS,
Resour ceTenpl at e() { /1 port 0x62 and 0x66
| O(Decodel6, 0x62, 0x62, 0, 1),
| O(Decodel6, 0x66, 0x66, 0, 1)
}

)
Name(_GPE, Zero) //ECis wired to bit 0 of GPE
Devi ce (SMB1) ({
Name(_ADR, "ACPI 0001")
Name(_EC, 0x8030) /1 EC of fset (0x80), Query (0x30)
Oper ati onRegi on(PHOL, SMBus, 0x63, 0x1)
Devi ce(DEVB) {
Name(_ADR, 0x63) /1 Slave Address 0x63
Fi el d(PHOL, ByteAcc, NoLock, Preserve) {
AccessAs(Byt eAcc, 0),

TSTA, 1,
TSTB, 1,
TSTC, 5,
TSTD, 4 /1 this field spans command address 0 and 1
}
} /1 end of DEVB
} /1 end of SMB1
} /1 end of ECO

This example creates a read/write byte SMBus device residing at slave address 0x63. There are four fields
that use two command registers (0 and 1), called “TSTA”, “TSTB”, “TSTC”, and “TSTD”. TSTA, TSTB
and TSTC reference command register 0. TSTD references both command registers 0 and 1: bitO of TSTD
represents bit 7 of command register 0, while bits 1-3 of field TSTD represent bits 0-2 of command register
1. Examples of generating the read/write byte protocols from ASL isillustrated below:

Met hod(Test) {

Store(1l, TSTA) /] Sets TSTA, preserved TSTB and TSTC, wite byte

Store(0, TSTB) /1l Clears TSTB, preserved TSTA and TSTC, write byte

St ore(0x7, TSTC) /1 Sets TSTC to 0111b, preserved TSTA and TSTB, write byte
St or e(OxF, TSTD) /] Sets TSTD to OxF, command registers 0 and 1

St ore(TSTA, Local 0) /'l returns 1, read byte
St ore(TSTB, Local 0) /'l returns 0, read byte
St ore(TSTC, Local 0) /Il returns 7, read byte
St ore(TSTD, Local 0) /'l returns OxF fromcommand registers 0 and 1

15.2.3.3.1.9.3.3 Read/Write Word Protocol (WordAcc)

The SMBus Read/Write Word protocol transfers aword of data between the selected SMBus slave address
and command value. The command address is defined through the use of the AccessAs(AccessType,
AccessAttribute) macro. In this case the AccessAttribute represents the byte aligned command value, and
AccessType should be set to WordAcc.

To define a WordAcc device an operation region is generated using the SMBus address type. Next afield is
generated in the operation region using the “WordAcc” access type. In the field list an AccessAs(WordAcc,
command_value) macro is used to define what command address is associated with this field. The absence of
the macro assume a starting command value of 0. The SMBus driver assumes that after the
AccessAs(WordAcc, command_value) macro is declared, the next 16-bits represent this command register. If
afield is defined that crosses over this 16-bit boundary, then the SMBus driver assumes this field residesin

260

multiple word wide command registers with a command address value of command_value+2 (for each new
register) using the WordAcc protocol.

To generate a write word protocol to this device, ASL would generate awrite to thisfield. To generate a
read word protocol to this device, ASL would generate aread to thisfield.

15.2.3.3.1.9.3.4 Read/Write Block Protocol (BlockAcc)

The SMBus Read/Write Block protocal transfers up to a 32 byte buffer of data between the selected SMBus
dave address and command value. The command address is defined through the use of the
AccessAs(AccessType, AccessAttribute) macro. In this case the AccessAttribute represents the byte aligned
command value, and AccessType would be set to BlockAcc.

To define a BlockAcc device an operation region is generated using the SMBus address type. Next afield is
generated in the operation region using the “BlockAcc” accesstype. Inthefield list an AccessAs(BlockAcc,
command_value) macro is used to define what command address is associated with this field. The absence of
the macro assume a starting command value of 0. The SMBus driver assumes that after the
AccessAs(BlockAcc, command_value) macro is declared the command register is 32 bytes or less. Each
block field must start on the acommand_value boundary.

The SMBus driver passes block datato and from ASL through the buffer data type. The buffer is structured
such that the byte count of the datato writeisin record O followed by the buffer data. For example a5 byte
buffer with the contents of 1, 2, 3, 4 would be generated as:

Buffer(5){4, 1, 2, 3, 4}

Where the length of the buffer is its byte data width plus 1, and the first entry is the length of data (buffer
length minus 1). On reads, ASL will return a buffer with the first entry set to the number of data bytes
returned. For example,

261

Devi ce(\ _SB. EQ0) {
Name(_HI D, El SAI D(" PNPOC09"))
Name(_CRS,
Resour ceTenpl at e() { /1 port 0x62 and 0x66
| O(Decodel6, 0x62, 0x62, 0, 1),
| O(Decodel6, 0x66, 0x66, 0, 1)

}

)
Name(_GPE, Zero) //ECis wired to bit 0 of GPE
Devi ce (SMB1) ({
Name(_ADR, "ACPI 0001")
Name(_EC, 0x8030) /1 EC of fset (0x80), Query (0x30)
Oper ati onRegi on(PHOL, SMBus, 0x65, 0x1)
Devi ce(DEVB) {
Name(_ADR, 0x65) /1 Slave Address 0x65
Fi el d(PHOL, Bl ockAcc, NoLock, Preserve) {
AccessAs(Bl ockAcc, 0),
FLD1, 128,
AccessAs(Bl ockAcc, 0x10),
FLD2, 32

} /1 end of DEVB
} /1 end of SMBl
} /1 end of ECO

This example creates a read/write block SMBus device residing at slave address 0x65. There are two fields
that use two command registers (0 and 0x10), called “FLD1", and “FLDZ2". Examples of generating the
read/write block protocols from ASL isillustrated below:

Met hod(Test) {
Name(BUF1, Buffer(){8, 1, 2, 3, 4, 5, 6, 7, 8} /1 8 is the nunber of bytes

Name(BUF2, Buffer(){4, 9, 10, 11, 12} /'l 4 is the nunber of bytes
St ore(BUF1, FLD1) /1 Sets FLD1 SMBus device bl ock register
St or e(BUF2, FLD2) /] Sets FLD2 SMBus device bl ock register

St ore(FLD1, Local 0) /1 local0 contains buf: 8,1,2,3,4,5,6,7,8
St ore(FLD2, Local 0) /1 local0 contains buf: 4,9, 10,11, 12

}

15.2.3.3.1.9.3.5 SMBus Memory Devices (AnyAcc)

The AnyAcc access type allows any of the Read/Write byte, word or Block protocol transfers to be made to
the selected SMBus slave address and command value. The combined slave and command value generates a
single byte granular address space. The command address (A0-A7 of the 15-bit address) is defined through
the use of the AccessAs(AccessType, AccessAtrribute) macro. In this case the AccessAttribute represents the
byte aligned command value, and AccessType would be set to AnyAcc.

To define a AnyAcc device an operation region is generated using the SMBus address type. Next afield is
generated in the operation region using the “ AnyAcc” accesstype. In the field list an AccessAs(AnyAcc,
command_value) macro is used to define what command address is associated with this field. The absence of
the macro assume a starting command value of 0. The SMBus driver assumes that after the
AccessAs(AnyAcc, command_value) macro is declared then command registers are byte-granular and linear.
If afield is defined that crosses over a byte boundary, then the SMBus driver assumes thisfield residesin
multiple command registers with a command address value of command_valuet+1 (for each new register).
The SMBus driver will use the most appropriate protocol for accessing the registers associated with the

262

fields. For example, if afield spans more than three bytes a read/write block protocol access can be made,
whileif only spanning a byte then the read/write byte protocol can be used.

For example, a 5-byte buffer with the contents of “ACPI” would be generated as:

Onreads, ASL will return a buffer with the first entry set to the number of data bytes returned. For example,

Devi ce(\ _SB. EC0) {
Name(_HI D, El SAI D(" PNPOC09"))
Name(_CRS,
Resour ceTenpl at e() { /1 port 0x62 and 0x66
| O(Decodel6, 0x62, 0x62, 0, 1),
| O(Decodel6, 0x66, 0x66, 0, 1)
}

)
Name(_GPE, Zero) //ECis wired to bit 0 of GPE
Devi ce (SMB1) ({
Name(_ADR, "ACPI 0001")
Name(_EC, 0x8030) /1 EC of fset (0x80), Query (0x30)
Oper ati onRegi on(PHOL, SMBus, 0x66, 0x1)
Devi ce(DEVB) {
Name(_ADR, 0x66) /1 Slave Address 0x66
Fi el d(PHOL, AnyAcc, NoLock, Preserve) {
FLD1, 512,
FLD2, 256,
FLD3, 32,
FLD4, 16,
FLD5, 8

} /1 end of DEVB
} /1 end of SMB1
} /1 end of ECO

This definition creates alinear SMBus device residing at slave address 0x66. There are six fields that use
102 command registers (0-101), called “FLD1", “FLD2" , “FLD3", “FLD4” and “FLD5". FLD1 references
command registers 0-63 (first 64 bytes) and will be accessed by the block protocol (datais over 3 bytes).
FLD2 represents command registers 64-95 (next 32 bytes) and will be accessed by the block command
protocol (datais over 3 bytes). FLD3 represents command registers 96-99 (next four bytes) and will be
accessed by the block command protocol (datais over 3 bytes). FL D4 represents command registers 100-
101 (next two bytes) and will be accessed by the word command protocol. FLDS5 represents command
register 102 (next byte) and will be accessed by the byte command protocol. Examples of generating the
accesses from ASL isillustrated below:

St ore(FLD3, Local 0) /1 local0 contains 4 bytes: “Zamm”
St ore(FLD4, Local 0) /1 local0 contains 2 bytes: OxFF12
St ore(FLD5, Local 0) /1 local0 contains 1 byte: OxEF

}

15.2.3.3.1.9.3.6 Mixed Example (AnyAcc)
Some devices can be accessed through multiple protocols. This section gives an example of such adevice.

Devi ce(\ SB. _EQ0) {
Name(_HI D, El SAI D(" PNPOC09"))
Name(_CRS,
Resour ceTenpl at e() { /1 port 0x62 and 0x66
| O(Decodel6, 0x62, 0x62, 0, 1),
| O(Decodel6, 0x66, 0x66, 0, 1)

}

)
Name(_GPE, Zero) //ECis wired to bit 0 of GPE
Devi ce (SMB1) ({
Name(_ADR, "ACPI 0001")
Name(_EC, 0x8030) /1 EC of fset (0x80), Query (0x30)
Oper ati onRegi on(PHOL, SMBus, 0x67, 0x1)
Devi ce(DEVB) {
Name(_ADR, 0x67) /1 Slave Address 0x67
Fi el d(PHOL, ByteAcc, NoLock, Preserve) {
AccessAs(AnyAcc, 0),
FLD1, 512,
FLD2, 256,
FLD3, 32,
AccessAs(Wor dAcc, 0x70),
FLD4, 16,
AccessAs(Byt eAcc, 0x80),
FLD5, 8

} /1 end of DEVB
} /1 end of SMB1
} /1 end of ECO

This definition creates an SMBus device using various protocols residing at slave address 0x67. There are
three fields that use four command registers (0, 1, 2 and 3), called “FLD1”, “FLD2” and “FLD3". FLD1
references command registers 0-1 (32 bytes per command register) and will be accessed by the byte, word
and block linear protocols. FLD2 represents command register 064 and will be accessed by the byte, word
and block linear protocols. FLD3 represents command register 96 and will be accessed by the byte, word
and block linear protocols. FLD4 represents command register 0x70 and will be accessed by the word
command protocol. FLDS5 represents command register 0x80 and will be accessed by the byte command
protocol.

264

15.2.3.3.1.10 IndexField - Declare Index/Data Fields

I ndexFi el dTerm ;= IndexField(
IndexName, /] NameStri ng
DataName, /] NameStri ng
AccessType, /| AccessTypeKeywor d
LockRule, /| LockRul eKeywor d
UpdateRule /| Updat eRul eKeywor d

) {FieldunitList}
Cresates a series of named data objects whose data values are fields within alarger object accessed by an
index/data-style reference to IndexName and DataName.
This encoding is used to define named data objects whose data values are fields within an index/data register
pair. This provides a simple way to declare register variables that occur behind atypical index and data
register pair.
Accessing the contents of an indexed field data object will automatically occur through the DataName object
by using an IndexName object aligned on an AccessType boundary, with synchronization occurring on the
operation region which contains the index data variable, and on the global lock if specified by LockRule.

AccessType, LockRule, UpdateRule, and FieldList are the same format asthe Field term.
Thefollowing is ablock of ASL sample code using IndexField:

Creates an index/data register in system 1/0O space made up of 8-bit registers.
Creates a FETO field within the indexed range.

265

Met hod(_EX1) {
/1 define 256-byte operational region in System O space
/1 and nane it A Q0
OperationRegion (3 00, 1, 0x125, 0x100)
/'l create field named Preserve structured as a sequence
/1 of index and data bytes
Field (A 00, ByteAcc, NoLock, WiteAsZeros) {
| DX0, 8,
DATO, 8,

}
/]l Create an IndexField within IDX0 & DATO which has
/1 FETs in the first two bits of indexed offset O,
/1 and another 2 FETs in the high bit on indexed
/1 2f and the low bit of indexed offset 30
I ndexFi el d (I DX0, DATO, ByteAcc, NoLock, Preserve) {
FETO, 1,
FET1, 1,
O fset (0x2f), /] skip to byte offset 2f
, 7, /1 skip another 7 bits
FET3, 1,
FET4, 1

}
/1 Clear FET3 (index 2f, bit 7)

Store (Zero, FET3)
}

15.2.3.3.1.11 Method - Declare Control Method

Met hodTer m : = Method(
MethodName, /] NameStri ng
NumArgs, /1 Not hing | ByteConst
SerializeRule /1 Not hing |
/1 SerializeRul eKeyword
) {TernList}

Declares a named package containing a series of object references that collectively represent a control
method, which is a procedure that can be invoked to perform computation. Method opens a name scope.

System software executes a control method by referencing the objects in the package in order. For more
information on control method execution, see section 5.5.3.

The current name space location used during name creation is adjusted to be the current location on the name
space tree. Any names created within this scope are “below” the name of this package. The current name
space location is assigned to the method package, and all name space references that occur during control
method execution for this package are relative to that location.

If amethod is declared as Serialized, an implicit mutex associated with the method object is acquired at
SyncLevel 0. The serialize-rule can be used to prevent re-entering of amethod. Thisis especialy useful if
the method creates name space objects. Without the serialize-rule, the re-entering of a method will fail when
it attempts to create the same name space object.

Also note that all name space objects created by a method have temporary lifetime. When method execution
exits, the created objects will be destroyed.

The following block of ASL sample code shows a use of Method for defining a control method that turns on
a power resource.

266

Met hod(_ON) {
Store (One, G O | DEP) /] assert power
Sl eep (10) /1 wait 10ns
Store (One, G O | DER) /] de-assert reset#
Stall (10) /1 wait 10us
Store (Zero, G O |IDEl) /] de-assert isolation

}

15.2.3.3.1.12 Mutex - Declare Synchronization / Mutex Object

Mut exTer m 1= Mutex(
MutexName, /] NameStri ng
SyncLevel /1 Byt eConst

)
Creates a data mutex synchronization object named MutexName, with level from O to 15 specified by
SyncLevel.

A synchronization object provides a control method with a mechanism for waiting for certain events. To
prevent deadl ocks, wherever more than one synchronization object must be owned, the synchronization
objects must always be released in the order opposite the order in which they were acquired. The SyncLevel
parameter declares the logical nesting level of the synchronization object. All Acquire terms must refer to a
synchronization object with an equal or greater SyncLevel to current level, and all Release terms must refer
to a synchronization object with equal or lower SyncLevel to the current level.

Mutex synchronization provides the means for mutually exclusive ownership. Ownership is acquired using
an Acquire term and is released using a Release term. Ownership of a Mutex must be relinquished before
completion of any invocation. For example, the top level control method cannot exit while still holding
ownership of a Mutex. Acquiring ownership of a Mutex can be nested. The SyncLevel check is not
performed on a Mutex when the ownership count is nesting.

The SyncLevel of athread before acquiring any mutexesis zero. The SyncLevel of the global lock (_GL) is
zero. A method marked serialized has an inherent mutex of SyncLevel 0.

15.2.3.3.1.13 OperationRegion - Declare Operation Region

OpRegi onTerm : = OperationRegion(
RegionName, /] NameStri ng
RegionSpace, / | Regi onSpaceKeywor d
Offset, /| Ter mAr g=>DWor dConst
Length /| Ter mAr g=>DWor dConst

)
Declares an operation region. Offset is the offset within the selected RegionSpace at which the region starts
(byte-granular), and Length isthe length of the region in bytes.

An Operation Region is atype of data object where read or write operations to the data object are performed
in some hardware space. For example, the Definition Block can define an Operation Region within a bus, or
system 1O space. Any reads or writes to the named object will results in accesses to the 10 space.

Operation regions are regions in some space that contain hardware registers for exclusive use by ACPI
control methods. In general, no hardware register (at least byte granular) within the operation region
accessed by an ACPI control method can be shared with any accesses from any other source, with the
exception of using the Global Lock to share aregion with the firmware. The entire Operation Region can be
allocated for exclusive use to the ACPI subsystem in the host OS.

267

Operation Regions have “virtual content” and are only accessible via Field objects Operation Region objects
may be defined down to actua bit controls using Field data object definitions. The actual bit content of a
Field are bits from within alarger Buffer that are normalized for that field (i.e., shifted down and masked to
the proper length), and as such the data type of a Field is Buffer. Therefore fields which are 32 bits or lessin
size may be read and stored as Integers.

An Operation Region object implicitly supports Mutex synchronization. Updates to the object, or a Field data
object for the region, will automatically synchronize on the Operation Region object; however, a control
method may also explicitly synchronize to aregion to prevent other accesses to the region (from other

control methods). Note that, according to the control method execution model, control method execution is
non-preemptive. Because of this, explicit synchronization to an Operation Region needsto be done only in
cases where a control method blocks or yields execution and where the type of register usage requires such
synchronization.

Originally there were five Operation Region types specified in ACPI:
0 = SystemMemory
1= SystemlO
2 =PCl_Config
3 = EmbeddedControl
4 = SMBus

These are now extended to include vendor-defined Operation Regions, with 0x80 to OXFF user defined.

The following example ASL code shows the use of OperationRegion combined with Field to describe IDE
0 and 1 controlled through general 10 space, using one FET.

OperationRegion (A O System O 0x125, 0x1)
Field (@O ByteAcc, NoLock, Preserve) {

| DEl , 1, /1 1 DEl SO EN - isolation buffer
| DEP, 1, /1 IDE_PWR_EN - power
| DER, 1 /] | DERST#_EN - reset#

}

15.2.3.3.1.14 PowerResource - Declare Power Resource

Power ResTer m : = PowerResource(
ResourceName, // NameStri ng
SystemLevel, /1 Byt eConst
ResourceOrder / /' \Wor dConst

) {ObjectList}
Declares a power resource. PowerResource opens a hame scope.
For a definition of the PowerResource term, see section 7.1.

15.2.3.3.1.15 Processor - Declare Processor

Processor Term ;= Processor(
ProcessorName, // NameStri ng
ProcessorlD, /1 Byt eConst
PBlockAddress, / | DWr dConst
PblockLength /1 Byt eConst

) {ObjectList}

Declares a named processor object. Processor opens a name scope. Each processor is required to have a
unique ProcessorD value from any other ProcessorID value.

268

The ACPI BIOS declares one processor object per processor in the system under the\ PR name space.
PBlockAddress provides the system 10 address for the processors register block. Each processor can supply
adifferent such address. PBlockLength is the length of the processor register block, in bytes which is either 0
(for no P_BLK) or 6. With one exception, all processors are required to have the same PBlockLength. The
exception is that the boot processor can have a non-zero PBlockLength when all other processors have a zero
PBlockLength.

The following block of ASL sample code shows a use of the Processor term.

Processor (

\ _PR CPWO, /1 name space nane

1,

0x120, /1 PBlk system | O address
6 /1 PBlI kLen

)
{1

15.2.3.3.1.16 ThermalZone - Declare Thermal Zone
Ther mal ZoneTer m : = ThermalZone(
ThermalZoneName /] NameStri ng
) {ObjectList}
Declares anamed Thermal Zone object. ThermalZone opens a name scope.
Each use of a ThermalZone term declares one thermal zone in the system. Each thermal zonein asystemis

required to have a unique ThermalZoneName.

For sample ASL code that uses a ThermalZone statement, see section 0.

15.2.3.3.2 Name Space Modifiers
The name space modifiers are as follows:

Table 15-9 Name Space Modifiers

ASL Statement Description

Alias Definesaname dias

Name Defines aglobal name and attaches a buffer, literal dataitem, or
packageto it.

Scope Declares the placement of one or more object namesin the ACPI
name space when the definition block that contains the Scope
statement is |oaded.

15.2.3.3.2.1 Alias - Declare Name Alias

Ali asTerm := Alias(
SourceObject, /] NameStri ng
AliasObject /] NameStri ng
)

Creates a new name, AliasObject, which refers to and acts exactly the same as SourceObiject.

AliasObject is created as an alias of SourceObject in the name space. The SourceObject name must aready
exist in the name space. If the aliasis to a name within the same definition block the SourceObject name
must be logically ahead of this definition in the block. The following example shows use of an Alias term:

269
Al'i as(\ SUS. SET. EVEN, SSE)

15.2.3.3.2.2 Name - Declare Named Object

NameTer m ;= Name(
ObjectName, /] NameStri ng
Object /| Dat aObj ect
)

Attaches Object to ObjectName in the Global ACPI name space.
This encoding is to create ObjectName in the name space, which references the Object.
The following example creates the name PTTX in the root of the name space that references a package.

Name(\ PTTX, /1 Port to Port Translate Table
Package() { Package() { 0x43, 0x59 }, Package() { 0x90, Oxff }}

The following example creates the name CNT in the root of the name space that references an integer data
object with the value 5.

Name(\ CNT, 5)

15.2.3.3.2.3 Scope - Declare Name Scope
ScopeTerm ;= Scope(
Location // NameStri ng

) {ObjectList}
Gives a base scope to a collection of objects. All object names defined within the scope act relative to
Location. Note that Location does not have to be below the surrounding scope. Note a so that the Scope term
does not create objects, but only locates objects in the name space; the located objects are created by other
ASL terms.

The Scope term alters the current name space location to Location. This causes the defined objects within
TermList to occur relative to the new location in the name space.

The following example ASL code

Scope(\PCI 0) {

Name(X, 3)

Scope(\) {
Met hod(_RQ { Return(0) }

}
Name(~Y, 4)
}

places the defined objects in ACPI name space as shown in the following:

\PCI 0. X

_RQ
\'Y

15.2.3.4 Opcode Terms

There are two types of ASL opcode terms: Type 1 opcodes and Type 2 opcodes.
A Typel opcode term can only be used standing alone on aline of ASL code; because these types of
terms do not return a value, they cannot be used as aterm in an expression.

270

A Type2 opcode term can be used in an expression because these types of terms return avalue. When
used in an expression the argument that names the object in which to store the result can be optional.

Note that in the opcode definitions below, when the definition says “result is stored in” thisliterally means
that the Store operator is assumed and the “ execution result” is the Source operand to the Store opcode.

15.2.3.4.1 Type 1 Opcodes

TypelQOpcode

:= BreakTerm | BreakPointTerm | Fatal Term | IfEl seTerm
LoadTerm | NoOpTerm | NotifyTerm | Rel easeTerm
Reset Term | ReturnTerm | Signal Term | SleepTerm
Stall Term | Unl oadTerm | Wil eTerm

The Type 1 opcodes are listed in the following table.

Table 15-10 Type 1 Opcodes

ASL Statement

Description

Break

Stop executing the current code package at this point

BreakPoint Used for debugging. Stops execution in the debugger

Else Else

Fatal Fatal check

If If

Load L oad differentiating definition block

Noop No operation

Notify Notify the OS that a specified notification value for a NotifyObject has
occurred

Release Release a synchronization object

Reset Reset a synchronization object

Return Return from a control method, optionally setting a return value

Signa Signal a synchronization object

Sleep Sleep n milliseconds (yields the processor)

Stall Delay n microseconds (does not yield the processor)

Unload Unload differentiating definition block

While While

15.2.3.4.1.1 Break - Break

Br eakTer m

.= Break

The break operation causes the current package execution to complete.

15.2.3.4.1.2 BreakPoint - BreakPoint

Br eakPoi nt Term

.= BreakPoint

Used for debugging, the Breakpoint opcode stops the execution and enters the AML debugger. In the retail
version of the interpreter, BreakPoint is equivalent to Noop.

15.2.3.4.1.3 Else - Else Operator

El seTerm

= Nothing | <Else {TernList}>

271

In an If term, if Predicate evaluatesto O, it isfalse, and theterm list in the Else term is executed. If
Predicate evaluatesto Not O on the If term, then it is considered true, and the term list in the Else term is not
executed.

The following example checks Local 0 to be zero or non-zero. On non-zero, CNT is incremented; otherwise,
CNT is decremented.

If (Local 0) {

I ncrement (CNT)
} Else {

Decrement (CNT)
}

15.2.3.4.1.4 Fatal - Fatal Check

Fat al Term := Fatal(
Type, /] Byt eConst
Code, / | DWr dConst
Arg /| Ter mMAr g=>I nt eger
)

This operation is used to inform the OS that there has been an OEM-defined fatal error. In response, the OS
must log the fatal event and perform a controlled OS shutdown in atimely fashion.

15.2.3.4.1.5 If — If Operator
I f Term = 1
Predicate /| Ter mMAr g=>I nt eger
) {TernList}

Predicate is evaluated as an integer. If the integer is non-zero, the term list of the If term is executed.
The following examples al check for bit 3 in Local0 being set, and clear it if set.

/] exanple 1
if (And(Local 0, 4)) {

XOr (Local 0, 4, Local 0)
}

/] exanple 2
Store(4, Local 2)
if (And(Local 0, Local 2)) {
XOr (Local 0, Local 2, Local 0)
}

15.2.3.4.1.6 Load - Load Differentiated Definition Block

LoadTerm ;= Load(
Object, /] NameStri ng
DDBHandle /] Super Nane
)

Performs arun time load of a Definition Block. The Object parameter can either refer to an operation region
field or an operation region directly. If the object is an operation region, the operation region must bein
SystemMemory space. The Definition Block should contain a DESCRIPTION_HEADER of type SSDT or
PSDT. The Definition Block must be totally contained within the supplied operational region or operation
region field. Thistableis read into memory, the checksum is verified, and then it is loaded into the ACPI
name space. The DDBHandle parameter is the handle to the Differentiating Definition Block that can be
used to unload the Definition Block at a future time.

272

The OS can aso check the OEM Table ID and Revision ID against a database for a newer revision
Definition Block of the same OEM Table ID and load it instead.

The default name space location to |oad the Definition Block is relative to the current name space. The new
Definition Block can override this by specifying absolute names or by adjusting the name space location
using the Scope operator.

Loading a Definition Block is a synchronous operation. Upon completion of the operation, the Definition
Block has been loaded. The control methods defined in the Definition Block are not executed during load
time.

15.2.3.4.1.7 Noop Code - No Operation
NoOpTerm .= Noop
This operation has no effect.

15.2.3.4.1.8 Notify - Notify

NotifyTerm ;= Notify(
Object, /] Super Nane
NotificationValue /| Ter mMAr g=>Byt eConst
)

Notifies the OS that the NotificationValue for the Object has occurred. Object must be a reference to a device
or thermal zone object.

Notification values are determined by the Object type. For example, the notify values for athermal zone
object are different from the notify values used for a device object. Undefined notification values are treated
as reserved and are ignored by the OS.

For lists of defined Notification values, see section 5.6.3.

15.2.3.4.1.9 Release - Release a Mutex Synchronization Object
Rel easeTerm ;= Release(
SyncObject /] Super Name

SynchObject must be a mutex synchronization object. If the mutex object is owned by the current invocation,
ownership for the Mutex is released once. It isfatal to release ownership on a Mutex unlessit is currently
owned. A Mutex must be totally released before an invocation completes.

15.2.3.4.1.10 Reset - Reset an Event Synchronization Object
Reset Term ;= Reset(
SyncObject /] Super Nane

SynchObject must be an Event synchronization object. This encoding is used to reset an event
synchronization object to a non-signaled state. See also the Wait and Signal function operator definitions.

15.2.3.4.1.11 Return - Return

Ret urnTerm ;= Return(
Arg /| Ter mAr g=>Dat aObj ect

)
Returns control to the invoking control method, optionally returning a copy of the object named in Arg.

273

15.2.3.4.1.12 Signal - Signal a Synchronization Event
Si gnal Term ;= Signal(
SyncObject /] Super Nane

SynchObject must be an Event synchronization object. The Event object is signaled once, alowing one
invocation to acquire the event.

15.2.3.4.1.13 Sleep - Sleep
Sl eepTerm ;= Sleep(
MilliSecs /| Ter mMAr g=>I nt eger
)

The Sleep term is used to implement long-term timing requirements. Execution is delayed for at least the
required number of milliseconds. The implementation of Sleep isto round the request up to the closest sleep
time supported by the OS and relinquish the processor.

15.2.3.4.1.14 Stall - Stall for a Short Time
Stall Term := Stall(
MicroSecs /| Ter mMAr g=>I nt eger
)

The Stall term is used to implement short-term timing requirements. Execution is delayed for at least the
required number of microseconds. The implementation of Stall is OS-specific, but must not relinquish
control of the processor. Because of this, delays longer than 100 microseconds must use Sleep instead of
Stall.

15.2.3.4.1.15 Unload - Unload Differentiated Definition Block
Unl oadTer m ;= Unload(
DDBHandle /] Super Nane

Performs a run time unload of a Definition Block that was loaded using a Load term. Loading or unloading a
Definition Block is a synchronous operation, and no control method execution occurs during the function.
On completion of the Unload operation, the Definition Block has been unloaded (all the name space objects
created as aresult of the corresponding Load operation will be removed from the name space).

15.2.3.4.1.16 While - While
Wi | eTerm = While(
Predicate /| Ter mMAr g=>I nt eger
) {TernList}

Predicate isevaluated as an integer. If the integer is non-zero, thelist of termsin TermList is executed. The
operation repeats until the Predicate evaluates to zero.

15.2.3.4.2 Type 2 Opcodes

Type2Qpcode ;= AcquireTerm | AddTerm | AndTerm | Concat Term |
CondRef O Term | DecTerm | DerefOfTerm | DivideTerm |
Fi ndSet LeftBit Term | FindSetRi ghtBitTerm | FronBCDTerm |
IncTerm| IndexTerm| LAndTerm | LEqual Term |
LG eaterTerm | LG eaterEqual Term| LLessTerm |
LLessEqual Term | LNot Term | LNot Equal Term | LOrTerm |
Mat chTerm | MiultiplyTerm | NAndTerm | NO Term | NotTerm |
Obj ect TypeTerm | OrTerm| RefOfTerm | ShiftLeftTerm |
ShiftRight Term| SizeOTerm| StoreTerm| SubtractTerm |
ToBCDTerm | WaitTerm | XorTerm | UserTerm

274

The ASL termsfor Type 2 Opcodes are listed in the following table.

Table 15-11 Type 2 Opcodes

ASL Statement Description

Acquire Acquire a synchronization object
Add Add two values

And Bitwise And

Concatenate Concatenate two strings

CondRef Of Conditional reference to an object
Decrement Decrement a value.

DerefOf Dereference of an object reference
Divide Divide

FindSetL eftBit Index of first set Lsb
FindSetRightBit Index of first set Msb

FromBCD Convert from BCD to numeric
Increment Increment avalue

Index Reference the nth element of a package
LANd Logica And

LEqua Logica Equal

L Greater Logica Greater

L GreaterEqual Logical Not less

LLess Logical Less

LL essEqual Logica Not greater

LNot Logical Not

LNotEqual Logica Not equal

LOr Logica Or

Match Search for match in package array
Multiply Multiply

NAnd Bitwise Nand

NOr Bitwise Nor

Not Bitwise Not

ObjectType Type of object

Or Bitwise Or

RefOf Reference to an object

ShiftLeft Shift value left

ShiftRight Shift value right

SizeOf Get the size of abuffer, string, or package
Store Store value

Subtract Subtract values

ToBCD Convert numeric to BCD

Wait Wait

Xor Bitwise Xor

275

15.2.3.4.2.1 Acquire - Acquire a Mutex Synchronization Object

AcquireTerm ;= Acquire(
SyncObject, /] Super Nane
TimeoutValue [/ \WWor dConst
) => Bool ean /] Ones neans tined-out

SynchObject must be a mutex synchronization object. It refers to the mutex to be acquired.

Ownership of the Mutex is obtained. If the Mutex is aready owned by a different invocation, the processor is
relinquished until the owner of the Mutex releases it or until at least TimeoutValue milliseconds have
elapsed. A Mutex can be acquired more than once by the same invocation.

This operation returns a non-zero value if atimeout occurred and the mutex ownership was not acquired. A
TimeoutValue of OXFFFF indicates that there is no time out and the operation will wait indefinitely.

15.2.3.4.2.2 Add - Add

AddTer m ;= Add(
Addendl, /| Ter mMAr g=>I nt eger
Addend2, /| Ter mMAr g=>I nt eger
Result /1 Not hing | SuperNane

) => Integer
Addendl and Addend? are evaluated as integer data types and are added, and the result is optionally stored
into Result. Overflow conditions are ignored.

15.2.3.4.2.3 And - Bitwise And

AndTer m := And(
Sourcel, /| Ter mMAr g=>I nt eger
Source2, /| Ter mMAr g=>I nt eger
Result /1 Not hing | SuperNane

) => Integer
Sourcel and Source? are evaluated as integer data types, a bit-wise AND is performed, and the result is
optionally stored into Result.

15.2.3.4.2.4 Concatenate - Concatenate

Concat Term : = Concatenate(
Sourcel, /| Ter mMAr g=>Conput at i onal Dat a
Source2, /| Ter mMAr g=>Conput at i onal Dat a
Result /1 Not hing | SuperNane

) => Conput ati onal Data
Sourcel and Source? are evaluated. Sourcel and Source2 must be of the same data type (that is, both
integers, both strings, or both buffers). Source? is concatenated to Sourcel and the result datais optionally
stored into Result.

Table 15-12 Concatenate Data Types

Sourcel Data Type Source2 Data Type Result Data Type
Integer Integer Buffer
String String String
Buffer Buffer Buffer

276

15.2.3.4.2.5 CondRefOf - Conditional Reference Of

CondRef OFf Term : = CondRefOf(
Source, /] Super Nane
Destination /] Super Nane

) => Bool ean
Attempts to set Destination to refer to Source. The Source of this operation can be any object type (e.g., data
package, device object, etc.). On success, the Destination object is set to refer to Source and the execution
result of this operation is the constant Ones object. On failure the execution result of this operation is the
constant Zero object and the Destination object is unchanged. This can be used to reference itemsin the
name space which may appear dynamically (e.g., from adynamically loaded differentiation definition
block).
CondRefOf is equivalent to RefOf except that if the Source object does not exigt, it isfatal for RefOf but
not for CondRefOf.

15.2.3.4.2.6 Decrement - Decrement
DecTer m : = Decrement(
Addend /] Super Name
) => Integer

This operation decrement the Addend by one and the result is stored back to Addend.

15.2.3.4.2.7 DerefOf — Dereference Of Operator
Der ef Of Term ;= DerefOf(
Source /| Ter mMAr g=>(hj ect Ref er ence
) => bj ect Ref erence

Returns the object referred by the Source object reference. The object returned can be any aobject type (for
example, a package, a device object, and so on).

15.2.3.4.2.8 Divide - Divide

Di vi deTerm ;= Divide(
Dividend, /| Ter mMAr g=>I nt eger
Divisor, /| Ter mMAr g=>I nt eger
Remainder, /1 Not hing | SuperNane
Result /1 Not hing | SuperNane
) => Integer //returns Result

Dividend and Divisor are evaluated as integer data. Dividend is divided by Divisor, then the resulting
remainder is optionally stored into Remainder and the resulting quotient is optionally stored into Result.
Divide-by-zero exceptions are fatal.

15.2.3.4.2.9 FindSetLeftBit — Find Set Left Bit

Fi ndSet Left Bi t Term ;= FindSetLeftBit(
Source, /| Ter mMAr g=>I nt eger
Result /1 Not hing | SuperNane

) => Integer
Source is evaluated as integer data type, and the one-based bit location of the first MSh (most significant set
bit) is optionally stored into Result. The result of 0 means no bit was set, 1 means the left-most bit set isthe
first bit, 2 means the left-most bit set is the second bit, and so on.

277

15.2.3.4.2.10 FindSetRightBit - Find Set Right Bit

Fi ndSet Ri ght Bi t Term ;= FindSetRightBit(
Source, /| Ter mMAr g=>I nt eger
Result /1 Not hing | SuperNane

) => Integer
Source is evaluated as integer data type, and the one-based bit location of the most LSb (least significant set
bit) is optionally stored in Result. The result of 0 means no bit was set, 32 means the first bit set is the 32™
bit, 31 means the first bit set is the 31% bit, and so on.

15.2.3.4.2.11 FromBCD - Convert from BCD

Fr onBCDTer m ;= FromBCD(
BCDValue, /| Ter mMAr g=>I nt eger
Result /1 Not hing | SuperNane

) => Integer

The FromBCD operation is used to convert BCDValue to a numeric format and store the numeric value in
Result.

15.2.3.4.2.12 Increment - Increment
I ncTerm ;= Increment(
Addend /'] Super Nane
) => Integer

Equivalent to Add(Addend, 1, Addend)

15.2.3.4.2.13 Index - Index

I ndexTerm ;= Index(
Source, /] Ter mAr g=>
/] <Buf fer Term | PackageTer nm>
Index, /| Ter mMAr g=>I nt eger
Destination /1 Not hing | SuperNane

) => bj ect Ref erence
Source is evaluated to either buffer or package data type. Index is evaluated to an integer. The object at Index
within Source is optionally stored as a reference into Destination. The following example ASL code shows a
way to use the Index term to store into alocal variable the sixth element of the first package of a set of
nested packages:

278

Name(| QOD, Package() {
Package() {
0x01, O0x03F8, 0x03F8, 0x01, 0x08, 0x01
0x25, OxFF, OxFE, 0x00, 0x00
¥
Package()
0x01, O0x02F8, 0x02F8, 0x01, 0x08, 0x01
0x25, OxFF, OxBE, 0x00, 0x00
¥
Package() {
0x01, Ox03E8, O0x03E8, 0x01, 0x08, 0x01
0x25, OxFF, OxFA, 0x00, 0x00
¥
Package() {
0x01, O0x02E8, 0x02E8, 0x01, 0x08, 0x01
0x25, OxFF, OxBA, 0x00, 0x00
¥
Package()
0x01, 0x0100, Ox03F8, 0x08, 0x08, 0x02
0x25, 0x20, Ox7F, 0x00, 0x00

}
1)
/1 Get the 6'" el enent of the first package
St or e(DeRef O (| ndex(DeRef O (I ndex(1 Q0OD, 0)), 5)), Local0)

The following example ASL code shows away to store into the 3¢ byte of a buffer:
Name(BUFF, Buffer() ({
0x01, 0x02, 0x03, 0x04, 0x05
1)

/] Store 0x55 into the third byte of the buffer
St or e(0x55, | ndex(BUFF, 2))

15.2.3.4.2.14 LANd - Logical And

LAndTer m ;= LAnd(
Sourcel, /| Ter mMAr g=>I nt eger
Source2 /| Ter mMAr g=>I nt eger

) => Bool ean
Sourcel and source? are evaluated as integers. If both values are non-zero, the constant object Ones is
returned, otherwise the constant object Zero is returned.

15.2.3.4.2.15 LEqual - Logical Equal

LEqual Term ;= LEqual(
Sourcel, /| Ter mMAr g=>I nt eger
Source?2 /| Ter mMAr g=>I nt eger

) => Bool ean
Sourcel and Source? are evaluated as integers. If the values are equal, the constant object Ones is returned;
otherwise, the constant object Zero is returned.

15.2.3.4.2.16 LGreater - Logical Greater

LG eater Term ;= LGreater(
Sourcel, /| Ter mMAr g=>I nt eger
Source2 /| Ter mMAr g=>I nt eger

) => Bool ean
Sourcel and Source? are evaluated as integers. If Sourcel is greater than Source2, the constant object Ones
is returned; otherwise, the constant object Zero is returned.

279

15.2.3.4.2.17 LGreaterEqual - Logical Greater Than Or Equal

LG eat er Equal Term ;= LGreaterEqual (
Sourcel, /| Ter mMAr g=>I nt eger
Source2 /| Ter mMAr g=>I nt eger

) => Bool ean
Sourcel and Source? are evaluated as integers. If Sourcel is greater than or equal to Source2, the constant
object Ones is returned; otherwise, the constant object Zero is returned.

15.2.3.4.2.18 LLess - Logical Less

LLessTerm := LLess(
Sourcel, /| Ter mMAr g=>I nt eger
Source?2 /| Ter mMAr g=>I nt eger

) => Bool ean
Sourcel and Source? are evaluated as integers. If Sourcel islessthan Source2, the constant object Ones is
returned; otherwise, the constant object Zero is returned.

15.2.3.4.2.19 LLessEqual - Logical Less Than Or Equal

LLessEqual Term ;= LLessEqual(
Sourcel, /| Ter mMAr g=>I nt eger
Source?2 /| Ter mMAr g=>I nt eger

) => Bool ean
Sourcel and Source? are evaluated as integers. If Sourcel islessthan or equal to Source2, then the constant
object Ones is returned; otherwise, the constant object Zero is returned.

15.2.3.4.2.20 LNot - Logical Not
LNot Term ;= LNot(
Source, /| Ter mMAr g=>I nt eger
) => Bool ean

Sourcel isevaluated as an integer. If the value is non-zero, the constant object Zero is returned; otherwise,
the constant object Ones is returned.

15.2.3.4.2.21 LNotEqual - Logical Not Equal

LNot Equal Ter m ;= LNotEqual(
Sourcel, /| Ter mMAr g=>I nt eger
Source?2 /| Ter mMAr g=>I nt eger

) => Bool ean
Sourcel and Source? are evaluated as integers. If Sourcel isnot equal to Source2, then the constant object
Ones isreturned; otherwise, the constant object Zero is returned.

15.2.3.4.2.22 LOr - Logical Or
LOr Term := Lor(
Sourcel, /| Ter mMAr g=>I nt eger
Source2 /| Ter mMAr g=>I nt eger
) => Bool ean
Sourcel and Source? are evaluated as integers. If either valuesis non-zero, the constant object Ones is

returned; otherwise, the constant object Zero is returned.

280

15.2.3.4.2.23 Match - Find Object Match

Mat chTer m ;= Match(
SearchPackage, /| Ter Mr g=>Package
Op1l, /| Mat chOpKeywor d
MatchObjectl, /| Ter mMAr g=>I nt eger
Op2, /| Mat chOpKeywor d
MatchObject2, /| Ter mMAr g=>I nt eger
Startindex /| Ter mMAr g=>I nt eger
) => Ones | Integer

SearchPackage is evaluated to a package object and is treated as a one-dimension array. A comparison is
performed for each element of the package, starting with the index value indicated by Startindex (0 isthe
first element). If the element of SearchPackage being compared against is called P[i], then the comparison
is.

if (P[i] Opl MatchObjectl) and (P[i] Op2 MatchObject2) then Match => i isreturned.
If the comparison succeeds, the index of the element that succeeded is returned; otherwise, the constant
object Ones is returned.
Op1 and Op2 have the following values and meanings listed in the following table.

Table 15-13 Match Term Operator Meanings

Operator Encoding Macro
TRUE - adon't care, aways returns TRUE 0 MTR
EQ - returns TRUE if P[i] == MatchObject 1 MEQ
LE - returns TRUE if F[i] <= MatchObject 2 MLE
LT - returns TRUE if P[i] < MatchObject 3 MLT
GE - returns TRUE if P[i] >= MatchObject 4 MGE
GT - returns TRUE if P[i] > MatchObject 5 MGT

Following are some example uses of Match:
Name(P1,
Package() {1981, 1983, 1985, 1987, 1989, 1990, 1991, 1993, 1995, 1997, 1999, 2001}
)

/1 match 1993 == P1[i]
Match(P1, MEQ 1993, MIR, 0, 0) // -> 7, since P1[7] == 1993

/1 match 1984 == P1[i]
Match(P1, MEQ 1984, MIR, 0, 0) // -> ONES (not found)

/1 match P1[i] > 1984 and P1[i] <= 2000
Mat ch(P1, MGT, 1984, M.E, 2000, 0) // -> 2, since P1[2]>1984 and P1[2]<=2000

/1 match P1[i] > 1984 and P1[i] <= 2000, starting with 3™ el enent
Mat ch(P1, MGT, 1984, ME, 2000, 3) // -> 3, first match at or past Start

15.2.3.4.2.24 Multiply - Multiply

Mul tiplyTerm ;= Multiply(
Multiplicand, /| Ter mMAr g=>I nt eger
Multiplier, /| Ter mMAr g=>I nt eger
Result /1 Not hing | SuperNane

) => Integer
Multiplicand and Multiplier are evaluated as integer data types. Multiplicand is multiplied by Multiplier, and
the result is optionally stored into Result. Overflow conditions are ignored.

281

15.2.3.4.2.25 NAnNd - Bit-wise NAnd

NAndTer m ;= NAnd(
Sourcel, /| Ter mMAr g=>I nt eger
Source2 /| Ter mMAr g=>I nt eger
Result /1 Not hing | SuperNane

) => Integer
Sourcel and Source? are evaluated as integer data types, a bit-wise NAND is performed, and the result is
optionally stored in Result.

15.2.3.4.2.26 NOr - Bitwise NOr

NOr Ter m := NOr(
Sourcel, /| Ter mMAr g=>I nt eger
Source2 /| Ter mMAr g=>I nt eger
Result /1 Not hing | SuperNane

) => Integer
Sourcel and Source? are evaluated as integer data types, a bit-wise NOR is performed, and the result is
optionally stored in Result.

15.2.3.4.2.27 Not - Not
Not Ter m := Not(
Source, /| Ter mMAr g=>I nt eger
Result /1 Nothing | SuperNane
) => Integer

Sourcel is evaluated as an integer data type, a bit-wise NOT is performed, and the result is optionally stored
in Result.

15.2.3.4.2.28 ObjectType - Object Type

Obj ect TypeTerm ;= ObjectType(
Object /] Super Nane
) => Integer

The execution result of this operation is an integer that has the numeric value of the object type for Object.
The object type codes are listed in the following table. Note that if this operation is performed on an object
reference such as one produced by the Alias, Index or RefOf statements, the object type of the base object is
returned. For typeless objects such as scope names, type value “ isreturned.

Table 15-14 Values Returned By the ObjectType Operator

<
=
=
@

Meaning
Uninitialized

I nteger

String

Buffer

Package

Field Unit
Device

Event

Method

Mutex
Operation Region
Power Resource

O[N] WIN[F|O

=Y
o

[
[

282

Value | Meaning

12 Processor

13 Thermal Zone
14 Buffer Field
15 DDB Handle
16 Debug Object
>16 Reserved

The ObjectType of namespace objects whose primary purpose isto act as a container is Uninitialized. For
example:
ObjectType(_SB) ==
The ObjectType of an abject "reference” is the abject type of the referenced object. For example::
Name(ABCD, “Thisisastring”)
Name(XY Z, RefOf(ABCD))
ObjectType(XY Z) is equal to ObjectType(ABCD)

The argument to ObjectType() must be SuperName, so ObjectType(Index(Buffer, Index,)) isillegal.

15.2.3.4.2.29 Or - Bit-wise Or

O Term = 0r(
Sourcel, /| Ter mMAr g=>I nt eger
Source2 /| Ter mMAr g=>I nt eger
Result /1 Nothing | SuperNane

) => Integer
Sourcel and Source? are evaluated as integer data types, a bit-wide OR is performed, and the result is
optionally stored in Result.

15.2.3.4.2.30 RefOf - Reference Of
Ref Of Term ;= RefOf(
Object /] Super Nane
) => bj ect Ref erence

Returns an object reference to Object. Object can be any object type (for example, a package, adevice
object, and so on).

The primiary purpose of RefOf() isto alow the reference of an object to be passed to a method as an
argument without the object being evaluated at the time of method invocation.

If the Object does not exist, the result of a RefOf operation is fatal. Use the CondRefOf term in cases where
the Object might not exist.

15.2.3.4.2.31 ShiftLeft - Shift Left

ShiftLeft Term ;= ShiftLeft(
Source, /| Ter mMAr g=>I nt eger
ShiftCount /| Ter mMAr g=>I nt eger
Result /1 Not hing | SuperNane

) => Integer
Source and ShiftCount are evaluated as integer data types. Source is shifted left with the least significant bit
zeroed ShiftCount times. The result is optionally stored into Result.

283

15.2.3.4.2.32 ShiftRight - Shift Right

Shi ft Ri ght Term ;= ShiftRight(
Source, /| Ter mMAr g=>I nt eger
ShiftCount /| Ter mMAr g=>I nt eger
Result /1 Not hing | SuperNane

) => Integer
Source and ShiftCount are evaluated as integer data types. Source is shifted right with the most significant bit
zeroed ShiftCount times. The result is optionally stored into Result.

15.2.3.4.2.33 SizeOf - SizeOf Data Object
Si zeOf Term ;= SizeOf(
DataObject /| Super Name=>Dat aCbj ect
) => Integer
Returns the size of a buffer, string, or package data object. For a buffer it returns the size in bytes of the data.
For a string, it returns the size in bytes of the string NOT counting the trailing NULL. For a package, it

returns the number of elements.

15.2.3.4.2.34 Store - Store

StoreTerm ;= Store(
Source, /| Ter mAr g=>Dat aObj ect
Destination /] Super Nane

) => Dat aObj ect
This operation evaluates Source converts to the data type of Destination and writes the resultsinto
Destination. If the Destination is of the type Uninitialized, then the Destination object isinitialized as shown
in the following table.

Table 15-15 Store Operator Initialization Data Types for Uninitialized Destinations

Data Type Description

Integer Destination initialized as integer.
Buffer Destination initialized as buffer.

String Destination initialized as string.

The Buffer datatypeis afixed length datatype. If the source argument has a greater length than the
destination size, extra data are truncated. If the source argument has a smaller length than the destination
size, therest of the destination data are zeroed. Storesto Operational Region Field data types may relinquish
the processor depending on the region type.

All stores (of any type) to the constant zero, constant one, or constant ones object are not allowed. Storesto
read-only objects are fatal. The execution result of the operation is the same as the data written to
Destination.

The following example creates the name CNT that references an integer data object with the value 5 and then
stores CNT to Local0. After the Store operation, Local0 is an integer object with the value 5.

Nanme(CNT, 5)

St or e(CNT, Local 0)

284

15.2.3.4.2.35 Subtract - Subtract

Subtract Term : = Subtract(
Addendl, /| Ter mMAr g=>I nt eger
Addend2, /| Ter mMAr g=>I nt eger
Result /1 Not hing | SuperNane

) => Integer
Addendl and Addend? are evaluated as integer data types. Addend? is subtracted from Addendl, and the
result is optionally stored into Result. Underflow conditions are ignored.

15.2.3.4.2.36 ToBCD - Convert to BCD

ToBCDTer m ;= ToBCD(
Value, /| Ter mMAr g=>I nt eger
Result /1 Not hing | SuperNane

) => Integer

The ToBCD operation is used to convert Value from a numeric format to a BCD format and optionally store
the numeric valuein Result.

15.2.3.4.2.37 Wait - Wait for a Synchronization Event

Wai t Term c= Wait(
SyncObject, /'] Super Nane
TimeoutValue /| Ter mMAr g=>I nt eger

) => Bool ean
SynchObject must be an event synchronization object. The calling method blocks waiting for the event to be
signaled.

The pending signal count is decremented. If there is no pending signal count, the processor is relinquished
until asignal count is posted to the Event or until at least TimeoutValue milliseconds have elapsed.

This operation returns a non-zero value if atimeout occurred and a signal was not acquired. A TimeoutValue
of OXFFFF indicates that there is no time out and the operation will wait indefinitely.

15.2.3.4.2.38 XOr - Bitwise XOr

XOr Term 1= XOr(
Sourcel, /| Ter mMAr g=>I nt eger
Source2 /| Ter mMAr g=>I nt eger
Result /1 Not hing | SuperNane

) => Integer
Sourcel and Source? are evaluated as integer data types, a bit-wise XOR is performed, and the result is
optionally stored in Result.

15.2.3.5 User Terms
User Term ;= NameString(/1 NameSt ri ng=>Met hodTer m
ArgLi st
) => Dat aObj ect
NameString must be referring to an existing method object in the Name Space. It can either be an absolute
Name Space path or else it must be accessible at the current scope of invocation. The number of arguments

in ArgList must match the number of arguments declared in the method object.

15.2.3.6 Data Objects
There are four different types of data objects:
Buffer terms

285

Package terms
Literal dataterms
Data macros

15.2.3.6.1 Buffer — Declare Buffer Object
Buf f er Term : = Buffer(
BuffSize /1 Not hing |
/| Ter mMAr g=>I nt eger
) {String | ByteList}
Declares a Buffer, of size BuffSize and initial value of Initializer (ByteList).

The optional BuffSize parameter specifies the size of the buffer and the initial value is specified in Initializer
ByteList. If BuffSize is not specified, it defaultsto the size of initializer. If the count is too small to hold the
value specified by initiaizer, initializer size is used. For example, al four of the following examples generate
the same datum in name space, athough they have different ASL encodings:

Buf f er (10) {“P00. 00A"}

Buf f er (Arg0) {0x50 0x30 0x30 Ox2e 0x30 0x30 Ox41}

Buf fer (10) {0x50 0x30 0x30 Ox2e 0x30 Ox30 Ox41 0x00 0x00 0x00}
Buffer() {Ox50 0x30 Ox30 Ox2e 0x30 0x30 0x41 0x00 0x00 Ox00}

15.2.3.6.2 Package — Declare Package Object
PackageTerm : = Package(
NumElements /1 Not hing |
/1 Byt eConst
) {PackagelLi st}

Declares an unnamed aggregation of data items, constants, and/or references to control methods. The size of
the package is NumElements. Packagel ist contains the list data items, constants, and/or control method
references used to initialize the package. If NumElements is absent, it is set to match the number of elements
in the PackageL ist. If NumElements is present and greater than the number of elementsin the Packagel ist,
the default entry Undefined is used to initialize the package elements beyond those initialized from the
PackagelL ist. Evaluating an undefined element will yield an error, but they can be assigned values to make
them defined. It is an error for NumElements to be less than the number of elementsin the Packagel ist

There are two types of package elements in the PackageL ist: data objects and references to control methods.
Note: If non-method code package objects are implemented in an ASL compiler, evaluations of these
objects are performed within the scope of the invoking method and are performed when the containing
definition block is loaded. This means that the targets of all stores, loads, and referencesto the locals,
arguments, or constant terms are in the same name scope as the invoking method.

Example 1:

286

Package () {
3

9,
“ACPI 1.0 COWPLI ANT",
Package () {
“CheckSum=>",
Package () {
7

9

o

}

Example 2: This example defines and initializes a two-dimensional array.

Package () {
Package () {11, 12, 13},
Package () {21, 22, 23}
}

Example 3: Thisexampleisalega encoding, but of no apparent use.

Package (){}
Example 4: This encoding allocates space for ten things to be defined later (see the Name and Index term
definitions).

Package (10) {}

15.2.3.6.3 Literal Data Terms
Literal Dataterms include:

Integers

Strings

Constant data terms

15.2.3.6.3.1 Integers

I nt eger = ByteConst | WordConst | DwWrdConst
Byt eConst = 0x00- Oxf f

Wor dConst = 0x0000- Oxffff

DWor dConst = 0x00000000- Oxffffffff

Using the above grammar to define an object containing the value of integer causesthe ASL compiler to
automatically generate the proper width of the defined integer (Byte, Word, or DWord).

15.2.3.6.3.2 Strings

String = " AsciiCharlList

Asci i Char Li st = Nothing | <AsciiChar Ascii CharlList>
Asci i Char = 0x01- Ox7f

Nul I Char = 0x00

The above grammar can be used to defme an object containing a read-only string value. The default string
value is the null string, which has 0 bytes available for storage of other values.
Since literal strings are read-only constants, the following ASL statement (for example) is not supported:

287

Store(“ABC’, "DEF")

However, the following sequence of statements is supported:
Name(STR, " DEF")

Store(“ABC’, STR

15.2.3.6.3.3 Constant Data Terms

Const Term := Zero | One | Ones | Revision
The constant declaration terms are Zero, One, Ones, and Revision.

15.2.3.6.3.3.1 Zero - Constant Zero Object
The constant Zero object is an object of type Integer that will always read as all bits clear. Writes to this
object are not allowed.

15.2.3.6.3.3.2 One - Constant One Object
The constant One object is an object of type Integer that will always read the L Sb as set and all other bits as
clear (that is, the value of 1). Writesto this object are not allowed.

15.2.3.6.3.3.3 Ones - Constant Ones Object
The constant Ones object is an object of type Integer that will always read as all bits set. Writes to this object
are not allowed.

15.2.3.6.3.3.4 Revision — Constant Revision Object
The constant Revision object is an object of type Integer that will always read as the revision of the AML
interpreter.

15.2.3.6.4 Data Macors
The data macros are:
EISAID terms.
ResourceTemplate terms.

15.2.3.6.4.1 EISAID Macro - Convert EISA ID String To Integer
El SAl DTer m ;= EISAID(
EISAIDString /1String
) => DWordConst

Converts EISAIDString, a 7-character text string argument, into its corresponding 4-byte numeric EISA ID
encoding. The can be used when declaring 1Ds for devices that have EISA IDs.

15.2.3.6.4.2 ResourceTemplate Macro — Convert Resource To Buffer Format

Resour ceTenpl at eTer m : = ResourceTemplate() {ResourceMacroList} => BufferTerm
For afull definition of the ResourceTemplateTerm macro, see section 6.4.1.

15.2.3.7 Miscellaneous Objects
Miscellaneous objects include:

Debug aobjects

ArgX objects

288

Loca X objects

15.2.3.7.1 Debug Data Object

DebugTer m : = Debug

The debug data object is avirtual data object. Writes to this object provide debugging information. On at
least debug versions of the interpreter any writes into this object are appropriately displayed on the system’s
native kernel debugger. All writes to the debug object are otherwise benign. If the system isin use without a
kernel debugger, then writes to the debug object are ignored. The following table relates the ASL term types
that can be written to the Debug object to the format of the information on the kernel debugger display.

Table 15-16 Debug Object Display Formats

ASL Term Type Display Format

Numeric dataobject | All digits displayed in hexadecimal format.

String data object String is displayed

Object reference Information about the object is displayed (for example, object type and object
name), but the abject is not evaluated.

The Debug object is awrite-only object; attempting to read from the debug object is not supported.

15.2.3.7.2 ArgX — Argument Data Objects

ArgTerm = Arg0 | Argl | Arg2 | Arg3 | Arg4 | Arg5 | Argé6

Up to 7 argument object references can be passed to a control method. On entry to a control method, only the
argument objects that are passed are usable.

15.2.3.7.3 LocalX - Local Data Objects
Local Term := Local 0 | Locall | Local2 | Local3 | Local4 | Local5
Local 6 | Local 7

Up to 8 local objects can be referenced in a control method. On entry to a control method these objects are
uninitialized and cannot be used until some value or reference is stored into the object. Once initialized, these
objects are preserved in the scope of execution for that control method.

289

16. ACPI Machine Language (AML) Specification

This section formally defines the ACPI Control Method Machine Language (AML) language. AML isthe
ACPI Control Method virtual machine language, machine code for a virtual machine which is supported by
an ACPI-compatible OS. ACPI control methods can be written in AML, but humans ordinarily write control
methodsin ASL.

AML isthe language processed by the ACPI method interpreter. It is primarily a declarative language. It's
best not to think of it as a stream of code, but rather as a set of declarations that the ACPI interpreter will
compile into the ACPI name space at definition block load time. For example, notice that DefByte allocates
an anonymous integer variable with abyte size initial value in ACPI space, and passesin aninitial value.
The bytein the AML stream that defines the initial value is not the address of the variabl€e' s storage location.

An OEM or BIOS vendor needs to write ASL and be ableto single step AML for debugging. (Debuggers
and other ACPI control method language tools are expected to be AML level tools, not source level tools.)
An ASL trandator implementer must understand how to read ASL and generate AML. An AML interpreter
author must understand how to execute AML.

AML and ASL are different languages though they are closely related.

All ACPI-compatible OSes must support AML. A given user can define some arbitrary source language (to
replace ASL) and write atool to trandate it to AML. However, the ACPI group will support asingle
trandator for asingle language, ASL.

16.1 Notation Conventions
The notation conventions in the table below help the reader to interpret the AML formal grammar.

Table 16-1 AML Grammar Notation Conventions

Notation Convention Description Example

Oxdd Refersto abytevalue expressed as2 | 0x21
hexadecimal digits.

Number in bold. Denotes the encoding of the AML

term.

Term => Evaluated Type Shows the resulting type of the

evauation of Term.

Single quotes (*)

Indicate constant characters.

‘A’ =>0x41

Term:=Term Term ...

The term to the left of := can be
expanded into the sequence of terms
on the right.

aterm := bterm cterm means that
aterm can be expanded into the two-
term sequence of bterm followed by
cterm.

Term Term Term ...

Terms separated from each other by
spaces form an ordered list.

Angle brackets (< >)

Used to group items.

<ab> | <c d> means either
aborcd.

Bar symbol (|)

Separates aternatives.

aterm := bterm | [cterm dterm]
means the following constructs are
possible:

bterm

290

Notation Convention Description Example

cterm dterm
aterm := [bterm | cterm] dterm
means the following constructs are
possible:

bterm dterm

cterm dterm

Dash character (-) Indicates arange. 1-9 means asingle digit in therange 1

to 9inclusive.

Parenthesized term following | The parenthesized term is the repeat aterm(3) means aterm aterm aterm.

another term. count of the previous term. bterm(N) means N number of bterms.

16.2 AML Grammar Definition
This section defines the byte values that make up an AML byte stream.
The AML encoding can be categorized in the following groups:
- Name objects encoding
Data objects encoding
Package length encoding
Term objects encoding
Miscellaneous objects encoding

16.2.1 Top Level AML
AM_Code
Def Bl ockHdr

Def Bl ockHdr Ter i st
<as described in section 5.2.3>

16.2.2 Name Objects Encoding

LeadNanmeChar =‘A | B | *'C | ‘D | 'E | ‘F | ‘G| ‘H ||y
| 'k | "L | *M | N | "O | 'P | "Q | 'R | *S |
‘T UV W XY)z

Name Char ='0 | ' | 2| '3 | 4|5 e T] 8 Y
| LeadNameChar

Root Char =\

Par ent Pr ef i xChar =N

‘A7 = 0x41- 0x5a

L = Ox5f

‘0-t Y = 0x30- 0x39

“\ = 0x5c

tA = 0Ox5e

NameSeg = <LeadNaneChar NaneChar NanmeChar NaneChar >
/1 Note that NameSegs shorter than 4 characters are
/1 filled with trailing ‘_'s.

NameStri ng = <Root Char NanePat h> | <PrefixPath NanePat h>

Prefi xPat h = Nothing | <~ PrefixPath>

NanmePat h = Nul I Name | NameSeg | Dual NamePath | Ml ti NanePat h

Nul | Nane = 0x00

Dual NanePat h = Dual NarmePrefi x NameSeg NanmeSeg

Dual NanePrefi x = Ox2e

Mul ti NanePat h = Mul ti NamePrefi x SegCount NaneSeg(SegCount)

Mul ti NanePrefix = Ox2f

291

SegCount .= ByteData

/'l SegCount can be from1l to 255.

/1 Ml ti NanmePrefix(35) => 0x2f 0x23

/1 and followi ng by 35 NanmeSegs.

/'l So, the total encoding |ength

/1 will be 1 + 1 + 35*4 = 142.

/1 Note that:

/1 Dual NanePrefi x NameSeg NaneSeg

/1 has a smaller encoding than the

/'l equival ent encoding of:

/1 Mul ti NanePrefi x(2) NameSeg NameSeg
Super Nane = NanmeString | Arglbj | Local Obj | DebugObj | Defl ndex

16.2.3 Data Objects Encoding

Dat a(bj ect ;= Literal Data | DefBuffer | DefPackage
Dat a(bj ect Li st = Not hi ng | <DataObject Data(bjectList>
Literal Data = ByteConst | WordConst | DWordConst | String | ConstOhj |

Revi si onOp

Comput at i onal Dat a Literal Data | DefBuffer

Byt eConst = BytePrefix ByteData
Byt ePrefi x = Ox0a
Wor dConst = WordPrefix WordDat a
Wor dPrefi x = 0x0b
DWor dConst = DWordPrefix DWrdDat a
DWor dPref i x = Ox0c
String = StringPrefix AsciiCharList Null Char
StringPrefix = 0x0d
Const Obj = ZeroOp | Onep | OnesOp
Byt eLi st = Nothing | <ByteData BytelList>
Byt eDat a = 0x00- Oxff
Wor dDat a = ByteData ByteData
/1 0x0000- Oxf f f f
DWor dDat a = ByteData ByteData ByteData ByteData

/1 0x00000000- Oxffffffff

Asci i Char Li st Not hi ng | <Ascii Char Ascii CharlList>

Asci i Char = 0x01- Ox7f

Nul I Char = 0x00

Zer oOp = 0x00

OneOp = 0x01

OnesOp = Oxff

Revi si onOp = Ext OpPrefix 0x30
Ext OpPrefi x = 0x5b

16.2.4 Package Length Encoding

PkgLengt h : = PkgLeadByte |
<PkgLeadByt e Byt eData> |
<PkgLeadByt e ByteData ByteData> |
<PkgLeadByt e ByteData ByteData ByteData>

292

PkgLeadByt e ;= <bit 7-6: follow ByteData count>
<bit 5-4: reserved>
<bit 3-0: least significant package | ength byte>
/1 Note: The high 2 bits of the first byte reveal how
/1 many follow bytes are in the PkgLength. |If the
/1 PkgLength has only one byte, bit O through 5 are
/1 used to encode the package length (i.e. values
/1 0-63). |If the package length value is nore than
/1 63, nmore than one byte nust be used for the
/1 encoding in which case bit 5 and 4 of the
/1 PkgLeadByte are reserved and nust be zero. |If
/1 multiple bytes encoding is used, bits 3-0 of the
/1 PkgLeadByte becone the least significant 4 bits
/1 of the resulting package |l ength value. The next
/1 ByteData will becone the next |east significant
/1 8 bits of the resulting value and so on

16.2.5 Term Objects Encodlng
Ter nbj NameSpaceModi fi erbj | NamedObj | TypelOpcode |
Type2QOpcode | User Ter nObj

Ter nmii st = Nothing | <TernObj Ternlist>

Ter mAr g = Type2QOpcode | DataOhject | UserTermObj | ArgObj | Local Obj
User Ter nbj = NaneString Ter mArgLi st

Ter mAr gLi st = Nothing | <TermArg Ter mArgLi st>

Obj ect Li st = Nothing | <Object ObjectlList>

bj ect = NaneSpaceMdi fierCbj | NanmedObj

16.2.5.1 Name Space Modlfler Objects Encoding

NameSpaceModi fi er Obj Def Alias | DefNanme | Def Scope

Def Al i as = AliasOp NaneString NaneString

Al'i asOp = 0x06

Def Nare = NaneOp NaneString DataObject

NaneOp = 0x08

Def Scope = ScopeOp PkgLength NameString Ternli st
ScopeOp = 0x10

16.2.5.2 Named Objects Encoding
NamedQbj .= DefBankField | DefCreateBitField | DefCreateByteField |
Def Creat eDWordFi el d | Def CreateField | Def CreateWrdField
| DefDevice | DefEvent | DefField | DeflndexField |
Def Met hod | Def Mutex | Def OpRegi on | Def Power Res |
Def Processor | Def Ther mal Zone

Def BankFi el d = BankFi el dOp PkgLength NameString NaneString BankVal ue
Fi el dFl ags Fi el dLi st

BankFi el dOp = Ext OpPrefix 0x87

BankVal ue = Ter mAr g=>I nt eger

Fi el dFI ags

Fi el dLi st

Fi el dEI emrent
NamedFi el d
Reser vedFi el d
AccessFi el d
AccessType

AccessAttrib

Def CreateBitField
CreateBitFiel dOp
Sour ceBuf f

Bi t | ndex

Def Cr eat eByt eFi el d
Cr eat eByt eFi el dOp
Byt el ndex

Def Cr eat eDWor dFi el d
Cr eat eDWor dFi el dOp

Def Creat eFi el d
Creat eFi el dOp
NunBi t s

Def Cr eat eWor dFi el d
Cr eat eWor dFi el dOp

Def Devi ce
Devi ceOp

Def Event
Event Op

Def Fi el d
Fi el dop

Def | ndexFi el d
I ndexFi el dOp

Def Met hod
Met hodOp

293

Byt eDat a

/1 bit 0-3: AccessType
/1 0: AnyAcc

/1 1: ByteAcc

/1 2: WordAcc

/1 3: DWordAcc

/1 4: Bl ockAcc

/1 5: SMBSendRecvAcc
/1 6: SMBQui ckAcc

/1 bit 4: LockRule

/1 0: NoLock

/1 1: Lock

/1 bit 5-6: UpdateRule

/1 0: Preserve
/1 1: WiteAsOnes
/1 2: WiteAsZeros

/1 bit 7: reserved (nust be 0)

Not hi ng | <Fi el dEl enent Fi el dLi st>
NamedFi el d | ReservedField | AccessField
NameSeg PkglLength

0x00 PkgLength

0x01 AccessType AccessAttrib

Byt eDat a

/] Same as AccessType bits of FieldFlags
Byt eDat a

CreateBitFiel dOp SourceBuff Bitlndex NameString
0x8d

Ter mAr g=>Buf f er Obj

Ter mAr g=>| nt eger

Creat eByt eFi el dOp SourceBuff Bytel ndex NanmeString
0x8c
Ter mAr g=>| nt eger

Cr eat eDWor dFi el dOp Sour ceBuff Bytel ndex NameString
Ox8a

Creat eFi el dOp SourceBuff Bitlndex NunBits NaneString
Ext OpPrefix 0x13
Ter mAr g=>| nt eger

Creat eWor dFi el dOp Sour ceBuff Bytel ndex NanmeString
0x8b

Devi ceOp PkgLength NameString ObjectLi st
Ext OpPrefi x 0x82

Event Op NanmeStri ng
Ext OpPrefi x 0x02

Fi el dOp PkgLength NaneString Fi el dFl ags Fi el dLi st
Ext OpPrefi x 0x81

I ndexFi el dOp PkgLength NanmeString NanmeString Fiel dFl ags
Fi el dLi st
Ext OpPrefi x 0x86

Met hodOp PkgLength NameString Met hodFl ags Ternii st
0x14

294

Met hodFl ags

Def Mut ex
Mut exOp
SyncFl ags

Def OpRegi on
OpRegi onOp

Regi onSpace

Regi onOF f set
Regi onLen

Def Power Res

Power ResOp
Syst enlLevel
Resour ceOr der

Def Pr ocessor

Processor Op
Procl D

PBI kAddr

PBI kLen

Def Ther mal Zone
Ther mal ZoneQp

Byt eDat a

/1 bit 0-2: ArgCount (0-7)

/1 bit 3: SerializeFlag

I 0: Not Serialized

I 1: Serialized

Il bit 4-7: reserved (must be 0)

Mut exOp NanmeString SyncFl ags

Ext OpPrefix 0x01

Byt eDat a

/1 bit 0-3: SyncLevel (0x00-0x0f)
Il bit 4-7: reserved (must be 0)

OpRegi onOp NaneString Regi onSpace Regi onOf f set Regi onLen
Ext OpPrefix 0x80

Byt eDat a

/1 0x00: Systenm\venory

/1 0x01l: System O

/1 0x02: PCl_Config

/1 0x03: EnbeddedContr ol
/1 0x04: SMBus

/] 0x80-0xff: user defined
Ter mAr g=>DWor dDat a

Ter mAr g=>DWor dDat a

Power ResOp PkgLength NameString Systenievel ResourceOrder
Obj ect Li st

Ext OpPrefix 0x84

Byt eDat a

Wor dDat a

Processor Op PkgLength NameString Procl D PBl kAddr PBI kLen
bj ect Li st

Ext OpPrefix 0x83

Byt eDat a

DWor dDat a

Byt eDat a

Ther mal ZoneOp PkglLength NameString ObjectLi st
Ext OpPrefi x 0x85

16.2.5.3 Type 1 Opcodes Encoding

TypelQpcode

Def Br eak
Br eakOp

Def Br eakPoi nt
Br eakPoi nt Op

Def El se
El seOp

Def Fat al
Fat al Op
Fat al Type
Fat al Code
Fatal Arg

Def Break | DefBreakPoint | DefFatal | DeflfEl se | DeflLoad
| Def Noop | DefNotify | DefRelease | DefReset | DefReturn
| DefSignal | DefSleep | DefStall | DefUnload | DefWile

Br eakOp
Oxa5

Br eakPoi nt Op
Oxcc

Not hing | <El seOp PkgLength TernLi st>
Oxal

Fatal Op Fatal Type Fatal Code Fatal Arg
Ext OpPrefix 0x32

Byt eDat a

DWor dDat a

Ter mAr g=>| nt eger

Def | f El se
1 fOp

Predi cat e

Def Load
LoadOp
DDBHandl eObj ect

Def Noop
NoopGp

Def Noti fy
Noti f yOp
Not i f yObj ect
Not i f yVal ue

Def Rel ease
Rel easeOp
Mut exCbj ect

Def Reset
Reset Op
Event Obj ect

Def Ret urn
Ret ur nOp
Argbj ect

Def Si gnal
Si gnal Op

Def Sl eep

Sl eepOp
MsecTi me

Def St al |
Stal |l Op
UsecTi ne

Def Unl oad
Unl oadOp

Def Wi | e
Vihi | eOp

16.2.5.4 Type 2 Opcodes
Type2Qpcode

Def Acquire
Acqui reOp

| fOp PkglLength Predicate Ternli st Def El se
Oxa0
Ter mAr g=>| nt eger

LoadOp NaneString DDBHandl eObj ect
Ext OpPrefix 0x20
Super Nane

NoopQp
Oxa3

NotifyOp Noti fyObject NotifyVal ue
0x86

Super Nane

Ter mAr g=>I nt eger

Rel easeOp Mut exObj ect
Ext OpPrefix 0x27
Super Nane

Reset Op Event Obj ect
Ext OpPrefix 0x26
Super Nane

Ret urnOp ArgObj ect
Oxad
Ter mAr g=>Dat a(bj ect

Si gnal Op Event Obj ect
Ext OpPrefix 0x24

Sl eepOp MSecTi ne
Ext OpPrefix 0x22
Ter mAr g=>| nt eger

Stal | Op USecTi ne
Ext OpPrefix 0x21
Ter mAr g=>Byt eDat a

Unl oadOp DDBHandl eObj ect
Ext OpPrefi x Ox2a

Whi | eOp PkgLength Predicate TernLi st

295

Oxa2

Encoding

;= Def Acquire | DefAdd | DefAnd | DefBuffer | DefConcat |
Def CondRef Of | Def Decrement | DefDerefOf | DefDivide |
Def Fi ndSet LeftBit | DefFindSetRi ghtBit | Def FronBCD |
Defl ncrenment | Deflndex | DeflLAnd | DefLEqual |
Def LGreater | DefLG eaterEqual | DeflLess | DeflLLessEqual
| DefLNot | DefLNotEqual | DefLOr | DefMatch |
Def Mul tiply | Def NAnd | Def NOr | Def Not | Def Object Type |
Def O | DefPackage | Def RefOf | DefShiftlLeft |
Def shiftRi ght | DefSizeOf | DefStore | DefSubtract |
Def ToBCD | DefWait | Def XOr

Acqui reOp Mut exObj ect Ti meout
Ext OpPrefi x 0x23

296

Ti meout = WordDat a

Def Add = AddOp Operandl Operand2 Target
AddOp = 0x72

Oper andl = Ter mAr g=>I nt eger

Oper and2 = Ter mAr g=>I nt eger

Tar get = Super Narme | Nul | Nanme

Def And = AndOp Operandl Operand2 Target
AndOp = Ox7b

Def Buf f er = Buf ferOp PkgLength BufferSize ByteLi st
Buf f er Op = Ox11

Buf fer Si ze = Ter mAr g=>I nt eger

Def Concat = Concat Op Datal Data2 Target
Concat Op = Ox73

Dat al = Ter mAr g=>Conput at i onal Dat a

Dat a2 = Ter mAr g=>Conput at i onal Dat a

Def CondRef O = CondRef OF Op Super Nanme Super Nane
CondRef OF Op = Ext OpPrefix 0x12

Def Decr enent = Decrenment Op Super Nane

Decr ement Op = Ox76

Def Der ef Of = Deref O Op Obj Ref erence

Der ef OfF Op = 0x83

Obj Ref erence Ter mAr g=>Cbj ect Ref erence
/] Obj ect Ref erence is an object produced by terns

//such as Index, RefOf or CondRef Of.

Def Di vi de = DivideOp Dividend Divisor Renmai nder Quotient
Di vi deOp = 0x78

Di vi dend = Ter mAr g=>I nt eger

Di vi sor = Ter mAr g=>I nt eger

Remai nder = Tar get

Quoti ent = Tar get

Def Fi ndSet Left Bi t
Fi ndSet LeftBi t Op
Oper and

Fi ndSet Left Bi t Op Oper and Tar get
0x81
Ter mAr g=>| nt eger

Def Fi ndSet Ri ght Bi t
Fi ndSet Ri ght Bi t Op

Fi ndSet Ri ght Bi t Op Oper and Tar get
0x82

Def Fr onBCD = FronBCDOp BCDVal ue Tar get
Fr onBCDOp = Ext OpPrefix 0x28
BCDVal ue = Ter mAr g=>I nt eger

Def | ncr ement
I ncrement Op

I ncrement Op Super Nane
0x75

Def | ndex = I ndexOp BuffPkgObj | ndexVal ue Target
I ndexOp = 0x88

Buf f PkgObj = Ter mAr g=>Buf fer or Package object

| ndexVal ue = Ter mAr g=>I nt eger

Def LAnd LAndOp Operandl Operand2

LANdOp 0x90

Def LEqual
LEqual Op

Def LGr eat er
LG eater Op

Def LG eat er Equal
LG eat er Equal Op

Def LLess
LLessOp

Def LLessEqual
LLessEqual Op

Def LNot
LNot Op

Def LNot Equal
LNot Equal Op

Def LOr
LOr Op

Def Mat ch

Mat chOp
Sear chPkg
Opcodel

Opcode2
St art | ndex

Def Mul ti ply
Mul ti pl yOp

Def NAnd
NAndOp

Def NOY
NOr Op

Def Not
Not Op

Def Obj ect Type
Obj ect TypeOp

Def Or
OO

Def Package
PackageOp
Nun€l enent s

PackageEl erment Li st

PackageEl ement

LEqual Op Operandl Operand2

0x93

LG eater Op Operandl Operand2

0x94

LG eat er Equal Op Operandl Oper and2

LNot Op LLessOp

LLessOp Operandl Operand2

0x95

LLessEqual Op Operandl Operand2

LNot Op LGreater Op

LNot Op Oper and
0x92

LNot Equal Op Operandl Oper and2

LNot Op LEqual Op

LOr Op Operandl Operand2

0x91

Mat chOp Sear chPkg Opcodel Operandl Opcode2 Operand2

St art | ndex

0x89

Ter MAr g=>PackageObj ect
Byt eDat a

/1 0: MR

Il 1. MEQ

/1 2: ME

/1 3 MT

Il 4: MGE

/Il 5: MGT

Byt eData (sanme as Opcodel)

Ter mAr g=>| nt eger

Mul tipl yOp Operandl Operand2 Tar get
ox77

NAndOp Operandl Operand2 Tar get

Ox7c

NOr Op Operandl Operand2 Tar get

Ox7e

Not Op Operand Tar get

0x80

Obj ect TypeOp Super Nane

0x8e

O Op Operandl Operand2 Target

0x7d

PackageOp PkgLength NunEl enents PackageEl ement Li st

0x12
Byt eDat a

Not hi ng | <PackageEl ement PackageEl ement Li st >
Dat aCbj ect | NanmeString

297

298

Def Ref Of
Ref OF Op

Def Shi f t Lef t
ShiftLeftOp
Shi f t Count

Def Shi f t Ri ght

Ref Of Op Super Nane
Ox71

ShiftLeftOp Operand ShiftCount Target
0x79
Ter mAr g=>I nt eger

Shi ft R ght Op Operand Shi ft Count Tar get

Shi ft Ri ght Op Ox7a

Def Si zeO! = SizeO Op Super Nane

Si zeOf Op = 0x87

Def Store = StoreQp Operand Super Nane
St oreOp = 0x70

Def Subt r act

Subtract Op Operandl Operand2 Tar get

Subtract Op 0x74

Def ToBCD = ToBCDOp Operand Tar get
ToBCDOp = Ext OpPrefix 0x29

Def Wai t = Wait Op Event Obj ect Ti nmeout
Wit Op = Ext OpPrefix 0x25

Def XOr = XOr Op Operandl Operand2 Target
XOr Op = Ox7f

16.2.6 Miscellaneous Objects Encoding
Miscellaneous objects include:

Arg objects

Local objects

Debug aobjects
16.2.6.1 Arg Objects Encoding
Ar gObj := Arg0Qp | ArglQp | Arg20p | Arg3Cp | Arg4Cp | Arg5Qp |

Arg6p

Argop = Ox68
Arglop = Ox69
Arg20p = Ox6a
Ar g3 = Ox6b
Arg4Qp = 0x6¢C
Ar g5 = Ox6d
Ar g60p = Ox6e

16.2.6.2 Local Objects Encoding

Local Obj ;= Local 00p | Local 10p | Local 20p | Local 30p | Local 40p |
Local 50p | Local 60p | Local 70p
Local 0Op = 0x60
Local 10p = 0Ox61
Local 20p = 0x62
Local 30p = 0x63
Local 40p = 0Ox64
Local 50p = 0x65
Local 60p = 0x66
Local 70p = 0Ox67

299

16.2.6.3 Debug Objects Encoding
Debugbj : = DebugOp
DebugOp ;= Ext OpPrefix 0x31

16.3 AML Byte Stream Byte Values
The following table lists all the byte values that can be found in an AML byte stream and the meaning of
each byte value. Thistableis useful for debugging AML code.

Table 16-2 AML Byte Stream Byte Values

Encoding Encoding Name Encoding Fixed List Arguments Variable List
Value Group Arguments
0x00 Zer oOp Dat a Obj ect -- --

0x01 OneOp Dat a Obj ect -- --

0x02- 0x05 -- -- -- --

0x06 Al'i asOp Term Obj ect NameString NaneString --

0x07 -- -- -- --

0x08 NanmeQp Term Obj ect NameString Dat aObj ect --

0x09 -- -- -- --

0x0A Byt ePrefix Dat a Obj ect Byt eDat a --

0x0B Wor dPr ef i x Dat a Obj ect Wor dDat a --

0x0C Dwor dPrefi x Dat a Obj ect DWor dDat a --

0x0D StringPrefix Dat a Obj ect Ascii CharLi st Null Char --

OXOE- OXOF | -- -- -- --

0x10 ScopeOp Term Obj ect NameStri ng Ter nmii st
Ox11 Buf f er Op Term Obj ect Ter mAr g Byt eLi st
0x12 PackageOp Term Obj ect Byt eDat a Dat a(bj ect Li st
0x13 -- -- -- --

0x14 Met hodOp Term Obj ect NameString ByteData Ter nmii st
0x15- 0x2D -- -- -- --

Ox2E (‘.") | Dual NanePrefi x Name Obj ect NameSeg NameSeg --

Ox2F (“/") | Multi NanePrefi x Name Obj ect Byt eDat a NameSeg(N) --

0x30- 0x40 -- -- -- --

0x41- 0x5A NameChar Name Obj ect -- --
(A-Z)

Ox5B (‘[') | Ext OpPrefix -- Byt eDat a --

0x5B 0x01 Mut exOp Term Obj ect NameString ByteData --

0x5B 0x02 Event Op Term Obj ect NameStri ng --

0x5B 0x12 CondRef OF Op Term Obj ect Super Nanme Super Nane --

300

Encoding Encoding Name Encoding Fixed List Arguments Variable List

Value Group Arguments

0x5B 0x13 Creat eFi el dOp Term Obj ect TermArg TermArg TermArg | --
NameStri ng

0x5B 0x20 LoadOp Term Obj ect NameString Super Nanme --

0x5B 0x21 Stal | Op Term Obj ect Ter mAr g --

0x5B 0x22 Sl eepOp Term Obj ect Ter mAr g --

0x5B 0x23 Acqui reOp Term Obj ect Super Name Wor dDat a --

0x5B 0x24 Si gnal Op Term Obj ect Super Nane --

0x5B 0x25 Wai t Op Term Obj ect Super Name Ter mAr g --

0x5B 0x26 Reset Op Term Obj ect Super Nane --

0x5B 0x27 Rel easeOp Term Obj ect Super Nane --

0x5B 0x28 Fr onBCDOp Term Obj ect Ter mAr g Tar get --

0x5B 0x29 ToBCD Term Obj ect Ter mAr g Tar get --

0x5B 0x2A Unl oadOp Term Obj ect Super Nane --

0x5B 0x30 Revi si onOp Dat a Obj ect -- --

0x5B 0x31 DebugOp Debug Obj ect -- --

0x5B 0x32 Fat al Op Term Obj ect Byt eDat a DWor dDat a --
Ter mAr g

0x5B 0x80 OpRegi onOp Term Obj ect NameString ByteData --
TermArg TernmArg

0x5B 0x81 Fi el dOp Term Obj ect NameString ByteData Fi el dLi st

0x5B 0x82 Devi ceOp Term Obj ect NameStri ng bj ect Li st

0x5B 0x83 Processor Op Term Obj ect NanmeString Byt eDat a Obj ect Li st
DWor dDat a Byt eDat a

0x5B 0x84 Power ResOp Term Obj ect NameString ByteData Obj ect Li st
Wor dDat a

0x5B 0x85 Ther mal ZoneQp Term Obj ect NameStri ng Obj ect Li st

0x5B 0x86 I ndexFi el dOp Term Obj ect NameString NanmeString Fi el dLi st
Byt eDat a

0x5B 0x87 BankFi el dOp Term Obj ect NameString NaneString Fi el dLi st
Ter mMArg Byt eDat a

0x5C (‘\") | Root Char Name Obj ect -- --

0x5D -- -- -- --

Ox5E (*~") | ParentPrefixChar Name Obj ect -- --

Ox5F -- -- -- --

0x60 (‘") | Local 0Op Local Object -- --

0x61 (‘a') | Local 10p Local Object -- --

301

Encoding Encoding Name Encoding Fixed List Arguments Variable List
Value Group Arguments
0x62 (‘b’) | Local 20p Local Object -- --
0x63 (‘c’') | Local 30p Local Object -- --
0x64 (‘d') | Local 40p Local Object -- --
0x65 (‘e’') | Local 50p Local Object -- --
0x66 (‘f') | Local 60p Local Object -- --
0x67 (‘g’) | Local 70p Local Object -- --
0x68 (‘h') | ArgoOp Arg bj ect -- --
0x69 (‘i') | ArglOdp Arg bj ect -- --
Ox6A (‘j') | Arg20p Arg bj ect -- --
0x6B (‘k') | Arg3Op Arg bj ect -- --
Ox6C (‘1") | Argddp Arg bj ect -- --
Ox6D (‘m) | ArgsOp Arg bj ect -- --
Ox6E (‘n’) | Arg6Op Arg bj ect -- --
OX6F -- -- -- --
0x70 St oreOp Term Obj ect Ter MAr g Super Nane --
0x71 Ref OF Op Term Obj ect Super Nane --
0x72 AddOp Term Obj ect TermArg Ter mArg Tar get --
0x73 Concat Op Term Obj ect TermArg Ter mArg Tar get --
0x74 Subtract Op Term Obj ect TermArg Ter mArg Tar get --
0x75 I ncrement Op Term Obj ect Super Nane --
0x76 Decr ement Op Term Obj ect Super Nane --
ox77 Mul tipl yOp Term Obj ect TermArg Ter mArg Tar get --
0x78 Di vi deOp Term Obj ect TermArg Ter mArg Tar get --
Tar get

0x79 ShiftlLeftOp Term Obj ect TermArg Ter mArg Tar get --
Ox7A Shi ft Ri ght Op Term Obj ect TermArg Ter mArg Tar get --
0x7B AndOp Term Obj ect TermArg Ter mArg Tar get --
0x7C NAndQOp Term Obj ect TermArg Ter mArg Tar get --
0x7D O O Term Obj ect TermArg Ter mArg Tar get --
OX7E NOr Op Term Obj ect TermArg Ter mArg Tar get --
Ox7F XOr Op Term Obj ect TermArg Ter mArg Tar get --
0x80 Not Op Term Obj ect Ter mMArg Tar get --
0x81 Fi ndSet LeftBi t Op Term Obj ect Ter mMArg Tar get --

302

Encoding Encoding Name Encoding Fixed List Arguments Variable List

Value Group Arguments

0x82 Fi ndSet Ri ght Bi t Op Term Obj ect Ter mArg Tar get --

0x83 Der ef OfF Op Term Obj ect Ter mAr g --

0x84- 0x85 -- -- -- --

0x86 Noti f yOp Term Obj ect Super Name Ter mAr g --

0x87 Si zeOf Op Term Obj ect Super Nane --

0x88 I ndexOp Term Obj ect TermArg Ter mArg Tar get --

0x89 Mat chOp Term Obj ect Ter mArg Byt eData --
Ter mArg Byt eDat a
TermArg TernmArg

0x8A Creat eDWor dFi el dOp | Term Obj ect TermArg Ter mArg --
NameStri ng

0x8B Cr eat eWor dFi el dOp Term Obj ect TermArg Ter mAr g --
NameStri ng

0x8C Cr eat eByt eFi el dOp Term Obj ect TermArg Ter mArg --
NameStri ng

0x8D CreateBitFiel dOp Term Obj ect TermArg Ter mArg --
NameStri ng

Ox8E Obj ect TypeOp Term Obj ect Super Nane --

0x8F -- -- -- --

0x90 LAndOp Term Obj ect TermArg Ter mArg --

0x91 LO Op Term Obj ect TermArg Ter mArg --

0x92 LNot Op Term Obj ect Ter mAr g --

0x92 0x93 LNot Equal Op Term Obj ect TermArg Ter mArg --

0x92 0x94 LLessEqual Op Term Obj ect TermArg Ter mArg --

0x95 0x92 LG eat er Equal Op Term Obj ect TermArg Ter mArg --

0x93 LEqual Op Term Obj ect TermArg Ter mArg --

0x94 LG eater Op Term Obj ect TermArg Ter mArg --

0x95 LLessOp Term Obj ect TermArg Ter mArg --

0x96- Ox9F -- -- -- --

0xA0 1 fOp Term Obj ect Ter mAr g Ter nmii st

OxAl El seOp Term Obj ect -- Ter nmii st

0xA2 Wi | eOp Term Obj ect Ter mAr g Ter nmii st

0xA3 NoopOp Term Obj ect -- --

OxA4 Ret ur nOp Term Obj ect Ter mAr g --

OxA5 Br eakOp Term Obj ect -- --

0OxA6- 0xCB

303

Encoding Encoding Name Encoding Fixed List Arguments Variable List
Value Group Arguments
0xCC Br eakPoi nt Op Term Obj ect -- --

0xCD- OXFE -- -- -- --

OxFF OnesOp Dat a Obj ect -- --

16.4 AML Encoding of Names in the Name Space
Assume the following name space exists:

\
SO
MVEM
SET
GET
S1
MVEM
SET
GET
CPU
SET
GET

Assume further that a definition block is loaded that creates a node \SO0.CPU.SET, and loads a block using it
as aroot. Assume the loaded block contains the following names:

STP1
AGET
AAPCI O
AAPCI 0. SBS
\S2
\ S2. 1 SA. COML
/\/\/\33
AAAS2. NEM
AAAS2 MEM SET
Scope(\ SO. CPU, SET. STP1) {
XYZ
AABC
~ABC. DEF

}

Thiswill be encoded in AML as:

' STP1'

Par ent Prefi xChar ' CGET_'

Par ent Pr ef i xChar Par ent Prefi xChar
Par ent Pr ef i xChar Par ent Prefi xChar
Root Char 'S2_ '

Root Char Mul ti NamePrefix 3 'S2_ '
Par ent Pr ef i xChar Par ent Prefi xChar
Par ent Pr ef i xChar Par ent Prefi xChar
Par ent Pr ef i xChar Par ent Prefi xChar

"PCI O’

Dual NanePr ef i x

"I SA’

"PCIO" ' SBS'

Par ent Prefi xChar ' S3

Par ent Pref i xChar Dual NamePrefix ' S2_ !

Parent Prefi xChar Multi NamePrefix 3 'S2_ "'

" VEM '
"NEM '

' SET_!

After the block is loaded, the name space will ook like this (names added to the name space by the loading

operation are shown in italics).

304

SO

S1

S2

S3

SET
GET
CPU
SET
STP1
XYz
ABC
DEF
GET
PCIO
SBS

SET
GET

SET
GET

I1SA
CcoM1
MEM
SET

APPENDIX A

ACPI Extensions for Display Adapters

Introduction

This section of the document describes a number of specialized ACPI methods to support motherboard
graphics devices.

In many cases, system manufacturers need to add special support to handle multiple output devices such as
panels and TV-out capabilities, as well as special power management features. Thisis particularly true for
notebook manufacturers. The methods described here have been designed to enable interaction between the
system BIOS, video driver, and operating system to smoothly support these features.

Definitions

Built-in display adapter: Thisis agraphics chip that is built into the motherboard and cannot be replaced.
ACPI information is valid for such built-in devices.

Add-in display adapter: Thisis agraphics chip or board that can be added or removed from the computer.
Because the system BIOS cannot have specific knowledge of add-in boards, ACPI information is not
available for add-in devices.

Boot-up display adapter: Thisis the display adapter programmed by the system BIOS during machine
power-on self-test (POST). It is the device upon which the machine will show the initial operating system
boot screen, as well as any system BIOS messages.

The system can change the boot-up display adapter, and it can switch between the built-in adapter and the
add-in adapter.

Display device: Thisisasynonym for the term display adapter discussed above.

Output device: Thisisadevice, which is arecipient of the output of adisplay device. For example, a CRT
or aTV isan output device.

Booting and Waking from Sleep and Waking from Hibernate

When an ACPI ready OS isinstalled on an ACPI-capable machine, the system BIOS must support three
different type of bootstrapping.

1. Booting the machine involves bringing up the machine from a clean (no power) state. The operating

system must do afull initialization and configuration of all drivers. (Thisis, of course, supported for
both ACPI and non-ACPI machines.)

Intel Microsoft Toshiba

306

2. Booting when waking from a hibernation state involves bringing up the machine from a clean (no
power) state. In this case the operating system will do only minimal reinitialization of the devices, and it
will continue running from a previously saved state.

3. Booting when waking from sleep involves bringing up the machine from a partially powered state and
should involved little or no changes from the system BIOS itself. The ACPI OS will, with the drivers,
re-enable any devices that were powered down.

To simplify the configuration and programming of the graphics device, the following rule should be
followed:

When coming out of any of these above states (booting, hibernation or sleep); the system BIOS
must reprogram the boot-up device (whether it is a built-in device or add-in device) to VGA text
mode (mode 0x3). The system BIOS should use the same internal code paths to accomplish thisin
each case.

Thiswill ensure the boot-up graphics device in always is the same state, whether booting the machine or
coming out of a sleeping state.

ACPI Docking
The OS must be made aware of an gject or dock event. Thisisdone by issuing a Notify(VGA, 0x81) in _EJ3
on Dock/Undock.

ACPI Namespace

Thisis an example of the display-related name space on an ACPI system

GPE /'l ACPl General purpose HW event
_LOx /1 Notify(VGA, 0x80) to tell the OS of the event, when user presses
/1 the hot key to switch the output status of the nonitor.
/1 Notify(VGA, 0x81) to tell the event to the CS, when there are any
/'l changes on the sub-devices for the VGA controller

SB
|- PCl
|- VGA /1 Define the VGA controller in the nane space
|- _PSO / PRO
|- _PS1 / PR1L
|- _PS3
|- _DOs /1 Method to control display output sw tching
| - _DOD /1 Method to retrieve informati on about child output devices
|- _ROM /1 Method to retrieve the ROMimage for this device
|- CRT /1] Child device CRT
|- _ADR /1 Hardware ID for this device
| - _DDC /1l Get EDID information fromthe nonitor device
|- _DCs /] Get current hardware status
|- _DGS /1 Query desired hardware active \ inactive state
| - _DSS /1 Set hardware active \ inactive state

307

|- _PSO \
|- _PS1 - Power nethods
|- _PS2 - for the output device
|- _PS3 /

|- LCD /1 Child device LCD
|- _ADR /1 Hardware ID for this device
| - _DDC /!l Get EDID information fromthe nonitor device
|- _DCs /] Get current hardware status
|- _DGS /1 Query desired hardware active \ inactive state
| - _DSS /1 Set hardware active \ inactive state
|- _BCL /1 Brightness control levels
|- _BCM /1 Brightness control nethod
|- _PSO \
|- _PS1 - Power nethods
|- _PS2 - for the output device
|- _PS3 /

|- TV /] Child Device TV
|- _ADR /1 Hardware ID for this device
| - _DDC /!l Get EDID information fromthe nonitor device
|- _DCs /] Get current hardware status
|- _DGS /1 Query desired hardware active \ inactive state
| - _DSS /] Set hardware active \ inactive state

The LCD device represents the built-in output device if such a device exist. Mobile PCs will aways have a
built-in LCD display, but desktop systems that have a built-in graphics adapter generally don’t have a built-
in output device.

Notify(VGA, 0x80) is an event that should be generated whenever the state of one of the output devices
attached to the VGA controller has been switched or toggled. This event will, for example, be generated
when the user presses a hotkey to switch the active display output from the LCD panel to the CRT.

Notify(VGA, 0x81) is an event that should be generated whenever the state of any output devices attached to
the VGA controller has been changed. This event will, for example, be generated when the user plugs-in or
remove a CRT from the VGA port. In this case, the OS will re-enumerate all devices attached to VGA
controller.

The event number is standardized because the event will be handled by the operating system directly under
certain circumstances (see _DOS method later in this specification).

Display-specific Methods

The methods described in this section are all associated with specific display devices. This device specific
association is represented in the namespace example in the previous section by the positioning of these
methods in a device tree.

_DOS - Enable/Disable Output Switching

Many ACPI machines currently reprogram the active display output automatically when the user presses the
display toggle switch on the keyboard. Thisis done because most video device drivers are currently not
capable of being notified synchronously of such state changes. However, this behavior violates the ACPI
specification, because the system modified some graphics device registers.

308

The existence of the _DOS method indicates that the system BIOS is capable of automatically switching the
active display output. If the system is capable of auto switching the output device then the_DOS method
must exist. If the system does not have the capability to auto switch the output device then the _DOS
method must not exist. If it exists at al, the_DOS method must be present for al display output devices.

Arguments:

Arg0=0: thesystem BIOS should not automatically switch (toggle) the active display output, but
instead just save the desired state change for the display output devicesin variables
associated with each display output, and generate the display switch event. The OS can
guery these state changes by calling the _DGS method

1: the system BIOS should automatically switch (toggle) the active display output, with no
interaction required on the OS part. The display switch event should not be generated in
this case.

2: _DGSvalues should be locked. It’'s highly recommended that the system BIOS do
nothing when hotkey pressed. No switch, no notification.

Return Value:
None

The _DOS method controls this automatic switching behavior. This method should do so by saving the
parameter passed to this method in a global variable somewhere in the BIOS data segment. The system BIOS
then checks the value of this variable when doing display switching. This method is also used to control the
generation of the display switching Notify(VGA, 0x80/0x81).

The system BIOS, when doing switching of the active display, must verify the state of the variable set by the
_DOS method. The default value of this variable must be 1.

_DOD - Enumerate all devices attached to the display adapter
This method is used to enumerate devices attached to the display adapter. This method is required.

On many laptops today, a number of devices can be connected to the graphics adapter in the machine. These
devices are on the motherboard and generally are not directly enumerable by the video driver; for this reason,
all motherboard VGA attached devices are listed in the ACPI namespace.

These devices fall into two categories. One isvideo output devices. For example, a machine with asingle
display device on the motherboard can have three possible output devices attached to it, suchasaTV, a
CRT, or apanel. Ancther is non-video output devices, for example, TV Tuner, DVD decoder, Video
Capture. They just attach to VGA and their power management are closely relatesto VGA.

Both ACPI and the video driver have the ability to program and configure output devices. This means that
both ACPI and the video driver must enumerate the devices using the same IDs. Because there is no standard
configurations for display output devices, no standard 1D generation mechanism can be used.

To solve this problem, the_DOD method returns alist of devices attached to the graphics adapter, along
with device-specific configuration information. This information will allow the cooperation between ACPI
components and the video driver.

309

Every child device enumerated in the ACPI namespace under the graphics adapter must be specified in this
list of devices.

Arguments:
None

Return Value:
A buffer containing an array of video device attributes as described in the table below.

Sample code:
Met hod (_DOD, 0) {
Return (package(){

0x00010100, /1l CRT, detectable by BICS
0x00010110, /1 LCD panel, detectable by BICS
0x00000200, /1 TV, not detectable by the BICS

0x00020000}) /'l enpty(unknown) device, attached to VGA device

Table A-1 Video Output Device Attributes

Bits Definition

15:.0 DeviceID - The device ID must match the IDs specified by Video Chip Vendors.
They must also be unique under VGA namespace.

16 BIOS Can detect the device

17 Non VGA output device whose power isrelated to the VGA device. This can be
used when specifying devices like TV Tuner, DVD decoder, Video Capture etc

20:18 For VGA multi-head devices, this specifies head 1D

31:21 Reserved; must be 0

Table A-2 Commonly used device IDs

Bits Definition
0x0100 Monitor
0x0110 Pandl
0x0200 TV

0 Other

Please contact the Video Chip vendors for other 1Ds.

_ROM — Get ROM Data
This method is used to get a copy of the display devices ROM data. This method is optional.

The data returned by this method can be used by the video driver to program the device. The format of the
data returned by this function is alarge linear buffer limited to 4K. The content of the buffer is defined by
the graphics IHV that builds this device. The format of this ROM data will traditionally be compatible with
the ROM format of the normal PCI video card, which will allow the video driver to program its device,
independently of motherboard vs. add-in card issues.

Arguments:

310

ArgO0: offset of the display device ROM data.
Argl: size of the buffer to fill in (up to 4K).

Output:
Buffer of bytes

Output Device-specific Methods

The methods in this section are methods associated with the display output device.

_ADR - Return the unique ID for this device

This method returns a unique 1D representing the display output device. All output devices must have a
unique hardware ID. This method isrequired for all The IDs returned by this method will appear in the list
of hardware IDs returned by the _DOD method.

Arguments:
None

Return Vaue:
32 bit device ID

Sample code:
Method (_ADR, 0) {
return(0x0100) // device ID for this CRT
}

This method is required for all output display devices.

_BCL — Query list of brightness control levels supported

This method allows the operating system to query alist of brightness level supported by built-in display
output devices. (This method in not allowed for externally connected displays.) This method is optional.

Each brightness level is a number between 0 and 100, and can be thought of as a percentage. 50 can be 50%
power consumption or 50% brightness, as defined by the OEM.

Arguments:
None

Return Value:
Buffer of bytes

Sample code:
Method (_BCL, 0) {
/I List of supported brightness levels
package(7){

311

80, // level when machine has full power
50, // level when machineis on batteries
/I other supported levels
20, 40, 60, 80, 100}
}

The first number in the package is the level of the panel when full power is connection to the machine. The
second number in the package is the level of the panel when the machineis on batteries. All other numbers
aretreated asalist of levels the OS will cycle through when the user toggles (via a keystroke) the brightness
level of the display.

These levels will be set using the _BCM method described in the following section.

_BCM - Set the brightness level

This method allows the OS to set the brightness level of the built-in display output device.
The operating system will only set levels that were reported viathe _BCL method.

Arguments:
Arg0: desired brightness level

Return Vaue:
None

Sample code:
Method (_BCM 1) { // Set the requested |evel }

The method will be called in response to a power source change or at the specific request of the end user, for
example, when the user presses a function key that represents brightness control.

_DDC - Return the EDID for this device
This method returns an EDID structure that represents the display output device. This method is optional.

Arguments:
Arg0: requested data length in bytes
0x01 == 128 bytes
0x02 == 256 bytes

Return Value:
0 —failure, invalid parameter
non-zero — requested data, 128 or 256 bytes of data

Sample code:
Met hod (_DDC, 2) {
If (LEqual (Arg0, 1)) { Return (Buffer(128){ ,,,, }) }
If (LEqual (Arg0, 2)) { Return (Buffer(256){ ,,,, }) }
Return (0)

312

The buffer will later be interpreted as an EDID data block. The format of this data is defined by the VESA
EDID specification.

_DCS — Return the status of output device
This method is required.

Arguments:
None

Return Vaue:
32 bit device status.

Table A-3 Device Status

Bits Definition
0 Output connector existsin the system now.
1 Output is activated
2 Output is ready to switch
3 Output is not defective (it is functioning properly)
4 Deviceis attached (this is optional)
5-31 Reserved — Must be zero
Example,

1. If theoutput signal is activated by _DSS, _DCS returns Ox1F or OxOF.

2. If the output signal isinactivated by DSS, _DCS returns Ox1D or OxOD.

3. If thedeviceis not attached or can not be detected, _ DCS returns 0xOxxxx. And should return
OxIxxxx if it is attached.

4. If the output signal cannot be activated, _ DCS returns Ox1B or Ox0B.

5. If the output connector does not exist (when undocked), _ DCS returns 0x00.

_DGS - Query Graphics State
This method is used to query the state (active or inactive) of the output device. _DGS is an optional method.

Arguments:
None

Return Vaue:
A 32bit device state.

Table A-4 Device State

Bits Definition

0 0 - next desired state is inactive

1 - means next desired state is active
1-31 Reserved — Must be zero

313

The desired state represents what the user wants to activate or deactivate, based on the special function keys
the user pressed. The desired state will be queried by the OS when it receives the display toggle event
(describes earlier).

_DSS — Device Set State
The OS will call this method when it determines the outputs can be activated or deactivated. The OS will
manage thisto avoid flickering as much as possible. This method is optional.

Arguments:
A 32bit device state.
Return Value:
None
A-3 Device Status
Bits Definition
0 0 -- Set output device to inactive state
1 -- Set output device to active state
30 0 -- Do whatever Bit31 requiresto do
1-- Don't do actual switching. But need to change DGS to next state.
31 0 -- Don't do actual switching, just cache the change
1 -- If Bit30=0, commit actual switching, including any _DSS with MSB=0
called before
If Bit30=1, don’t do actual switching, change DGSto next state.
1-29 Reserved — Must be zero
Example Usage:
OS may call in such an order to turn off CRT, and turn on LCD
CRT._DSS(0);
LCD._DSS(80000001L);
or
LCD._DSS(1);

CRT._DSS(80000000L);

OS may call in such an order to force BIOS to make _DGS jump to next state without actual CRT,
LCD switching

CRT._DSS(40000000L);

LCD._DSS(C0000001L);

Note on State Changes

It is possible to have any number of simultaneous active output devices. It is possibleto have 0, 1, 2 ... and
SO on active output devices. For example, it is possible for both the LCD device and the CRT device to be
active simultaneoudly. It isaso possible for all display outputs devices to be inactive (this could happenin a
system where multiple graphics cards are present).

314

The state of the output device is separate from the power state of the device. The "active" state represents
whether the image being generated by the graphics adapter would be sent to this particular output device. A
device can be powered off or in alow power mode but still be the active output device. A device can also be
in an off state but still be powered on.

Example of the display switching mechanism:

The laptop has three output devices on the VGA adapter. At this moment in time, the panel and the TV
are both active, while the CRT isinactive. The automatic display switching capability has been disabled
by the OS by calling _DOS(0), represented by global variable display switching = 0.

The system BIOS, in order to track the state of these devices, will have three global variable to track the
state of these devices. There are currently initialized to:

crt_active=0

panel_active=1

tv_active=1

The user now presses the display toggle switch, which would switch the TV output to the CRT.

The system BIOS first updates three temporary variables representing the desired state of output devices:
want_crt_active=1
want_panel_active=1
want_tv_active=0

Then the system BIOS checks the display_switching variable. Because this variable is set to zero, the
system BIOS does not do any device reprogramming, but instead generate a Notify(VGA, 0x80/0x81)
event for the display. This event will be sent to the OS.

The OS will call the _DGS method for each enumerated output device to determine which devices should
now be active. The OS will determine whether thisis possible, and will reconfigure the internal data
structure of the operating system to represent this state change. The graphics modes will be recomputed
and reset.

Finally, the OS will call the _DSS method for each output device it has reconfigured.

NOTE: The OS may not have called the _DSS routines with the same values and the _DGS routines
returned, because the user may be overriding the default behavior of the hardware-switching driver or
operating system-provided Ul. The data returned by the_DGS method (the want_XXX values) are only a
hint to the operating system as to what should happen with the output devices.

If the display_switching variable was set to 1, then the BIOS would not send the event, but instead
automatically reprogram the devices to switch outputs. Any legacy display notification mechanism could
also be performed at thistime.

315

PSC, 116, 154, 156

PSL, 116
Index -9
de PSR, 116, 196
Acx, 200 -
TACK 116 _PSv, 116
- ! PSW, 117, 154, 156
ADR, 116, 117, 119 - ! ! !
- PTS, 117, 159
ALX, 116, 200 -
- REG, 151
BBN, 152 -
_BDN, 151 _REV, 117
- ; RMV, 117, 127
BIF, 194 -
- S0, 117
result codes, 194 ~S0 sate 161
_BST, 193, 194, 195 st 117

result codes, 195 _S1 deeping state, 161

_BTP, 194, 196 _S1 system indicators, 183
_CID, 116, 120 o 117
_CRS, 81, 116, 121 —o5 117
_CRT, 116, 202 _84’ 117
DCK, 151, 152 —ar
- S5, 117
DCL, 116 -,
- SBS, 191
DDN, 120 -
- SCP, 117
DIS, 116, 122 - .
- _Sl. See defined root name spaces
EC, 116
- SLN, 117
EJD, 116, 126 -
- SRS, 117, 124
EJx, 116, 127 -
Dl 194 _SST, 117, 183
- STA, 117,127, 158, 194
6L, 117 “STM, 186
GPE, 81. See defined root name spaces - ’
- SUN, 120
GTF, 186 =
- TC1, 117
GTM, 186 -
- TC2, 117
result codes, 187 IMP 117
HID, 81, 116, 120, 191 - '
- TSP, 117
—INI, 150 _TZ. See defined root name spaces
IRC, 116, 154, 156 -
TLCK. 116. 127 _UID, 117,121
- ’ ' WAK, 117, 163
LID, 184 ol .
“MSG. 116. 183 24-bit memory range descriptor, 135
- P 32-hit fixed location memory range descriptor, 138
OFF, 116, 158 . .
- 32-bit memory range descriptor, 137
ON, 116, 158
- AC adaptors
_0s, 117 wer source objects, 196
_PCL, 116, 194, 197 AcH d

_PR. See defined root name spaces
_PRO, 116, 154, 155
_PR1, 116, 154, 155

ACPI-specific device objects, 183
battery management, 29
definition of, 21

_PR2, 116, 154 device class specific objects, 115
PRS, 116, 123 . .
- device objects, 183
_PRT, 122 device power management, 29
for describing PCI IRQ routing, 122 ’
_PRW, 116, 154 EC (embedded controller), 29

embedded controller interface specification, 209
event programming model, 109

features, 52

hardware, 21

hardware model, 47

_PS0, 117, 154, 157
_PS1, 117, 154, 157
_PS2, 117, 154, 157
_PS3, 117, 154, 157

316

implementation details, 18
namespace, 104
NameSpace, 21
objects, 106
overview of, 18
Plug and Play, 29
power states, 30
principal goals of, 13
processor power management. See
programming models, 18
register model, 53
register summary. See register summary
related documents, 19
runtime components, 16
smart battery charger requirements, 190
smart battery selector requirements, 191
smart battery table, 183
software programming model, 83
specification, organization of, 17
specification, structure of, 15
system events, 29
System Management Bus Controller, 29
system power management, 29
technical reference, 18
thermal control, 199
thermal management, 29
turning off ACPI, 182
turning on ACPI, 179
waking and deeping, 171
ACPI control method Source Language. See ASL
ACPI Machine Language (AML)
specification, 289
ACPI name space
defining embedded controller SMBus host controller
in, 226
ACPI namespace
defining an embedded controller in, 225
ACPI Non-Volatile-Slegping Memory (NVS), 179
ACPI Reclaim Memory, 179
ACPI registers
general purpose event (GPE) registers, 57
PM timer register, 57
PM1 control registers, 56
PM1 event registers, 56
PM2 control register, 57
processor control block, 57
ACPI Source Language (ASL), 233
ACPI0001, 115
ACPI0002, 115
ACPI0003, 115
Acquire - Acquire a Mutex Synchronization Object.
See ASL
active cooling, 199

active cooling methods, 200
Add - Add. See ASL
address map
example, 230
address space descriptors, 139
bus number resource flag, 149
1/0 resource flag, 149
memory resource flag, 148
Alias - Declare Name Alias. See Alias - Declare Name
Alias
AML
battery events, 193
byte stream, 299
byte values, 299
grammer definition, 290
notation conventions, 289
specification, 289
AML (ACPI-controlled Machine Language), 21
AML and ASL
relation between, 289
And - Bitwise And. See ASL
APIC, 87
description table, 23
interrupt source overrides, 99
non-maskable interrupt sources (NMIs), 100
APIC and dual 8259 support, 99
ASL, 106, 233
Acquire - Acquire a Mutex Synchronization Object,
275
Add - Add, 275
Alias - Declare Name Alias, 268
And - Bitwise And, 275
Break - Break, 270
BreakPoint - BreakPoint, 271
Concatenate - Concatenate, 275
CondRefOf - Conditiona Reference Of, 276
constant terms.
CreateBitField, 251
CreateByteField, 251
CreateDWordField, 252
CreateField - Fidd, 252
CreateWordField, 252
data object declaration terms.
datatypes, 248
debug data object, 288
Decrement - Decrement. See Add
DerefOf - Dereference Of Operator, 276
Device-Declare Bus/Device Package, 252
Divide - Divide, 276
EISAID - Convert EISA ID, 287
Else - Else Operator, 271
Event-Declare Event Synchcronization Object, 253
example embedded controller code, 226

example embedded controller host controller code,
226

Fatal - Fatal Check, 271

Field - Declare Field Objects, 253

FindSetLeftBit - Find Set Left Bit, 276

FindSetRightBit - Find Set Right Bit, 277

FromBCD - Convert from BCD, 277

grammer, 233

If - If Operator, 271

Increment - Increment. See Add

Index - Index, 277

IndexField-Declare Index/Data Fields, 264

LANd - Logical And, 278

LEqual - Logica Equal, 278

L Greater - Logical Greater, 278

LGreaterEqual - Logica Greater Than Or Equal,
279

LLess- Logical Less, 279

LLessEqual - Logical Less Than Or Equal, 279

LNot - Logica Not, 279

LNot Equd - Logical Not Equal, 279

Load - Load Differentiated Definition Block, 271

LOr - Logical Or, 279

macro for 24-bit memory descriptor, 136

macro for 32-bit memory descriptor, 138

macro for DMA descriptor, 130, 131

macro for end dependent functions descriptor, 132

macro for end tag, 134

macro for fixed 1/O port descriptor, 134

macro for start dependent function descriptor, 132

macro for vendor defined descriptor, 134, 137

macro for WORD address space descriptor, 148

macros, 107

macros for 32-bit fixed memory descriptor, 139

macros for DWORD address space descriptors, 145

macros for extended interrupt descriptor, 150

macros for I/O port descriptor, 133

macros for QWORD address space descriptor, 142

macros for resource descriptors, 128

Match - Find Object Match, 280

Method - Declare control method, 265

Multiply - Multiply, 280

Mutex - Declare Synchronization/Mutex Object, 266

Name - Declare Named Object.

Name Space Modifier Terms, 268

named object terms, 250

names, 248

NAnNd - Bit-wise NAnd, 281

Noop Code - No Operation, 272

NOr - Bitwise NOr, 281

Not - Not, 281

Notify - Notify, 272

ObjectType - Object Type, 281

317

one constant one object, 287.
OperationRegion - Declare Operation Region, 266
Operator Terms, 269
Or - Bit-wise Or, 282
power resource statement, 153
PowerResource, 267
Processor - Declare Processor, 267
RefOf - Refernce Of, 282
Release - Release a Mutex Synchronization Object,
272
Reset - Reset an Event Synchronization Object, 272
Return - Return, 272
Scope - Declare Name Scope, 269
ShiftLeft - Shift Left, 282
ShiftRight - Shift Right, 283
Signal - Signal a Synchronization Event, 273
Siz XE "SizeOf - Size Of Data Object” \t "See ASL"
€Of - Size Of Data Object, 283
Sleep - Sleep, 273
SMBus addressing, 255
SMBus praotocals, 256
SmBus slave address, 255
Stall - Stall for a Short Time.
statements, 107
Store - Store, 283
Subtract - Subtract, 284
terms, 249
ThermalZone - Declare Thermal Zone, 268
ToBCD - Convert to BCD, 284
Type 1 Operator Term, 269
Type 2 Operators, 274
Unload - Unload Differentiated Definition Block,
273
Wait - Wait for a Synchronization Event, 284
While - While, 273
XOr - Bit-wise XOr. See. See
Zero-constant zero object.
ASL (ACPI control method Source Language), 21
ASL Language and Terms, 235
ASL Names, 235
battery
capacity, 38
events, 38
gas gauge, 39
warning, 40
battery control methods, 193
battery events, 193
battery management, 38
BD_EC (0x83), 214
BE_EC (0x82), 214
BIOIS initialization
of memory, 179
BIOS initialization, 178

318

Break - Break. See ASL

Burst (BURST) flag, 213

burst disable embedded controller, 214
burst enable embedded controller, 214
CO0, 165

CO0 processor power state, 28

C1, 165

C1 processor power state, 28

C2, 165

C2 processor power state, 28

C3, 166

C3 processor power state, 28

clock throttling, 67

CMBatt, 183. See control method battery
Concatenate - Concatenate. See ASL

CondRefOf - Conditional Reference Of. See ASL

configuration, 119
constant terms. See ASL
control method
battery device natification values, 114
lid notification values, 115
power button notification values, 114
sleep button notification values, 114
control method batteries, 193
control method battery, 38
control method battery device, 183
control method lid device, 183
control method power button device, 184
control method sleep button device, 184
control methods, 21
arguments, 108
BIOS-supplied, 158
objects, 108
OEM-supplied, 158
operation regions, 108
system level, 158
cooling temperatures
adjustment for bay device, 200
adjustment to implement hysteresis, 200
resetting of from user interface, 199
CPU
definition of, 21
CreateBitField. See ASL
CreateByteField. See ASL
CreateDWordField. See ASL
CreateField - Field. See ASL
CreateWordField. See ASL
critical shutdown, 202
critical trip point, 199
DO state, 27
D1 state, 27
D2 state, 27
D3 state, 27

data object declaration terms. See ASL
debug data object. See ASL
defined root name spaces, 105
definition block, 21
defiiniton of, 85
definition block encoding, 106
definition blocks, 96
DerefOf - Dereference Of Operator. See ASL
description header fields, 86
description table specifications, 85
desktop PCs, 31
device check, 113
device class specific objects
device IDs, 115
device configuration objects, 121
device identification objects, 119
_ADR, 119
_CID, 119
_DDN, 119
_HID, 119
_SUN, 119
_UID, 119
device insertion and removal objects, 125
device object notifications, 113
device off state. See D3 state
device power capabilities, 33
device power management, 32
child objects, 154
device power state definitions, 27
device wake, 114
diagram legends, 47
differentiated system description table, 96
Divide - Divide. See ASL
DMA
format, 130
DSDT, 87
DSDT (Differentiated System Description Table), 22
DWORD address space descriptor, 143
dynamically changing cooling temperatures, 199
EBDA. See extended BIOS data area
EC (Embedded Controller), 22
interface, 22
EC_DATA (RIW), 213
EC_SC, 212
EC_SC (W), 213
EISAID - Convert EISA ID. See ASL
gection request, 114
Else - Else Operator. See ASL
embedded control command, 213
embedded controller, 81
burst disable embedded controller, 214
burst enable embedded controller, 214
command interrupt mode, 216

command set, 213

defining in ACPI name space, 225

description information, 217

event interrupt mode, 216

firmware, 215

interfacing algorithms, 217

interrupt mode, 215

notofication management, 215

query embedded controller, 215

read embedded controller, 214

register descriptions, 212

SCI/SMI task queuing, 215

SMBus host controller interface via, 217

SMBus host controller notification header, 215

SMI processing, 215

status, 212

write embedded controller, 214
embedded controller data, 213
embedded controller device object, 184
embedded controller interface specification, 209
end dependent functions, 132
end tag, 134
event programming model

components, 109
extended BIOS data area, 84
extended interrupt descriptor, 149
FACP, 87. See fixed ACPI description table
FACP (Fixed ACPI Description Table), 22
FACS, 87. See firmware ACPI control structure
FACS (Firmware ACPI Control Structure), 22
fan, 82
fan device, 184
Fatal - Fatal Check. See ASL
FindSetL eftBit - Find Set Left Bit. See ASL
FindSetRightBit - Find Set Right Bit. See ASL
firmware ACPI control structure, 93
firmware control structure feature flags, 94
fixed ACPI description table, 83, 88
fixed ACPI description table fixed feature flags, 92
fixed ACPI events, 110
fixed feature control bits

BM_RLD, 73

GBL_RLS, 73

SCI_EN, 73

SLP EN, 74

SLP TYP, 74
fixed feature enable bits

GBL_EN, 72

PWRBTN_EN, 72

RTC_EN, 73

SLPBTN-EN, 72

TMR_EN, 72
fixed feature events, 22

319

fixed feature registers, 23

fixed feature space registers, 70

fixed hardware programming model, 45

fixed location 1/0 port descriptor, 133

flushing caches, 176

FromBCD - Convert from BCD. See ASL

full on state. See DO state

GO state, 26

G1 state, 26

G2 state, 25

G3 state, 25

general purpose event handling, 111

general purpose events
dispatching to an ACPI-aware device driver, 112
queuing of matching control method, 112
wake events, 112

wake events, managing using device PRW objects,

113
general purpose register blocks, 78
general purpose event O enable register, 79
general purpose event O register block, 78
general purpose event O status register, 78
general purpose event 1 enable register, 79
general purpose event 1 register block, 79
general purpose event 1 status register, 79
general purposeregisters, 76
generic bus bridge device, 185
generic devices, examples, 79
generic programming model, 45
Get Power Status, 34
global lock, 95
global lock mutex, 118
global system state definitions, 25
Global System States, 23
GPE (Genera Purpose Event)
registers, 23
hardware
cross device dependencies, 51
ignored bits, 51
reserved hits, 51
write-only bits, 51
hardware thermal events, 200
1/0 port descriptor, 133
IDE
controls, 186
IDE controller device, 185
If - If Operator. See ASL
ignored bits, 23
Implementing ACPI
for Origina Equipment Manufacturers (OEMs), 15
Index - Index. See ASL
IndexField-Declare Index/Data Fields. See ASL
initialization, 177

320

Input Buffer Full (IBF) flag, 213
INT 15H, E820H, 229
10 APIC, 99
IRQ
ASL macro for descriptor, 129
format, 129
LANd - Logical And. See ASL
large resource data type, 135
items, 135
tag bit definitions, 135
Legacy Support, 14
LEqua - Logical Equal. See ASL
L Greater - Logical Greater. See ASL
LGreaterEqual - Logica Greater Than Or Equal. See
ASL
lid switch, 79
LLess- Logical Less. See ASL
LLessEqual - Logical Less Than Or Equal. See ASL
LNot - Logical Not. See ASL
LNot Equd - Logical Not Equal. See ASL
Load Differentiated Definition Block. See ASL
LOr - Logical Or. See ASL
Match - Find Object Match. See ASL
mechanical off state. See G3 state
Method - Declare control method. See ASL
mobile PCs, 31
multiple APIC description table, 97
flags, 98
Multiply - Multiply. See ASL
Mutex - Declare Synchronization/Mutex Object. See
ASL
Name - Declare Named Object. See ASL
Name Space Modifier Terms. See ASL
named object terms. See ASL
NAnNd - Bit-wise NAnd. See ASL
NMIs. See non-maskabl e interrupt sources
non-volatile sleep state. See $4 state
Noop Code - No Operation. See ASL
NOr - Bitwise NOr. See ASL
Normal and Lazy |/O operations, 14
Not - Not. See ASL
Notify - Notify. See ASL
ObjectType - Object Type. See ASL
OFF
power resources for, 156
one constant one object. See ASL
one-button machine model, 15
ones constant ones object. See ASL
operating system
initialization, 182
loading of, 181
sample usage, 231
operating system-defined objects, 117

OperationRegion - Declare Operation Region. See ASL
Or - Bit-wise Or. See ASL
OS name object, 118
0S SMB_EVT, 215
OSPM (Operating System-Directed Power
Management), 13
minimum reguirements of, 17
Output Buffer Full (OBF) flag, 213
passive cooling, 199
passive cooling equation, 201
P-Code, 24
persistent system description tables, 23, 97
Physical Memory Map, 180
pkg length, 106
Plug and Play, 37
PM1 control registers, 73
PM1 enable registers
fixed feature enable bits, 72
PM1 event grouping, 70
PM1 Fixed Feature Status Bits
BM_STS, 70
GBL_STS, 71
PWRBTN_STS, 71
RTC_STS, 71
SLPBTN_STS, 71
TMR_STS, 70
WAK_STS, 72
PM1 status registers
fixed feature status bits, 70
PM2 control register bits
ARB_DIS, 75
PNPOAO5, 115
PNPOAOS6, 115
PNPOCO08, 115
PNPOCO09, 115
PNPOCOA, 115
PNPOCOB, 115
PNPOCOC, 115
PNPOCOD, 115
PNPOCOE, 115
PNPOCOF, 115
power button, 24, 31
power management, 24, 153
device power management objects, 153
power management timer, 74
power managerment
device specific control, 153
power resource
child objects, 158
Power Resource - Declare Power Resource. See ASL
power resources, 153
power source devices, 189
power source name space

example, 197
power source object notification values, 114
PowerResource object
ASL example, 153
declaring of, 153
pre-defined global events, 117
Processor - Declare Processor. See ASL
processor control, 165
processor control register bits
CLCK_VAL, 75
CLK_VAL, 75
THT_EN, 75
processor local APIC, 98
processor LVL2
register bits, 75
processor LVL3 register bits
P LVL3, 76
processor object
declaring of, 165
processor power state
Co0, 69
C1,69
C2, 66,70
C3, 66, 70
control of, 65
flushing caches, 67
processor power states, 28, 165
Co0, 165
C1, 165
C2, 165
C3, 166
policy, 166
PSDT, 87
QR_EC (0x84), 215
query embedded controller, 215
query system address map, 229
QWORD address space descriptor, 139
RD_EC (0x80), 214
read embedded controller, 214
red time clock alarm
alarm field decodings within FACP table, 63
RefOf - Refernce Of. See ASL
register bits
notation, 47
P LVL2 75
register blocks
power management 2 control (PM2_CNT), 74
processor register block (P_BLK), 75
register grouping, 24
register summary. See register summary
registers
processor control (P_CNT), 75
processor LVL2 register (P_LVL2), 75

321

processor LVL3 register (P_LVL3), 76
Release - Release a Mutex Synchronization Object. See
ASL
required fixed features
buttons, 58
control method power button, 59
fixed power button, 59
fixed sleep button, 60
power button override, 60
power management timer, 57
real time clock alarm, 63
deep button, 60
deeping/wake control, 62
reserved hits, 24
reserved bits and fields, 85
hardware bits and software components, 86
ignored hardware bits and softwarecomponents, 86
reserved bits and software components, 85
reserved values and software components, 86
Reset - Reset an Event Synchronization Object. See
ASL
Return - Return. See ASL
rewuired fixed features
control method sleeping button, 61
root system description pointer, 24, 83, 86
structure of, 86
root system description table, 24
root system description table fields, 87
RSDT, 87. See root system description table
S1 deeping state, 28, 173
implementation of, 173
S2 deeping state, 28, 161, 173
implementation of, 174
S3 deeping state, 28, 174
implementation of, 174
S3 state, 161
4 deeping state, 28, 175
BIOS-initiated transition, 175
operating system initiated transition, 175
A state, 26
S5 deeping state, 28
S5 soft off state, 175
S5 state, 162
SBST, 87
SCI (System Control Interrupt), 25
SCI event (SCI_EVT) flag, 213
Scope - Declare Name Scope. See ASL
secondary system description table, 24
secondary system description tables, 96
server PCs, 31
Set Power State, 33
ShiftLeft - Shift Left. See ASL
ShiftRight - Shift Right. See ASL

322

Signal - Signal a Synchronization Event. See ASL
signature fields, 86
silence mode, 202
SizeOf - Size Of Data Object. See ASL
Sleep - Sleep. See ASL
deep button, 15
deeping state. See G1 state
definitions of, 28
deeping states, 171
small resource data type, 129
smart battery, 183, 189
charger requirements, 190
example command codes, 256
example of subsystem (multiple batteries), 192
example of subsystem (single battery), 191
objects, 191
smart battery selector requirements, 191
smart battery table, 103
subsystem, 24
subsystem control methods, 191
table, 25
SMB_ADDR, 219
SMB_ALRM_ADDR, 220
SMB_ALRM_DATA[0], SMB_ALRM_DATA[1],
221
SMB_BCNT, 220
SMB_CMD, 220
SMB_DATA][i], i=0-31, 220
SMB_PRTCL, 219
SMB_STS, 218
status codes, 218
SMBus, 25
interface of, 25
SMBus devices, 225
access restrictions, 225
SMBus interface
addressregister SMB_ADDR, 219
alarm address register, SMB_ALRM_ADDR, 220
alarm dataregisters, 221
block count register, 220
command register, 220
dataregister array, 220
process call, 223
protocol description, 221
protocol register SMB_PRTCL, 219
read block, 223
read byte, 222
read quick, 221
read word, 223
receive byte, 222
send byte, 221
status register SMB_STS, 218
write block, 223

write byte, 222
write quick, 221
write word, 222
SMBus protocols
example of multiple protocols, 263
quick protocol (QuickAcc), 256
read/write block protocol (BlockAcc), 260
read/write byte protocol (ByteAcc), 258
read/write word protocol (WordAcc), 259
send/receive command protocol
(SMBusSendRecvAcc), 257
SMBus memory devices (AnyAcc), 261
SMBus register set, 224
SMI (System Management Interrupt), 25
SMI event (SMI_EVT) flag, 213
soft off, 15
soft off state. See G2 state
specification
terminology, definition of terms, 21
SSDT, 87
start dependent functions, 131
Store - Store. See ASL
Subtract - Subtract. See ASL
system_S1 state, 161
system_S2 state, 161
system_S3 state, 161
system_$4 state, 162
system_Sx states, 159
system events, 37
system indicator control methods, 183
system $4 deeping state, 162
system \S5 state, 162
system state
package, 159
system working state, 161
thermal block
name space example (one thermal zone), 206
thermal control, 199
thermal control methods, 203
thermal events
hardware, 200
thermal management, 199
active cooling, 41
multiple thermal zones, 44
passive cooling, 41
performance cooling, 42
silent cooling mode, 43
thermal states, 25
thermal zone object natification values, 114
ThermaZone - Declare Thermal Zone. See ASL
timer bits
E TMR_ VAL, 74
TMR_VAL, 74

ToBCD - Convert to BCD. See ASL

transition from working to sleeping state, 176

transition from working to soft off state, 176

two-button machine mode, 15

Type 2 Operators. See ASL

Unload - Unload Differentiated Definition Block. See
ASL

vendor defined descriptor, 134

vendor defined resource data type, 136

Wait - Wait for a Synchronization Event. See ASL

323

wake events, 112

wake power requirements, 154
Wakeup, 34

While - While. See ASL

WORD address space descriptor, 146
working state. See GO state

WR_EC (0x81), 214

write embedded controller, 214

XOr - Bit-wise XOr. See ASL. See ASL
Zero-constant zero object. See ASL

